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Abstract 
The strength of contract enforcement determines how firms source inputs and organize production. Using 
microdata on Indian manufacturing plants, we show that production and sourcing decisions appear systematically 
distorted in states with weaker enforcement. Specifically, we document that in industries that tend to rely more 
heavily on relationship-specific intermediate inputs, plants in states with more congested courts shift their 
expenditures away from intermediate inputs and appear to be more vertically integrated. To quantify the impact 
of these distortions on aggregate productivity, we construct a model in which plants have several ways of 
producing, each with different bundles of inputs. Weak enforcement exacerbates a holdup problem that arises 
when using inputs that require customization, distorting both the intensive and extensive margins of input use. 
The equilibrium organization of production and the network structure of input-output linkages arise endogenously 
from the producers' simultaneous cost minimization decisions. We identify the structural parameters that govern 
enforcement frictions from cross-state variation in the first moments of producers' cost shares. A set of 
counterfactuals show that enforcement frictions lower aggregate productivity to an extent that is relevant on the 
macro scale. 
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1 Introduction

Weak contract enforcement hinders firm-to-firm trade and distorts production decisions. For exam-

ple, a manager who cannot rely on courts for timely and cheap enforcement may need to purchase

low-quality substitutes from her cousin, vertically integrate the production process, or switch to

a different technique altogether that avoids the bottleneck input. Regardless of the chosen alter-

native she will find herself producing at a higher cost. Collectively, the micro distortions induced

by weak enforcement alter the equilibrium network structure of production and reduce aggregate

productivity.

This paper studies theoretically and empirically how weak legal institutions—more precisely,

slow contract enforcement due to congestion of the courts—shapes the organization of production.

We develop a framework that allows us to use detailed micro production data to quantify the impact

of these frictions on aggregate productivity.

We study contract enforcement frictions in the context of the Indian manufacturing sector.

India is a country with infamously slow and congested courts: the World Bank (2016) currently

ranks India 172nd (out of 190) when it comes to the enforcement of contracts, behind countries

such as the Democratic Republic of Congo (171st) and Zimbabwe (165th). Around 6m of the 22m

pending cases are older than five years, and while India’s Law Commission has been advocating

vast reforms for several decades, these reforms have not been implemented, and pendency ratios

have not decreased. At the same time, India’s liberalization and growth has spurred demand for

timely enforcement of contracts.

Using plant-level data from India’s Annual Survey of Industries, we document several facts

about how court congestion alters plants’ input choices. While there is an enormous amount of

heterogeneity in the input bundles plants use even within narrowly defined (5-digit) industries,1

the bundles differ in systematic ways related to the quality of courts. To focus on these differences,

we differentiate between inputs that are relatively homogeneous and standardized from those that

require customization or are relationship specific, using the classification from Rauch (1999). Users

(or potential users) of relationship-specific inputs are most likely to benefit from better formal

enforcement of supplier contracts.

Our first fact is that in states where courts are more congested, plants in industries that typ-

ically rely on relationship-specific intermediate inputs systematically shift production away from

intermediate inputs. This is consistent with slow courts raising the effective cost of relationship-

specific inputs. Second, we show that, where courts are slower, plants in all industries shift the

composition of their intermediate input bundles toward homogenous inputs. Third, we construct

a new measure of vertical integration and show that, where courts are more congested, plants in

industries that typically rely on relationship-specific inputs tend to be more vertically integrated.

1Some of this heterogeneity reflects different organizational and technological choices. As an example, a plant that
produces frozen chicken may purchase live chicken and slaughter and freeze them; or it may purchase chicken feed, and
raise, slaughter, and freeze the chicken on the same vertically integrated plant. Other examples indicate horizontal
technological choices, e.g., the chicken producer could use a sophisticated machine that mechanically packages the
chicken or use more basic implements.
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To alleviate concerns that higher court quality might arise endogenously from higher demand for

formal contract enforcement, we use an instrumental variable strategy that exploits the historical

origins and structure of the Indian judiciary.

To interpret these facts and to quantitatively evaluate their ramifications for aggregate pro-

ductivity and for the organization of production, we construct a multi-industry general-equilibrium

model of heterogeneous firms and intermediate input linkages that form between them. Firms face a

menu of technology/organizational choices (“recipes”) and draw suppliers along with match-specific

productivities. Both primary inputs and relationship-specific inputs are subject to distortions that

reflect weak contract enforcement. Each firm chooses the production technique and suppliers that

minimize cost. The effective cost of an input depends on the match-specific productivity, the sup-

plier’s marginal cost, and the distortion. We model the enforcement distortion for each supplier

as randomly drawn to reflect the idea that formal enforcement may only sometimes be relevant at

the margin. For example, formal enforcement may not be necessary if the buyer and supplier are

engaged in a long-term relationship, are related, or share other social ties.

In our model, distortions alter production choices and build up along entire supply chains. Weak

enforcement has a direct impact on producers that use inputs that require contract enforcement, but

may also lead firms to switch to suppliers with a higher cost or to an entirely different production

technique with a different set of inputs. We think of vertical integration as one such option.

To make quantitative statements, we structurally estimate technological parameters and distri-

butions of wedges that distort the use of relationship-specific intermediate inputs and of primary

inputs that are specific to each state. Our identification strategy exploits the idea that the quality

of courts should have no impact on the effective cost of homogeneous inputs (which is, if anything,

conservative). The identified wedges on relationship-specific intermediate inputs are correlated with

the observed speed of the regional courts, in line with the motivating reduced-form regressions.

Our results suggest that courts may be important in shaping aggregate productivity. For each

state we ask how much aggregate productivity of the manufacturing sector would rise if congestion

were reduced to be in line with the least congested state. On average across states, the boost to

productivity is roughly 5%, and the gains for the states with the most congested courts are roughly

10%.

Our model builds on recent models of firm linkages in general equilibrium that include Oberfield

(2018), Eaton, Kortum and Kramarz (2015), Lim (2017), Lu, Mariscal and Mejia (2013), Chaney

(2014), Acemoglu and Azar (2017), Taschereau-Dumouchel (2017), and Tintelnot et al. (2017)2,

and uses aggregation techniques pioneered by Houthakker (1955) and Jones (2005). We model the

technology choice and choice of organization concurrently with the sourcing decision, motivated

by evidence that increased access to intermediate inputs has a productivity-enhancing effect (e.g.

Pavcnik (2002), Khandelwal and Topalova (2011), Goldberg et al. (2010), Bas and Strauss-Kahn

(2015)). As in Grossman and Helpman (2002), one producer’s choice of organization depends on

2These are also closely related to models of global value chains and global sourcing such as Costinot, Vogel and
Wang (2012), Fally and Hillberry (2015), Antràs and de Gortari (2017), Antras, Fort and Tintelnot (2017).
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the industry environment and the choices of other producers.

Our paper is also closely related to the literature on misallocation in developing countries (see

Hopenhayn (2014) for a survey). Several papers have extended the work of Hsieh and Klenow (2009)

to settings in which distortions affect the use of intermediate inputs, e.g., Jones (2013), Bartelme

and Gorodnichenko (2014), Fadinger, Ghiglino and Teteryatnikova (2016), Bigio and La’O (2016),

Caprettini and Ciccone (2015), Liu (2017), Caliendo, Parro and Tsyvinski (2017), Osotimehin and

Popov (2017), and Baqaee and Farhi (2017). These papers typically posit industry-level production

functions and use industry-level data. Our approach of identifying wedges from factor shares (in

our case, intermediate input expenditure shares) extends the work of Hsieh and Klenow (2009)

along three key dimensions. First, we relate the estimated wedges to the quality of Indian state-

level institutions, which allows us draw policy conclusions from our exercise. Second, we confront

the fact that firms produce in very different ways even in narrowly defined industries by explicitly

modeling this heterogeneity; we allow firms to choose among several types of technologies (recipes)

in the theory and identify these recipes in the data through the application of techniques from

statistics/data mining. Third, we identify wedges from systematic differences in first moments,

which helps to alleviate concerns about mismeasurement being interpreted as misallocation.3 In

fact, our model predicts that, even in the absence of distortions, firms that use the same broad

technology would use inputs with varying intensities.

The paper is related to the literatures on legal institutions and economic development (La

Porta et al. (1997), Djankov et al. (2003), Acemoglu and Johnson (2005), Nunn (2007), Levchenko

(2007), Acemoglu, Antràs and Helpman (2007), Laeven and Woodruff (2007) among many others).

Ponticelli and Alencar (2016) and Chemin (2012) argue that better courts reduce financial frictions.

Amirapu (2017) shows that where district courts in India are more congested, firms in industries

that relied on relationship-specific inputs grew faster. Johnson, McMillan and Woodruff (2002)

provide survey evidence that reduced trust in courts makes firms that rely on relationship-specific

inputs less likely to switch suppliers. By embedding a contracting friction into a general equilibrium

model, we explore its quantitative importance for aggregate outcomes. Boehm (2016) characterizes

the impact of weak enforcement on aggregate productivity, using cross-country differences in input-

output tables to show that weak legal institutions have a larger impact on industry pairs that are

more vulnerable to holdup problems.

2 Input Use among Indian Manufacturing Plants

2.1 Intermediate Input Use

We use data from the 2000/01 to 2012/13 rounds of the Annual Survey of Industry (ASI), the

official annual survey of India’s formal manufacturing sector. The ASI is a panel that covers all

establishments with more than 100 employees, and, every year, a fifth of all establishments with

more than 20 employees (or more than 10 if they use power). The ASI’s unique feature is that

3See Bils, Klenow and Ruane (2017) and Rotemberg and White (2017).
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(a) Input mixes for Bleached Cotton Cloth (63303)
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Figure 1 Heterogeneity in input mixes within narrow industries

In the left panel, “bleached yarns” refer to yarns that have been bleached or dyed. Each dot
refers to a plant-year observation. We include only single-product plants. Observations on
the bottom left mostly produce their output from unbleached cloth (left panel) or industrial
diamonds (right panel). Points have been jittered to improve readability.

it contains detailed product-level information on each plant’s intermediate inputs and outputs.

Products codes are at the 5-digit level, of which there are around 5,200 codes in their classification.

The product classification remains largely unchanged during the years 2000/01 to 2009/10. The

rounds 2010/11 to 2012/13 use a different (albeit similar) product classification, and we bring

product-level data to the classification of the earlier years using the official concordance table

published by the Ministry of Statistics. Appendix A contains more details on the data and a

description of our sample.

One striking feature of the data is that even in narrowly defined industries, plants produce

using very different input bundles. Figure 1 shows two examples that are particularly clear. Among

respective producers of bleached cotton cloth and polished diamonds, output is made using different

sets of inputs. While we believe that much of the heterogeneity in organization and input bundles

is not associated with inefficiencies and would arise naturally, Section 2.3 below shows that some

of the differences are systematically related to court congestion.

Intermediate inputs vary in their degree to which buyers and sellers are subject to hold-up

problems. Producers of goods that are tailored to a particular buyer (“relationship-specific”) may

find that buyers refuse to pay for the supplied good, knowing that they are useless to anyone but

themselves (Iyer and Schoar (2008)). We use the Rauch (1999) classification that divides goods into

homogeneous goods (those that are traded on organized exchanges or for which a reference price

exists), and relationship-specific goods (the remainder). Holdup problems are more likely to arise
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with relationship-specific inputs. Firms may rely more heavily on judicial institutions to enforce

supplier contracts when trading goods belonging to the latter category (Johnson, McMillan and

Woodruff (2002)).

2.2 Court Congestion in India

Among all ills of the Indian judicial system, its slowness is perhaps the most apparent one. As of

2017, about nine percent of pending cases in district courts and six percent of pending cases in

High Courts are older than ten years.4 Some cases make international headlines, such as in 2010,

when the Bhopal District Court convicted eight executives for death by negligence during the 1984

Bhopal gas leak which killed thousands of people. The conviction took place some 25 years after

the disaster; one of the eight executives had already passed away, and the remaining seven appealed

the conviction.5

The slowness of the Indian courts is at least partly due to the uneven distribution of workload

across its three tiers.6 The lowest tier is the Subordinate (District) Courts, which have courthouses

in district capitals and major cities.7 The next tier are the High Courts, of which there generally

exists one for each state, and which have both appellate and original jurisdiction over cases origi-

nating from their state (and sometimes an adjacent union territory). High Courts also administer

subordinate courts in their jurisdiction. The highest tier is the Supreme Court of India. All three

tiers are heavily congested, with district courts facing the additional problems that judges are often

inexperienced and make erroneous decisions. While contract cases between firms should, in princi-

ple, be filed at the district level, litigants typically bypass this step by claiming an infringement of

their fundamental rights or appealing to the constitution of India, in which case they are permitted

to file the claim directly at a high court.8 High Court judges, often taking a dim view of the

subordinate judiciary, tend to accommodate this practice. The result is that the Indian judiciary is

relatively heavy in its upper levels, with only the simplest cases being dealt with in the subordinate

courts.9 For better or worse, it is the quality of the higher judiciary that determines whether and

how contracts can be enforced.

We construct a measure of court quality from microdata on pending civil cases in High Courts,

which the Indian NGO Daksh collects from causelists and other court records (Narasappa and

Vidyasagar (2016)). These records show the status and age of pending and recently disposed cases,

4Figures for district courts are from the National Judicial Data Grid (2017). Figures for High Courts are based
on authors’ calculations from the Daksh data (see below).

5“Painfully slow justice over Bhopal”, Financial Times, June 7, 2010.
6See Robinson (2016) for an overview of the Indian judiciary. Hazra and Debroy (2007) discuss its problems in

relation to economic development.
7Districts are the administrative divisions below states. Between 2001 and 2010 there were around 620 districts

and 28 states in India. Union territories are small administrative divisions (typically cities or islands) that are under
the rule of the federal government, as opposed to states, which have their own government.

8Some High Courts, such as the High Courts of Bombay, Calcutta, Madras, and Delhi, even allow civil cases to
be filed directly whenever the claim exceeds a certain value.

9Between 2010 and 2012, about 40% of all disposed cases in subordinate courts were related to traffic tickets,
another seven percent related to bounced cheques (Law Commission of India (2014)).
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along with characteristics of the case, such as the act under which the claim was filed or a case type

categorization. Our measure of high court quality is the average age of pending civil cases in each

court, at the end of the calendar year 2016. Whenever a high court has jurisdiction over two states

and a separate bench in each of them (such as the Bombay High Court, which has jurisdiction over

Maharashtra and Goa), we construct the statistic by state. We prefer this measure over existing

measures of the speed of enforcement, such as pendency ratios published by the High Courts, which

suffer from the problem that different high courts measure pendencies in vastly different ways (as

recently emphasized by the Law Commission of India (2014)).

The average age of pending civil cases varies substantially across high courts – from less than

one year in Goa and Sikkim, to about four and a half years in Uttar Pradesh and West Bengal.

The cross-state average is two and a half years. These differences can be seen in Figure 2.

The problems of the Indian judiciary are not a recent phenomenon, and have not gone unnoticed.

Throughout the modern history of India as an independent nation, the Law Commission of India

has pointed out the enormous backlogs and arrears of cases (14th report, 1958, 79th report, 1979,

120th report, 1987, and 245th report, 2014), and suggested a plethora of policies to alleviate the

situation. The vast majority of these proposals have not been adopted, and the few exceptions

seem to have had little impact. Overall, the backlogs have slowly but continually accumulated.

The main explanation for why court speed varies so much across states lies in the history of

India’s political subdivisions. The first high courts (Madras, Bombay, and Calcutta) were set

up by the British in the 1861 Indian High Courts Act, and served as the precursor for India’s

post-independence high courts. Upon independence, India was divided into a number of federated

states, with the Constitution of India (1947) mandating a high court for each state. Throughout

the twentieth century and beyond, India has frequently subdivided its states, often because of

ethno-nationalist movements. These subdivisions were often accompanied with new high courts

being set up, which then start without any existing backlog of cases.10 The age of the high court

is hence a strong determinant of its speed of enforcement (see Figure 2). We will later use the age

of high courts as an instrument for its quality.

2.3 Motivating Facts

We first turn to documenting the correlation between court quality and plants’ intermediate input

use. For the sake of preciseness we restrict our attention here to single-product plants.11

Fact 1 In states with worse formal contract enforcement, cost shares of intermediate inputs are

relatively lower in industries that tend to rely more on relationship-specific intermediate inputs.

Table I shows regressions of the plants’ materials cost share on an interaction of court quality (as

measured by the average age of pending cases in the state’s high court) and the industry’s reliance

10Table VII in the data appendix summarizes the reasons for the high court being set up, or the state being formed.
11One difficulty that arises when studying multi-product plants is that we do not observe which inputs are used

to produce each product. Nevertheless, the results in this section are quantitatively similar when we include multi-
product plants and assign the plant to the category of its highest-revenue product.
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Figure 2 Age of the High Court and Speed of Enforcement

on relationship-specific inputs.12 The interaction term has a negative and significant coefficient,

showing that, within industries, in states where courts are slow, materials cost shares are relatively

lower in industries that depend heavily on relationship-specific inputs.13 The magnitude in column

(1) indicates that for each additional year of court congestion, plants’ materials share of cost

declines by 1.67 percentage points more in industries that rely on relationship-specific inputs than

in industries that rely on standardized inputs.

A primary concern in this specification is that court congestion is standing in for the level

of development, or that the level of development is correlated with the relative productivity of

industries that rely on relationship-specific inputs. Column (1) includes district fixed effects .

Column (2) controls for the interaction of relationship specificity with district income per capita

and column (3) adds controls for the interaction of relationship specificity with a variety of state

characteristics including measures of trust, corruption, linguistic fragmentation, and fragmentation

by caste. While the coefficients (reported in Appendix C) suggest that ethnolinguistic homogeneity

facilitates the use of relationship-specific inputs, this appears to be orthogonal to court congestion.

Finally, columns (4) to (6) employ an instrumental variables strategy that we discuss below in

Section 2.4.

12We measure an industry’s reliance on relationship-specific inputs at the national level by computing the frac-
tion of intermediate input expenditures spent on relationship-specific inputs across all plants in the industry. See
Appendix A.1 for details.

13In principle firms may file claims in the courts of any state—it is then up to the court to decide whether it has
jurisdiction over the contract. Our results suggest that plants typically find it costly to use courts outside their state.
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Table I Materials Shares and Court Quality (Fact 1)

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0167∗∗ -0.0129∗ -0.0118∗ -0.0156+ -0.0201∗ -0.0212∗∗

(0.0046) (0.0051) (0.0053) (0.0085) (0.0082) (0.0078)

LogGDPC * Rel. Spec. 0.0114 0.0102 0.00710 0.00556
(0.0086) (0.0091) (0.0095) (0.0096)

Rel. Spec. × State Controls Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.480 0.482 0.484 0.480 0.482 0.484
Observations 208527 199544 196748 208527 199544 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“Rel. Spec. × State Controls” are interactions of trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.

Fact 2 In states with worse formal contract enforcement, intermediate input bundles are tilted

towards standardized intermediate inputs.

Our first fact related court quality to how plants divided their expenditures between inter-

mediate and primary inputs. We next study how the composition of plants’ intermediate input

baskets covaries with court quality. Table II shows that in states where courts are faster, plants’

intermediate input baskets are tilted towards relationship-specific intermediate inputs. This cor-

relation remains statistically significant when controlling for district income per capita and other

state characteristics.

Table II Input Mix and Court Quality (Fact 2)

Dependent variable: XR
j /(X

R
j +XH

j )

(1) (2) (3) (4) (5) (6)

Avg age of Civil HC cases -0.00547∗ -0.00621∗∗ -0.00530∗ -0.0144∗∗ -0.0146∗∗ -0.0167∗∗

(0.0022) (0.0023) (0.0024) (0.0044) (0.0044) (0.0045)

Log district GDP/capita -0.00389 -0.00384 -0.00912+ -0.00980+

(0.0045) (0.0046) (0.0051) (0.0051)

State Controls Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.441 0.446 0.449 0.441 0.446 0.449
Observations 225590 204031 199339 225590 204031 199339

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State Controls” are trust, language herfindahl, caste herfindahl, and corruption.
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Fact 3 In states with worse formal contract enforcement, plants in industries that tend to rely

more on relationship-specific intermediate inputs are more vertically integrated.

A low materials share suggests that a plant may be doing more of production in-house, i.e.,

be more vertically integrated. For example, a car producer that assembles components may also

manufacture those components in the same facility. The regressions in Table III show how court

quality is related to a measure vertical integration. We first construct a measure of the “vertical

distance” between an output good ω to an input ω′. This is intended to capture the typical

number of “steps” between the use of ω′ and the production of ω, where we define a step to be the

activity performed by a single plant.14 Finally, for each plant, our measure of vertical integration

is the expenditure weighted average of the distance to its intermediate inputs. A higher number

indicates that the plant uses inputs that are typically more distant, and suggests that the plant is

performing more “steps” in-house. Table III shows that, in industries that rely more heavily on

relationship-specific inputs, plants tend to be more vertically integrated in states with worse courts.

Table III Vertical Integration of Plants and Court Quality (Fact 3)

Dependent variable: Vertical Integration

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. 0.0195+ 0.0269∗ 0.0280∗ 0.0292 0.0314+ 0.0368∗

(0.011) (0.012) (0.012) (0.019) (0.018) (0.018)

LogGDPC * Rel. Spec. 0.0464∗ 0.0288 0.0491∗ 0.0330
(0.022) (0.024) (0.023) (0.024)

Rel. Spec. × State Controls Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.443 0.451 0.453 0.443 0.451 0.453
Observations 163334 156191 154021 163334 156191 154021

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“Rel. Spec. × State controls” are interactions of trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.

2.4 Endogeneity, and the Historical Determinants of Indian Court Efficiency

The main caveat in the above regressions is the concern that there are unobserved covariates of court

quality that may also affect the cost of plants’ inputs, and thereby their input shares. The simplest

version is reverse causality. In principle, the bias from reverse causality could be positive or negative.

Suppose that a state had, for exogenous reasons, many plants that produced using relationship-

specific inputs. The disputes that arise may cause the courts to be congested. Or alternatively, the

14We construct national input-output tables using our plant-level data. For each output good ω and input good
ω′, we take a weighted average of the number of steps along any path from ω′ to ω, weighted by the product of the
input-output shares along that path, excluding any path which cycles. This measure is similar to Upstreamnessij
of Alfaro et al. (2015). Appendix B gives the precise mathematical definition of vertical distance.
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state may respond to the disputes that arise by spending resources to reduce congestion. Either of

these would be problematic for interpreting the regressions as a causal relationship.

While we believe reverse causality is unlikely to arise—the fraction of cases related to firm-to-

firm trade is relatively low15—it is difficult to rule out other factors that may influence both court

congestion and usage of relationship-specific inputs.

We therefore employ an instrumental variables strategy that uses the historical determinants

of congestion. As discussed in Section 2.2, courts have been continually accumulating backlogs

throughout the 20th century. At certain points in time, however, states were split or reorganized,

mostly in response to ethno-nationalist movements. In the course of these reorganizations, new

high courts were set up, which initially started with a clean slate but were, like existing courts,

understaffed and started accumulating backlogs. The time since their founding—the court’s age—is

therefore a strong predictor for the current backlog, which in turn determines the present-day speed

of enforcement. Our instrumental variable for the speed of enforcement is hence the (log) age of

the high court, and the instrument for an interaction of an industry-level variable with court speed

is the interaction of the industry-level variable with the log age of the court. Figure 2 in Section

2.2 shows the strong correlation between court age and speed of enforcement.

Columns (4) to (6) of Tables I, II, and III repeat the regressions while instrumenting for the

speed of enforcement. The point estimates of the coefficient of the interaction term is usually

slightly larger than the OLS estimates.

There are a few reasons that the exclusion restriction may be violated. We argue that two

candidates would lead us to conclude that the true relationships are stronger than reported in

the IV regressions. First, new states tend to be relatively poor and have low state capacity.

Thus the usual concern that a high level of development causes firms to use more sophisticated

technologies that use relationship-specific inputs would cause the newer states to have higher use

of homogeneous inputs. Alternatively, it may be that when a state splits, many firms lose their

suppliers and must switch. It may be easy to find a new supplier of homogeneous inputs, whereas

it might be harder to find a supplier of relationship-specific inputs. This channel would also cause

newer states to be more intensive in homogeneous inputs. In either case, the true relationship would

be stronger than reported. A third reason that the exclusion restriction might be violated is that

newly formed states might be more ethnically homogenous, so that newer courts might be correlated

with better informal enforcement. This is a particular concern here because ethno-nationalist

conflicts are a primary reason that states split. Nevertheless, we can control for states’ ethnic

fragmentation—or more specifically the interaction of relationship-specificity with various measures

of ethnic-fragmentation—as we do in columns (3) and (6) of Tables I, II, and III. Controlling for

these has little impact on the main coefficients of interest.

A final concern is that an industry’s reliance on relationship-specific inputs is correlated with

other industry characteristics such as capital intensity, skill intensity, upstreamness, or tradability.

15The fraction of cases that is related to the enforcement of supplier contracts is hard to pinpoint exactly because
courts classify cases very broadly, and in different ways across states. We know, however, that they account for less
than 5%, 14%, and 7% of the pending cases in the High Courts of Allahabad, Mumbai, and Kolkata, respectively.
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In Appendix C.1 we show that the estimates are robust to controlling for the respective interactions

of court congestion with each of these industry characteristics. More broadly, in Appendix C we

show a number of additional results about the relationship between court quality and establishment

characteristics (age, size, number of products, and import ratios), and more robustness checks. We

also provide additional suggestive evidence from two instances in which high courts set up new

benches in remote areas during our sample period.

3 Model

The previous section showed that imperfect contract enforcement alters the production decisions

of manufacturing firms in India in systematic ways. We next aim to quantify the impact of weak

enforcement on the productivity of the manufacturing sector. Our main identifying assumption is

that imperfect contract enforcement distorts the use of relationship-specific inputs and of labor, but

not the use of homogeneous inputs. Motivated by the reduced-form evidence, we will ultimately

identify the impact of the distortions by studying how patterns of plants’ expenditure shares differ

across states.

Several factors complicate the tasks of measuring distortions and assessing their impact. First,

there are many ways to avoid contracting frictions. Suppose a firm needed to use an input that

required customization and gave rise to a holdup problem. In the face of weak formal contract

enforcement, the firm might buy the intermediate input from a cousin or rely on the repeated

interactions of a long-term relationship. Such decisions, however, may come at a cost. A family

member may not be the optimal supplier of an intermediate input, and if a firm is in a long-term

relationship, it may pass up using new, more cost-effective inputs in order to remain in that long-

term relationship.16 Such a firm’s production cost is higher than it would be with better contract

enforcement. Nevertheless, since the firm avoids the holdup problem, its expenditure shares will not

be distorted. The higher production cost is an indirect consequence of weak formal enforcement.

We can infer this indirect cost by incorporating this type of decision in the model, and using the

structure of the model.

Second, as discussed in Section 2.1, even in narrowly defined industries, firms produce in qual-

itatively different ways. As a simple example, consider two plants that both produce tires, one

that buys rubber and another that harvests rubber itself. It may well be the case that the latter’s

decision to vertically integrate was a consequence of a distortion. But simply comparing the two

plants’ expenditure shares won’t give a direct measure of the size of the distortion. Similarly, some

shoe producers make the shoes by hand and others using sophisticated technologies. Fortunately

the ASI provides an extremely detailed characterization of plants’ input bundles. As a result, we

can model firm’s choices over these alternative modes of production (which we label recipes) and

16Lim (2017) documents that in each year, firms switch roughly 40% of suppliers, and Lu, Mariscal and Mejia (2013)
document that ubiquitous switching of imported inputs among importers, suggesting gains from taking advantage of
new opportunities that arise. Johnson, McMillan and Woodruff (2002) show that those who distrust courts are less
likely to switch suppliers, suggesting that weak enforcement inhibits this.
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use the rich data to help distinguish between heterogeneity and misallocation.

In the model, using relationship-specific inputs gives rise to a holdup problem that can be alle-

viated with good contract enforcement. The model incorporates two ways that weak enforcement

might cause firms to alter their production decisions. A firm might change the intensities with

which it uses specific inputs, or it might switch methods of production altogether. There is a

tremendous amount of heterogeneity across firms in the number, types, and cost shares of inputs

used, even within extremely narrowly defined industries. Our model takes the stand that much of

this heterogeneity is natural and would arise even in the absence of distortions, due to realizations

of match-specific productivity differences.

3.1 The Environment

There is a set of industries Ω. For industry ω ∈ Ω, there is a mass of firms with measure Jω that

produce differentiated varieties. There is a representative household that inelastically provides a

mass of labor with measure L and has nested CES preferences over all varieties in each industry,

maximizing consumption of the bundle U defined as

U =

[∑
ω∈Ω

υ
1
η
ωU

η−1
η

ω

] η
η−1

Uω =

[∫ Jω

0
u
ε−1
ε

ωj dj

] ε
ε−1

where uωj is consumption of variety j in industry ω, υω reflects the household’s taste for goods in

industry ω, η is the elasticity of substitution across industries, and ε is the elasticity of substitution

across varieties within each industry.

There are many ways to produce a good using different combinations of inputs.17 These different

ways correspond to different production functions, which we call recipes. Denote the set of recipes

to produce a good ω by %ω. Each recipe ρ ∈ %ω describes a production function Gωρ(·) that can be

used by any firm in industry ω to produce its good using labor l and a particular bundle of inputs

Ω̂ρ. The only restrictions we place on the production function Gωρ are that it exhibits constant

returns to scale and that all inputs are complements. Note that the different Gωρ may differ in

their shape and their factor intensities, and that they need not be Leontief.

Assumption 1 For any recipe ρ ∈ %ω, the production function Gωρ exhibits constant returns and

all inputs (l, Ω̂ρ) are complements.

Firm j in industry ω has random sets of productivity and supplier draws Φjρ for each recipe

ρ ∈ %ω. We call these draws techniques. Each technique φ ∈ Φjρ is characterized by (i) a set

of potential suppliers for each intermediate input, {Sω̂(φ)}ω̂∈Ω̂ρ , (ii) for each of those suppliers

17For example, some electricity producers use coal as an intermediate input while others use natural gas. Some
producers of frozen chicken use chickens as an intermediate input while others use chicken feed.
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s ∈ Sω̂(φ) an input-augmenting productivity, and (iii) a labor-augmenting productivity bl(φ). The

input-augmenting productivity for supplier s ∈ Sω̂(φ) consists of a match-specific component zs

that is specific to the supplier and a component bω̂(φ) that is common to all suppliers of input ω̂

in the set Sω̂(φ).

Suppose that j produced its good using a technique of recipe ρ which used labor and intermediate

inputs Ω̂ρ = {ω̂1, ..., ω̂n}. If it chose to employ l units of labor and purchase {xs1 , ..., xsn} units of

intermediate inputs from respective suppliers s1 ∈ Sω̂1 , ..., sn ∈ Sω̂n , its output would be

yj = Gωρ (bll, bω̂1zs1xs1 , ..., bω̂nzsnxsn) .

Each technique is specific to the firm producing the output (the “buyer”) and the potential

suppliers that might provide the intermediate inputs. Techniques within a particular recipe may

differ in how intensively the particular inputs are used, as this depends on the input-augmenting

productivities and the prices charged by the suppliers. In equilibrium, the firm produces using the

combination of production function and suppliers that is most cost-effective.

Terms of trade among firms determine their choices of inputs, productions decisions, and pro-

ductivity. We also assume that sales of goods for intermediate use are priced at the supplier’s

marginal cost.18 Firms engage in monopolistic competition when selling to the representative

household, and remit all profit to the household.

First, nature chooses the sets of techniques available to all firms {{Φjρ}ρ∈%ω}j∈Jω ,ω∈Ω. Then

all firms simultaneously set prices and make their production decisions (i.e. choices of technique

φ ∈
⋃
ρ∈%ω Φjρ, suppliers, and inputs l, xs1 , . . . , xsn) to minimize cost, taking into account the

decisions of others. All firms have perfect information about the economy’s production possibilities

and about other firms’ choices. The probability distribution governing the set of techniques with

which firm j can produce ({Φjρ}ρ∈%ω) will be described below.

3.2 Contracting Enforcement

Enforcement of contracts facilitates the use of inputs that require customization and the use of

labor. Imperfect enforcement introduces wedges between the effective cost to the buyer and the

payment to the supplier and between the time supplied by workers and the efficiency units of labor

available to the firm. The wedges take the form of tax paid using labor that is a fixed fraction of

the value of the transaction.19 Appendix D.4 provides one microfoundation for modeling imperfect

18One interpretation of this assumption is that in firm-to-firm trade, buyers have all of the bargaining power. For
example, in a simpler environment, Oberfield (2018) characterizes an alternative market structure in which firm-to-
firm trade is governed by bilateral trading contracts specifying a buyer, a supplier, a quantity of the supplier’s good
to be sold to the buyer and a payment. Given a contracting arrangement, each entrepreneur makes her remaining
production decisions to maximize profit. The economy is in equilibrium when the arrangement is such that no
countable coalition of entrepreneurs would find it mutually beneficial to deviate by altering terms of trade among
members of the coalition and/or dropping contracts with those not in the coalition. The terms of trade described
here are one particular equilibrium in which buyers have all of the bargaining power.

19This wedge on relationship-specific inputs is, in some ways, similar to an iceberg cost. However, since the tax
is paid in units of labor and is proportional to the value of the transaction, there is scope for industrial policy to
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enforcement in this way, although there are other microfoundations that are equally plausible. We

briefly describe the microfoundation here and refer the reader to Appendix D.4 for details.

If an input requires customization, the supplier can shirk and provide a good that is imperfectly

customized to the buyer. If this happens, the buyer needs to use extra labor to correct the defect.

This is wasteful because the supplier has a comparative advantage in performing the customization.

Similarly, workers can shirk, but time spent shirking is valued less by the worker than pure leisure.

Buyers, suppliers, and workers can write contracts that require perfect customization or prohibit

shirking, but imperfect enforcement of these contracts implies that some of this misbehavior will

occur in equilibrium. While all parties anticipate equilibrium behavior and build this into prices,

the behavior leads to a wedge that wastes resources.

For each potential supplier of a relationship-specific intermediate input ω̂, there is a random

input wedge tx ∈ [1,∞) that distorts the use of that input, drawn from a distribution with CDF

T (tx). If the supplier’s price is ps and input-augmenting productivity is bω̂zs, the effective cost to

the buyer is pstx
bω̂zs

.

The distribution T (tx) summarizes the quality of enforcement. Perfect enforcement of con-

tracts would imply that tx = 1 for all suppliers. We interpret worse enforcement as a first-order

stochastically-dominating shift in distribution of distortions.

Similarly, if production is subject to the labor wedge tl, then the firm needs to hire tl workers

to obtain one efficiency unit of labor, so that effective cost of labor to the firm is wtl. For simplicity

we assume that tl is the same across all firms.20

3.3 Discussion of Assumptions

Before analyzing the equilibrium outcomes, we pause to discuss some of the modeling choices we

have made and how we interpret some of the assumptions. First, as discussed earlier, courts

are not the only way to enforce contracts; contracts could be enforced informally through social

punishments or reputation. tx and tl should be interpreted as the wedges that prevail after all forms

of enforcement are exhausted. For example, if formal enforcement would leave the wedge tformal
x

while informal enforcement would leave the wedge tinformal
x , then the parties would use whichever

form of enforcement is better, i.e., tx = min{tformal
x , tinformal

x } (and similarly for tl).
21 Improving

the quality of courts would reduce the wedges tformal
x but would not change tinformal

x .

Second, we model the wedges as random and specific to a supplier. As discussed earlier, for

some suppliers (e.g., family members, those with whom the buyer is in a long-term relationship)

the possibility of informal enforcement may mitigate any hold-up problem. For others, the hold-up

problem may be more severe.

increase output by manipulating relative prices. In contrast, if the distortion took the form of an iceberg cost, there
would be no such possibility. See Liu (2017) for a good discussion of these issues. The wedge on labor is an iceberg
cost.

20Our counterfactuals focus on changes in the distribution of distortions that impede the use of relationship-specific
intermediate inputs (T ). Our identification strategy does not recover the labor wedges (tl).

21Of course, the argument extends in the obvious way if there are multiple ways of enforcing contracts informally.
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Third, we model the wedges as wasting resources rather than as an implicit tax or subsidy as

in Hsieh and Klenow (2009) which does not waste resources. An implicit tax may stand in for

rationing or a Lagrange multiplier on a collateral constraint, and would raise the buyer’s shadow

cost of an input relative to the supplier’s price without using up resources.

The facts presented in Section 2 are not sufficient to distinguish whether the wedges use up

resources. However, there is at least one observable dimension that we can use to distinguish

between the two types of frictions. With implicit taxes, those subject to larger wedges should have

higher ratios of revenue to cost. If wedges use up resources they should lead to weakly lower ratios of

revenue to cost.22 In Appendix E.1 we ask whether those firms that we believe are subject to larger

wedges—those in industries that tend to use relationship-specific inputs in states with congested

courts—have higher or lower revenue-cost ratios. Our findings are consistent with wedges wasting

resources: larger distortions are associated with lower revenue-cost ratios.

3.4 Production Decisions

For each technique, firm j draws a set of potential suppliers to provide each input. Each potential

supplier s ∈ Sω̂(φ) comes with an input-augmenting productivity draw and a wedge, so that the

effective cost of using that supplier would be txsps
bω̂(φ)zs

. j’s effective cost of input ω̂ for technique φ is

the minimum across all potential suppliers:

λω̂(φ) = min
s∈Sω̂(φ)

txsps
bω̂(φ)zs

.

Similarly, the effective cost of labor when using technique φ is λl(φ) = tlw
bl(φ) . For the remainder, we

normalize the wage to unity, w = 1.

The unit cost delivered by a technique depends on the effective cost of each input. Let Cωρ(·) be

the unit cost function that is the dual of the production function Gωρ, so that j’s cost of producing

one unit of output using technique φ would be Cωρ
(
λl(φ), {λω̂(φ)}ω̂∈Ω̂ρ

)
. Minimizing cost across

all techniques, j’s unit cost is

min
ρ∈%(ω)

min
φ∈Φωjρ

Cωρ
(
λl(φ), {λω̂(φ)}ω̂∈Ω̂ρ

)
In words, firm j’s unit cost equals that of the technique that delivers the lowest cost across all

techniques of all recipes.

In this section, we specialize to particular functional form assumptions that prove tractable.

The set of techniques available to each firm is random and governed by the following assumptions

about the distributions of input-augmenting productivities.

Assumption 2 For a firm in industry ω,

22Whether the wedges would lead to no change or lower ratios of revenue to cost depends on the demand system.
With Dixit-Stiglitz demand, the ratio of revenue to cost would be invariant with respect to wedge, whereas if the
demand system features imperfect pass-through, a larger wedge would lower the ratio of revenue to cost.
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a. Each supplier in the set Sω̂(φ) is uniformly drawn from all firms that produce ω̂.

b. For each technique φ that uses input ω̂, the number of suppliers in Sω̂(φ) for whom the match-

specific component of productivity is greater than z follows a Poisson distribution with mean

z−ζω̂ , with ζω̂ =

{
ζR, ω̂ ∈ Ω̂ρ

R

ζH , ω̂ ∈ Ω̂ρ
H

c. Consider recipe ρ ∈ %ω which uses labor and the input bundle Ω̂ρ = (ω̂1, ..., ω̂n). For each plant,

The number of techniques to produce using that recipe for which the common components of input-

augmenting productivities strictly dominate23 bl, bω̂1 , bω̂2,...,bω̂n follows a Poisson distribution

with mean

Bωρb
−βρl
l b

−βρω̂1
ω̂1

...b
−βρω̂n
ω̂n

.

d. There is a constant γ such that for each ω and each recipe ρ ∈ %ω, βρl + βρω̂1
+ ...+ βρω̂n = γ.

e. The following parameter restrictions hold for each ω̂: γ > ε− 1, γ > ζω̂ > βρω̂ where ζω̂ is ζR if

ω̂ is relationship-specific or ζH if ω̂ is homogeneous.

Assumption 2b implies above any threshold, the match-specific components of productivity

follow a power law.2425 One implication is that the industry-level elasticity of substitution across

groups of suppliers of the same input is ζω̂+1. When there is more dispersion in these match-specific

components of productivity (low ζω̂), a buyer is less likely to switch suppliers in response changes

in the supplier’s price because it is likely that there is a larger gap between the best and second

best suppliers of an input. ζR will play a role quantitatively because it determines the likelihood

that a buyer will have a close substitute if it faces a holdup problem with its best supplier of an

input.

Assumption 2c says that the common components of input-augmenting productivities of a

technique follow independent power laws. Bωρ summarizes the level of these productivity draws. We

23We say that a vector (x0, x1, ..., xn) strictly dominates the vector (y0, y1, ..., yn) if x0 > y0, x1 > y1,...,xn > yn.
24This type of functional form assumption goes back to at least Houthakker (1955), and versions of it are also

used by Kortum (1997), Jones (2005), Oberfield (2018), and Buera and Oberfield (2016). Note that the expected
number of potential suppliers for an input is unbounded. Formally, an economy satisfying Assumption 2b can be
thought of as the limit of a sequence of economies that satisfy more standard assumptions. Consider an economy in
which firms were restricted to use only suppliers with a match-specific productivity greater than z. Then the number
of potential suppliers for each input of a technique would be given by a Poisson distribution with mean z−ζ and
the match-specific productivity for each supplier would be drawn from a Pareto distribution with CDF 1− (z/z)−ζ .
An economy satisfying Assumption 2b can be thought of as the limit of such an economy as z → 0. In this limit,
the number of suppliers for each input of a technique grows arbitrarily large, but the match-specific productivity
associated with any single supplier is drawn from an arbitrarily poor distribution. The limit is well behaved because
the probability of drawing a supplier with match-specific productivity greater than z does not change as z → 0.

25In principle, we could have allowed the level of the match-specific component of productivity draws to vary by
input-output pair and recipe, or Zωρω̂z

−ζω , reflecting the idea that industries are often concentrated geographically
or ethnically, which may imply that a given output industry may face an unusually high number of good suppliers in
the input industry relative to other output industries. However, it turns out that Assumptions 2b and 2c imply that
any variation in {Zωρω̂} would be absorbed into the constant Bωρ, so we simply normalize each Zωρω̂ to unity.
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take these to be primitives, although a deeper model might model them as resulting endogenously

from directed search or from the diffusion of technologies across entrepreneurs that know each

other.

Assumption 2d says that for each recipe, the sum of the power law exponents is the same,

equal to γ. We will show later that the industry-level elasticity of substitution across techniques is

γ + 1.26 The parameter restrictions are necessary to keep utility finite.

It will be useful to decompose the power law exponents into two parts. For recipe ρ, define

αρL =
βρl
γ
, αρω̂ ≡

βρω̂
γ
, ω̂ ∈ Ω̂ρ

Note that this implies that αρL +
∑

ω̂∈Ω̂ α
ρ
ω̂ = 1. Further, for some results, it will be useful to define

αρR =
∑

ω̂∈Ω̂ρR
αρω̂ and αρH =

∑
ω̂∈Ω̂ρH

αρω̂.

With these assumptions in hand, we now characterize the equilibrium. All proofs are contained

in Appendix D

Proposition 1 Under Assumptions 1 and 2, the fraction of firms with unit cost greater than c

among those in industry ω is

e−(c/Cω)γ

where

Cω =

∑
ρ∈%ω

κωρBωρ

(t∗x)α
ρ
Rt
αρL
l

∏
ω̂∈Ω̂ρ

C
αρω̂
ω̂

−γ
− 1
γ

(1)

t∗x =

(∫ ∞
1

t−ζRx dT (tx)

)−1/ζR

and κωρ is a constant that depends on technological parameters.

Proposition 1 shows that the distribution of cost among firms within each industry takes the

simple form of a Weibull distribution with shape parameter γ and scale determined by Cω, which

we call the cost index for industry ω. (1) relates industry ω’s cost index to that of the industries

that provide the inputs for each recipe and to t∗x and tl, which summarize the impact of imperfect

enforcement on those that produce the inputs used in recipe ρ. t∗x accounts for both the direct impact

of the wedges—the wasted resources from holdup problems—and the indirect impact: wedges might

cause firms to switch to a supplier with higher cost or lower productivity, or to a different technique

altogether.

(1) is a system of equations that implicitly determines each industry’s cost index, {Cω}ω∈Ω.

Proposition 2 shows that these are sufficient to characterize aggregate productivity.

26It would be straightforward to allow different industries to have different values of γ. However, as we show below,
our counterfactuals are insensitive to the value of γ. We therefore leave the γ constant across industries to reduce
notational clutter.
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Proposition 2 Under Assumptions 1 and 2, the household’s aggregate consumption is

U =

{∑
ω∈Ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

} 1
η−1

L

We next turn to industry-level expenditure shares. The next proposition characterizes the

aggregate share of total expenditures (on both intermediate inputs and labor) that is spent on each

input among all firms that use a particular recipe.

Proposition 3 Suppose that assumptions 1 and 2 hold. Among firms that, in equilibrium, produce

using recipe ρ:

• the average and aggregate shares of expenditures that is spent on inputs from ω̂ ∈ Ω̂ρ
R is

αρω̂
t̄x

,

• the average and aggregate shares of expenditures that is spent on inputs from ω̂ ∈ Ω̂ρ
H is αρω̂,

• the average and aggregate shares of expenditures that is spent on labor is αρL + (1− 1
t̄x

)αρR,

where t̄x ≡
[∫∞

1 t−1
x dT̃ (tx)

]−1
and T̃ (tx) ≡

∫ tx
1 t−ζRdT (t)∫∞
1 t−ζRdT (t)

.

Proposition 3 provides relatively simple expressions for the average and aggregate cost shares

of each input among those that choose to use a particular recipe. While there is micro-level

heterogeneity in the cost shares among those using a particular recipe, the aggregate factor shares

among those firms depends only on technological parameters, not on the relative prices of the

inputs. Thus at the recipe level, there is a Cobb-Douglas aggregate production function. This

extends the celebrated aggregation result of Houthakker (1955) who derived a similar result under

the assumption that individual production functions are Leontief.27 We require only that the

production function exhibits constant returns to scale and that all inputs are complements.28

Imperfect enforcement, on the other hand, reduces the expenditure share of relationship-specific

inputs. The buyer’s production decisions depend each input’s effective cost, whereas the expendi-

tures reflect the actual payment to each supplier. Recall that imperfect enforcement means that

27Jones (2005) builds on Houthakker (1955) but derives a different type of result. Jones first shows that if a single
plant draws many Leontief production functions where factor augmenting productivities are drawn from independent
Pareto distributions, then the envelope of those production functions is Cobb-Douglas. He then shows numerically
that the result extends beyond Leontief to CES production functions when the factors are complements. Note that
these are not aggregation results; these results apply at the level of a single firm. Lagos (2006) and Mangin (2017)
also build on Houthakker (1955) incorporating labor market search, while Growiec (2013) extends the argument of
Jones to microfound an aggregate CES production function.

28Why complements? When inputs are complements, when the price of an input is higher, there are two offsetting
effects on the industry cost share. The higher price raises that cost share on that input for any firm that uses the
input. At the same time, firms that use that input more intensively are likely to shrink or switch to a technique
that uses the input less intensively. When factor-augmenting productivities are drawn from independent Pareto
distributions, these offset exactly and factor shares are unchanged. If inputs were substitutes, the two effects would
push in the same direction, so that if the price of an input rose, its industry cost share would fall. Mathematically, if
inputs were substitutes than the constant κωρ would diverge, as the arrival rate of techniques that deliver cost lower
than c would be infinite for any c.
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the buyer’s effective expenditure on a relationship-specific input is spent partly on payments to the

supplier for the input and partly on labor to customize the good.29

3.5 Counterfactuals

The quality of contract enforcement can be summarized by the distribution of wedges T . Suppose

that the quality of enforcement changed in such a way that the distribution of wedges changed

from T to T ′. How would this impact aggregate productivity? Taking Jω and Bωρ as primitives,

the following proposition shows how one can compute the impact of such a change.30

Let HHω be the share of the household’s expenditure on goods from industry ω in the current

equilibrium. Among those of type ω, let Rωρ be the share of total revenue of those that use recipe

ρ in the current equilibrium.

Proposition 4 If the quality of enforcement changed so that the distribution of wedges changes

from T to T ′, the change in household utility would be

U ′

U
=

(∑
ω

HHω

(
C ′ω
Cω

)1−η
) 1

η−1

and the change in industry efficiencies would satisfy the following system of equations

(
C ′ω
Cω

)−γ
=
∑
ρ∈%ω

Rωρ

( t∗′x
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ (2)

The first part of the proposition states that to know how a change in court quality affects

aggregate productivity, it is sufficient to know only the changes in industry cost indices, C′ω
Cω

. In

turn, the change in each industry’s cost index depends on the weighted average over input bundles

of the change in the cost index of the industries that supply inputs along with the change t∗x,

the summary statistic for the industry of direct and indirect impact of the wedges that distort

production using relationship-specific inputs. (2) describes a system of equations that implicitly

characterizes these changes in cost indices.

While Proposition 4 describes exactly how a change in enforcement would alter welfare, it

is instructive to study a perturbation of the distribution of wedges to show which features of

the economy are important for determining the first-order impact of a change in the quality of

enforcement.

29The wedge due to imperfect enforcement and input-augmenting productivity affect a firm’s unit cost in the same
way. It is important, however, to model them separately because they affect expenditure shares in different ways.
Larger wedges tend to reduce the share of expenditures on that input because some of the effective cost is paid to
labor; lower input-augmenting productivities do not.

30An interesting alternative exercise is asking what would happen if {Jω} and {Bωρ} also responded to the change
in T .
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Corollary 1 The marginal welfare impact of a change in court quality is

d logU = −
∑
ω∈Ω

HHωd logCω

and the change in industry efficiencies can be summarized by the following system of equations

d logCω =
∑
ρ∈%ω

Rωρ

αρRd log t∗x +
∑
ω̂∈Ω̂ρ

αρω̂d logCω̂


One implication is that, to a first order, the change in utility resulting from a change in the

quality of enforcement does not depend on γ or η.

4 Identification and Estimation

Our main counterfactual of interest is how aggregate productivity and the organization of produc-

tion would change if the quality of enforcement improved. We do this in several steps. We first

parameterize the model using information from the ASI under the assumption that the quality of

enforcement varies by state. We then project the implied quality of enforcement for each state on

our measures of court congestion. Finally, we compute the gains from reducing congestion to the

level prevailing in the least congested state.

Our most important identifying assumption is that weak enforcement may introduce a wedge

in the use of inputs that require customization and in the use of labor, but not in the use of

standardized inputs. Given our scheme for identification, we view this as a conservative assumption.

If the use of standardized inputs were also distorted by weak contract enforcement, then all of the

wedges would be larger than the ones we infer.

The following proposition shows a set of moments that we can use in a GMM procedure to

estimate the model parameters

Proposition 5 Let sRj , sHj , sLj be firm j’s spending on relationship-specific inputs, homogeneous

inputs, and labor respectively as shares of its revenue. Under assumptions 1 and 2, the first moments

of revenue shares among firms that produce ω that, in equilibrium, use recipe ρ satisfy:

E
[
t̄x
sRj
αρR
−
sHj
αρH

]
= 0

E
[
sLj + sRj
αρL + αρR

−
sHj
αρH

]
= 0

Assumption 3 We impose that the following objects are the same across states: (i) the form of the

production function for each recipe {Gωρ}; (ii) the power law exponents for the input-augmenting

productivity draws for techniques of each recipe {βρl , β
ρ
ω̂1
, ..., βρω̂n}, and (iii) the power law exponent

for the match-specific productivity draws, ζR and ζH .
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We allow all other features of preferences and technology to vary freely across states. This

includes absolute and comparative advantages in recipes, {Bωρ}, (ii) the measure of firms of each

type {Jω}, (iii) the households tastes, {υω}, and most importantly, (iv) the quality of contract

enforcement, T , and tl.

We also impose a parametric form for the stochastic wedges that a firm draws for each supplier

of a relationship-specific input. In particular, the wedge is drawn from a Pareto distribution, where

the shape parameter is specific to a state.

Assumption 4 The distribution of wedges in state d is Td(tx) = 1− t−τdx for tx ≥ 1.

Using Pareto distributions has several attractive properties. First, following the discussion in

Section 3.2, contracts might be enforced formally or informally. If the probability that the formal

wedge is greater than tx is t
−τ formal

d
x and the probability that the informal wedge is greater than

tx is t
−τ informal

d
x , then the probability that the effective wedge is greater than tx is t−τdx , where

τd = τ formal
d + τ informal

d .31 This will lead to a clean interpretation of the counterfactual of interest.

Our algorithm for identification is thus as follows:

1. Identify recipes, estimate technology parameters
{
αρL, α

ρ
H , α

ρ
R

}
ρ∈%ω ,ω∈Ω

, and distortions to

the cost of relationship-specific inputs for each state, t̄dx. We use an iterative procedure to

ensure that our recipe classification is consistent with the possibility of distortions that vary

across states.

(a) Start with an initial guess of t̄dx for each state d.

(b) Identify recipes from plant’s cost shares (see next section for details), taking out the

distortion to the cost shares of relationship-specific inputs t̄dx.

(c) Use Proposition 5 to estimate the production parameters that are common across loca-

tions
{
αρL, α

ρ
H , α

ρ
R

}
ρ∈%ω ,ω∈Ω

and a new set of the state specific variables, {t̄dx}.

(d) Go back to step 1b until the t̄dx have converged.

2. Compute t∗x for each state. Assumption 4 implies that t̄x = 1 + 1
ζR+τd

and t∗x =
(
τd+ζR
τd

)1/ζR
.

We estimate ζR externally, and then use this along with our estimates of t̄x to compute t∗x.

3. For the counterfactual, we also need values of the industry-level output elasticities of each

input for each recipe, {αρω̂}. To do this, we pool data across states to estimate the remaining

production function parameters, αω̂, by using the aggregate expenditures. For example, if the

sourcing industry ω̂ is relationship specific, then αρω̂ is equal αρR multiplied by the ratio of total

expenditure on input ω̂ by those that use recipe ρ to total expenditure on relationship-specific

inputs.

4. For each state-recipe, directly measure the share of industry ω revenue earned by firms that,

in equilibrium, use recipe ρ, {Rωρ}. Similarly, directly measure for each state the share of

final demand spent on industry ω, {HHω}.
31This follows from the fact that the Pareto family is closed under the minimum operation.
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5. Calibrate η and γ externally.

In implementing this algorithm, we make several auxiliary assumptions that, in principle, could

be relaxed. First, we assume that there is no trade across state borders. While it would be fairly

straightforward to incorporate interstate trade, we lack the relevant data.32 A second assumption

is that the recipes used by multi-product firms and the distribution of wedges facing them are the

same as those of single-product firms. This type of assumption, while strong, is standard in the

literature, as we lack the data that indicates which inputs are used in the production of which

products. It allows us to estimate wedge distribution parameters and the α’s using single-product

plants only, while still being able to make statements about the whole formal manufacturing sector

by including multi-product plants when we calculate revenue and expenditure shares Rωρ and HHω.

Third, we treat service inputs and energy inputs as primary inputs.

4.1 Defining recipes

One of the salient facts of the Indian manufacturing data is that even within narrow industries,

plants use vastly different combinations of intermediate inputs to produce the same output. Our

model provides a natural way to think of these input-output combinations as different recipes

ρ ∈ ρ(ω) that could be used to produce the same output ω. In order to estimate the model from

the microdata, we need a procedure that classifies each plant-year observation into which recipe

the plant is using.

The idea that guides our classification is that, for a given output good, similar input mixes

should belong to the same recipe. We describe each plant j’s input mix by the vector of its input

expenditure shares, (mjω)ω∈Ω = (Xjω/
∑

ω′ Xjω′)ω∈Ω. Graphically, each vector corresponds to

a point in the |Ω|-dimensional hypercube that is lying on the hyperplane where the sum of all

coordinates equals to one. Our task is to find plants with similar input mixes, i.e. clouds of points

that are close to each other (according to some metric). In statistics, this task is known as cluster

analysis, and there is a large number of algorithms that classify clusters based on distance, density,

shape, and other criteria. Looking at the input mixes of plants in many different industries (see

the examples of bleached cotton cloth and polished diamonds in Figure 1) convinced us that these

clusters do exist and have a meaningful economic interpretation.

Our preferred method is due to Ward (1963), and constructs clusters recursively, starting with

the partition where every cluster is a singleton. In each step, two clusters are merged to minimize

the sum of squared errors:

min
ρn≥ρn−1

∑
ρ∈ρn

∑
j∈ρ

∑
ω

(mjω −mρω)2

where the ρn are partitions of Jω, and in each step ρn runs over all partitions that are coarser than

ρn−1. This method constructs a hierarchical set of partitions of Jω: one for each desired number

32To this point there is no comprehensive, publicly available data about cross-state trade in goods. The conventional
wisdom has been that interstate trade is minimal, although the 2016-17 Economic Survey of India’s Ministry of
Finance challenges this conventional wisdom.
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of clusters.

Table IV Statistics on recipes

Count

Products (5-digit ASIC) 4,530
Products with ≥ 3 plant-years 3,573
Products with ≥ 5 plant-years 3,034

Recipes 18,838
Recipes with ≥ 3 plant-years 10,996
Recipes with ≥ 5 plant-years 7,908
Avg. plants per recipe 11.8
SD plants per recipe 40.4

“Products” are the 5-digit ASIC codes in our data that
appear as output, “Recipes” are the output from our
clustering procedure. Plant counts include only single-
product plants.

Our implementation of the clustering procedure to identify recipes uses not only the five-digit

materials shares, but also three-digit shares to allow for the possibility of misclassification of inputs

within three-digit baskets. We set the number of potential recipes within each industry ω to

dn log((#Observations)ω)e, for varying parameters n. This allows industries with more plant-year

observations to have more recipes. We inspect the cluster hierarchy and choose n = 1.5, where we

find that the resulting recipes correspond well to different modes of organization.33 Table IV shows

statistics on the number and size of clusters (recipes) that we define.

To give a example of the usefulness of our procedure, Table V shows the resulting four most

important recipes for product 63303 (bleached cotton cloth), which correspond to different ways of

producing bleached cotton cloth: either by weaving bleached or dyed cotton yarn (recipes 1 and 2),

by weaving and bleaching unbleached cotton yarn (recipe 3), and by bleaching and dyeing greige

cloth (recipe 4).

Once we have defined recipes, we assign plants to belong to a recipe with a probability that is

proportional to the inverse Euclidean distance to the recipe center:

P (j ∈ ρ) =

1√∑
ω′ (mjω′−mρω′ )2∑

ρ′∈ρ(ω)
1√∑

ω′ (mjω′−mρ′ω′ )2
(3)

We use these assigned probabilities as weights in the estimation below.

4.2 Estimation

We estimate the t̄dx, αρR, αρH , and αρL from the moment conditions in Proposition 5 using our

algorithm described above. To identify the level of t̄x, we set the smallest t̄x to one, thereby

making the assumption that the least distorted state is undistorted.34 We also exclude state-recipe

33In Appendix F.2 we show results for varying degrees of recipe fineness.
34We view this as conservative. Given the expenditure shares we see in the data, more severe distortions (smaller

t̄x) would raise the estimated output elasticities of relationship-specific inputs (higher αρR). This would amplify the
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Table V Recipe classification: cloth, bleached, cotton (63303)

Recipe Description Value, % N Recipe Description Value, % N

# 1 Yarn bleached, cotton 98 50 # 3 Yarn unbleached, cotton > 99 19
Grey cloth (bleached / unbleached) 2 Colour, chemicals < 1
Thread, others, cotton < 1 Gen. purpose machinery, n.e.c < 1
Colour (r.c) special blue < 1 Dye, vat < 1

# 2 Yarn dyed, cotton 41 21 # 4 Grey cloth 42 16
Yarn, finished / processed (knitted) 23 Colour, chemicals 10
Yarn bleached, cotton 16 Yarn dyed, synthetic 10
Yarn, grey-cotton 3 Kapas (cotton raw) 5
Chemical & allied substances, n.e.c 3 Grey cotton - others 5
Fabrics, cotton 3 Fabrics, cotton 4
Thread, others, cotton 2 Cotton raw, ginned & pressed 4
Colour, chemicals 2 Colour, ink, n.e.c 4
Dye stuff 2 Other 16
Other 5

pairs where the average share of relationship-specific inputs in sales exceeds that of homogeneous

inputs by a factor of one hundred (and vice versa).

Figure 3 shows the estimated t̄dx and their correlation with the quality of high courts as measured

by the average age of pending civil cases. Frictions are large: t̄x exceeds two in the most heavily

distorted states. Some of that variation is explained by the quality of courts. In states with slower

courts, firms face larger distortions (higher t̄x) when sourcing relationship-specific intermediate

inputs. The solid line is the fit of an OLS regression of t̄x on court quality; the dashed line the fit

of an IV regressions where we instrument court quality using the log age of the high court. The

estimated IV slope coefficient is similar to the one in the OLS. This relationship between t̄x and

the age of pending court cases is closely related to the fact that intermediate input bundles are

tilted towards homogeneous inputs in states where enforcement is weak (Fact 2 in Section 2.3).

The main difference here (beyond the fact that the t̄x are coming from a nonlinear regression) is

that the t̄x are identified from within-recipe variation in the input mix, whereas Fact 2 is about

within-product variation.

4.3 Counterfactual

To perform a counterfactual where we assess the aggregate impact of a change in the wedge distri-

bution T , Proposition 4 tells us that we need to know the change in the moment t∗x of the wedge

distribution that is relevant for the industry’s cost distribution, which depends on the parameter

ζR and, under our parameterization of the wedge distribution, on its Pareto tail τd. We also need

to know the parameters αρω̂, the within-industry sales shares Rωρ of each recipe, the household’s

expenditure shares HHω, and the elasticities γ and η.

The parameter ζR, which allows us to back out τd from t̄x, also governs the elasticity of sub-

stitution across sets of suppliers of the same input. While our data does not indicate the identity

responses to changes in enforcement.

24



Figure 3 Correlation between t̄x and court quality
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The figure shows the correlation between t̄dx and the average age of pending civil cases in
the state’s high court. The solid line is the OLS regression line; the dashed line is fit of an
IV regression where the age of pending cases is instrumented using the log age of the high
court.

of the supplier of an input, it does indicate whether it was purchased from a foreign or domestic

supplier. We can thus estimate ζR using these two groups for each input-output pair:

log

(
XDOM
ωω̂t

XIMP
ωω̂t

)
= ζ log(1 + ιω̂t) + λt + λωω̂ + ηωω̂t

where ιω̂t is the import tariff on ω̂ at time t, and the λ’s are fixed effects. Table VI shows the

results for this regression. We use the point estimate of 0.218 for ζR.35

Table VI Estimating ζ

Dependent variable: log(XDOM
ωω̂t /XIMP

iωω̂t )

(1) (2) (3)

log(1 + ιω̂t) 0.617 0.218 1.209∗

(0.44) (0.77) (0.52)

Industry × Input FE Yes Yes Yes
Year FE Yes Yes Yes

Level 5-digit 5-digit 5-digit

Sample All inputs R only H only

R2 0.601 0.580 0.623
Observations 23692 12002 11690

Robust errors in parentheses, clustered at the state × industry level. Sample
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Dependent variable is the log ratio of total expenditure on domestically sourced to total imported inter-
mediate inputs of type ω̂ among producers of ω at time t. We only use census plants (which are surveyed every
year) to reduce artificial fluctuations that result from sampling.

35Choosing a low ζR is conservative; see the discussion in 4.4 below. We conduct sensitivity checks in Appendix
F.1.
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The elasticities αω̂ can be recovered as the product of the input-type elasticity (αρR or αρH) and

the average cost share of plants that produce using recipe ρ:

αρω̂ = αρR
mρω̂∑

ω′∈ΩRmρω̂′
if ω̂ relationship-specific, αρω̂ = αρH

mρω̂∑
ω′∈ΩH mρω̂′

if ω̂ homogenous.

We target the demand aggregator’s expenditure shares HHω and the recipe revenue shares Rωρ

to represent the aggregate of India’s formal manufacturing sector. We calculate HHω separately

for each state as total sales of ω minus total intermediate consumption (less imports) of ω (or zero,

if this difference is negative), divided by the sum of this difference over all products. To calculate

the recipe revenue shares Rωρ, we need to assign the revenue of multiproduct plants to a particular

recipe. To do this, we choose each multi-product plants’ recipe shares to minimize the Euclidean

distance of its cost share vector from the weighted average of the recipe centers’ cost shares. When

calculating Rωρ, we pool observations across states and years, but weigh each plant-year observation

by the inverse of the number of times the plant shows up in the ASI. This weighting allows us to

construct parameters that better represent the aggregate of India’s formal manufacturing sector.36

Finally, we calibrate η = 1 and γ = 1; we show in Appendix F.1 that our counterfactuals are

insensitive to these parameters. Inputs which do not show up in our data as outputs (predominantly

agricultural and mineral commodities) are assumed to have unchanged productivity distributions.

We then perform a counterfactual where we reduce t̄dx for each state by the amount that is

implied by the IV regression in Figure 3, down to a point where the average age of pending cases

is one year (which is roughly the level of court quality enjoyed by the best state, Goa). Using our

estimate for ζR, we back out τd at the original and counterfactual level, and compute the change

in the welfare-relevant moment t∗x =
(
τd+ζR
τd

)1/ζR
. We then compute the corresponding change in

the household’s utility aggregate as given by Proposition 4.

Figure 4 shows the counterfactual increase in the household’s consumption aggregate U . The

numbers are in the range of zero to ten percent, suggesting that the gains from improving contract

enforcement institutions can be large.

4.4 Direct and Indirect Costs of Distortions

The model captures the idea that buyer-supplier relationships differ in their susceptibility to im-

perfect contract enforcement. Some buyer-supplier pairs are able to enforce contracts informally, or

transact in a way that avoids holdup problems. To capture this in a parsimonious way, we assume

that the buyer draws a distortion for each potential supplier from a distribution that deteriorates

when formal enforcement is less reliable.

Our estimation procedure identifies t̄x for each state, which is the (harmonic) average of the

realized distortions. This summarizes the direct cost of weak enforcement on users of relationship-

specific inputs. t∗x captures the direct and indirect cost of the distortions. We infer the indirect cost

by estimating ζR, which indexes the probability that a firm has a comparable alternative supplier.

36Recall that in the ASI, large plants are surveyed every year, while smaller plants are surveyed every five years.
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Figure 4 Counterfactural increases in aggregate productivity
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The figure shows the counterfactual increase in C when the wedges on relationship-specific
inputs are reduced according to the fraction of t̄x that is explained by court quality in a
linear regression.

We can show formally that t̄x ≤ t∗x , which implies that the t̄x is a lower bound for the total impact,

and that this lower bound is attained only if the distribution of distortions T is degenerate, i.e.,

distortion draws are deterministic. In that case, a firm faces the same wedge for all suppliers, and

could not avoid a distortion by substituting to an alternative supplier; as a result, there would be

no indirect cost.37

The respective contributions of the direct and indirect impacts depend on both the value of

ζR and the levels of the distortion. Given our estimates and the range of t̄x that we observe, the

direct impact comprises more than half of the impact of weak enforcement, but the indirect impacts

are nontrivial. For the average state, the indirect impact accounts for t∗x−t̄x
t∗x

= 24.8% of the total

impact, and for the most distorted state the indirect impact accounts for about 58%.

4.5 The Role of Heterogeneity

An alternative approach that is common in studies that measure misallocation using input-output

tables is to posit industry-level Cobb-Douglas production functions and back out distortions from

differences across states (or countries) in industry-level cost shares.38 In our view, our approach

37Since t
ζ
ζ+1 is a strictly concave function of t, Jensen’s Inequality gives

∫∞
1
t
−(ζ+1)
x dT (tx) ≥{∫∞

1

(
t
−(ζ+1)
x

) ζ
ζ+1

dT (tx)

} ζ+1
ζ

. This implies

1

t̄x
=

∫∞
1
t
−(ζ+1)
x dT (tx)∫∞

1
t−ζx dT (tx)

≥
{∫∞

1
t−ζx dT (tx)

} ζ+1
ζ∫∞

1
t−ζx dT (tx)

=
1

t∗x

with equality only if the distribution of tx is degenerate.
38Our model nests such a model as a special case when there is a single recipe per industry and the distribution of

wedges T is degenerate so that all suppliers of relationship-specific inputs face the same wedge.
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has several advantages over this alternative.

First, a cursory look at the data indicates that plants are producing using different technologies

(i.e., some appear to be more vertically integrated than others). We believe that allowing for

several recipes facilitates making apples-to-apples comparisons when measuring the direct impact

of distortions. Our identification strategy relies on comparing inputs expenditures among plants

that, in equilibrium, use the same recipe. With the industry-level approach, differences in recipe

composition across states could lead researchers to infer spurious distortions.

Second, the industry-level approach would miss the indirect impact of the distortions. Given

our identification strategy and conditioning on the data, the fact that wedges differ across suppli-

ers implies indirect productivity losses due to plant’s switching to alternative suppliers to avoid a

distorted input. This raises the implied productivity loss from imperfect enforcement. Our iden-

tification strategy consists of measuring {t̄x} and then using these along with our functional form

assumptions to compute t∗x. In the industry-level approach there is typically only a direct impact.

Third, as discussed earlier, there is quite a bit of heterogeneity in cost shares across plants. This

leads to the following situation: there are occasionally state-industry pairs that are dominated by

a small number of plants, and the aggregate cost shares among these plants happen to deviate

quite a bit from the industry average. If we used the industry-level cost shares to back out a

wedge for that state-industry, we would conclude that the state-industry is severely distorted. In

contrast, our estimating equations treat each individual plant as an observation, and the model has

a structural error term for the cost share of each plant which stems from different productivity and

cost draws. Thus our approach allows for the possibility that such a state-industry has an extreme

cost share because of its draw of a technique; we are not forced to conclude that the distortion for

the state-industry is severe.

4.6 Entry and Exit

In our benchmark model, we assumed that the number of producers of each product is given

exogenously. Of course we would expect that if the formal enforcement improved, profitability

would increase more in industries that rely more heavily on relationship-specific inputs. We do,

in fact observe that as formal enforcement deteriorates, the number of firms decreases relatively

more in the industries that rely more heavily on relationship-specific inputs (see Table XXVI in

Appendix E.4). Thus it is likely the quality of enforcement affects firms’ entry and exit decisions.

How would our estimates differ if firms could endogenously enter and exit? The answer de-

pends on the specifics of entry and exit and the particular counterfactual. Consider the following

two possibilities. First suppose firms were committed to enter, but could choose which industry to

enter. Then the additional adjustment after formal enforcement improved would raise aggregate

productivity even more than a benchmark model suggests. Second, suppose that firms were com-

mitted to producing in a particular industry but choose which state to locate in. Here, if formal

enforcement improves in one state, aggregate productivity in that state would rise as firms for other

states moved in. However, aggregate productivity in other states would fall as firms moved out.
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This suggests that the response to nation-wide improvement in formal enforcement would differ

from the response to a single state improving enforcement. Further, systematic differences across

states in how the number of firms responds to cross-sectional difference in legal enforcement may

not be informative about the economy’s response to a nationwide improvement.

4.7 Interpretation of our estimates

Our estimates suggest that improving the quality of high courts to the level enjoyed by the most

efficient states would bring about productivity increases of on average five percent. This estimate

is likely to be a lower bound for role of courts in enforcing contracts between buyers and suppliers

for several reasons. First, even the best Indian courts are probably still worse than good courts

in the developed world, in particular along dimensions that are not captured by our court quality

measure (such as objectivity and incorruptibility). Second, if contracting frictions are also present

for homogeneous intermediate inputs, our estimates of the productivity gains from improving courts

are biased downwards.39 Third, hold-up problems are particularly severe for services inputs, which

account for a substantial fraction of cost in some industries; hence court improvement could lead

to substantial additional cost reductions (Boehm, 2016). Formal enforcement is also likely to be

important for the smallest firms that may be less able to rely on reputation. Moreover, courts

matter for economic outcomes beyond their role in mitigating holdups with suppliers, notably

by improving contracting between managers and workers (Besley and Burgess, 2004, and Bloom,

Sadun and Reenen, 2012), and improving access to financing (Visaria, 2009).

5 Conclusion

This paper studies the organization of production in the Indian manufacturing sector, and how it

relates to the quality of formal contract enforcement institutions. We make two main points: one

about the within-industry heterogeneity and measurement of the organization of production, and

a second one about how institutions shape intermediate input use and aggregate productivity.

First, we show that there is considerable amount of heterogeneity in technology and organi-

zation even within narrowly-defined industries. These differences should be reflected in the level

of aggregation at which researchers assume a homogeneous shape of the production function. We

argue that information on input use can be helpful in understanding differences in organization

and technology within industries: a plant that produces cotton cloth from raw cotton is vertically

integrated and performs both spinning and weaving, whereas a plant that produces cotton cloth

from cotton yarn will only perform the weaving, and might therefore have different factor intensi-

ties. We provide a simple and flexible way of defining homogeneous technologies using a statistical

clustering algorithm.

39That said, Johnson, McMillan and Woodruff (2002) bring survey evidence that the role of courts in determining
supplier switching is about five times as large for relationship-specific inputs than for standardized inputs, suggesting
that most of the productivity gains are correctly accounted for.
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Second, we find that the organization of production is shaped by the contracting environment.

We find that slow enforcement of contracts impedes the use of relationship-specific materials. As

a result, firms tilt their input basket towards the use of more standardized inputs, for which spot

markets exist, and for which enforcement by courts in not necessary. We develop a multi-industry

general equilibrium model where firms source multiple inputs and choose the organizational form

optimally to minimize the cost of production. We estimate the relative distortions associated

with the use of relationship-specific inputs from first moments of cost shares, which, compared

to the standard approaches of estimating input wedges, is more robust to potentially imprecise

measurement of input use. Our results suggest that distortions associated with poor courts are

sizable and that improving couurts would increase welfare: reducing the average age of pending

cases by a year would, on average, increase a state’s aggregate productivity by about three percent.

30



References

Acemoglu, Daron, and Pablo D Azar. 2017. “Endogenous Production Networks.” National
Bureau of Economic Research.

Acemoglu, Daron, and Simon Johnson. 2005. “Unbundling Institutions.” Journal of Political
Economy, 113: 5.
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Antràs, Pol, and Alonso de Gortari. 2017. “On the Geography of Global Value Chains.”
National Bureau of Economic Research.
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Appendix

A Data Appendix

A.1 Data Sources and Variable Definitions

• Plant-level data: Our plant data is India’s Annual Survey of Industries (ASI), published by the Central
Statistics Office, Ministry of Statistics and Program Implementation. The data is at annual frequency,
each reporting year starts on April 1st and ends on March 31st. Our data covers the years 2000/01
to 2012/13. The input and output product codes for 2008/09 and 2009/10 are different to the ones
from earlier years; we created a concordance using the product names (which often match perfectly),
and concord the few remaining ones by hand. The years 2010/11 to 2012/13 use the NPCMS product
classification, which we convert to ASIC 2007/08 product codes using the concordance published by
the Ministry.

• Total cost: Sum of the user cost of capital, the total wage bill, energy, services, and materials inputs.
Total cost is set to be missing if and only if the user cost of capital, the wage bill, or total materials
are missing. The user cost of capital is constructed using the perpetual inventory method as in the
Appendix of Greenstreet (2007), using depreciation rates of 0%, 5%, 10%, 20%, and 40% for land,
buildings, machinery, transportation equipment, and computers & software, respectively. Capital
deflators are from the Ministry’s wholesale price index, and the nominal interest rate is the India
Bank Lending Rate, from the IMF’s International Financial Statistics (on average about 11%).

• Materials expenditure in total cost: (as used in Table I and subsequent tables) Total expenditure on
intermediate inputs which are associated with a product code (that excludes services and most energy
inputs) divided by total cost (see above).

• Pending High Court cases: From Daksh India (www.dakshindia.org). Daksh collects and updates
pending cases by scraping High Court websites. Cases were retrieved on 11 June 2017. To eliminate
biases resulting from possible delays in the digitisation, we exclude all cases that were filed after
1/1/2017. We divide cases into civil and criminal based on state-specific case type codes (which are
part of the case identifiers), and a correspondence between case types and whether they are civil or
criminal cases (from High Courts, where available).

• Rauch classification of goods: From James Rauch’s website, for 5-digit SITC codes. Concorded from
SITC codes to ASIC via the SITC-CPC concordance from UNSTATS, and the NPCMS-ASIC concor-
dance from the Indian Ministry of Statistics (NPCMS is based on CPC codes).

• Dependence on relationship-specific inputs, by industry: (as used in Table I) Total expenditure of
single-product plants in an industry on relationship-specific inputs (according to the concorded Rauch
classification), by 3-digit industry, divided by total expenditures on intermediate inputs that are
associated with a 5-digit product code (which excludes services and most energy intermediate inputs).

• Gross domestic product per capita, by district: District domestic product was assembled from various
state government reports, for the year 2005 (to maximize coverage). Missing for Goa and Gujarat
and some union territories, and for some individual districts in the other states. Population data from
the 2001 and 2011 Census of India, interpolated to 2005 assuming a constant population growth rate
in each district. Whenever district domestic product per capita was unavailable, we used gross state
domestic product per capita, as reported by the Ministry of Statistics and Program Implementation.

• Vertical Integration: See Appendix B. Due to the change in product classification from ASIC to
NPCMS after 2010, we construct vertical distance only for the pre-2011 years.

• Trust: Fraction of respondents that answer “Most people can be trusted” in the World Value Survey’s
trust question: “Generally speaking, would you say that most people can be trusted or that you need
to be very careful in dealing with people?” Data from waves 4, 5, and 6 of the World Values Survey,
except for Himachal Pradesh, Puducherry, and Uttarakhand, which are only available in wave 6. Data
is missing for Goa and the UT’s, except for Delhi and Puducherry.
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• Language: Data on population by mother tongue in each state, from the 2001 Census of India, as
published by the Office of the Registrar General and Census Commissioner.

• Caste: Data on caste from the 2014 round of CMIE’s Consumer Pyramids Survey (as made available
by ICPSR), covering all states of India except the northeastern states and the UT’s of Andaman
and Nicobar, Lakshadweep, Dadra and Nagar Haveli and Daman and Diu. Observations have been
weighted to be representative at the level of a “homogeneous region”, which is “a set of neighbouring
districts that have similar agro-climatic conditions, urbanisation levels and female literacy” (CPS 2014
User guide). Data covers 364 castes and caste categories. Herfindahls are constructed at the level of
a homogeneous region, and mapped to districts.40

• Corruption: Number of self-reported bribes per 1,000 inhabitants. Data on bribes is the full history
of 35,391 self-reported bribes paid from IPaidABribe.com (as of 03/28/2018), which we aggregate at
the state level. Population by state is from the 2011 Census of India.

• Capital Intensity: Average plant-level cost share of capital inputs (user cost of capital, see above), by
5-digit industry.

• Wage Premium: Average plant-level wage bill divided by the total number of man-days worked, by
5-digit industry.

• Contract Labor Share: Average plant-level cost share of contract (non-permanent) workers in the total
wage bill, by 5-digit industry.

• Upstreamness: Upstreamness as defined by Antràs et al. (2012) of 3-digit industries, calculated by year
and averaged across years. Some goods show up mostly as inputs and not as outputs because as outputs
they fall outside of the scope of the ASI (chiefly agricultural and mining goods); for these inputs total
observed intermediate consumption exceeds total observed production by plants in our sample. We set
total production of these goods equal to total intermediate consumption (hence assuming zero sales
to final goods consumers).41 The resulting variable looks very similar to those constructed by Antràs
et al. (2012) for industrialized countries.

• Tradability: Weighted average freight rates of industry’s inputs, by 5-digit industry (using only single-
product plants). Freight rates are the “average trade-weighted freight rates” by 2-digit SITC codes,
from Hummels (1999), concorded to ASIC codes using the SITC-ASIC concordance that we used for
the Rauch classification as well.

• Household consumption shares HHω: Define total net production as the total production of ω (from
the ASI, pooled across all years within each state, with each plant-year observation weighted by the
inverse of the number of times the plant shows up in the ASI), minus the total consumption of ω as
intermediate inputs by ASI firms (constructed and weighted analogously). If total net production of a
good is negative, we set it equal to zero. The value of HHω is then the fraction of total net production
of ω is the sum of total net production of all goods ω′ ∈ Ω.

• Recipe revenue shares Rωρ: Share of sales of ω using recipe ρ in total sales of ω. The sales of ω using ρ
of a single-product plant j are the sales of ω by j multiplied by the probability that j produces using ρ
(equation (3)). To construct the sales of ω using ρ of a multi-product plant j, we choose plant-specific
recipe shares to minimize the Euclidean distance of the plant’s vector of observed cost shares from
the weighted average of the recipes’ mean cost shares mρω, where the weights are the plant-specific
recipe shares (subject to the constraint that weights have to sum up to one for each product ω). To
construct Rωρ, we weigh all plant-year observations by the inverse of the number of times the plant
shows up in the ASI, pooling across all states and years.

40We are grateful to Renuka Sané and CMIE for helping us get a description of the homogeneous regions.
41While this may make these goods look more upstream than they actually are, the biases incurred are likely to be

small: minerals are usually not directly sold to households; agricultural goods are either very upstream in the value
chain of processed foods, or directly sold to households, but do not appear “in the middle” of the value chain.
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A.2 Sample

For the linear regressions in Section 2, the sample consists of all plants are reported as operating, produce
a single 5-digit product, and have materials shares in output strictly between zero and two. We also drop
the few observations from Sikkim and the Seven Sister States in North East India (Assam, Meghalaya,
Manipur, Mizoram, Nagaland, and Tripura; Arunachal Pradesh is not covered by the ASI) because they
have a different sampling methodology in the ASI, and Jammu and Kashmir, because coverage of its court
cases is inadequate, and because many federal laws do not apply to it due to its special status within the
union.

For the structural estimation, we also remove observations where the shares of relationship-specific
materials, homogeneous materials, or labor in sales exceed two, and observations where sales or non-materials
expenditures are non-positive. To construct the households consumption shares HHω and the recipe sales
shares Rωρ in the counterfactual, we weigh each plant-year observation by the inverse of the number of times
the plant shows up in our sample.

The regression to estimate ζ (Table VI) is the only one where we identify parameters from time variation.
Our sample to construct the expenditure aggregates consists of all census plants (which are surveyed every
year). We restrict the sample in this way to eliminate fluctuations in the expenditure ratios that arise
artificially from changes in the sample.

A.3 Details on High Court and State creation
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Table VII Details on High Court Creation

Name Jurisdiction over
States/UT’s

Year
founded

Created with
State

Notes on High Court creation Reasons for State creation

Allahabad High Court Uttar Pradesh 1866 no Created as HC of Judicature of the
Northwestern Provinces by the Indian
High Courts Act 1861.

High Court of Judicature at Hyderabad Andhra Pradesh, Telan-
gana

1956 yes Created when Andhra Pradesh was cre-
ated as part of the State Reorganization
Act 1956

Creation of Andhra Pradesh was trig-
gered by the independence movement
of the Telugu-speaking population of
Madras Presidency.

Mumbai High Court Goa, Dadra and Nagar
Haveli,Daman and Diu,
Maharashtra

1862 no Created by the Indian High Courts Act
1861.

Kolkata High Court Andaman and Nicobar Is-
lands,West Bengal

1862 no Created by the Indian High Courts Act
1861.

Chhattisgarh High Court Chhattisgarh 2000 yes Created when Chhattisgarh state was
carved out of Mandhya Pradesh in 2000
(Madhya Pradesh Reorganisation Act)

Chhattisgarh was a separate division
in the Central Provinces under British
rule. Demand for a separate state goes
back to 1920.

Delhi High Court Delhi 1966 no At the time of independence, Punjab
HC had jurisdiction for Delhi. With the
State Reorganisation Act 1956, Punjab
merged with Pepsu. Given Delhi’s im-
portance as capital, it was decided that
they should have their own HC.

Gauhati High Court Arunachal Pradesh, As-
sam,Mizoram, Nagaland *

1948 yes Created as HC of Assam in 1948,
with the Indian constitution; renamed
Gauhati HC in 1971 with the North
East Areas Reorganization Act. Lost
jurisdiction over Meghalaya, Manipur,
and Tripura in 2013

Gujarat High Court Gujarat 1960 yes Created when Gujarat split from Bom-
bay State with the Bombay Reorgani-
sation Act 1960.

Gujarat was created following the de-
mand of Gujarati-speaking people for
their own state (Mahagujarat move-
ment).

Himachal Pradesh High Court Himachal Pradesh 1971 yes Created with Himachal Pradesh becom-
ing a state (and therefore should have
a separate HC under the Indian consti-
tution)

Jammu and Kashmir High Court Jammu and Kashmir 1928 no Created by the Maharaja in 1928. Spe-
cial status: Laws passed by the Indian
parliament generally do not apply to
J&K (except foreign policy, communi-
cation, defense).

Jharkhand High Court Jharkhand 2000 yes Created when Jharkhand state was
carved out of Bihar in 2000 (Bihar Re-
organisation Act)

Jharkhand was richer in natural re-
sources than the rest of Bihar; Jhark-
hand Mukti Morcha independence
movement, and political considerations
by ruling parties.
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Name Jurisdiction over
States/UT’s

Year
founded

Created with
State

Notes on High Court creation Reasons for State creation

Karnataka High Court Karnataka 1884 no Founded by the British as the Chief
Court of Mysore in 1884.

Kerala High Court Kerala, Lakshadweep 1956 yes Created when Kerala was created as
part of the State Reorganization Act
1956

Idea of Kerala was to combine
Malayalam-speaking regions.

Madhya Pradesh High Court Madhya Pradesh 1936 no Established as Nagpur High Court
by King George V through a Letters
Patent on 2 Jan 1936. Moved to its
present location at Jabalpur with the
State Reorganization Act 1956.

Chennai High Court Puducherry, Tamil Nadu 1862 no Created by the Indian High Courts Act
1861.

Odisha High Court Odisha/Orissa 1948 no Orissa was split off from Bihar in 1936,
but did not get its own high court until
the drafting of the Indian constitution
(1948).

Patna High Court Bihar 1916 yes Created when Bihar and Orissa were
split off from Bengal Presidency.

Bengal nationalism and the undoing of
the 1905 Partition of Bengal.

Punjab and Haryana High Court Chandigarh, Haryana,
Punjab

1947 yes Created with the independence of In-
dia in 1947 (former HC of Punjab in
Lahore was mostly relevant for modern-
day Pakistan)

Rajasthan High Court Rajasthan 1949 yes Created with the foundation of Ra-
jasthan (1948-1950)

Sikkim High Court Sikkim 1955 no Established by the Maharaja of Sikkim
in 1955, became an Indian High Court
in 1975 when Sikkim joined India and
the monarchy was abolished

Uttarakhand High Court Uttarakhand 2000 yes Created when Uttaranchal was carved
out of Uttar Pradesh

Uttarakhand Kranti Dal independence
movement.

High Court of Mumbai, Goa Bench Goa, Daman and Diu,
Dadra and Nagar Haveli

1982 no Prior to the HC, a Judicial Commis-
sioner’s court existed in Goa. HC was
established to safeguard the judge’s in-
dependence (see Bombay HC at Goa
website).

Manipur High Court Manipur 2013 no Parties in Manipur demanded their own
high court

Meghalaya High Court Meghalaya 2013 no Parties in Meghalaya demanded their
own high court

High Court Of Tripura Tripura 2013 no Parties in Tripura demanded their own
high court
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B Vertical Integration Measure

B.1 Definition

Let xjω′ be the expenditure of plant j on ω′ ∈ Ω, then define for products ω, ω′ ∈ Ω, and a set B ⊂ Ω

βBωω′ =

∑
j∈Jω xjω′∑

j∈Jω
∑
ω′′∈Ω\B xjω′′

if ω′ 6∈ B, and βBωω′ = 0 otherwise. βBωω′ is the share of ω′ in industry ω’s materials basket that excludes
inputs from B.

Denote by Anωω′ the set of (n+ 1)-tuples (ω(0), ω(1), . . . , ω(n)) ∈ Ωn+1 such that

ω(0) = ω, ω(n) = ω′, (4)

ω(i) 6= ω(j) ∀(i, j) ∈ {0, . . . , n}2, i 6= j. (5)

Intuitively, Anωω′ is the set of all possible non-circular product chains of length n between ω and ω′. Then
let

δωω′ =

∞∑
n=1

∑
a∈An

ωω′

λ(a)∑∞
n′=1

∑
a′∈An′

ωω′
λ(a′)

· n

where

λ : Anωω′ → R, λ(ω(0), ω(1), . . . , ω(n)) =

n∏
i=1

β
{(ω(0),ω(1),...,ω(i−1))}
ω(i−1)ω(i)

is the share of ω′ in ω’s input mix through a given product chain. Hence, δωω′ is the average number of
production steps between an output ω and an input ω′, weighted by the overall expenditure of each product
chain in industry ω’s mix of materials, and excluding any circular product chains.

The plant-level measure of vertical integration, and the left-hand side of Table III, is then the average
distance of its inputs from the output, weighted by each inputs’ share in the plants materials expenditure:
let j ∈ Jω, then

V Ij =
∑
ω′∈Ω

xjω′∑
ω′′∈Ω xjω′′

δωω′ .

To understand why we exclude circular product chains, consider the following example: Some plants sell
aluminum and use aluminum scrap as an input, whereas some other plants use aluminum as an input and
sell aluminum scrap. Thus in the production of aluminum scrap, aluminum would show up as an input one
stage away, three stages away, five stages away, etc.

When we see a plant selling aluminum scrap and using aluminum as an input, we believe that it is the
distance of one that is relevant, not the distances of three, five, etc. In other words, we believe the plant is
turning the aluminum into scrap, but not turning the aluminum into scrap then back to aluminum and then
back to scrap. Therefore we believe the circular part of the production chain is not relevant for constructing
a plant’s distance to its inputs.

B.2 Examples

Table VIII shows the average vertical distance of several input groups (defined as all inputs that contain
the strings “fabric”/“cloth”, “yarn”, or “cotton, raw” in their description”) from the output “cotton shirts”.
Fabrics and cloths are closest to the final output; yarns, which are used in the production of cloths and
fabrics, are further upstream, and raw cotton inputs are even further upstream.

Table IX shows vertical distances between aluminium ingots as an output, and several intermediate
inputs. Aluminium ingots can be made both by recycling castings and alloys, but also by casting molten
aluminium. The latter also serves as an intermediate input in the production of castings and alloys, and is
hence vertically more distant than the inputs which undergo recycling. Aluminium itself is produced from
aluminium oxide using electrolytic reduction (Hall-Heroult process). In turn, aluminium oxide is produced
by dissolving bauxite in caustic soda at high temperatures (hence the coal inputs).
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Table VIII Vertical distance examples for 63428: Cotton Shirts

Input group Average vertical distance

Fabrics Or Cloths 1.67
Yarns 2.78
Raw Cotton 3.55

Table IX Vertical distance examples for 73107: Aluminium Ingots

ASIC code Input description Vertical distance

73105 Aluminium Casting 1.23
73104 Aluminium Alloys 1.46
73103 Aluminium 1.92
22301 Alumina (Aluminium Oxide) 2.92
31301 Caustic Soda (Sodium Hydroxide) 3.81
23107 Coal 3.85
22304 Bauxite, raw 3.93

C Additional Reduced Form Results

C.1 Controlling for Interactions with State and Industry Characteristics

Tables X, XI, and XII show the main regressions of materials cost shares, input mixes, and vertical integration
with a full set of controls. See Appendix A for definitions of the variables.

Tables XIII and XV also include interactions of industry characteristics with court quality. Tables XIV
and XVI show IV regressions where the court quality × industry characteristic interactions are instrumented
by the interaction of log court age and the corresponding industry characteristic.
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Table X Additional Controls – Materials Cost Share
Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0167∗∗ -0.0118∗ -0.0156+ -0.0212∗∗

(0.0046) (0.0053) (0.0085) (0.0078)

LogGDPC * Rel. Spec. 0.0102 0.00556
(0.0091) (0.0096)

Trust * Rel. Spec. 0.0300 0.0353
(0.038) (0.038)

Language HHI * Rel. Spec. 0.0610 0.0612
(0.040) (0.040)

Caste HHI * Rel. Spec. 0.106∗ 0.0990+

(0.051) (0.052)

Corruption * Rel. Spec. 0.0641 0.0508
(0.097) (0.097)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.480 0.484 0.480 0.484
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table XI Additional Controls – Vertical Integration

Dependent variable: Vertical Integration

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. 0.0195+ 0.0280∗ 0.0292 0.0368∗

(0.011) (0.012) (0.019) (0.018)

LogGDPC * Rel. Spec. 0.0288 0.0330
(0.024) (0.024)

Trust * Rel. Spec. -0.0939 -0.0984
(0.090) (0.091)

Language HHI * Rel. Spec. -0.0742 -0.0743
(0.092) (0.092)

Caste HHI * Rel. Spec. -0.182 -0.176
(0.12) (0.12)

Corruption * Rel. Spec. 0.481∗ 0.494∗

(0.24) (0.24)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.443 0.453 0.443 0.453
Observations 163334 154021 163334 154021

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table XII Additional Controls – Input Mix

Dependent variable: XR
j /(X

R
j +XH

j )

(1) (2) (3) (4)

Avg age of Civil HC cases -0.00547∗ -0.00530∗ -0.0144∗∗ -0.0167∗∗

(0.0022) (0.0024) (0.0044) (0.0045)

Log district GDP/capita -0.00384 -0.00980+

(0.0046) (0.0051)

Trust -0.00740 -0.00160
(0.018) (0.019)

Language HHI -0.0553∗∗ -0.0567∗∗

(0.021) (0.022)

Caste HHI -0.0428 -0.0525+

(0.028) (0.029)

Corruption -0.0676 -0.0844+

(0.044) (0.045)

5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.441 0.449 0.441 0.449
Observations 225590 199339 225590 199339

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table XIII Materials Cost Share: Industry Characteristic Interactions

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0117∗ -0.00987∗ -0.0118∗ -0.0112∗ -0.0105+ -0.00675
(0.0052) (0.0049) (0.0053) (0.0053) (0.0054) (0.0049)

Capital Intensity * Avg. age of cases -0.110∗∗ -0.0624+

(0.038) (0.033)

Ind. Wage Premium * Avg. age of cases -0.00146 -0.00180∗

(0.0011) (0.00088)

Ind. Contract Worker Share * Avg. age of cases -0.00116 0.0207
(0.030) (0.027)

Upstreamness * Avg. age of cases 0.00289+ 0.00363∗

(0.0015) (0.0015)

Tradability * Avg. age of cases -0.00104+ -0.00150∗∗

(0.00058) (0.00051)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.484 0.484 0.484 0.484 0.484 0.484
Observations 196748 196748 196748 196748 196735 196735

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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Table XIV Materials Cost Share: Industry Characteristic Interactions (IV)

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0211∗∗ -0.0155∗ -0.0211∗∗ -0.0194∗ -0.0217∗∗ -0.0149∗

(0.0078) (0.0074) (0.0077) (0.0080) (0.0078) (0.0075)

Capital Intensity * Avg. age of cases -0.0262 -0.00252
(0.065) (0.062)

Ind. Wage Premium * Avg. age of cases -0.00406∗ -0.00343∗

(0.0018) (0.0016)

Ind. Contract Worker Share * Avg. age of cases 0.0311 0.00893
(0.040) (0.041)

Upstreamness * Avg. age of cases 0.00641∗ 0.00593+

(0.0032) (0.0031)

Tradability * Avg. age of cases 0.00108 0.000551
(0.00100) (0.0010)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.484 0.484 0.484 0.484 0.483 0.483
Observations 196748 196748 196748 196748 196735 196735

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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Table XV Vertical Integration: Industry Characteristic Interactions

Dependent variable: Vertical Integration

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. 0.0279∗ 0.0232+ 0.0278∗ 0.0275∗ 0.0295∗ 0.0247∗

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Capital Intensity * Avg. age of cases 0.0279 0.0255
(0.073) (0.074)

Ind. Wage Premium * Avg. age of cases 0.00357+ 0.00299
(0.0021) (0.0021)

Ind. Contract Worker Share * Avg. age of cases -0.0263 0.00432
(0.026) (0.033)

Upstreamness * Avg. age of cases -0.00447 -0.00363
(0.0036) (0.0036)

Tradability * Avg. age of cases -0.00118∗ -0.000961
(0.00059) (0.00079)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.453 0.453 0.453 0.453 0.453 0.453
Observations 154021 154021 154021 154021 154011 154011

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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Table XVI Vertical Integration: Industry Characteristic Interactions (IV)

Dependent variable: Vertical Integration

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. 0.0351∗ 0.0211 0.0362∗ 0.0360∗ 0.0388∗ 0.0257
(0.018) (0.019) (0.018) (0.018) (0.018) (0.019)

Capital Intensity * Avg. age of cases 0.259+ 0.370∗

(0.15) (0.17)

Ind. Wage Premium * Avg. age of cases 0.0110∗∗ 0.00927∗

(0.0042) (0.0043)

Ind. Contract Worker Share * Avg. age of cases -0.0483 0.110+

(0.047) (0.060)

Upstreamness * Avg. age of cases -0.00405 0.00258
(0.0070) (0.0070)

Tradability * Avg. age of cases -0.00397∗∗ -0.00544∗∗

(0.0013) (0.0018)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.453 0.453 0.453 0.453 0.453 0.453
Observations 154021 154021 154021 154021 154011 154011

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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C.2 Time variation: creation of new High Court benches

C.2.1 Background

Two new benches of the Karnataka High Court were set up Dharwad and Gulbarga in July 2008. They
have jurisdiction over Belgaum, Balgakot, Koppal, Gadag, Dharwad, Uttara Kannada, Haveri, and Bellary
(Dharwad bench), and Bijapur, Gulbarga, Bidar, and Raichur (Gulbarga bench). The purpose was explicitly
to improve access to justice in remote areas.

In July 2004, the Chennai High Court set up a bench in Madurai, which has jurisdiction over Kanniyaku-
mari, Tirunelveli, Tuticorin, Madurai, Dindigul, Ramanathapuram, Virudhunagar, Sivaganga, Pudukkottai,
Thanjavur, Tiruchirappalli and Karur districts.

C.2.2 Results

The regressions in Table XVII look at whether wedges on relationship-specific inputs have decreased differ-
entially in districts that are under the jurisdiction of the new benches. The coefficients are not very precisely
estimated, since the districts with new benches account on average only for about 6% of the plants in the
respective states.

Table XVII Identification from Time Variation: Diff-in-Diff
XR/Sales sR − sH Materials/TotalCost Vert. Distance

(1) (2) (3) (4)

(New Bench in District)d× (Post)t 0.0126∗∗ 0.00960 -0.00305 0.00678
(0.0043) (0.0076) (0.0033) (0.010)

(New Bench in District)d× (Post)t× (Rel.Spec)ω 0.0142 -0.0764∗

(0.010) (0.031)

Plant × Product FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

R2 0.832 0.824 0.906 0.813
Observations 80427 74696 78462 77995

C.2.3 Figures

Figures 5 and 6 show the relative changes in the input mix in treated vs. untreated districts before and after
the new high court benches were installed.
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Figure 5 Relative change in XR/Sales after new court bench is set up
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The figure shows the evolution of the share of expenditure on relationship-specific inputs in
sales, in treated districts relative to non-treated districts. Treatment happens at the start
of period 0. Regression includes firm × product fixed effects and year dummies.

Figure 6 Relative change in composition of input mix after new court bench is set up
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The figure shows the evolution of sR−sH , in treated districts relative to non-treated districts.
Treatment happens at the start of period 0. Regression includes firm × product fixed effects
and year dummies.
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C.3 Distortions and International Sourcing

This section presents three tables describing how plants’ usage of domestically- and foreign-sourced inputs
varies with distortions. The fourth row of Table XVIII shows that, relative to those in industries that
tend to use standardized inputs, the expenditure shares on domestic inputs of plants in industries that use
relationship-specific inputs declines as courts get more congested. The second row of Table XVIII shows
that this estimated relationship is stronger when we use our instrumental variables strategy with court age
as an instrument for congestion.

Table XVIII Domestic Materials Shares and Court Quality (Fact 3)

Dependent variable: Dom. Mat. Exp. in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0110+ -0.0127∗ -0.0349∗∗ -0.0279∗∗

(0.0057) (0.0063) (0.0097) (0.0085)

LogGDPC * Rel. Spec. -0.0124 -0.0200+

(0.0098) (0.010)

Trust * Rel. Spec. -0.0415 -0.0331
(0.043) (0.043)

Language HHI * Rel. Spec. 0.00109 0.00139
(0.056) (0.056)

Caste HHI * Rel. Spec. 0.0466 0.0355
(0.074) (0.075)

Corruption * Rel. Spec. 0.0654 0.0439
(0.12) (0.12)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.432 0.439 0.431 0.439
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table XIX shows the same regressions but with the cost share of imported intermediates. Here, the OLS
and IV specifications point to opposite results, and further investigation is required. The OLS specifications
indicate that among those that rely more on more relationship-specific inputs, more congestion leads to lower
shares of imported inputs relative to those that rely on standardized inputs. The IV specification indicates
that more congestion leads to relatively higher imported input shares in those that rely on relationship-specific
inputs, indicating that firms respond to distortions by substituting from domestic to foreign suppliers.

Table XX shows the results on the share of imports in the basket of relationship-specific (first three
columns) and homogenous (last three columns) inputs. More congestion leads to a higher share of imports
in both baskets, but the substitution is stronger in the basket of relationship-specific goods.
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Table XIX Import Shares and Court Quality, OLS + IV

Dependent variable: Imported Materials Expenditure in Total Cost

(1) (2) (3) (4) (5)

Avg age of Civil HC cases -0.00105 0.000444
(0.0017) (0.0032)

Avg Age Of Civil Cases * Rel. Spec. -0.00848+ 0.000870 0.0222∗∗ 0.0193∗∗ 0.00666
(0.0045) (0.0040) (0.0068) (0.0062) (0.0042)

LogGDPC * Rel. Spec. 0.0227∗∗ 0.0255∗∗

(0.0054) (0.0057)

Trust * Rel. Spec. 0.0716∗∗ 0.0683∗∗

(0.026) (0.026)

Language HHI * Rel. Spec. 0.0599 0.0598
(0.041) (0.041)

Caste HHI * Rel. Spec. 0.0593 0.0635
(0.051) (0.052)

Corruption * Rel. Spec. -0.00127 0.00691
(0.073) (0.074)

5-digit Industry FE Yes Yes Yes Yes Yes
District FE Yes Yes Yes

Estimator OLS OLS IV IV IV

R2 0.276 0.342 0.265 0.329 0.342
Observations 223674 196748 223674 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table XX Substitution into Importing

R-Imports in Total R H-Imports in Total H

(1) (2) (3) (4)

Avg age of Civil HC cases 0.0193∗∗ 0.00925∗∗ 0.0112∗∗ 0.00440∗∗

(0.0023) (0.0018) (0.0016) (0.0013)

Log district GDP/capita 0.0224∗∗ 0.0180∗∗

(0.0027) (0.0019)

Trust in other people (WVS) 0.110∗∗ 0.0564∗∗

(0.012) (0.011)

Language Herfindahl 0.0162 -0.0292∗∗

(0.019) (0.0093)

Caste Herfindahl 0.0584∗ 0.0171
(0.028) (0.013)

Corruption 0.0315 -0.0912∗∗

(0.028) (0.022)

5-digit Industry FE Yes Yes Yes Yes

Estimator IV IV IV IV

R2 0.227 0.251 0.180 0.197
Observations 168120 148165 168953 149623

Standard errors in parentheses, clustered at the state × industry level.
Dependent variable in columns (1) and (2) (resp. (3) and (4)) is the share of relationship-
specific (homogeneous) imports in total relationship-specific (homogeneous) materials.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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C.4 Materials Shares with Size and Age

Table XXI shows that materials cost shares do not correlate much with size and age of the plant. Table
XXII shows correlations of input wedges with various plant-level characteristics.

Table XXI Plant Age and Size

Dependent variable: Mat. Exp in Total Cost

(1) (2) (3)

Plant Age -0.000695∗∗ -0.000679∗∗

(0.000065) (0.000063)

Log Employment -0.00257∗∗ -0.00176∗

(0.00086) (0.00083)

5-digit Industry FE Yes Yes Yes
District FE Yes Yes Yes

Estimator

R2 0.481 0.481 0.482
Observations 205109 208179 204767

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table XXII Wedges and Plant Characteristics

Age Size Multiproduct # Products

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. 0.620+ -0.0253 -0.0121 -0.0580
(0.32) (0.040) (0.0076) (0.037)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

R2 0.214 0.339 0.301 0.295
Observations 353392 359820 360316 360316

Note: Sample includes multiproduct plants. Industry dummies refer to the 5-digit industry
with the plants’ highest production value.

D Proofs

D.1 Proof of Proposition 1

Let Fω(c) be the fraction of firms in industry ω with cost weakly less than c (when the wage is normalized
to unity). Similarly, let Fωρ(c) be the fraction of firms in ω that have a technique of recipe ρ that delivers
unit cost weakly less than c. These satisfy 1− Fω(c) =

∏
ρ∈%(ω) [1− Fωρ(c)].

It will also be convenient to define, for recipe ρ that uses inputs Ω̂ρ = (ω̂1, ..., ω̂n), the functions
Bωρ(b) where b = (bl, b1, ..., bn) and Vωρ(v) where v = (vl, v1, ..., vn). These functions are defined by

Bωρ(b) ≡ Bωρb
−βρl
l

∏
k b
−βρω̂k
k so that Bωρ(db) = Bωρβ

ρ
l b
−βρl −1

l dblβ
ρ
ω̂1
b
−βρω̂1

−1

1 db1...β
ρ
ω̂n
b
−βρω̂n−1
n dbn. Similarly,

let Vωρ(v) ≡ vβ
ρ
l

l

∏
k v

βρω̂k
k so that Vωρ(dv) = βρl v

βρl −1

l dvlβ
ρ
ω̂1
v
βρω̂1
−1

1 dv1...β
ρ
ω̂n
v
βρω̂n−1
n dvn.

Lemma 1 Under Assumption 2, for a firm of type ω,

Pr(λω̂(φ) > λ|bω̂(φ)) = e−(λbω̂(φ)/Λωω̂)ζ
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where

Λωω̂ =

{
t∗x
[∫∞

0
c−ζRdFω̂(c)

]−1/ζR
, ω̂ ∈ ΩρR[∫∞

0
c−ζHdFω̂(q)

]−1/ζH
, ω̂ ∈ ΩρH

and

t∗x ≡
(∫ ∞

1

t−ζRx dT (tx)

)−1/ζR

.

Proof. Consider first a relationship-specific input ω̂ ∈ Ω̂ρR. Consider a technique with a common component
of input augmenting productivity bω̂(φ). The number of suppliers with match-specific component of input-
augmenting productivity greater than z is Poisson with mean z−ζR . For a potential supplier with z and
input wedge tx, the probability that the supplier’s cost is low enough so that the supplier delivers an effective

cost weakly less than λ is Pr
(

pstx
bω̂(φ)z ≤ λ

)
= Pr (ps ≤ λbω̂(φ)z/tx) = Fω̂ (λzbω̂(φ)/tx), where Fω̂(c) is the

fraction of firms in ω̂ with unit cost (and hence price) weakly less than c. Integrating over realizations of z
and tx, we have that the number of potential suppliers that deliver effective cost weakly less than λ follows
a Poisson distribution with mean∫ ∞

0

∫ ∞
1

Fω̂ (λzbω̂(φ)/tx) dT (tx)ζRz
−ζR−1dz

Using the change of variables v = λzbω̂(φ)/tx and the definition of Λωω̂, this is

[λbω̂(φ)]
ζR

∫ ∞
0

∫ ∞
1

Fω̂(v)t−ζRx dT (tx)ζRv
−ζR−1dv = [λbω̂(φ)/Λωω̂]

ζR

The probability that no such suppliers arrive is then simply

Pr(λω̂(φ) > λ|bω̂(φ)) = e−(λbω̂(φ)/Λωω̂)γ

The logic for homogeneous inputs is the same.

Lemma 2 Under Assumption 1,∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv) <∞

Proof. Assumption 1 implies that for each k ∈ {l, 1, ..., n} there is a v̄k such that Cωρ (0, ..., 0, v̄k, 0, ..., 0) = 1.
In other words, v̄k is defined so that if the effective cost of the kth input were equal to v̄k and the cost of
all other inputs were equal to zero then the firm’s cost would be 1. Thus if the firm’s cost of the kth input
were higher than v̄k, the firm’s cost must be greater than 1. We therefore have

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv) =

∫ v̄l

0

∫ v̄1

0

...

∫ v̄n

0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv)

≤
∫ v̄l

0

∫ v̄1

0

...

∫ v̄n

0

Vωρ(dv)

= Vωρ(v̄)

< ∞

where v̄ = {v̄l, v̄1, ..., v̄n}.

Proposition 6 Under Assumptions 1 and 2, the fraction of firms with cost greater than c among those in
industry ω is

e−(c/Cω)γ
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where

Cω =

 ∑
ρ∈%(ω)

κωρBωρ

(t∗x)α
ρ
R(tl)

αρL
∏
ω̂∈Ω̂ρ

C
αρω̂
ω̂

−γ
− 1
γ

(6)

t∗x =

(∫ ∞
1

t−ζ
R

x dT (tx)

)−1/ζR

κωρ =

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(v)
∏
ω̂∈Ω̂ρ

Γ

(
1−

βρω̂
ζω̂

)
Γ

(
1− ζω̂

γ

)βρω̂/ζω̂

Proof. Consider recipe ρ that uses labor and intermediate inputs Ω̂ρ = {ω̂1, ..., ω̂n}. Let Hωρ(c) be the
arrival rate of a technique that delivers cost weakly less than c. Then 1− Fωρ(c) is the probability that no
such techniques arrive, or e−Hωρ(c). To find Hωρ(c), we consider first a technique of recipe ρ for which the
common components of input-augmenting productivities are bl, b1, ..., bn. To find the probability that the
technique delivers unit cost weakly less than c we integrate over the effective cost of all inputs:∫ ∞

0

...

∫ ∞
0

1 {Cωρ (λl, λω̂1
, ..., λω̂n) ≤ c}

n∏
k=1

e−(λkbk/Λωω̂k)
ζω̂k b

ζω̂k
k

Λ
ζω̂k
ωω̂k

ζω̂kλ
ζω̂k−1

k dλk

To find Hωρ(c), we integrate over the arrival of such techniques:

Hωρ(c) =

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (λl, λω̂1
, ..., λω̂n) ≤ c}

(
n∏
k=1

e−(λkbk/Λωω̂k)
ζω̂k b

ζω̂k
k

Λ
ζω̂k
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ζω̂kλ
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k dλk

)
Bωρ(db)

Using the definition of λl = tl
bl

and the homogeneity of the cost function, this is

Hωρ(c) =

∫ ∞
0

...

∫ ∞
0

1

{
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blc
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c
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Bωρ(db)

It will be useful to make the changes of variables vk = λk/c, vl = tl
cbl

, and mj = (λlbl/Λωω̂l)
ζω̂j to express

Hωρ as

Hωρ(c) =

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1}Bωρ
(
tl
c

)−βρl  n∏
k=1

(
m

1/ζω̂k
k Λωω̂k

c

)−βρω̂k
e−mkdmk

Vωρ(dv)

or more simply,

Hωρ(c) = κ̃ωρBωρt
−βρl
l Λ

−βρω̂1

ωω̂1
...Λ
−βρω̂n
ωω̂n

cγ

where

κ̃ωρ ≡
∫ ∞

0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv)

n∏
k=1

∫ ∞
0

m
−βρω̂k/ζω̂k
k e−mkdmk

Assumptions 1 and 2e guarantee that κ̃ωρ is finite: the first integral is finite because of Lemma 2, and the
subsequent integrals can be written as∫ ∞

0

m
−βρω̂k/ζω̂k
ω̂k

e−mkdmk = Γ

(
1−

βρω̂k
ζω̂k

)
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Using the fact that 1− Fω(c) =
∏
ρ∈%(ω) [1− Fωρ(c)] =

∏
ρ∈%(ω) e

−Hωρ(c), we have

1− Fω(c) = e−(c/Cω)γ

where Cω is defined as

Cω ≡

 ∑
ρ∈%(ω)

κ̃ωρBωρt
−βρl
l Λ

−βρω̂1

ωω̂1
...Λ
−βρω̂n
ωω̂n

−1/γ

(7)

To complete the proof, we will derive expressions for Λωω̂ in terms of Cω̂ and substitute into (7). Note first
that for each ω̂ ∈ Ω̂ρ we have∫ ∞

0

c−ζωdFω(c) =

∫ ∞
0

c−ζωC−γω γcγ−1e−(c/Cω)γdc = C−ζωω
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0

v−
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γ e−vdv

= C−ζωω Γ

(
1− ζω

γ

)
therefore Lemma 1 implies

Λωω̃ =

 t∗xCω̂Γ
(

1− ζR
γ

)−1/ζR
ω̂ ∈ Ω̂R

Cω̂Γ
(

1− ζH
γ

)−1/ζH
ω̂ ∈ Ω̂H

Plugging this into (7), defining κωρ ≡ κ̃ωρ
∏
ω̂∈Ω̂ρ Γ

(
1− ζω̂

γ

)βρω̂/ζω̂
, and using αρω̂ =

βρω̂
γ gives the result.

D.2 Factor Shares

Consider a firm in industry ω. If, in equilibrium, the firm uses a technique of recipe ρ (that uses labor and
intermediate inputs Ω̂ρ = {ω̂1, ..., ω̂n}) with input-augmenting productivities b = {bl, b1, ..., bn}, effective cost
of intermediate inputs λ = {λ1, ..., λn}, then its payment to supplier of a relationship-specific input ω̂i with
wedge tω̂x is

psxs = t−1
ω̂ix

λiCωρω̂i(λ)yj , ωi ∈ ΩρR
psxs = λiCωρω̂i(λ)yj , ωi ∈ ΩρH

wl = λlCωρω̂i (λl, λ1, ..., λn) yj +
∑
ω̂∈Ω̂ρR

(1− t−1
ω̂ix

)λiCωρω̂i(λ)yj

where Cωρl and Cωρω̂ denote the partial derivatives of the cost function with respect to the cost of labor and
to the cost of input ω̂ respectively.

We characterize average revenue shares of each input in several in several intermediate steps.

Effective Cost Shares

For any technique of recipe ρ that delivers cost c, let Dωρ(c) denote the probability that the technique is
actually chosen by the firm.42

Lemma 3 Under Assumptions 1 and 2, the average effective cost share of the ith intermediate input and of

42While it is not relevant for the proof, it turns out that Dωρ(c) = 1− Fω̃(c), the overall probability that a firm’s
best technique delivers cost c.
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labor among firms that, in equilibrium, use recipe ρ and have unit cost weakly less than c0 are, respectively,

E

[
λω̂iCωρω̂i (λ)

Cωρ (λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v

vω̂iCωρω̂i (v)

Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)∫
v

1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)
(8)

E

[
λlCωρl (λ)

Cωρ (λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v
vlCωρl(v)
Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)∫
v

1 {Cωρ (v) ≤ c0}Dωρ (Cωρ (v))Vωρ(dv)
(9)

Proof. For a firm in industry ω, the measure of the arrival rate of techniques of recipe ρ with b =
{bl, b1, ..., bn} and λ = {λ1, ..., λn} that deliver cost weakly less than c0 is

1 {Cωρ (λ) ≤ c0}
(
b1λ1

Λωω̂1

)ζω̂1 ζω̂1

λ1
e−(λ1b1/Λωω̂1)

ζω̂1
dλ1...

(
bnλn
Λωω̂n

)ζω̂n ζω̂n
λn

e−(λnbn/Λωω̂n )
ζω̂n dλnBωρ(db) (10)

Such a technique is actually used by the firm with probability Dωρ (Cωρ(λ)). To find the density of b and
λ among firms in industry ω that choose to use a technique of recipe ρ that delivers cost weakly less than
c0 we simply divide the product of (10) and Dωρ (Cωρ(λ)) by the integral over all such combinations of

input-augmenting productivities and effective cost, so that the conditional expectation of
λiCωρω̂i (λ)

Cωρ(λ) is

E

[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
b

∫
λ

λiCωρω̂i (λ)

Cωρ(λ) 1 {Cωρ(λ) ≤ c0}Dωρ (Cωρ(λ))

×
(
b1λ1

Λωω̂1

)ζω̂1 ζω̂1

λ1
e−(λ1b1/Λωω̂1)dλ1...

(
bnλn
Λωω̂n

)ζω̂n ζω̂n
λn
e−(λnbn/Λωω̂n )dλnBωρ(db)∫

b

∫
λ

1 {Cωρ(λ) ≤ c0}Dωρ (Cωρ(λ))

×
(
b1λ1

Λωω̂1

)ζω̂1 ζω̂1

λ1
e−(λ1b1/Λωω̂1)dλ1...

(
bnλn
Λωω̂n

)ζω̂n ζω̂n
λn
e−(λnbn/Λωω̂n )dλnBωρ(db)

Making the change of variables of variables mk = (λkbk/Λωω̂k)
ζω̂k for each k and using the definition λl = tl

bl
gives

E

[
λiCωρω̂i(λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
b

∫
m

Λωω̂i
bω̂i

m
1/ζω̂i
i Cωρω̂i

(
tl
bl
,{Λ
bm

1/ζ}
)

Cωρ
(
tl
bl
,{Λ
bm

1/ζ}
) 1

{
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
})
≤ c0

}
×Dωρ

(
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
}))

e−m1dm1...e
−mndmnBωρ(db)∫

b

∫
m

1
{
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
})
≤ c0

}
×Dωρ

(
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
}))

e−m1dm1...e
−mndmnBωρ(db)

where Cωρ
(
tl
bl
,
{

Λ
bm

1/ζ
})

= Cωρ
(
tl
bl
,

Λωω̂i
bi

m
1/ζω̂i
i , ...,

Λωω̂n
bn

m
1/ζω̂n
n

)
. A further change of variables vl = tl

bl

and vk =
Λωω̂k
bk

m
1/ζω̂k
k gives

E

[
λiCωρω̂i(λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v

∫
m

vω̂iCωρω̂i (v)

Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v)) e−m1dm1...e
−mndmn

×Bωρt
−βρl
l

(
Λωω̂1m

1/ζω̂1
1

)βρω̂1
...
(

Λωω̂nm
1/ζω̂n
n

)βρω̂n Vωρ(dv)∫
v

∫
m

1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v)) e−m1dm1...e
−mndmn

×Bωρt
−βρl
l

(
Λωω̂1m

1/ζω̂1
1

)βρω̂1
...
(

Λωω̂nm
1/ζω̂n
n

)βρω̂n Vωρ(dv)

Canceling common terms from the numerator and denominator gives (8). (9) can be derived using identical
logic.
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Lemma 4 ∫
v

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv) = βρω̂iAωρ(c0) (11)∫

v

vlCωρl(v)

Cωρ (v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv) = βρLAωρ (c0) (12)

where Aωρ(c0) is a constant

Proof. For the proof of this lemma we need some additional notation. Define the function Kωρ (c; c0) =∫ c0
c

1
c̃Dωρ (c̃) dc̃. Define the function ψ (v−i, c) to be the solution to Cωρ (v−i, ψ (v−i, c)) = c if such a solution

exists, or take the value of zero no such solution exists, i.e., if the v−i are too large for a solution to exist.

Finally, define Vωρ,−i (v−i) ≡ v
βρl
l

∏
k 6=i v

βρω̂k
k and Vωρ,l (v−l) ≡

∏
k v

βρω̂k
k

We can express the left hand side of (11) as

LHS =

∫
v

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)

=

∫
v−i

∫
vi

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))βρω̂iv

βρω̂i
−1

i dviVωρ,−i (dv−i) (13)

We can use the definition of ψ (v−i, c), integrate by parts, and then use the definition of ψ (v−i, c) again to
express the innermost integral as∫

vi

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))βρω̂iv

βρω̂i
−1

i dvi

=

∫ ψ(v−i,c0)

0

viCωρω̂i(v)

Cωρ(v)
Dωρ (Cωρ(v))βρω̂iv

βρω̂i
−1

i dvi

=

∫ ψ(v−i,c0)

0

Cωρω̂i(v)

Cωρ(v)
Dωρ (Cωρ(v))βρω̂iv

βρω̂i
i dvi

= −Kωρ (Cωρ(v); c0)βρω̂iv
βρω̂i
i

∣∣∣∣ψ(v−i,c0)

0

+

∫ ψ(v−i,c0)

0

Kωρ (Cωρ(v); c0)
(
βρω̂i
)2
v
βρω̂i
−1

i dvi

=

∫ ψ(v−i,c0)

0

Kωρ (Cωρ(v); c0)
(
βρω̂i
)2
v
βρω̂i
−1

i dvi

= βρω̂i

∫
vi

1 {Cωρ(v) ≤ c0}Kωρ (Cωρ(v); c0)βρω̂iv
βρω̂i
−1

i dvi

Plugging this back into (13) gives

LHS = βρω̂i

∫
v

1 {Cωρ (v) ≤ c0}Kωρ (Cωρ (v) , c0)Vωρ(dv)

The derivation of (12) follows identical logic.

Proposition 7 Under Assumptions 1 and 2, the average effective cost share of the ith intermediate input
and of labor among firms that, in equilibrium, use recipe ρ and have unit cost weakly less than c0 are,
respectively,

E

[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] = αρω̂i

E

[
λlCωρl(λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] = αρL
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Proof. Lemma 3 gives

E

[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v

viCωρω̂i (v)

Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)∫
v

1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ (dv)

Lemma 4 implies that the numerator equals βρωiAωρ(c0). The homogeneity of the cost function implies that

1 =
vlCωρl(v)
Cωρ(v) +

∑
i

viCωρω̂i (v)

Cωρ(v) , so the denominator equals βρl Aωρ(c0) +
∑
i β

ρ
ω̂i
Aωρ(c0) = γAωρ (c0). Together

these imply that E
[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣ c ≤ c0, ρ] = αρω̂i . Identical logic implies that E
[
λlCωρl(λ)
Cωρ(λ)

∣∣∣ c ≤ c0, ρ] = αρL.

Actual Cost Shares

Lemma 5 Among firms that produce ω that, in equilibrium, use a supplier for relationship-specific input
ω̂ ∈ ΩρR that delivers effective cost λω̂, the harmonic average of the wedge is

t̄x = E
[
t−1
xω̂ |λω̂

]−1
=

(∫ ∞
1

t−1
x dT̃ (tx)

)−1

where T̃ (tx) ≡
∫ tx
1

t−ζRdT (t)∫∞
1
t−ζRdT (t)

.

Proof. Consider all suppliers drawn by j to supply input ω̂ for recipe ρ. The effective cost delivered by the
supplier is λ = ps

txz
where ps = cs is the price charged by the supplier. Given the match-specific productivity

z and wedge tx, the probability that the supplier’s efficiency is high enough to deliver an effective cost
lower λ is the probability that cs is small enough to so that txcs

z < λ, i.e., cs < λz/tx, or 1 − Fω̂ (λz/tx).
Integrating over possible values of z and tx, the probability that a supplier delivers effective cost lower than
λ is

∫∞
0

∫∞
1

[1− Fω̂ (λz/t)] dT (t)ζRz
−ζR−1dz. Second, the probability that a supplier delivers effective cost

less than λ and the wedge is less than tx is
∫∞

0

∫ tx
1

[1− Fω̂ (λz/t)] dT (t)ζRz
−ζR−1dz. Together, these imply

that, among suppliers who deliver effective cost less than λ, the probability that the wedge is less than tx is

Pr (txs < tx|λs ≤ λ) =

∫∞
0

∫ tx
1

[1− Fω̂ (λz/t)] dT (t)z−ζR−1dz∫∞
0

∫∞
1

[1− Fω̂ (λz/t)] dT (t)z−ζR−1dz

=

∫∞
0

∫ tx
1

[1− Fω̂(u)]λζRt−ζRdT (t)u−ζR−1du∫∞
0

∫∞
1

[1− Fω̂(u)]λζRt−ζRdT (t)u−ζR−1du

=

∫ tx
1
t−ζRdT (t)∫∞

1
t−ζRdT (t)

= T̃ (tx)

where the second line uses the change of variables u = λtz. With this, we have that among suppliers that
deliver effective cost weakly greater than λ, the harmonic average of wedges is

t̄x ≡ E
[
t−1
xs |λs ≤ λ

]−1

Since t̄x does not depend on λ, the expectation must be the same for each λ, i.e.,

t̄x = E
[
t−1
xs |λs

]−1

Finally, this equation holds regardless of whether s is selected as a supplier. In other words,

E
[
t−1
xω̂ |λω̂

]
= E

[
t−1
xs |λs, s selected as supplier

]
= E

[
t−1
xs |λs

]
= t̄−1

x
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Proposition 8 Among firms in industry ω that, in equilibrium, use recipe ρ and have unit cost c:

• the average share of expenditures spent on input ω̂ ∈ ΩρR is 1
t̄x
αρω̂

• the average share of expenditures spent on input ω̂ ∈ ΩρH is αρω̂

• the average share of expenditures spent on input ω̂ ∈ ΩρH is αρL + (1− 1
t̄x

)αρR

Proof. Consider a relationship specific-input ω̂. Note first that the share of j’s expenditures spent on ω̂ is
1
tω̂x

λω̂Cωρω̂(λ)
Cωρ(λ) . Note that conditional on c, p̄j is independent of any feature of the firm’s sourcing decision,

and conditional on λi, tω̂x is independent of any other feature of the firm’s sourcing decision. Putting the
pieces together, we have, by iterated expectations,

E

[
1

tω̂x

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ] = E

[
1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ]
= E

{
E

[
1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ, b, λ]∣∣∣∣ c, ρ}
= E

{
E

[
1

txω̂

∣∣∣∣ c, ρ, b, λ] λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
= E

[
1

txω̂

∣∣∣∣ c, ρ, b, λ]E{ λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
=

1

t̄x
αρω̂

The expression for homogeneous inputs follows directly from Proposition 7. The expression for labor follows
from the fact that the cost shares sum to 1.

Corollary 2 Among firms in industry ω that, in equilibrium, use recipe ρ:

• the average and aggregate shares of expenditures spent on input ω̂ ∈ ΩρR are both 1
t̄x
αρω̂

• the average and aggregate shares of expenditures spent on input ω̂ ∈ ΩρH are αρω̂

• the average and aggregate shares of expenditures spent on input ω̂ ∈ ΩρH are αρL + (1− 1
t̄x

)αρR

Proof. This follows directly from the previous corollary by integrating over realizations of c.
We next turn to revenue shares. Let sωjω̂ be the ratio of j’s expenditure on input ω̂ to j’s revenue. Let

p̄j be j’s average price across all buyers; j charges a price of cj to other firms and ε
ε−1cj to the household.

Proposition 9 Among firms in industry ω that, in equilibrium, use recipe ρ and have unit cost c:

• the average share of revenue spent on input ω̂ ∈ ΩρR is 1
t̄x
αρω̂E[ cp̄ |c, ρ]

• the average share of expenditures spent on input ω̂ ∈ ΩρH is αρω̂E[ cp̄ |c, ρ]

• the average share of expenditures spent on input ω̂ ∈ ΩρH is
(
αρL + (1− 1

t̄x
)αρR

)
E[ cp̄ |c, ρ]

Proof. This proof closely follows the proof of cost shares. Consider a relationship-specific input ω̂ Note first

that j’s revenue share of input ω̂ is c
p̄j

1
tω̂x

λω̂Cωρω̂(λ)
Cωρ(λ) . Note that conditional on c, p̄j is independent of any

feature of the firm’s sourcing decision, and conditional on λi, tω̂x is independent of any other feature of the
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firm’s sourcing decision. Putting the pieces together, we have

E

[
c

p̄j

1

tω̂x

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ] = E

[
c

p̄

1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ]
= E

{
E

[
c

p̄

1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ, b, λ]∣∣∣∣ c, ρ}
= E

{
E

[
c

p̄

∣∣∣∣ c, ρ, b, λ]E [ 1

txω̂

∣∣∣∣ c, ρ, b, λ] λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
= E

[
c

p̄

∣∣∣∣ c, ρ, b, λ]E [ 1

txω̂

∣∣∣∣ c, ρ, b, λ]E{ λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
= E

[
c

p̄

∣∣∣∣ c, ρ] 1

t̄x
αρω̂

The derivation for homogeneous inputs is the same but without the wedge (i.e., setting the wedge to 1). The
derivation for labor is similar.

Corollary 3 Among firms in industry ω that, in equilibrium use recipe ρ, the following expressions hold:

0 = E

 sjR
αρR
t̄x

− sjH
αρH

∣∣∣∣∣∣ ρ


0 = E

[
sjR + sjL
αρR + αρL

− sjH
αρH

∣∣∣∣ ρ]
Proof. This follows from rearranging the expressions in the previous proposition and integrating over c.

D.3 Counterfactuals

Given the household’s preferences, let Pω be the ideal price index for the consumption aggregate for industry

ω and let P be the overall ideal price index. These satisfy Pω ≡
(∫ Jω

0
p1−ε
j dj

) 1
1−ε

and P =
(∑

ω υωP
1−η
ω

) 1
1−η .

Since each firm charges a fixed markup over marginal cost in sales to the household, firm j in industry
ω would charge a price of pj = ε

ε−1cj . Thus the price index for ω satisfies

P 1−ε
ω =

∫ Jω

0

(
ε

ε− 1
cj

)1−ε

dj =

(
ε

ε− 1

)1−ε

Jω

∫ ∞
0

c1−εdFω(c)

Proposition 1 gives Fω(c) = 1− e−(c/Cω)γ . Integrating yields
∫∞

0
c1−εdFω(c) = Γ

(
1− ε−1

γ

)
C1−ε
ω , which

implies that the industry price index can be expressed as

Pω =
ε

ε− 1
J

1
1−ε
ω Γ

(
1− ε− 1

γ

) 1
1−ε

Cω

The overall price index is therefore

P =
ε

ε− 1

(∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

) 1
1−η

To find total profit, note that j’s profit (which comes only from sales to the household because firm-to-

firm sales are priced at marginal cost) is πωj = uωj(pωj − cωj). Using uωj = Uυω
(
Pω
P

)−η (pωj
Pω

)−ε
=

UPυω
(
Pω
P

)1−η (pωj
Pω

)1−ε
1
pj

and cωj = ε−1
ε pωj , this is πωj = UPυω

(
Pω
P

)1−η (pωj
Pω

)1−ε
1
ε . Total profit can be
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found by integrating over all firms

Π =
∑
ω

∫ Jω

0

πωjdj =
∑
ω

∫ Jω

0

UP

(
υωPω
P

)1−η (
pωj
Pω

)1−ε
1

ε
dj =

1

ε
UP

Total household income is profit plus wage income, while its expenditure is UP , so its budget is UP =
Π + wL = 1

εUP + wL, or (normalizing the wage to unity)

U =
ε

ε− 1

w

P
L =

(∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

) 1
η−1

L

Proposition 10 A change in the distribution of relationship-specific intermediate input wedges from T to
T ′ leads to a change in household utility that can be summarized by

U ′

U
=

(∑
ω

HHω

(
C ′ω
Cω

)1−η
) 1
η−1

(14)

and the change in industry cost indexes satisfy the following system of equations

C ′ω
Cω

=

 ∑
ρ∈%(ω)

Rωρ

( t∗x′
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ−
1
γ

(15)

Proof. The share of the household’s spending on goods from ω is

HHω =
υωP

1−η
ω

P 1−η =
υω

(
ε
ε−1

)1−η
J

1−η
1−ε
ω Γ

(
1− ε−1

γ

) 1−η
1−ε

C1−η
ω

P 1−η (16)

Using U = ε
ε−1L/P and rearranging gives

HHω =
υωJ

1−η
1−ε
ω Γ

(
1− ε−1

γ

) 1−η
1−ε

C1−η
ω

(U/L)η−1

Under the counterfactual, we have

(U ′/L)η−1 =
∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

(C ′ω)1−η

=
∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

(
C ′ω
Cω

)1−η

=
∑
ω

HHω(U/L)η−1

(
C ′ω
Cω

)1−η

Rearranging gives (14).

We next show that the share of revenue is Rωρ = κωρBωρ

(
t
α
ρ
L
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ

C
α
ρ
ω̂

ω̂

Cω

)−γ
. , where we define

Cωρ ≡ κωρ

(
t
αρL
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ (Qω̂)

αρω̂
)γ

, so that Fωρ(q) = e−(q/Qωρ)−γ . This follows from two facts. First,

61



among producers of ω that have efficiency q, the fraction that use recipe ρ is:

Pr(ρ|c, ω) =

(∏
ρ̃6=ρ [1− Fωρ̃(c)]

)
F ′ωρ(c)

F ′ω(c)
=
F ′ωρ(c)/ [1− Fωρ(c)]
F ′ω(c)/[1− Fω(c)]

= κωρBωρ

(
t
αρL
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ C

αρω̂
ω̂

Cω

)−γ

where the last equality follows from Fωρ(c) = 1 − e
−κωρBωρ

(
t
α
ρ
L
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ

C
α
ρ
ω̂

ω̂

)−γ
cγ

and Fω(c) = 1 −
e−(c/Cω)γ . The second fact is that, conditional on c, revenue is independent of the recipe chosen by a firm
or any other feature of the firm’s sourcing decisions.

Finally, we have that the counterfactual industry cost indexes {C ′ω} satisfy

C ′ω =

 ∑
ρ∈%(ω)

κωρBωρ

tαρLl (t∗x
′)α

ρ
R

∏
ω̂∈Ω̂ρ

(C ′ω̂)
αρω̂

−γ
− 1
γ

=

 ∑
ρ∈%(ω)

κωρBωρ

tαρLl (t∗x)α
ρ
R

∏
ω̂∈Ω̂ρ

(Cω̂)
αρω̂

−γ( t∗x′
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ
− 1
γ

=

 ∑
ρ∈%(ω)

RωρC
−γ
ω

( t∗x′
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ
− 1
γ

Rearranging yields (15).

D.4 Imperfect Enforcement: Microfoundation

There are two frictions. Suppliers can deliver defective intermediate inputs that cause the buyer to have to
use labor, and workers can shirk.

First, a supplier of a relationship-specific input can sell a good that is defective or imperfectly customized
to the buyer. If this happens, the buyer needs to hire extra labor to correct the defect. The supplier can
save on production cost by producing defective inputs. If the supplier produces intermediate inputs that are
defective enough so that the buyer must use up ψx efficiency units of labor, the supplier’s cost is scaled by a
factor of gx(ψx) ≤ 1. Both the buyer and supplier recognize that the supplier will save on cost by producing
a defective input, and the price will be p̃s(ψ

x) = gx(ψx)cs where cs is the supplier’s unit cost of producing
the intermediate input defect-free.

Similarly, a worker that shirks derives value from shirking. Let w̃(ψl) be the wage a firm must pay to
attract a worker that shirks enough so that only 1

ψl
efficiency units of labor are delivered per unit of raw

labor.
The buyer takes as given prices, the defectiveness of the input, and worker’s shirking, and minimizes

cost. Let lprod be the mass of labor hired for production and let lxω̂ be the mass of labor hired to customize
the defective inputs. The firm’s cost minimization problem can be described as:

min w̃
(
ψl
)lprod +

∑
ω̂∈Ω̂ρR

lxω̂

+
∑
ω̂∈ΩρR

p̃ω̂s (ψx)xω̂ +
∑
ω̂∈ΩρR

pω̂sxω̂

subject to

G

(
bl
lprod

ψl
,

{
bω̂zω̂ min

{
xω̂,

lxω̂
ψlψx

}}
ω̂∈Ω̂ρR

, {bω̂zω̂xω̂}ω̂∈Ω̂ρH

)
≥ y
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Weak enforcement means that the court will only enforce claims where the damage is large relative to the size
of the transaction. For the defective inputs, the cost to the buyer is w̃(ψl)lxω̂ and the value of the transaction

is p̃s(ψ
x)xω̂. It is assumed that the court will not step in unless the damage ratio

w̃(ψl)lxω̂
p̃s(ψx)xω̂

is greater than

txω̂ − 1. With worker shirking, the cost to the buyer is w̃(ψl)(ψl − 1)l and the value of the transaction is

w̃(ψl)l. It is assumed that if the damage ratio w̃(ψl)(ψl−1)l
w̃(ψl)l

is no greater than tl − 1 then the court will not

step in. The supplier and the worker shirk up to the point of the court stepping in.

In this case, we can use the expressions for tl, tx, and xω̂ =
lxω̂

ψlψx
to rewrite the cost minimization

problem as

min tlw̃(ψl)
lprod

ψl
+
∑
ω̂∈ΩρR

(txω̂p̃ω̂s(ψ
l)xω̂ +

∑
ω̂∈ΩρR

pω̂sxω̂

subject to

G

(
bl
lprod

ψl
, {bω̂zω̂xω̂}ω̂∈Ω̂ρR

, {bω̂zω̂xω̂}ω̂∈Ω̂ρH

)
≥ y

Finally, we study the limiting economy as w̃(ψl) → w and ps(ψ
x) → cs. In this limit, the payoff to the

worker from shirking or to the supplier from shirking are almost zero, but the cost to the buyer may still be
large. In this limit, the buyer’s marginal cost is

c = C

(
tlw

bl
,

{
txω̂ps
bω̂zω̂

}
ω̂∈Ω̂ρR

,

{
ps
bω̂zω̂

}
ω̂∈Ω̂ρH

)

In principle, the contracts can be written to get around this friction. However, the doctrine of expectation
damages limits the damages the buyer can collect from the supplier. The damages cannot be more than
what is needed so that the buyer’s is as well off as she would have been had the contract been honored.

E Empirical Support for Model Assumptions

E.1 Distortions and Markups

Table XXIII shows how measured markups, plants ratio of sales to cost vary with the level of distortions.
Court congestion should increase distortions for plants in industries that tend to rely on relationship-specific
relative to those in industries that tend to rely on homogeneous inputs. The first row of the table indicates
that, across all measures, ratios of sales to cost decline with distortions. The second and third column shows
that this appears to be the direct impact of the distortions rather than the indirect impact of distortions on
size or age.
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Table XXIII Sales over Total Cost
Dependent variable: Sales/Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0353∗∗ -0.0347∗∗ -0.0345∗∗ -0.0494∗ -0.0496∗ -0.0508∗

(0.0097) (0.0094) (0.0093) (0.022) (0.022) (0.022)

Plant Age 0.000574∗∗ 0.000258+ 0.000575∗∗ 0.000259+

(0.00014) (0.00014) (0.00014) (0.00014)

Log Employment 0.0314∗∗ 0.0314∗∗

(0.0016) (0.0016)

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.114 0.110 0.115 0.114 0.110 0.115
Observations 208527 205109 204767 208527 205109 204767

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

E.2 Do wedges get paid in another factor?

We have assumed that when a relationship-specific input is distorted, primary inputs get used up. Primary
inputs includes labor, capital, services, and some other inputs. Table XXIV shows regressions of the cost
share of labor/capital/services/other inputs in total non-material inputs on the interaction of court quality
and relationship-specificity. This might happen if one particular component of primary inputs was used to
customize the distorted input, or if the distorted intermediate input were particularly complementary with
one particular component. We do not find evidence that the cost share of any particular component of
primary inputs is systematically correlated with wedges.

Table XXIV Cost share of factors in equipped labor

Labor Capital Services Rest

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.000504 0.00405 -0.000248 -0.00355
(0.0054) (0.0030) (0.0046) (0.0049)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

R2 0.310 0.232 0.341 0.269
Observations 208527 208527 208527 208527

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
The dependent variable is the cost share of the factor in the total cost of non-material inputs.

E.3 Plant-level substitutability of inputs

Fact 1 showed that when relationship-specific inputs are more severely distorted, the cost share of those inputs
declines. In our model, this happens because the buyer must expend additional primary inputs in order to
use the relationship-specific input. An alternative possibility is that the distortion raises the price paid to the
supplier. If primary inputs and intermediate inputs were substitutes, the cost share of intermediates would
fall. However, we believe the evidence does not support an elasticity of substitution between primary and
intermediate inputs that is larger than unity. Indeed, in the model, the average cost share of intermediate
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inputs among plants that use any particular recipe is independent of the cost of intermediate inputs and the
cost of labor.

We know of two estimates of long-run plant level elasticities of substitution between materials and
primary inputs, Oberfield and Raval (2014) and Appendix B.3 of Atalay (2017). Each find that elasticities
slightly less than unity. Further, we can investigate this elasticity in the context of Indian manufacturing
plants. Table XXV uses the interaction of court quality with the average dependence on relationship-specific
inputs among an industry’s upstream industries to stand in for a shifter to the cost of intermediate inputs.
The IV coefficient estimates are positive. Thus we do not find support for an assertion that primary and
intermediate inputs are substitutes at the plant-level.

Table XXV Plant-level elasticity of substitution

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0147+ -0.0135 -0.0397∗∗ -0.0401∗∗

(0.0080) (0.0089) (0.013) (0.013)

LogGDPC * Rel. Spec. 0.0112 0.00653
(0.0090) (0.0095)

Avg Age Of Civ. Cases * Rel. Spec. of Upstream Sector -0.00360 0.00268 0.0450∗ 0.0349+

(0.011) (0.012) (0.019) (0.020)

Trust * Rel. Spec. 0.0274 0.0342
(0.038) (0.038)

Language HHI * Rel. Spec. 0.0467 0.0501
(0.032) (0.032)

Caste HHI * Rel. Spec. 0.0980∗ 0.0897+

(0.050) (0.050)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.480 0.484 0.480 0.484
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

E.4 Distortions are costly

In our microfoundation, the reason a distortion is costly is that the resource the supplier saves by delivering
an imperfect input is smaller than the resources used by the buyer correcting the input. An alternative
possibility is that these costs are roughly equal, in which case there would be no resource cost of the
distortion despite the fact that the buyer’s reduced cost share of relationship-specific inputs. In the extreme,
this would mean that despite the impact on cost shares, there loss in productivity would be smaller than
suggested by Section 4.2. We argue here that distortions do indeed raise the buyer’s cost. Table XXVI shows
that when distortions are more likely to be severe—in industries that tend to rely on relationship-specific
inputs in states with slower courts—industries tend to have fewer plants.
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Table XXVI Extensive-margin regressions

Dependent variable: log |Jdω,t|

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0413∗ -0.0382∗ -0.0259 -0.133∗∗ -0.107∗∗ -0.106∗∗

(0.017) (0.017) (0.018) (0.035) (0.035) (0.032)

LogGDPC * Rel. Spec. 0.0505∗∗ 0.0518∗∗ 0.0313 0.0353∗

(0.016) (0.016) (0.019) (0.018)

Trust * Rel. Spec. -0.0482 0.00793
(0.14) (0.14)

Language HHI * Rel. Spec. 0.120 0.121
(0.15) (0.15)

Caste HHI * Rel. Spec. 0.225∗∗ 0.171+

(0.086) (0.087)

Corruption * Rel. Spec. 0.537+ 0.381
(0.32) (0.33)

5-digit Industry FE Yes Yes Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.410 0.417 0.423 0.410 0.417 0.423
Observations 191008 183214 177075 191008 183214 177075

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Note: Dependent variable is the log number of producers of ω in a state d at time t. Multi-product plants are
counted once for each product. GDP per capita is the average district GDP per capita within each state.

F Additional Structural Results

F.1 Counterfactual: Robustness to different parameter values

Figures 7 and 8 show the results from the welfare counterfactual for different values of γ and ζ.
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Figure 7 Welfare counterfactual for different elasticities γ
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The figure shows the counterfactual increase in U for each state for different values of γ.

Figure 8 Welfare counterfactual for different elasticities ζ
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The figure shows the counterfactual increase in U for each state for different values of ζ.
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F.2 Fineness of recipes

This subsection explores the robustness of our estimates to the choice of how finely to define recipes. In
our clustering procedure that defines recipes, we have to choose the number of clusters (recipes) within each
product. In the baseline results, we choose dn log((#observations)ω)e clusters, where #observationsω is the
number of single product plant-year observations that produce ω, and set n = 1.5.

We now explore how much this choice of n = 1.5 matters. To do so, we run linear regressions that most
closely mimic the structural regressions (cf. the GMM moment conditions in Proposition 5):

log

(
sρdR
sρdH

)
= β · (Court quality)d + νρ + ερd

where sρdR (and sρdH ) is the weighted average sales share of relationship-specific (homogeneous) inputs of
plants that produce using recipe ρ in state d (weights are the probability weights as in the GMM procedure),
and νρ is a set of fixed effects. The estimate for β has a negative sign: Among plants that use a particular
recipe, the sales shares of relationship-specific inputs is low compared to homogeneous inputs when courts
are slow (i.e., when the average age of pending cases is high). The same holds when we instrument for court
quality with the log age of court.

Figure F.2 shows that the point estimates do not change much with the fineness of our recipe classification.
For n = 0, each product category has only a single recipe, so the total number of recipes equals the number
of products (which is 4,530). For n = 3, each product category has on average 7.3 recipes, resulting in a total
of 33,225 recipes. With more recipes, the estimates become more precise: the clustering procedure assigns
outliers their own recipe, so that no longer contaminate the within-recipe variation in average sales shares.
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Figure 9 Regression coefficients for different levels of recipe fineness
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