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Abstract

Spatial econometric models allow for interactions among variables through the specification

of a spatial weight matrix. Practitioners often face the risk of misspecification of such a

matrix. In many problems a number of potential specifications exist, such as geographic

distances, or various economic quantities among variables. We propose estimating the best

linear combination of these specifications, added with a potentially sparse adjustment matrix.

The coefficients in the linear combination, together with the sparse adjustment matrix, are

subjected to variable selection through the adaptive Least Absolute Shrinkage and Selection

Operator (LASSO). As a special case, if no spatial weight matrices are specified, the sparse

adjustment matrix becomes a sparse spatial weight matrix estimator of our model. Our method

can therefore be seen as a unified framework for the estimation and selection of a spatial weight

matrix. The rate of convergence of all proposed estimators are determined when the number

of time series variables can grow faster than the number of time points for data, while Oracle

properties for all penalized estimators are presented. Simulations and an application to stocks

data confirms the good performance of our procedure.
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1 Introduction

Spatial econometrics is the study of the interaction between units or entities. Such interactions

come in many forms. Examples include the peer effects of learning in classroom (Ammermuller

and Pischke, 2009, Angrist and Lang, 2004), the spread of crime and delinquent behavior (Glaeser

et al., 1996) in criminology, and contagion between financial markets (Longstaff, 2010). In spatial

econometric models, such interactions are usually assumed to be known through the so-called

“spatial weight matrix”, which is a square matrix of size N , with N being the number of time

series variables that are being modeled.

It is inevitable to specify a spatial weight matrix when using a spatial econometric model.

Yet, in some scenarios there is no data to do so, for example when social interactions between

the units or entities are not available to the researcher. Even with enough data to do so, if

N is too large relative to the sample size T , the parameters in the spatial weight matrix are not

identified without further assumptions on the structure of the matrix itself (e.g., sparsity), or other

forms of regularization in place. For instance, Bhattacharjee and Jensen-Butler (2013) propose

to estimate the spatial weight matrix under the symmetric constraint, although they assume N

to be finite. Pinkse et al. (2002) and Sun (2016) consider estimating a nonparametric function of

some underlying “distance” variables for the spatial weight matrix parameters, which inherently

assumes some form of smoothness in the function itself. This assumption of smoothness can be

inaccurate, depending on the “distance” variable involved. For example, Germany and Japan can

be close economic competitors with large geographical distance between them. The papers suggest

including several distance measures, but only provide theories for including one. It is in fact difficult

to estimate nonparametric smooth functions of higher dimension without specific assumptions on

the function itself, on top of the smoothness assumption. Beenstock and Felsenstein (2012) consider

using the sample covariance of the data to infer the values of the spatial weight matrix. However,

sample covariance matrix can suffer from serious bias in the extreme eigenvalues when N is of the

same order as T (see topics in random matrix theory from, e.g., chapter 5 of Bai and Silverstein

(2009), who describe mathematically the bias in the largest and the smallest eigenvalues of the

sample covariance matrix). Ahrens and Bhattacharjee (2015) and Lam and Souza (2015) assume

sparsity in the spatial weight matrix, and, in turn, use penalization methods such as the Least

Absolute Shrinkage and Selection Operator (LASSO) for a penalized estimator. Indeed, the spatial

weight matrix can be sparse. In many applications, however, it may not be sparse enough for a

satisfactory penalized estimator.

Aside from estimating the spatial weight matrix, another important approach in spatial econo-

metrics is selecting an appropriate model through testing. Bailey et al. (2016) use multiple testing

to infer if an element of the spatial weight matrix is zero, negative or positive. Liu and Prucha

(2017) generalize the Moran I test to check if a linear combination of specified spatial weight ma-

trices is appropriate for modelling the data under a particular spatial lag model, but they do not
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consider the alternative hypothesis of an acceptable linear combination. Kelejian and Piras (2011)

and Kelejian and Piras (2016) propose J-tests to find from among a number of alternatives with

differently-specified spatial weight matrices. Clearly, the quality of the alternative hypothesis is

very important, and pinpointing which spatial weight matrix to use may require multiple J-tests.

This paper tackles the the problem of spatial weight matrix estimation when multiple speci-

fications of the spatial weight matrix are available, as Liu and Prucha (2017) and Kelejian and

Piras (2016) consider. This is a very practical scenario. For instance, for geographical distance,

one can specify wij in the spatial weight matrix W by calculating the inverse of the distance r−1

between units i and j. One can, in fact, use r−ℓ with ℓ being a positive number to specify a spatial

weight matrix. A simple adjacency matrix can also play the role of a spatial weight matrix. To

combine information from these specifications, and select those that are useful to construct a spa-

tial weight matrix, we consider finding their “best” sparse linear combination using the adaptive

LASSO. This technique was proposed for variable selection in a linear regression model by Zou

(2006). As a major contribution, we add a sparse adjustment matrix to the estimated best sparse

linear combination, which overcomes the problem of potential misspecification of the spatial weight

matrix. This sparse adjustment matrix, to be estimated from data, effectively incorporates errors

of misspecification. Hence, if there are reasonable specifications, the sparse adjustment matrix

is indeed expected to be truly sparse. In this sense, the sparsity assumption for the adjustment

matrix is more easily satisfied than those in Ahrens and Bhattacharjee (2015) or Lam and Souza

(2015), which require the spatial weight matrix itself to be sparse. If this sparse adjustment is

estimated to be the zero matrix, it means that the specified spatial weight matrices are good fit

for the data, so testing like that in Liu and Prucha (2017), or the J-test of Kelejian and Piras

(2016), become unnecessary.

When no specified spatial matrices are available, the estimator of the sparse adjustment matrix

itself becomes a sparse spatial weight matrix estimator. This is an important special case, as

practitioners are allowed not to specify any spatial weight matrices. In this sense, our method

provides a unified framework in spatial weight matrix selection and estimation. It allows us to

estimate which specified spatial weight matrices are the most informative. Ultimately, it provides

an estimator of the spatial weight matrix at the same time.

We assume a time-invariant and exogenous spatial weight matrix in this paper. Arnold et al.

(2011) make the same assumptions and estimate a linear combination of three specified spatial

weight matrices to model the stock returns of the Euro Stoxx 50 members. They estimate the

coefficients using generalized method of moments, and assume a diagonal covariance matrix for

the model errors with normality and serial independence. They also have a simple model without

any regressors, but obtain good numerical results. In this paper, we generalize the model of

Arnold et al. (2011) to include both exogenous or endogenous regressors and fixed effects, while

allowing for non-Gaussian errors with more general serial dependence and covariance structure.

Medeiros and Mendes (2016) explore the properties of LASSO and adaptive LASSO also under
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non-Gaussian and conditionally heteroskedastic errors, but do not consider spatial dependence.

We use exogenous covariates as instruments to uncouple intrinsic endogeneity of the observed

variables similar to Fan and Liao (2014), although they use the Feasible Generalized Method of

Moments (FGMM) method coupled with quasi-likelihood for the data.

We prove that the zero’s in the sparse adjustment matrix and those in the coefficients of the

spatial weight matrix linear combination can be selected consistently. We also prove the asymptotic

normality for the non-zeros, as well as for the regression coefficient estimators in the spatial lag

model. We can therefore carry out inference not only on the regression parameters, but also on the

non-zero entries in the sparse adjustment matrix. This means that we can test how far individual

spatial interactions are away from the “best” linear combination of the specified spatial weight

matrices. We can also test how relevant each spatial weight matrix specification is, by looking at

the estimated coefficients for the linear combination. In Section 5.2, we demonstrate that including

more “relevant” spatial weight matrix specifications improves the inference and precision of the

estimates of important regressors in the model. Incidentally, it shows that a better specification

of spatial weight matrix helps us estimate the model parameters.

The rest of the paper is organized as follows. Section 2 presents the spatial lag model and

the sparse adjustment idea on a linear combination of spatial weight matrices. The LASSO and

adaptive LASSO estimation problems for various parameters in the model are also presented.

Section 3 presents all the assumptions in the paper. We show sign consistency and asymptotic

normality of our estimators, and identification of parameters asymptotically. Section 4 presents the

algorithm used for calculating our estimators, and the BIC criterion is used to find suitable tuning

parameters. Section 5 provides detailed simulations to demonstrate finite sample performance

of our estimators. In particular, Section 5.2 provides a thorough empirical study on the cross-

sectional dependence of stocks traded in the New York Stock Exchange (NYSE). Proofs of all

theorems are given in the supplementary materials for this paper.

2 Model and Motivation

As a starting point, we consider the following spatial lag model with fixed effects,

yt = µ∗ +W∗yt +Xtβ
∗ + ǫt, t = 1, . . . , T, (2.1)

where yt = (y1t, . . . , yNt)
T is an N ×1 vector of dependent variables. The matrix W∗ is an N ×N

spatial weight matrix with 0 on the main diagonal. It may have negative off-diagonal elements,

and it is not necessarily symmetric. These features allow for both positive and negative, and

possibly asymmetric, spatial interactions among the component time series. The vector µ∗ is an

N × 1 vector of constants (fixed effects), while the spatial regression parameter β∗ has size K × 1,

so that the matrix of covariates Xt has size N ×K. The innovation process ǫt has mean 0 and
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covariance matrix Σǫ. For more detailed assumptions, see Section 3.3.

In spatial econometrics, the matrix W∗ is usually assumed to be known (up to an unknown

multiplicative constant ρ∗, called the spatial autoregressive parameter). In this paper, we make use

of possible expert knowledge regarding W∗, while allowing the final estimator to deviate slightly

from it. More specifically, we decompose W∗ = A∗ + ρ∗W0, where W0 is a pre-specified spatial

weight matrix. We also denote W0 as an “expert spatial matrix” since it incorporates expert

knowledge about the interactions between units, such as inverse distances between countries. The

spatial autoregressive parameter ρ∗ adjusts the magnitude and direction of the spatial interactions

specified in W0. As in the spatial econometrics literature, we assume that |ρ∗| < 1 to ensure that

the model is stationary. We also assume that the diagonal elements of A∗ are 0.

If W0 exactly represents the true underlying spatial interaction pattern, then A∗ = 0. If W0

is close to the true underlying spatial interaction pattern, then A∗ may not be exactly 0, but is

expected to be sparse or approximately sparse (i.e., with many “small” elements). Hence, A∗ can

be interpreted as a sparse adjustment to the matrix W0, and model (2.1) becomes

yt = µ∗ + (A∗ + ρ∗W0)yt +Xtβ
∗ + ǫt, t = 1, . . . , T. (2.2)

Finally, the special case W0 = 0 corresponds to sparse spatial weight matrix estimation without

any specifications. The matrix A∗ now plays solely the role of the spatial weight matrix for model

(2.2). As outlined in the introduction, some papers attempted to estimate the spatial weight matrix

directly from data, completely avoiding its specification. In this paper, we take pure spatial weight

matrix estimation as a special case. We consider that elements of A∗ are constants, both invariant

over time and exogenously determined, so they are independent of yt or ǫt. For example, A∗ could

be the fixed measure of proximity between pairs of countries that have not been captured by the

pre-specified W0.
1

As a further generalization, which can be of practical use to applied researchers, we assume

that more than one potential spatial weight matrix can be specified. This is particularly relevant if

the researcher has various options for specifying W0. With sparse adjustment in mind, we propose

to decompose the true spatial weight matrix W∗ into the following:

W∗ = A∗ +
M∑

i=1

δ∗iW0i, −1 ≤ ρ∗ =

M∑

i=1

δ∗i ≤ 1. (2.3)

Here A∗ is the sparse adjustment described before. The spatial autoregressive parameter ρ∗ is now

the sum of δ∗i , i = 1, . . . ,M , when A∗ = 0. It can be considered a generalization of the traditional

definition of spatial autoregressive parameter if A∗ 6= 0. The specification W0 described before is

now replaced by a linear combination of W0i, i = 1, . . . ,M , so that M denotes the total number

of spatial matrices. This way, we can perform penalized estimation for the δ∗i ’s (see model (2.7)

1Only recently has the literature considered dynamic neighboring matrices (see Elhorst (2014), among others).
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below) to see which specification, or linear combination of them, is the best suited to the data.2

From the real data analysis in Section 5.2, including important specifications in the model can

significantly improve the estimation of the spatial regression coefficients, and our penalization

procedure facilitates this.

With sparse adjustment to a linear combination of specified spatial weight matrices, the com-

plete model then reads

yt = µ∗ +

(
A∗ +

M∑

i=1

δ∗iW0i

)
yt +Xtβ

∗ + ǫt, t = 1, . . . , T. (2.4)

Model (2.4) is a generalization of the usual spatial lag model formulation. See model (7.22) in

LeSage and Pace (2008), for example. For the rest of the paper, we focus on analyzing model

(2.4), since model (2.2) is, in fact, a special case of (2.4). In what follows, we assume without loss

of generality that E(Xt) = 0. Otherwise, we can write

Xtβ
∗ + µ∗ = (Xt − E(Xt))β

∗ + (µ∗ + E(Xt)β
∗),

so that the spatial fixed effects are now captured by µ∗ + E(Xt)β
∗ rather than µ∗, and the

covariates have mean 0.

2.1 Instruments and the augmented model

Since yt (and possibly Xt) is correlated with ǫt, we propose an instrumental variable version of

model (2.4). We assume that instruments Ut for t = 1, . . . , T , each of size N × ℓ with ℓ ≥ 1,

are available to the researcher. Each Ut is independent of ǫt, but is correlated with yt in general

(and Xt, if Xt is also endogenous). Hence, Ut serves as instruments for model (2.4), since it only

correlates with yt and Xt but not ǫt. If Xt is exogenous, then Ut = Xt.

Following Kelejian and Prucha (1998), we generate instruments from within the model by

interacting Ut with the expert W0i, i = 1, . . . ,M . Define the matrix Bt as

Bt = {Ut,W01Ut,W
2
01Ut, . . . ,W0MUt,W

2
0MUt, . . .}, (2.5)

which contains valid instruments since spatial lags of Ut are independent of ǫt. We denote Bt as

a matrix of linearly independent vectors from (2.5), with dimension T × L, where L ≥ K.3 Note

that if M = 0, meaning that no expert spatial weight matrices are specified, it is not possible to

2One possible extension is to include several weight matrices to accommodate a structural break if breakpoint
t∗ is known. For instance, the researcher could specify two separate 1[t ≤ t∗]W0i and 1[t > t∗]W0i. This relaxes
the assumption that W

∗ is time-invariant in a limited but potentially revealing way. We leave this extension for
future work.

3Ideally, we should have instruments of the form (A∗ +W
∗)kUt for k = 0, 1, 2, . . .. However, we do not know

A
∗ and δ∗i , and hence we select terms for which the values are known, excluding any cross-terms involving more

than one W0i.
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calculate the spatial lags of Ut, and then Ut must have size N × L with L ≥ K.

To utilize Bt, we need to find a linear combination of instruments as correlated to the endoge-

nous variables as possible. However, in what follows we compute the simple average of the vectors

in Bt − B̄, where B̄ = T−1
∑T

t=1Bt. The final vector of instruments is then (Bt − B̄)γ, where

γ = L−11L and 1L is the L× 1 vector of ones. The weights vector γ = L−11L is a simple way to

aggregate the instruments. This is done for clarity of exposition only, and can be estimated from

the data as well. We defer the discussion about the optimal choice of instruments to Section 4.1.

The proofs of all our theorems are identical irrespective of the method for choosing γ.

2.2 Penalized estimators - LASSO

We perform penalized estimation of A∗ since it is assumed to be sparse. This can be achieved

regardless of whether W0i are good specifications. If W0i = 0 for all i then we are estimating a

sparse spatial weight matrix A∗. If A∗ is approximately sparse, “small” estimated elements of A∗

are shrunk to 0. At the same time, we want to select which of the W0i’s contribute to the spatial

weight matrix in (2.3). Again, a penalized estimation of δ∗i serves exactly this purpose.

We start by profiling out β. If A and δr are given, model (2.4) becomes

(IN −A−
M∑

r=1

δrW0r)yt = µ∗ +XT
t β + ǫt, t = 1, . . . , T.

where the true values A∗, δ∗r and β∗ are replaced by A, δr and β respectively. Multiplying both

sides by (Bt − B̄)T and summing over t, we obtain

T∑

t=1

(Bt − B̄)T(IN −A−

M∑

r=1

δrW0r)yt =

T∑

t=1

(Bt − B̄)TXT
t β +

T∑

t=1

(Bt − B̄)Tǫt.

The constant µ∗ vanishes since
∑

T

t=1(Bt − B̄)Tµ∗ = 0. If Xt is not exogenous, the operation

above now weakens the correlation between
∑T

t=1(Bt − B̄)TXT
t and

∑
T

t=1(Bt − B̄)Tǫt, which is

a standard step in estimation with instrumental variables. Consistent least squares estimation

is now possible since β is low-dimensional as K is considered to be small. We denote the least

squares estimator of β by

β(ξ, δ) =

(
T∑

t=1

XT
t (Bt − B̄)

T∑

t=1

(Bt − B̄)TXt

)−1

·

T∑

t=1

XT
t (Bt − B̄)

T∑

t=1

(Bt − B̄)T
(
IN −A−

M∑

r=1

δrW0r

)
yt, (2.6)

where ξ = (a11, . . . , a1N , . . . , aN1 . . . , aNN )T contains the elements of the sparse adjustment matrix

in stacked notation, and δ = (δ1, . . . , δM )T. Also define θ = (ξT, δT)T, so that θ is a column vector
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of all elements of A and all δr’s.

Given the profiled β(θ), we proceed to the estimation of A∗. Since the length of θ is N2 +M

which can be larger than the sample size, the least squares problem can be ill-defined. Ridge

regression is a traditional way to circumvent this problem. Introducing a penalty term
∥∥ξ
∥∥ in the

estimation problem effectively restricts the magnitude of ξ, where the notation
∥∥ ·
∥∥ is the L2-norm

of a vector. The estimator will be non-zero everywhere in general. Tibshirani (1996) discovers

that if the penalty is
∥∥ ·
∥∥
1

instead of
∥∥ ·
∥∥ in a classical regression model, where

∥∥v
∥∥
1
=
∑

i |vi| for

a vector v = (vi), then the estimator has elements estimated at exactly 0, thus achieving variable

selection. This also suits our purpose, since ξ∗ is assumed sparse. In view of this, we propose to

apply the LASSO to estimate ξ.

To accommodate instrumental variables in the LASSO framework, we define the following

quantities. Let ỹi and X̃i be the outcome and covariates filtered through the instrumental varia-

bles,

ỹi =
T∑

t=1

(bt,i − b̄i)
Tγyt and X̃i =

T∑

t=1

(bt,i − b̄i)
TγXt, i = 1, . . . , N,

where bT
t,i is the ith row of Bt, and b̄T

i is the ith row of B̄. Thus ỹi and X̃i are of dimensions

N × 1 and N ×K, respectively. The LASSO problem is then

θ̃ = argmin
θ

1

2T

N∑

i=1

∥∥∥(IN −A−
M∑

r=1

δrW0r)ỹi − X̃iβ(θ)
∥∥∥
2
+ λT ‖ξ‖1, (2.7)

subj. to
∣∣∣
(
A+

M∑

r=1

δrW0r

)
1N

∣∣∣ < 1N with |δT1M | ≤ 1.

The normalization 1/(2T ) facilitates proofs of all theorems, and λT is a tuning parameter control-

ling the magnitude of ξ and the number of non-zeros within. We do not penalize δ at this stage,

since the analysis of the theoretical properties of ξ̃ is facilitated without penalizing both ξ and δ

at the same rate.

We do not use the maximum likelihood approach in our setting, since we do not assume

normality of the residual, which is allowed to have serial dependence as defined in Section 3.3.

Compared to the QMLE approach of Lee and Yu (2010), our need for both T and N to diverge

arises from the fact that the spatial weight matrices are parameters to be estimated, rather than

fixed. Considering them as parameters increases the difficulty substantially, since the vector of

unknown is of order N2. Still, in some settings in our paper N can grow faster than T . See Remark

2 in Section 3.4. This also explains why we do not use the generalized method of moments (GMM)

since it is also difficult to implement under such a scenario. A penalized QMLE or GMM approach

could be possible, and we leave this for future research.

In Section 4, we present a modified block coordinate descent (BCD) algorithm adapted to solve
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(2.7). With θ̃, the LASSO estimator β̃ = β(θ̃) becomes an estimator of β∗. The tuning parameter

λT is specified in Section 3.3 when we introduce the assumptions for our theoretical results.

If W0r = 0 for r = 1, . . . ,M , meaning that no specifications are available, there is no need to

estimate δ, and problem (2.7) is still well-defined since W0r = 0. Thus, δ disappears completely.

2.3 Penalized estimators - adaptive LASSO

In classical linear regression, in order for LASSO estimators to be sparse and to enjoy sign con-

sistency (i.e., zeros are estimated as exactly zeros, non-zeros are estimated with correct signs), a

stringent condition called the “irrepresentable condition” must be satisfied. Zhao and Yu (2006)

provide more details. This condition arises from the fact that the penalty term λT

∥∥ξ
∥∥
1

penalizes

each element in ξ under the same tuning parameter λT . With a larger λT , small elements in ξ are

driven to 0, but large elements then receive excessive penalization. If λT is smaller, large elements

are penalized less, but small elements may not be driven exactly to 0.

This problem is resolved in Zou (2006) elegantly by the use of a penalty

λTv
T|ξ| =

∑

i

λT

|ξ̌i|
ξi,

where ξ̌ = (ξ̌i) is an initial estimator for ξ∗. If the number of parameters to be estimated is

smaller than the sample size, Zou (2006) suggests using the least squares estimator of ξ∗ as an

initial estimator. We choose the LASSO estimator ξ̃ for this purpose since our sample size in

(2.7) is effectively N2 but we have N2 +M parameters to estimate. Now each ξi is penalized by

a different tuning parameter λT /|ξ̃i|. If ξ∗i is small, then the LASSO estimator ξ̃i should be 0 or

very small, so that λT /|ξ̃i| is positive infinity or very large, which should drive the estimator of ξ∗i

to be exactly 0. On the other hand, if ξ∗i is large, then ξ̃i should be large, so that λT /|ξ̃i| is small,

and the bias incurred in the estimator of ξ∗i is thus reduced. The method has an adaptive tuning

parameter for each variable, hence the name “adaptive LASSO”. For classical linear regression,

estimated regression coefficients under adaptive LASSO are sign-consistent, with non-zero estima-

tors asymptotically normal and unbiased, and there is no need for the stringent irrepresentable

condition.
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2.3.1 When specifications W01, . . . ,W0M exist

Motivated by the issues described above, when specifications W01, . . . ,W0M exist, we consider

the adaptive LASSO problem

ξ̂ = argmin
ξ

1

2T

N∑

i=1

∥∥∥(IN −A−

M∑

r=1

δ̃rW0r)ỹi − X̃iβ(θ̃)
∥∥∥
2
+ λTv

T|ξ|, (2.8)

subj. to
∣∣∣
(
A+

M∑

r=1

δ̃rW0r

)
1N

∣∣∣ < 1N .

where v = (|ξ̃1|
−1, . . . , |ξ̃N2 |−1|)T, |ξ| = (|ξ1|, . . . , |ξN2 |)T. We replace the variables β and δ by

their respective LASSO estimators β̃ = β(θ̃) and δ̃ from solving (2.7), so that the above equation

becomes a proper adaptive LASSO problem for a regression-like setup. It can be solved by one

more step of the modified BCD algorithm, to be introduced in Section 4. The tuning parameter

λT stays the same as in the LASSO problem (2.7). The sparse adjustment matrix Â is then

constructed back from ξ̂. The adaptive LASSO estimator for β∗ is β̂ = β(ξ̂, δ̃).

For selection purpose, we want to find a sparse estimator of δ∗ as well. The estimator indicates

which specified spatial weight matrix most contributes to the spatial interaction patterns observed

from the data. To this end, we propose the following:

δ̂ = argmin
δ

1

2T

N∑

i=1

∥∥∥(IN − Â−
M∑

r=1

δrW0r)ỹi − X̃iβ(ξ̂, δ)
∥∥∥
2
+ λ′Tu

T|δ|, (2.9)

subj. to
∣∣∣
(
Â+

M∑

r=1

δrW0r

)
1N

∣∣∣ < 1N with |δT1M | ≤ 1.

where u = (|δ̃1|
−1, . . . , |δ̃M |

−1|)T and |δ| = (|δ1|, . . . , |δM |)
T. The function β(ξ̂, δ) is defined in

(2.6), with ξ replaced by the estimator ξ̂. The tuning parameter λ′T is different from λT in general,

and its choice is discussed in Section 4. However, these two parameters grow at the same rate, as

stated in Assumption R7 in Section 3. The estimated spatial autoregressive parameter is then

ρ̂ =
M∑

i=1

δ̂i.

Theorem 5 presents the sign-consistency and asymptotic normality of the δ̂ under certain condi-

tions. In practice, the difference in the performance between β(ξ̂, δ̃) and β(ξ̂, δ̂) is negligible, so

we set β̂ = β(ξ̂, δ̃).
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2.3.2 When specifications W01, . . . ,W0M do not exist

If no specifications are available, then A∗ must act as the spatial weight matrix itself. The adaptive

LASSO problem is to solve

ξ̂ = argmin
ξ

1

2T

N∑

i=1

∥∥∥(IN −A)ỹi − X̃iβ(ξ)
∥∥∥
2
+ λTv

T|ξ|, (2.10)

subj. to |A1N | < 1N with |δT1M | ≤ 1.

The difference between (2.8) and (2.10) is that β is set at β̃ = β(θ̃), the LASSO estimator, for (2.8),

while β is set at β(ξ) for (2.10), so that the problem above is not exactly a penalized regression

setup. The main reason we need to solve (2.10) rather than (2.8) is that when specifications do

not exist, A∗ is a proper spatial weight matrix, and so has at least order N number of non-zero

elements (e.g., assuming only 1 non-zero in each row of A∗, then A∗ has exactly N non-zero

elements). Assumption M2 is no longer valid, but is replaced by M2’ in Section 3.3. The proof of

partial sign-consistency and asymptotic normality of ξ̂ is also changed slightly, compared to the

proof of Theorem 3 with specifications. A solution from (2.10) greatly facilitates the proof. With

ξ̂, the adaptive LASSO estimator for β∗ is β̂ = β(ξ̂).

Remark 1. We penalize on ξ and δ in two different problems in Section 2.3.1. The reasons we do

this are twofold. First, penalizing on both ξ and δ at the same time makes the proof of theoretical

results more difficult. The dimension of ξ is N2 which grows with T , while that for δ is M . This

dimension, M , relies on the knowledge of the researcher. The tuning parameters needed for ξ

and δ can potentially be very different. Second, penalizing on both of them first results in two

LASSO estimators, which are not as accurate as the adaptive LASSO estimators. Hence, a second

penalization is needed, on both ξ and δ. The computational complexities of finding the tuning

parameters of two problems, penalizing on two parameters, will be more onerous than finding the

tuning parameter of penalizing ξ first, and then on ξ and δ separately.

3 Properties of the Estimators

3.1 Full matrix notations for the LASSO and adaptive LASSO problems

In Section 2 we present the main LASSO and adaptive LASSO problems. They can actually

be compactly presented in matrix notations, which facilitates the presentation of our theoretical

results. We first introduce the notation

B = T−1/2N−a/2(Bγ − B̄γ) = T−1/2N−a/2IN ⊗ {(IN ⊗ γT)(B1 − B̄, . . . ,BT − B̄)T}. (3.1)

The constant a is to be introduced in Assumption (R4) in Section 3.3. In general, a larger a means

the exogenous variables in Bt correlates with more covariates in Xt. In practice we do not know
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a, and we can calculate B by setting a = 1. This does not change the optimal values of any tuning

parameters and estimators in all LASSO and adaptive LASSO problems presented using B below.

We rewrite (2.4) as

y = µ∗ ⊗ 1T + Zξ∗ + ZV0δ
∗ +Xβ∗vec(IN ) + ǫ, (3.2)

where y = vec{(y1, . . . ,yT )
T}, ǫ = vec{(ǫ1, . . . , ǫT )

T}, Z = IN⊗(y1, . . . ,yT )
T, δ∗ = (δ∗1 , . . . , δ

∗
M )T,

Xβ∗ = IN ⊗ {(IT ⊗ β∗T)(X1, . . . ,XT )
T}, ξ∗ = vec(A∗T), and V0 = (vec(WT

01), . . . , vec(WT
0M )).

The notation ⊗ represents the Kronecker product. Finally, vec(·) is the vectorization operator for

a matrix, column by column. The model now has design matrices Z and ZV0 in a classical linear

regression setting, with ξ∗ and δ∗ being the true regression parameters, except for the fact that Z

contains the endogenous variables yt. Multiplying both sides by BT, we then have an augmented

model:

BTy = BTZ(ξ∗ +V0δ
∗) +BTXβ∗vec(IN ) +BTǫ. (3.3)

To express the LASSO problem in matrix form, we first define yv = (yT
1 , . . . ,y

T
T )

T, so that

model (2.4) becomes

yv = 1T ⊗ µ∗ +
(
A∗⊗ +

M∑

i=1

δ∗iW
⊗
0i

)
yv +Xβ∗ + ǫv,

where ǫv is defined similar to yv, X = (XT
1 , . . . ,X

T
T )

T, and for any matrix C, C⊗ = IT ⊗C. Then

β(θ) defined in (2.6) can be expressed as

β(θ) = (XTBvBvTX)−1XTBvBvT

(
ITN −A⊗ −

M∑

i=1

δiW
⊗
0i

)
yv.

Using (3.3), the LASSO problem (2.7) can then be rewritten as

θ̃ = argmin
θ

1

2T

∥∥BTy −BTZξ −BTZV0δ −BTXβ(θ)vec(IN )
∥∥2 + λT

∥∥ξ
∥∥
1
,

subj. to
∣∣∣
(
A+

M∑

r=1

δrW0r

)
1N

∣∣∣ < 1N with |δT1M | ≤ 1.

(3.4)
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The formula for δ̃ for the LASSO problem above is

δ̃ =
[
(H−BTZV0)

T(H−BTZV0)
]−1

(H−BTZV0)
T

· (BTZξ̃ −BTy +K(ITN − Ã⊗)yv), with

K = T−1/2N−a/2
( T∑

t=1

Xt ⊗ (Bt − B̄)γ
)
(XTBvBvTX)−1XTBvBvT,

H = K(W⊗
01 · · ·W

⊗
0M )(IM ⊗ yv).

(3.5)

The term N−a/2 is cancelled out in the formula for δ̃ above. The adaptive LASSO problem (2.8)

with M > 0, can be rewritten as

ξ̂ = argmin
ξ

1

2T

∥∥BTy −BTZξ −BTZV0δ̃ −BTX
β̃
vec(IN )

∥∥2 + λTv
T|ξ|,

subj. to
∣∣∣
(
A+

M∑

r=1

δ̃rW0r

)
1N

∣∣∣ < 1N .

(3.6)

Finally, the adaptive LASSO problem for selecting δ in (2.9) can be rewritten as

δ̂ = argmin
δ

1

2T

∥∥BTy −BTZξ̂ −BTZV0δ −BTX
β(ξ̂,δ)

vec(IN )
∥∥2 + λ′Tu

T|δ|,

subj. to
∣∣∣
(
Â+

M∑

r=1

δrW0r

)
1N

∣∣∣ < 1N with |δT1M | ≤ 1.

(3.7)

A more direct penalized least squares formulation exist for this problem

δ̂ = argmin
δ

1

2T

∥∥BTy −BTZξ̂ − ĥ− (BTZV0 −H)δ
∥∥2 + λ′Tu

T|δ|, with

ĥ = T−1/2N−a/2
( T∑

t=1

Xt ⊗ (Bt − B̄)γ
)
(XTBvBvTX)−1XTBvBvT(ITN − Â⊗)yv,

subj. to
∣∣∣
(
Â+

M∑

r=1

δrW0r

)
1N

∣∣∣ < 1N with |δT1M | ≤ 1.

(3.8)

When M = 0, problem (2.10) can be rewritten as

ξ̂ = argmin
ξ

1

2T

∥∥BTy −BTZξ −BTXβ(ξ)vec(IN )
∥∥2 + λTv

T|ξ|, subj. to |A1N | < 1N . (3.9)
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An equivalent problem which is a proper penalized regression setup is given by

ξ̂ = argmin
ξ

1

2T

∥∥BTy − (BTZ−K′)ξ −Kyv
∥∥2 + λTv

T|ξ|, subj. to |A1N | < 1N , with

K′ = T−1/2N−a/2
( T∑

t=1

Xt ⊗ (Bt − B̄)γ
)
(XTBvBvTX)−1XTBv

( T∑

t=1

(Bt − B̄)T ⊗ yT
t

)
.

(3.10)

3.2 Time series variables and notations

We present notations used hereinafter, and introduce the measure of time dependence of all the

time series variables involved. The concept of approximate sparsity of the adjustment matrix A∗

in (2.3) is introduced in Section 3.3, together with all assumptions we use in this paper. Theorems

are presented in Section 3.4.

Denote {bt} = {vec(Bt)} and xt = {vec(Xt)} the vectorized processes for {Bt} and {Xt},

with length NL and NK, respectively. For t = 1, . . . , T , we assume that

xt = [fj(Ft)]1≤j≤NK , bt = [gj(Gt)]1≤j≤NL, ǫt = [hj(Ht)]1≤j≤N , (3.11)

where the fj(·)’s, gj(·)’s and hj(·)’s are measurable functions defined on the real line, and Ft =

(. . . , ex,t−1, ex,t), Gt = (. . . , eb,t−1, eb,t), Ht = (. . . , eǫ,t−1, eǫ,t) are defined by independent and

identically distributed processes {ex,t} {eb,t} and {eǫ,t} respectively, with {eb,t} independent of

{eǫ,t} but correlated with {ex,t}.

We use the functional dependence measure introduced by Wu (2005) for gauging the serial

dependence of a process. For d > 0, denoting xt = (xit),bt = (bjt) and ǫt = (ǫℓt), we define

θxt,d,i =
∥∥xit − x′it

∥∥
d
= (E|xit − x′it|

d)1/d, i = 1, . . . , NK,

θbt,d,j =
∥∥bjt − b′jt

∥∥
d
= (E|bjt − b′jt|

d)1/d, j = 1, . . . , NL,

θǫt,d,ℓ =
∥∥ǫℓt − ǫ′ℓt

∥∥
d
= (E|ǫℓt − ǫ′ℓt|

d)1/d, ℓ = 1, . . . , N,

(3.12)

where x′it = fi(F
′
t), F

′
t = (. . . , ex,−1, e

′
x,0, ex,1, . . . , ex,t), with e′x,0 independent of all other ex,j ’s.

Hence x′it is a coupled version of xit with ex,0 replaced by an i.i.d. copy e′x,0. Intuitively, a large

θxt,d,i means that serial correlation is strong, at least for variables at most time t apart. Finally, we

have similar definitions for b′jt and ǫ′ℓt. Such a definition of “physical” or functional dependence of

time series on past “inputs” is used by various papers, for example Shao (2010) and Zhou (2010).

3.3 Assumptions and partial sign consistency

Assumptions in this paper are effective whether there are specifications W01, . . . ,W0M (so that

M > 0) or not (so that M = 0). The exceptions are M2, R5 and R8, which apply to the former

scenario while M2’, R5’ and R8’ are for the latter. These assumptions concern the elements

in the sparse adjustment matrix A∗, the potential specifications W0i, the true spatial weight
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matrix W∗ in (2.3), and the distributional behavior and serial dependence of all the time series

variables involved. The identification condition of model (3.3) is also presented as Assumption

M5, with the identification of model (3.3) proved in Section 3.3.2. The partial sign consistency

of an estimator of an approximately sparse matrix is discussed when we explain Assumptions M2

and M2’. Assumptions that start with “R” are in general more of a technical nature than those

starting with “M”.

M1. With the true spatial weight matrix W∗ defined in (2.3), there exists a constant η > 0 such

that
∥∥W∗

∥∥
∞

< η < 1 uniformly as N →∞. The elements in W∗ can be negative, and W∗

can be asymmetric.

M2. (Approximate sparseness for A∗ when M > 0) There exists a constant τ > 0 such that the

elements a∗ij of A∗ are constants as N →∞ whenever they are larger than or equal to τ in

magnitude. For those elements smaller than τ , we have either a∗ij = 0 or a∗ij → 0 as N →∞.

Define

J0 = {j : ξ
∗
j = 0 and not corr. to the diagonal of A∗},

J1 = {j : |ξ
∗
j | ≥ τ}, J2 = {j : 0 < |ξ∗j | < τ}.

(3.13)

Denote n = |J1|. Then the number of elements belonging to J1 in each row of A∗ is bounded

uniformly away from infinity as N →∞. Moreover, n = o(N1/2).

M2’ (Approximate sparseness for A∗ when M = 0) Same as M2, except that n = O(N).

M3. The processes {Bt}, {Xt} and {ǫt} defined in Section 2 are second-order stationary, with

{Xt} and {ǫt} having mean zero. The exogenous variables {Bt} are independent of the

noise {ǫt}. The tail condition P (|Z| > v) ≤ D1 exp(−D2v
q) is satisfied for the variables

Bt,jk, Xt,jk, ǫt,j by the same constants D1, D2, and q.

M4. Define

Θx
m,a =

∞∑

t=m

max
1≤j≤NK

θxt,a,i, Θb
m,a =

∞∑

t=m

max
1≤j≤NL

θbt,a,j , Θǫ
m,a =

∞∑

t=m

max
1≤j≤N

θǫt,a,ℓ,

where θxt,a,i, θ
b
t,a,j and θǫt,a,ℓ are defined in (3.12).

We assume that for some w > 2, Θx
m,2w,Θ

b
m,2w,Θ

ǫ
m,2w ≤ Cm−α with α,C > 0 being

constants that can depend on w.

M5. (Identification condition) Assume that the two sets of parameters (ξ∗, δ∗,β∗) and (ξo, δo,βo)

both satisfy model (3.3). Let both ξ∗ and ξo be exactly sparse (see also Assumption M2),

with the set S defined as

S = {j : ξ∗j 6= 0 or ξoj 6= 0}.
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Then the identification condition is that the matrix QTQ has all its eigenvalues uniformly

bounded away from 0, where

Q = [E(BTZS), E(BTZV0), E(BTX̃)] and

X̃ = (x1,1, . . . ,xT,1, . . . ,x1,N , . . . ,xT,N )T.

The notation AS means that the matrix A has columns restricted to the set S. If M = 0,

the term E(BTZV0) is omitted.

For approximately sparse ξ∗ and ξo, we assume that those elements which are o(1) are all

identified exactly to 0. �

R1. Each column vector vec(WT
0i) in V0, i = 1, . . . ,M is linearly independent of each other,

such that there exists a constant u > 0 with σ2
M (V0) ≥ u > 0 uniformly as N →∞, where

σi(A) is the ith largest singular value of a matrix A.

Moreover, max1≤i≤M
∥∥W0i

∥∥
1
≤ c <∞ uniformly as N →∞ for some constant c > 0.

R2. Write ǫt = Σ
1/2
ǫ ǫ∗t , where Σǫ is the covariance matrix for ǫt. Then the elements in Σǫ are all

less than σ2
max uniformly as N →∞. The same logic applies to the variance of the elements

in Bt.

We also assume
∥∥Σ1/2

ǫ

∥∥
∞
≤ Sǫ < ∞ uniformly as N → ∞, with {ǫ∗t,j}1≤j≤N being a

martingale difference with respect to the filtration generated by σ(ǫ∗t,1, . . . , ǫ
∗
t,j). The tail

condition P (|Z| > v) ≤ D1 exp(−D2v
q) is also satisfied by ǫ∗t,j , while Assumption M4 is also

satisfied by {ǫ∗t }1≤t≤T .

R3. All singular values of E(XT
t Bt) are uniformly larger than Nu for some constant u > 0,

while the maximum singular value is of order N . Individual entries in the matrix E(btx
T
t )

are uniformly bounded away from infinity, where bt and xt are defined in the paragraph

containing (3.11).

R4. For a ∈ (0, 1) the same as in the definition of (3.1), define

G = N−aE(T−1ZT(Bγ − B̄γ))E(T−1(Bγ − B̄γ)
TZ).

Each block E(T−1
∑T

t=1(Bt − B̄)γyT
t ) = E(T−1

∑T
t=1(Bt − B̄)γβ∗TXT

t Π
∗T) in the block

diagonal matrix E(T−1(Bγ − B̄γ)
TZ) is assumed to have full rank N , such that there exists

a constant u > 0 with λmin(G) ≥ u > 0 uniformly as N →∞. The maximum eigenvalue of

G is uniformly bounded from infinity.
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R5. For the same constant a as in Assumption R4, we have for each N ,

max
1≤i≤N

N∑

j=1

∥∥E(bt,ix
T
t,j)
∥∥
max

, max
1≤j≤N

N∑

i=1

∥∥E(bt,ix
T
t,j)
∥∥
max

≤ CbxN
a,

where Cbx > 0 is a constant and bt,i, xt,j are the column vectors for the ith row of Bt and

jth row of Xt respectively. At the same time, E(Xt ⊗Btγ) has all singular values of order

N1+a.

R5’ For the equation shown in R5, change the part for E(Xt ⊗Btγ) to

∥∥E(Xt ⊗Btγ)
∥∥
1
,
∥∥E(Bt ⊗Π∗Xtβ

∗)
∥∥
1
= O(N).

If the rows of the matrix Xt⊗Btγ or Bt⊗Π∗Xtβ
∗ are restricted to J1, then the above are

assumed to be o(N).

R6. Assume 0 < b < 1. For fixed 1 ≤ k ≤ K, the eigenvalues of var(N−b/2Bt,k) and var(ǫt) are

uniformly bounded away from 0 and infinity, and respectively dominate the singular values

from N−bE((Bt+τ,k−µb,k)(Bt,k−µb,k)
T) and E(ǫtǫ

T
t+τ ). The sum of the ith largest singular

values over τ for each 1 ≤ i ≤ N is assumed finite for both {N−b/2Bt} and {ǫt}.

R7. Define cT = dT−1/2 log1/2(T ∨ N) for some constant d > 0. The tuning parameter λT for

(2.7) is such that λT = CcT for some constant C > 0. The tuning parameter λ′T for (2.9) is

λ′T = C ′cT for some constant C ′ > 0.

R8. Assume that M > 0. In all the statements above, we assume that as N,T →∞,

cTn, nN
a−1 log1/2(T ∨N) = o(1),

T−1/2N
a−b
2 log(T ∨N), T−1/2N

b
2
+ 1

2w = o(1).

We further assume that T 1/2N
a−b
2 max1≤j≤N

∥∥a∗j,J2
∥∥
1
= o(1) and

∥∥ξ∗J2
∥∥
1
= o(cTN

1
2
+ 1

2w )

which is a rate diverging to infinity.

R8’ We follow R8, except that M = 0. The consition nN1−a log1/2(T ∨N) = o(1) is replaced by

Na−b log(T ∨N) = o(1).

3.3.1 Explanations for Assumptions M1 to M4 and M2’

We now explain briefly the assumptions M1-M4 and M2’. Assumption M5 will be used in the

Section 3.3.2 to prove the identification of model (3.3). Assumption M1 ensures that model (2.1)

has a stable reduced form

yt = Π∗µ∗ +Π∗Xtβ
∗ +Π∗ǫt, Π∗ = (IN −W∗)−1, (3.14)
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where the innovations Π∗ǫt have finite variances. Corrado and Fingleton (2011) uses a similar row

sum condition in a slightly different spatial model specification. The row sum cannot be exactly

one like traditional spatial autoregressive models with spatial weight matrix W∗. In those models,

a spatial autoregressive parameter ρ having |ρ| < 1 is multiplied with W∗, and so the spatial

weight matrix is in fact ρW∗ in those models.

Assumptions M2 and M2’ are ways to relax the requirement of strict sparseness on A∗. These

are two major assumptions in this paper. The set J0 is the set of all the zeros in the sparse

adjustment matrix A∗ excluding the diagonal elements, which are all 0 by definition. Both J1 and

J2 are the sets for the non-zeros, but those elements in J2, according to assumption M2, are all

o(1) as both T,N →∞. A partially sign consistent estimator will estimate all the elements in J0

and J2 to be exactly 0, while estimating those in J1 to be non-zero with the correct sign. Such

a regularized estimator can accumulate smaller errors than those allowing for non-zero estimates

for the small entries, since the estimation errors involved in estimating all those small entries can

be much larger than setting them to zero. Theorem 3 shows that ξ̂ in (3.6) and (3.10) for M > 0

and M = 0, respectively, are partially sign-consistent with probability going to 1.

Assumption M2 states that n = o(N1/2). This means that when M > 0, the best linear

combination of the specified spatial weight matrices has only o(N1/2) number of non-zero elements

not yet close enough to the corresponding true values. With reasonable specified spatial weight

matrices, this is usually true. However, when M = 0, Assumption M2’ has n = O(N), reflecting

that each row of the spatial weight matrix A∗ can have at least one substantially non-zero value.

At the same time, the number of elements with small non-zero values (those in J2) can be large,

but we control the absolute sum of their values so as to control the sparse estimation error of our

estimators.

Theoretically, the value τ , defined in the sets J1 and J2, can be as large as minj∈J1 |ξ
∗
j |. We

can estimate τ as the smallest of |ξ̂j | for j ∈ Ĵ1. We check this important sparsity assumption in

practice, for the case when M > 0. If Â is not very sparse (e.g., with non-zeros in every row),

then we can split the data into a training and test set (e.g., with T − T 1/2 and T 1/2 data points

respectively), and estimate the model again using the training set. We obtain estimators for the

yt’s in the test set using the model trained from the training set. Out-sample estimation errors

in the test set can then be obtained. If the level of this error is very different from the in-sample

errors from the training set, then we suspect that the sparsity assumption may not be valid. We

can do the same when M = 0, if Â has many non-zero elements.

The independence of Bt and ǫt in Assumption M3 ensures that Bt serves a function similar

to an instrument for model (2.1). The tail condition in M3 implies that all the random variables

involved have sub-exponential tails, so that exact normality is not required.

The assumption Θx
m,2w ≤ Cm−α in M4 essentially means that the strongest serial dependence

for the xtj ’s with at least m time units apart is decaying polynomially, as m increases. Together

with M3, they allow for the application of a Nagaev-type inequality in Lemma 1 in the supplemen-
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tary material for our results to hold. Stationary Markov Chains and stationary linear processes

are examples of time series that satisfy M4. See Chen et al. (2013).

3.3.2 Identification of the model

Assumption M5 is sufficient for the identification of model (3.3). Consider two sets of parameters

(ξ∗, δ∗,β∗) and (ξo, δo,βo) both satisfying model (3.3). Then

0 = BTZ(ξ∗ − ξo) +BTZV0(δ
∗ − δo) +BTXβ∗−βovec(IN ).

But

BTXβ∗−βovec(IN ) = T−1/2N−a/2




∑T
t=1(Bt − B̄)γxT

t,1(β
∗ − βo)

...
∑T

t=1(Bt − B̄)γxT
t,N (β∗ − βo)




= BTX̃(β∗ − βo).

Hence, with the definition of the set S in Assumption M5, we have

[BTZS BTZV0 BTX̃]




ξ∗S − ξoS

δ∗ − δo

β∗ − βo


 = 0.

The above is true even for approximately sparse A∗ and Ao, since we assume that all the o(1)

elements (i.e., all those elements in J2) are identified to 0, meaning that if both ξ∗j and ξoj are o(1),

then ξ∗j − ξoj = 0. Then the corresponding column in the matrix BTZ can be removed. Taking

expectation and multiplying QT on both sides and then (QTQ)−1, we arrive at ξ∗S = ξoS , δ∗ = δo,

and β∗ = βo.

It may seem that the assumption of being able to identify the “small” elements to 0 is strong

under approximate sparsity. However, Theorem 3 does present a sign-consistent estimator which

estimates all “small” elements to 0, with probability going to 1. Such an assumption is thus

reasonable for our estimator.

Note that the matrix Q has size N2× (|S|+M +K). By Assumption M2 or M2’ where there

are only finite numbers of elements in each row of A∗ and Ao belonging to J1, we can see that

|S| is, at most, of order N . Hence assuming Q is of full rank is reasonable, since N2 is then much

larger than |S|+M +K, which is also of order N . In this sense, we see that the identification of

the model parameters relies mainly on the sparsity of the sparse adjustment matrix.
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3.3.3 Explanations for Assumptions R1 to R8, R5’ and R8’

Assumption R1 essentially requires that each specification W0i be different from each other, to

a certain extent. This is intuitive, since if W0i and W0j are too similar to each other, the

coefficients δ∗i and δ∗j are not well-defined. This will have a negative impact on the performance

of our estimators. This assumption is analogous to requiring the columns in the design matrix

to be linearly independent in a classical linear regression. As an example, if W0ℓ has an (i, j)th

element being d−ℓij (excluding the diagonal which is 0) for ℓ = 1, . . . ,M with at least M of the

dij ’s different from each other, then each vec(WT
0i) is linearly independent of the others. So V0,

defined in (3.2), has full rank.

The assumptions on ǫt and Σǫ in R2 are included mainly for convenience of the proof. The

martingale difference assumption for ǫ∗t is a relaxation to independence. This assumption also

allows the elements of ǫt to have a general second-order moments structure, as long as
∥∥Σǫ

∥∥
∞

<∞.

For instance, if ǫt also follows a spatial lag model,

ǫt = ρMǫt + ut,

where ut has diagonal covariance matrix Σu with
∥∥Σu

∥∥
max

< Cu < ∞, and M has
∥∥M

∥∥
∞
≤ 1

with |ρ| < 1, then
∥∥ρM

∥∥
∞

< 1. Therefore,

ǫt = (IN − ρM)−1ut, with Σǫ = (IN − ρM)−1Σu(IN − ρM)−1.

This spatial model for ǫt is very common in spatial econometrics. It is clear that
∥∥Σǫ

∥∥
∞
≤

Cu(1− ρ
∥∥M

∥∥
∞
)−2 <∞.

Assumptions R3, R4, and R5 are closely related. They all paint a picture of how the exogenous

variables in Bt are correlated with Xt. Assumption R3 essentially says that covariance between

a variable in Bt and one in Xt is finite uniformly as N → ∞. Then for 1 ≤ k ≤ K, considering

the kth diagonal entry of E(XT
t Bt) to be

∑N
j=1E(Xt,jkBt,jk) with each E(Xt,jkBt,jk) finite, it is

indeed reasonable to assume that each diagonal entry in the matrix is of order N , so that it is

also reasonable to assume that this finite K ×K matrix has all singular values of order N . This

assumption is needed for the estimator β̃ = β(θ̃) to be well-defined in (2.7).

Assumption R4 is closely related to the identification condition M5, since the upper left block of

QTQ is in fact GSS , and the identification condition already implies that GSS has all eigenvalues

uniformly bounded away from 0. Assumption R4 places more stringent condition, in the sense

that the whole matrix G now has full rank. All eigenvalues of G are then uniformly bounded away

from 0 and infinity. This is because it can avoid the need for a restricted eigenvalue condition

which is unnecessarily complicated in our context.

Assumption R5 essentially describes how each row of variables in Bt are correlated with dif-

ferent rows of variables in Xt. The rate Na is closely related to Assumption R4. This can be
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seen by noting that each block E(T−1
∑T

t=1(Bt − B̄)γyT
t ) in G is asymptotically the same as

(IN ⊗ γT)L0(IN ⊗β∗)Π∗T, where L0 = E(vec(BT
t )vec(XT

t )
T). Note that the (i, j)th K ×K block

in L0 is indeed E(bt,ix
T
t,j). Assumption R4 then essentially says that both

max
1≤i≤N

N∑

j=1

∥∥E(bt,ix
T
t,j)
∥∥2
max

, max
1≤j≤N

N∑

i=1

∥∥E(bt,ix
T
t,j)
∥∥2
max

are of order similar to Na. Assumption R5 can then be seen as the regularity condition such that

the upper bounds (with square removed for ease of proofs) are exactly of order Na. With this, we

can derive that
∥∥E(Xt ⊗Btγ)

∥∥
1

has order at most N1+a. This particular condition is needed for

proving the rates of
∥∥δ̃ − δ∗

∥∥
1

in Theorem 1.

When M = 0, this term is not required, and instead we have n = O(N) in Assumption M2’.

We then need the rate in Assumption R5’ to guarantee correct asymptotic normality formulae of

the adaptive LASSO estimators ξ̂ and β̂ = β(ξ̂). This rate does not contradict the two rates listed

in Assumption R5 and R5’, but refines them. The two rates in R5 and R5’ mean that some rows of

Bt are strongly correlated with a certain of rows of Xt. Then the rate
∥∥E(Bt⊗Π

∗Xtβ
∗)
∥∥
1
= O(N)

says that the number of such rows in Bt is finite, and the majority of the rows of Bt are not always

strongly correlated with many rows of Xt. For instance, there can be some universal economic

variables in some rows of Bt, but the majority of the variables are local, so they do not correlate

strongly with too many rows of Xt. We can check this assumption using the estimated spatial

weight matrix and estimated regression parameters.

Assumption R6 gives a rate for the singular values of var(Bt,k). This is important in certain

asymptotic normality results. The rate N b, possibly different from Na, is reasonable as well, since

the way that Bt and Xt are correlated does not directly indicate how the variables in Bt itself

are correlated. That is, unless when Bt = Xt when Xt itself is exogenous, in which case b = a.

The variance-covariance matrix dominating the lag-τ auto-covariances enables easier presentation

of rates of convergence in asymptotic normality.

Assumption R7 spells out the rate of the penalization parameters for all adaptive LASSO esti-

mators in this paper to be (partial) sign consistent, with non-zeros enjoying asymptotic normality.

This also makes it easier to grid search for the best tuning parameter using the BIC criterion

(4.17), to be introduced in Section 4.

For Assumption R8, when M > 0, the first line of rates are needed for the oracle inequality

and preliminary rates of convergence for
∥∥ξ̃J1 − ξ∗J1

∥∥. This inequality is used for the rest of the

proofs of all other theorems. Since Assumption M2 has n = o(N1/2), cTn = o(1) potentially still

allows for N to grow faster than T , while nNa−1 = o(1) means a ≤ 1/2. If M = 0, we have

n = O(N) from Assumption M2’, and so cTn = o(1) means N has to grow slower than T 1/2. This

is not surprising, as potentially we have a large number of non-zeros to estimate in A∗. Since we

are not making any structural assumptions on A∗ other than sparseness, having more non-zeros
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estimated in A∗ means N cannot grow too fast relative to T . Also in R8’, the rate related to

nNa−1 is dropped, since when M > 0 this rate controls the rate of convergence of δ̃, which is

identically zero when M = 0. The addition of Na−b log(T ∨ N) = o(1) is needed for the correct

formula for the asymptotic normality of β̂.

The second line of rates in Assumption R8 (and R8’) are required for controlling the dominating

terms in all asymptotic normality results, while the other two rates involving ξ∗J2 provide partial

sign consistency of ξ̂. If A∗ is exactly sparse, then J2 = φ and ξ∗J2 = 0, so that the rates are

trivially satisfied. For instance, if M > 0, a = b = 1/2, and A∗ is exactly sparse, then N can grow

faster than T depending on the number of large non-zero elements in A∗.

3.3.4 Extension: allowing past yt

The assumptions above allow Xt to contain past values of yt. If Xt = (yt−1, . . . ,yt−d, zt) for

instance, where zt contains covariates other than {yt}, then

Xtβ
∗ =

d∑

j=1

β∗jyt−j + ztβ
∗
2,

with β∗ = (β∗1 , . . . , β
∗
d ,β

∗T
2 )T. Hence model (2.1) becomes

yt = µ∗ +W∗yt +
d∑

j=1

β∗jyt−j + ztβ
∗
2 + ǫt.

The reduced form model in (3.14) then becomes

yt = Π∗µ∗ +
d∑

j=1

β∗jΠ
∗yt−j +Π∗(ztβ

∗
2 + ǫt). (3.15)

This model has a vector autoregressive part with coefficient matrices β∗jΠ
∗. It is similar to vector

autoregressions (VARs) requiring the estimation of dN2 parameters. In typical macroeconomic

applications, the number of time periods T might be small relative to the number of parameters.

In particular, Kock and Callot (2015) demonstrate Oracle properties of LASSO and Adaptive

LASSO estimators in the context of high-dimensional vector autoregresions. See also Medeiros and

Mendes (2016). Model (3.15) is more general, since it allows for lagged yt along with covariates Xt

and instrumental variables. It also complements recent research on global VARs. Pesaran et al.

(2004) consider country-specific VARs, interlinked by cross-country spillovers and international

fluctuations in the global economy. Other approaches include the Bayesian modelling of Bańbura

et al. (2010) and data-reduction techniques, such as the factor-augmented VAR of Bernanke et al.

(2005).
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3.4 Main results

We first present the rates related to our estimators for an arbitrary sparse adjustment matrix.

Theorem 1 Let all the assumptions in Section 3.3 hold (excluding M2’, R5’, R8’). Moreover, let

α > 1/2−1/w in Assumption M4, and N = o(Tw/4−1/2 logw/4(T )). Let Ã be any estimator of the

sparse adjustment A∗ (not necessarily a LASSO estimator). Then the estimator δ̃ in (3.5) and

β̃ = β(θ̃) in (3.4), with θ̃ = (ξ̃T, δ̃T)T and cT defined in Assumption R7, satisfy

∥∥δ̃ − δ∗
∥∥
1
= Op(cTN

− 1
2
+ 1

2w +N−1
∥∥ξ̃ − ξ∗

∥∥
1
) =

∥∥β̃ − β∗
∥∥
1
.

If M = 0, the above still hold if Assumptions M2, R5, and R8 are replaced by M2’, R5’, and R8’,

respectively.

The quality of both δ̃ and β̃ is dependent on ξ̃, and hence Ã, as shown by the above bound.

If our initial specifications W01, . . . ,W0M are insufficient to form a good linear combination for

estimating the spatial weight matrix, then we need more non-zero adjustments on A∗. Estimating

too many of them, however, inflates the error bound
∥∥ξ̃−ξ∗

∥∥
1
. Also, the constant w can be chosen

to be large enough to satisfy N = o(Tw/4−1/2 logw/4(T )), so that N1/(2w) can grow very slowly

compared to N1/2.

Theorem 2 Let the assumptions in Section 3.3 and in Theorem 1 hold. Then the LASSO solution

ξ̃ satisfies

∥∥ξ̃ − ξ∗
∥∥
1
= Op(cTN

1
2
+ 1

2w + n1/2
∥∥ξ̃J1 − ξ∗J1

∥∥),
∥∥ξ̃J1 − ξ∗J1

∥∥ = Op(cTn
1/2(1 +Na− 1

2
+ 1

2w ) + cTN
1
2w (Na/2 + c

1/2
T N1/2)).

For the LASSO estimators β̃ and δ̃,

∥∥β̃ − β∗
∥∥
1
= Op(cTN

− 1
2
+ 1

2w ) =
∥∥δ̃ − δ∗

∥∥
1
.

If M = 0 and Assumptions M2, M5, and M8, are replaced by M2’, R5’, and R8’ respectively, the

rate for
∥∥ξ̃ − ξ∗

∥∥
1

is the same as above, but with

∥∥ξ̃J1 − ξ∗J1

∥∥ = Op(cTn
1/2(1 +N− 1

2
+ 1

2w ) + c
3/2
T N

1
2
+ 1

2w ),
∥∥β̃ − β∗

∥∥
1
= Op(cT ).

Although
∥∥ξ̃ − ξ∗

∥∥
1

may not necessarily converge to 0, the L2 error
∥∥ξ̃J1 − ξ∗J1

∥∥ does indeed go

to 0 in probability. Our empirical results confirm this. The term β̃ − β∗ has a slower rate of

convergence when M = 0, since from Assumption M2’, more non-zero elements are in A∗ (of

order N) to be estimated. These bounds are important stepping stones for proving Theorems 3,

4, and 5 for all adaptive LASSO estimators.

23



Theorem 3 (Oracle Property for ξ̂) Let the assumptions in Section 3.3 and in Theorem 1 hold

(excluding M2’, R5’, and R8’). Then, with large enough T and N , having probability going to 1,

ξ̂ in (3.6) satisfies

sign(ξ̂J1) = sign(ξ∗J1), ξ̂J0∪J2 = 0,

where J0, J1, and J2 are defined in Assumption M2. Moreover, define the predictive dependence

measures

P b
0 (Bt,sk) = E(Bt,sk|G0)− E(Bt,sk|G−1), P ǫ

0(ǫtj) = E(ǫtj |H0)− E(ǫtj |H−1),

where Gt and Ht are defined just after Equation (3.11). Assume

∑

t≥0

max
1≤k≤K

max
1≤s≤N

∥∥P b
0 (Bt,sk)

∥∥ <∞,
∑

t≥0

max
1≤j≤N

∥∥P ǫ
0(ǫtj)

∥∥ <∞. (3.16)

Then for M = (α1, . . . ,αm)T with m finite and
∥∥αi

∥∥
1
<∞, we have

T 1/2(MRΣRTMT)−1/2M(ξ̂J1 − ξ∗J1 +G−1
J1J1

λTgJ1)
D
−→ N(0, Im),

where R = N−aG−1
J1J1

E(T−1ZT
J1
(Bγ − B̄γ)), and Σ =

∑
τ E(ǫtǫ

T
t+τ ) ⊗ E((Bt − µb)γγ

T(Bt+τ −

µb)
T). The vector gJ1 is a vector of 1 or −1, depending on whether the corresponding element in

ξ∗J1 is positive or negative.

If M = 0, the above still holds for ξ̂ in (3.9) if Assumptions M2, R5, and R8 are replaced by

M2’, R5’, and R8’, respectively.

The predictive dependence measure, introduced in Definition 2 of Wu (2011), quantifies the degree

of dependence of outputs on inputs in physical systems, similar to our variables defined in (3.11).

To draw inference on the non-zero sparse adjustments on A∗, we can use the sign consistency

of ξ̂ and the asymptotic normality of ξ̃J1 . We can estimate the matrices R and Σ using the

corresponding sample autocovariance estimators. Since {ǫt} is unobserved, we replace this by

{ǫ̂t} obtained as the residuals of model (2.1) with µ∗, A∗, δ∗, and β∗ replaced by µ̂, Â, δ̂, and

β̂, respectively. Note that R is in fact independent of the unknown index a. Since G also has

the term N−a, it cancels out the N−a in the definition of R. The term ξ∗J1 is a vector of non-

zero constants while on M,
∥∥G−1

J1J1
λTgJ1

∥∥
max

= O(cT ) = o(1) (see the proof of the Theorem in

the supplementary materials for more details), we can ignore the term G−1
J1J1

λTgJ1 in using the

asymptotic normality result in construction of confidence intervals.

To illustrate, if (Â)23 (corresponding to ξ̂N+3) and (Â)35 (corresponding to ξ̂2N+5) are non-

zero and we want to make inference on them, then we can set m = 2 and M = (eN+3, e2N+5)
T

where ei ∈ R
N2

is 0 everywhere except 1 at the ith position. The asymptotic bivariate normality

of the two estimators can then be established, and a confidence region can be constructed.

In practice, we can find a reasonable cut-off on τ in calculating Σ. See Remark 2 in Section 4
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for more practical details on this. The rate of convergence of each ξ̂j for j ∈ J1 can be deduced to

be T−1/2N−(a−b)/2 from the asymptotic normality result. This is done by using Assumption R6

to deduce that N−bΣ has uniformly bounded eigenvalues from 0 and infinity.

The asymptotic normality for β̂ = β(ξ̂, δ̃) (when M > 0) and β̂ = β(ξ̂) (when M = 0) appear

in the following theorem.

Theorem 4 Let the assumptions in Section 3.3 and in Theorem 1 hold (excluding M2’, R5’,

and R8’). Assume that the predictive dependence measures P b
0 (Btk) and P ǫ

0(ǫtj) are as defined in

Theorem 3 with the same assumptions (3.16) applied. Then for β̂ = β(ξ̂, δ̃), we have

T 1/2S
−1/2
0 (β̂ − β∗)

D
−→ N(0, IK),

where, defining R0 = (E(XT
t Bt)E(BT

t Xt))
−1E(XT

t Bt),

S0 =
∑

τ

R0E(BT
t ǫtǫ

T
t+τBt+τ )R

T
0 .

If M = 0 and Assumptions M2, R5, and R8 are replaced by M2’, R5’, and R8’, respectively, then

for β̂ = β(ξ̂),

T 1/2(K0RΣRTKT
0 )
−1/2(β̂ − β∗)

D
−→ N(0, IK),

where R and Σ are defined in Theorem 3, and

K0 = [E(XT
t Bt)E(BT

t Xt)]
−1E(XT

t Bt)E(BT
t ⊗ β∗TXT

t Π
∗T).

It is unsurprising that the asymptotic normality results for M > 0 and M = 0 are different.

When M > 0 we have n = o(N1/2), but it is n = O(N) when M = 0. The dominating terms

under these two scenarios are different, and so the asymptotic covariance matrices, as well as the

rates of convergence, are also different. As discussed under Theorem 3, we can estimate S0, R, Σ,

and K0 using appropriate sample autocovariance matrices, with ǫt, β
∗, and Π∗ replaced by ǫ̂t, β̂,

and (IN − Ŵ)−1, respectively. Similar to estimating Σ, we can find a reasonable cut-off for the

sum in the definition of S0. See Remark 2 in Section 4 for more practical details on this.

Next, we present the oracle property of δ̂ defined in (3.7) in the following theorem.

Theorem 5 (Oracle property for δ̂) Let the assumptions in Section 3.3 and in Theorem 1 hold

(excluding M2’, R5’, and R8’). We then have, as T,N →∞, with probability approaching 1,

sign(δ̂H) = sign(δ∗H), δ̂Hc = 0, where H = {j : δ∗j 6= 0}.

Moreover, with the predictive dependence measures P b
0 (Btk) and P ǫ

0(ǫtj) as defined in Theorem 3
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with the same assumptions (3.16) applied, we have

T 1/2(R1SγS0S
T
γR

T
1 )
−1/2(δ̂H − δ∗H)

D
−→ N(0, I|H|),

where R1 = [(H10 −H20)
T
H(H10 −H20)H ]−1(H10 −H20)

T
H , with H10,H20 and Sγ defined as

H10 =
(
IN ⊗ (IN ⊗ γT)E(vec(BT

t )vec(X
T
t )

T)(IN ⊗ β∗)Π∗T
)
V0,

H20 = E(Xt ⊗Btγ)
(
E(XT

t Bt)E(BT
t Xt)

)−1
E(XT

t Bt)
(
VT

WT
01
· · ·VT

WT
0M

)
(IM ⊗U0VΠ∗β

∗), and

Sγ =
(
cov(xt,1,bt,1)γ, . . . , cov(xt,1,bt,N )γ, . . . , cov(xt,N ,bt,1)γ, . . . , cov(xt,N ,bt,N )γ

)T

.

The definition of S0 is as in Theorem 4, while U0 = IN ⊗ E(btx
T
t ) and

VΠ∗ =




IK ⊗ π∗1
...

IK ⊗ π∗N


 ,

where π∗Tj is the jth row of Π∗. We also assume that the smallest eigenvalue of R1SγS
T
γR

T
1 is of

constant order. In particular, we have

T 1/2s
−1/2
1 (ρ̂− ρ∗) = T 1/2s

−1/2
1 1T

|H|(δ̂H − δ∗H)
D
−→ N(0, 1),

where s1 = 1T

|H|R1SγS0S
T
γR

T
11|H|.

The above theorem is important in determining which potential specifications of spatial weight

matrices are important and which are not, and how important each specification is. Similar to ξ̂J1 ,

hypothesis testing can be conducted and confidence regions constructed for the elements in β̂ and

δ̂. Various autocovariance matrices are estimated from the data and their respective asymptotic

normality is used.

It may seem that expecting the smallest eigenvalue of R1SγS
T
γR

T
1 to have a constant order is

a strong assumption. However, in the proof of Theorem 5 in the supplementary material, we show

that the largest eigenvalue of R1SγS
T
γR

T
1 has a constant order. Considering the matrix is K ×K

and has a constant size, this assumption is not particularly strong.

Theorem 6 Let the assumptions in Section 3.3 and in Theorem 1 hold. Then

∥∥Ŵ −W∗
∥∥ = Op(cT ) =

∥∥µ̂− µ∗
∥∥
max

,

where Ŵ = Â +
∑M

r=1 δ̂rW0r, µ̂ =
(
IN − Ŵ

)
ȳ − X̄β̂. The rate for the spatial fixed effect,∥∥Π̂µ̂−Π∗µ∗

∥∥
max

, is the same.
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The above gives a rate of convergence for the spectral norm of the error for the estimated spatial

weight matrix, which can be of independent interest.

4 Practical Implementation

In this section we provide details of the block-coordinate descent (BCD) algorithm used to conduct

the minimization of (3.4)-(3.8). The optimization problem with respect to (ξ,β, δ) is not convex.

This gives rise to significant computational challenges. When M = 0, solving (3.10) does not

involve any steps in the BCD algorithm, but just like step 3’ (see below) we need to utilize the

LASSO solution from the LASSO stage to solve for the adaptive LASSO problem. Hence the

details for solving for ξ̂ in (3.10) when M = 0 is omitted.

We make use of the fact that when given any two of the three variables, the problem is

convex in the remaining variable. For example, given (ξ,β), the optimization problem is convex

in δ. While it is difficult to establish global convergence of the BCD algorithm without convexity,

each iteration delivers an improvement of the objective functions since given one parameter, the

objective functions are convex in the others. The BCD algorithm is closely related to the Iterative

Coordinate Descent of Fan and Lv (2011), and is also discussed by Friedman et al. (2010) and

Dicker et al. (2013).

The Block Coordinate Descent Algorithm (LASSO stage)

0. Set an initial value ξ(0), for example ξ(0) = 0.

1. At iteration r, update β(r) according to the closed-form expression

β(r) = (XTBvBvTX)−1XTBvBvT

(
ITN − (IT ⊗A(r))−

M∑

i=1

δ
(r−1)
i W⊗

0i

)
yv.

2. Update δ(r) as a function of β(r) and ξ(r), with

δ(r) =
[
(H−BTZV0)

T(H−BTZV0)
]−1

(H−BTZV0)
T

·(BTZξ(r) −BTy +K(ITN − (IT ⊗A(r)))yv).

3. Using the Least Angle Regression (LARS), solve sequentially for each row of A, denoted ηT
j ,

fixing all the remaining (1, . . . , j − 1, j + 1, . . . , n) rows, for j = 1, . . . , N . That is, solve

η
(r)
j = argmin

ηj

1

2T

∥∥BTy −BTZη −BTZV0δ
(r−1) −BTXβ(r−1)vec(IN )

∥∥2 + λT

∥∥η
∥∥
1
,

where η = (η
(r−1)T
1 , . . . , η

(r−1)T
j−1 , ηj , η

(r−1)T
j+1 , . . . , η

(r−1)T
n )T, subject to the constraints as stated

in (2.7). We obtain ξ(r) = (η
(r)T
1 , . . . , η

(r)T
n )T.
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4. Repeat steps 1-3, until
∥∥ξ(r) − ξ(r−1)

∥∥ is smaller than some predetermined number. The

LASSO solution is ξ̃ = ξ(r), β̃ = β(r) and δ̃ = δ(r). We can construct Ã from ξ̃ = vec(ÃT).

With the LASSO solution, compute the final adaptive LASSO stage, which is obtained by

setting the initial values as ξ̃, β̃, and δ̃, and repeating the steps above with the following modifi-

cations.

The Block Coordinate Descent Algorithm (Adaptive LASSO stage)

2′. Introduce penalization for δ:

δ(r) = argmin
δ

1

2T

∥∥BTy −BTZξ(r−1) − g(r−1) − (BTZV0 −H)δ
∥∥2 + λ′Tu

T|δ|,

where u = (|δ̃1|
−1, . . . , |δ̃M |

−1)T, g(r−1) is defined similar to ĥ in (3.8) with Â replaced by

A(r−1), and the above is subjected to the constraints as stated in (3.8).

3′. The adaptive LASSO objective function observes penalty λTv
T|η|, that is,

η
(r)
j = argmin

ηj

1

2T

∥∥BTy −BTZη −BTZV0δ
(r−1) −BTXβ(r−1)vec(IN )

∥∥2 + λTv
T|η|,

where v = (|ξ̃1|
−1, . . . , |ξ̃N2 |−1)T, and remaining definitions are as in step 3. The above is

also subjected to the constraints as stated in (3.6).

For the choice of λT and λ′T used in the penalization of ξ and δ, respectively, we minimize the

following BIC criterion with respect to both of them:

BIC(λξ,T , λδ,T ) = log

(
T−2

∥∥∥BTy −BTZξ̂ −BTZV0δ̂ −BTX
β̂
vec(IN )

∥∥∥
2
)

+|Ŝ|
log(T )

T
log(log(2N − 2)) (4.17)

where ξ̂ and δ̂ are the adaptive LASSO solutions with tuning parameters λξ,T and λδ,T , respecti-

vely, and β̂ = β(ξ̂, δ̂). The set Ŝ is the indices for the non-zero values of ξ̂. The BIC criterion

(4.17) is in fact inspired by Wang et al. (2009).4 Although the value of a is unknown in the defi-

nition of B, the optimal values λT and λ′T are in fact independent of a because of the logarithmic

operation in the first term of (4.17). In practice we set a = 1.

Remark 2. We mention in the discussions of Theorem 3 and 4 how to estimate Σ and S0 by

finding a cut-off in the infinite sum. In practice, since the matrices involved in the infinite sum

are usually almost zero everywhere when |τ | is larger than 2 or 3, we can compare the individual

matrices at different τ , up to |τ | = 10 for example, and select a cut-off such that the sum changes

little beyond that.

4We also experimented with the Extended BIC of Chen and Chen (2008) and obtained similar results.
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4.1 Finding a more suitable γ and selection of instruments

We introduce γ = L−11L in Section 2.1 for aggregating the instruments. In fact, this can be

estimated to provide maximal correlation with the endogenous variable yt through two-stage least

squares. In doing so, we consider the model

yt = α+Btγ + vt,

where α is an N × 1 vector of unknown coefficients, and γ is the K × 1 vector of coefficients we

want to estimate. To get γ̂, we can consider the problem

min
α,γ

T∑

t=1

∥∥yt −α−Btγ
∥∥2,

where we have the solution

γ̂ =
( T∑

t=1

(Bt − B̄)T(Bt − B̄)
)−1 T∑

t=1

(Bt − B̄)T(yt − ȳ).

Implementing this does not change our proof much, since we can easily show that
∥∥γ̂
∥∥
1
= Op(1),

which substitutes
∥∥γ
∥∥
1
= 1 in all of our proofs.

If the set (2.5) contains too many instruments, then we can follow Belloni et al. (2012) and use

LASSO to select the most important linear combination of them, which essentially is a penalized

version of the problem above. The proofs of all theorems still stay the same. Since in this paper

we do not have many instruments, the practical performance in our simulations and real data

analysis are indistinguishable among using γ = L−11L, the least squares estimator γ̂ above, or

the LASSO estimator from Belloni et al. (2012).

5 Simulations and empirical illustration

We conduct a detailed Monte-Carlo exercise in Section 5.1 to demonstrate the finite-sample per-

formance of our estimators. In Section 5.2, we use our methodology to analyze the determinants

of cross-section variation in returns of the largest stocks traded on the New York Stock Exchange

in 2017. We find that firms’ stock returns exhibit a dependence in the cross-section that cannot

be explained by observable characteristics such as similar sector or subsector of activity.

5.1 Simulation

We first construct the expert neighboring matrices from various measures of true distances bet-

ween units. This approximates matrices that practitioners face in real-world applications. More

specifically, we construct the expert matrices W0i from the following ten measures of distance:
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dummies for sharing a border; free-trade agreement; common currency; past colonial relation;

common language, religion and origins of the legal system; and if the pair were ever part of the

same nation. We further add non-binary relations for the inverse distance between capital cities

and inverse time zone difference.5 Finally, we construct the sparse deviation matrix A∗ sampling

5% of its elements to be equal to 0.5. If any row sums of the ten W0i or A∗ exceed one, we divide

by the L1 norm of the row.

We construct the following scenarios to demonstrate the flexibility of the method. They exem-

plify the following situations to which the practitioner could be subjected to, and are particular

cases of the general specification in Equation (2.3):

W∗ = A∗ +
M∑

i=1

δ∗i ·W0i. (5.1)

(a) No expert knowledge: The practitioner either has no prior knowledge about the neighboring

matrix or is unwilling to use it. This corresponds to the estimation of sparse spatial weight

matrix without any prior specifications, and the method reduces to estimating the entire

spatial weight matrix. In this case, we assume that W∗ = A∗. The weights δ∗i are not

estimated, and M = 0.

(b) Partial expert knowledge: The practitioner uses the full information of the ten expert ma-

trices, so M = 10, and selects which matrices best explain the data. Yet, the practitioner

has partial information in the sense that he or she did not fully specify the expert matrices,

and the true network has a sparse deviation from its linear combination. We assume that

W∗ = 0.2 ·W01 + 0.2 ·W02 +A∗, so δ∗1 = δ∗2 = 0.2 and δ∗3 = · · · = δ∗10 = 0. The estimated

model includes the M = 10 matrices.

(c) Full expert knowledge: Similar to the case above, except that we do not include the sparse

deviation in the true network, i.e., W∗ = 0.2 ·W01 + 0.2 ·W02, so δ∗1 = δ∗2 = 0.2 and

δ∗3 = · · · = δ∗10 = 0. The practitioner is uncertain if he or she has the correct specification,

however, and includes the sparse deviation term in the estimated model.

By focusing on the case of no-expert knowledge, we can assess the performance in cases when

no information is available about the true neighboring matrix. The partial and full information

cases highlight the benefits of using the method combined with prior information on the neighbo-

ring matrices. Doing so, we make use of available information and estimate a model robust to

misspecification or incompleteness.

At each period, disturbances ǫt are jointly normally distributed, with variance-covariance ma-

trix having 1 on the diagonal. Off-diagonal elements (i, j) above the main diagonal are randomly

chosen to be 0.25 with 10% probability, and replicated to the (j, i) element below the main di-

5Downloaded from the GeoDist database from CEPII, available at www.cepii.fr.
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agonal. This ensures that the variance-covariance matrix is symmetric and introduces spatial

dependence also in the disturbance term. Each column of the covariates Xt are also generated as

standard normals, and added to the ǫt divided by half. Instruments Bt are equal to the covariates

plus a standard normal noise. We provide simulations with alternative specifications in Subsection

1.1 of the supplementary materials to this article. The vector of true β∗ is equal to one. All si-

mulations introduce individual fixed effects. Finally, response data yt are generated according to

model (2.4). In all simulations, we consider N = 25, 50 and 75 and T = 50, 100 and 200. Tuning

parameters are chosen by the BIC criterion in (4.17). Each combination has at least one thousand

replications. Standard errors across replications are shown in parentheses.

In Table 1, we use several criteria to evaluate the performance of the estimator. Specificity is

defined as the proportion of true zeros estimated as zeros. Sensitivity is the proportion of non-zeros

estimated as non-zeros. These measures apply to A∗ and δ∗. Furthermore, we present the L1

norm
∥∥ξ̃ − ξ∗

∥∥
1

of the LASSO estimator ξ̃, and also
∥∥ξ̂ − ξ∗

∥∥
1

of the adaptive LASSO estimator

ξ̂. We show the bias for the elements of A∗, δ∗, and β∗. Finally, we compute the sparsity of A∗.

Table 1 shows very good performance of the estimator for various choices of N and T . Spe-

cificity of A∗ is above 95% in most cases, and sensitivity approaches 100% as more time periods

are made available. In the “no expert knowledge” case, performance is slightly better at lower

T , and slightly deteriorates when expert matrices are included in the estimation in the “partial

expert knowledge case.” This is expected as sparse deviation may pick up estimation errors of

δ0. In the “full expert knowledge case,” the estimated sparse deviation is 99% of zeros (since by

construction there are no true non-zeros, the sensitivity is not defined). Compared to the earlier

partial-knowledge case, the practitioner could then interpret this result as a correct specification

of expert matrices.

Results on LASSO and adaptive LASSO L1 norms show that the latter provided significant

gains in performance. Moreover, the biases on β and δ are small. Finally, selection of relevant δ’s

is demonstrated by the specificity and sensitivity parameters, which in most cases are above 80%.

Additional simulation results, which can be found in the supplementary materials to this paper,

demonstrate the robustness of the procedure under alternative scenarios.
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Table 1: Simulation results

No knowledge Partial knowledge Full knowledge

T=50 T=100 T=200 T=50 T=100 T=200 T=50 T=100 T=200

. N = 25

A
∗ Specificity .995 .998 .999 .995 .991 .977 .995 .996 .997

(.004) (.002) (.001) (.005) (.008) (.017) (.005) (.004) (.005)

A
∗ Sensitivity .975 1.000 1.000 .846 .933 .984 - - -

(.030) (.004) (.000) (.059) (.053) (.027)

A
∗ bias -.022 -.021 -.021 -.027 -.026 -.026 .000 .000 .000

(.001) (.000) (.000) (.002) (.001) (.002) (.000) (.000) (.000)

LASSO L1 .036 .033 .030 .035 .035 .037 .013 .013 .010
(.002) (.002) (.001) (.003) (.003) (.004) (.002) (.002) (.001)

AdaLASSO L1 .023 .022 .022 .028 .027 .027 .000 .000 .000
(.001) (.000) (.000) (.002) (.001) (.002) (.000) (.000) (.000)

Sparsity .946 .948 .949 .953 .945 .929 .995 .996 .997
(.005) (.002) (.001) (.005) (.008) (.016) (.005) (.004) (.005)

β bias .019 .015 .011 .038 .033 .029 .029 .020 .014
(.011) (.008) (.006) (.020) (.016) (.013) (.016) (.010) (.007)

δ∗ Specificity 1.000 1.000 1.000 .876 .814 .751 .999 1.000 1.000
(.000) (.000) (.000) (.085) (.095) (.088) (.009) (.000) (.000)

δ∗ Sensitivity - - - .750 .816 .944 .783 .839 .905
(.270) (.246) (.158) (.162) (.167) (.151)

δ∗ Bias .000 .000 .000 .006 .015 .027 -.021 -.016 -.011
(.000) (.000) (.000) (.013) (.014) (.011) (.007) (.007) (.007)

N = 50

A
∗ Specificity .960 .972 .984 .958 .953 .940 .961 .970 .977

(.004) (.004) (.003) (.010) (.014) (.018) (.004) (.005) (.007)

A
∗ Sensitivity .872 .980 1.000 .666 .847 .966 - - -

(.031) (.013) (.002) (.083) (.058) (.020)

A
∗ bias -.012 -.011 -.011 -.018 -.017 -.016 .000 .000 .000

(.000) (.000) (.000) (.002) (.002) (.001) (.000) (.000) (.001)

LASSO L1 .029 .027 .023 .029 .028 .028 .017 .016 .013
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)

AdaLASSO L1 .015 .013 .011 .019 .018 .017 .002 .002 .001
(.001) (.000) (.000) (.002) (.002) (.001) (.000) (.000) (.000)

Sparsity .918 .925 .934 .927 .913 .894 .961 .970 .977
(.004) (.003) (.003) (.007) (.012) (.016) (.004) (.005) (.007)

β bias .010 .009 .007 .034 .026 .020 .025 .017 .011
(.006) (.005) (.004) (.018) (.012) (.009) (.012) (.009) (.006)

δ∗ Specificity 1.000 1.000 1.000 .770 .749 .714 .991 .988 .989
(.000) (.000) (.000) (.091) (.095) (.090) (.035) (.039) (.039)

δ∗ Sensitivity - - - .994 .998 .998 .895 .898 .917
(.053) (.030) (.030) (.155) (.154) (.144)

δ∗ Bias .000 .000 .000 .040 .039 .040 -.009 -.004 .001
(.000) (.000) (.000 ) (.011) (.010) (.006) (.010) (.013) (.015)

N = 75

A
∗ Specificity .945 .958 .967 .931 .933 .995 .998 .999 .999

(.003) (.003) (.002) (.007) (.010) (.004) (.001) (.001) (.001)

A
∗ Sensitivity .747 .879 .989 .750 .790 .805 - - -

(.032) (.021) (.007) (.060) (.048) (.096)

A
∗ bias -.009 -.008 -.008 -.012 -.012 -.010 .000 .000 .000

(.000) (.000) (.000) (.002) (.001) (.001) (.000) (.000) (.000)

LASSO L1 .024 .024 .023 .025 .025 .017 .008 .008 .009
(.000) (.000) (.000) (.001) (.001) (.001) (.000) (.001) (.001)

AdaLASSO L1 .013 .010 .009 .015 .013 .011 .000 .000 .000
(.000) (.000) (.000) (.001) (.001) (.001) (.000) (.000) (.000)

Sparsity .916 .916 .920 .907 .897 .955 .998 .999 .999
(.003) (.003) (.002) (.005) (.008) (.006) (.001) (.001) (.001)

β bias .006 .006 .005 .031 .021 .013 .017 .011 .008
(.003) (.004) (.003) (.016) (.011) (.006) (.009) (.006) (.004)

δ∗ Specificity 1.000 1.000 1.000 .729 .709 .790 1.000 1.000 1.000
(.000) (.000) (.000) (.107) (.097) (.092) (.000) (.000) (.000)

δ∗ Sensitivity - - - 1.000 1.000 1.000 .729 .828 .865
(.000) (.000) (.000) (.131) (.167) (.164)

δ∗ Bias .000 .000 .000 .040 .043 .027 -.022 -.017 -.013
(.000) (.000) (.000) (.013) (.010) (.011) (.004) (.006) (.007)

Notes: Simulated results under various combinations of N and T for 1,000 iterations. “No knowledge case” refers to the “No
expert knowledge case,”where expert matrices are not used in the estimated model, and the true network is defined by the
sparse deviation only. In the “Partial knowledge” case, the true matrix is a combination of two expert matrices and a sparse
deviation. There are no sparse deviations in true matrix of the “Full knowledge” case, but it is included in the estimated
model. Specificity (Sensitivity) refers to the proportion of true zeros (non-zeros) that are estimated as zeros (non-zeros).
Lasso L1 and AdaLasso L1 refer to the L1 norm of the vectorized sparse deviation matrix of the LASSO and adaptive LASSO
steps, respectively. Standard error across are calculated across iterations. Penalization parameters are chosen by BIC.
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5.2 Empirical illustration

In this subsection, we illustrate how the procedure can be applied to uncover new findings in

empirical practice. We provide suggestive evidence that the stock returns exhibit significant cross-

sectional correlation, even after controlling for fluctuation in the market risk to account for the

co-movement in stocks due to external reasons to specific pairs of stocks. Thus the residual

correlation in stocks can neither be fully explained by aggregate shocks nor by several potential

measures of proximity between firms, both economical and geographical.

Fama and French (1992, 1993 and 1996) proposed a benchmark stock return model which

include factors to capture movements in market risk. The so-called “Fama-French factors” are

calculated over a very large class of stocks. These factors are meant to absorb co-movements that

are not particular to a specific pair of stocks, but are instead due to general market fluctuations.

See Feng et al. (2017) for additional factors and measures of market risk. However, these papers

did not explore that, beyond general market movements, stock returns might directly affect other

stock returns. One possibility, for example, is that firms are subject to more specific sectoral

or state shocks, or that interconnectedness in the supply chains is reflected as co-movement in

stock returns. Other papers in the literature, such as Engle et al. (2012), Diebold and Yilmaz

(2015), and recent work by Barigozzi and Brownlees (2018) consider the spillovers of the volatility

measures across markets.6

To bring light to this issue and quantify the prevalence of cross-section dependence in the

intra-market stock returns, we build a panel of daily returns of the largest N = 75 firms traded on

the New York Stock Exchange throughout 2017. We obtain T = 251 trading days. Reproducing

the Fama-French papers, we use their factors as covariates.7 We consider the following eight mea-

sures of proximity: firms’ same sector and subsector of activity according to GICS classifications,

state and city of the headquarters, inverse and inverse squared distance, and the state-sector and

subsector-state interactions. If any row sums of the matrices exceed one, we divide them by the

L1 norm of the row. These constitute our expert matrices W0i.

In specification (i) we make no use of expert matrices, corresponding to “no expert knowledge”

in the previous subsection. The density of the estimated sparse adjustment matrix (defined as

one minus the sparsity) is 12.4%. It is not significantly affected by the inclusion of three or

five Fama-French factors. We then add the two measures of economic distance in specification

(ii): similarity along sectors or subsectors of activity. Subsector of activity does explain the

dependence structure in the cross-section of returns. These results are robust to the inclusion

of additional Fama-French factors. This is intuitive, as firms in the same subsector of activity

can be subject to common shocks. We then explore measures of distance related to geography in

specification (iii). Geographical distance by itself does not matter in any specification. Finally,

6For other work in this are, see also Kutzker and Wied (2018).
7Daily data for the Fama-French factors are available at French’s data library at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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in (iv) we introduce the interaction of geography and sectors and subsector of activity. In one

specification, the interaction of state and sector of activity has explanatory power. Again, this is

intuitive, as firms in the same sector of activity may be subject to common state-specific shocks.

All specifications contain stock fixed effects.

The density of the estimated sparse adjustment matrix fell from 12.4% to 6.7% in the less

parsimonious specification (iv). This indicates that the cross-sectional correlation in stocks may

be partly explained by observable characteristics of the firms, but not to the full extent to lead to

an adjustment matrix A∗ populated only by zeros.

Finally, by interpreting the estimated sparse adjustment matrix, we observe a similar reduction

in the clustering coefficient. This coefficient measures the extent to which stock returns form small

co-moving subgroups. More specifically, it is defined as the fraction of connected triads that are

triangles; that is, the number of times where the (i, j)-th, (j, k)-th and (k, i)-th elements are

non-zero under the estimated A∗ over the number of times that only the (i, j)-th and (j, k)-th

elements are non-zero. Therefore, a smaller (larger) coefficient can be interpreted as less (more) co-

movement along small groups of stocks. We find that the clustering coefficients fall by about half,

from .026 in specification (i) to .011 in specification (iv). This is in line with the expectation that

groups were, to a large extent, defined by the combination of economic and geographic distance.

Overall, these results point out the importance of idiosyncratic elements in the co-movement

of stocks, captured in the sparse adjustment matrix, that cannot be explained by Fama-French

factors or economical or geographical measures of proximity between firms.
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Table 2: Dependence in stock returns

3 Fama-French factors 5 Fama-French factors

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

Excess return (Rm-Rf) .011 .006 .003 .003 .012 .006 .005 .005
(.001) (.001) (.005) (.005) (.001) (.001) (.004) (.004)

Small minus Big (SMB) -.009 -.004 -.002 -.002 -.008 -.004 -.003 -.003
(.002) (.001) (.007) (.007) (.002) (.001) (.006) (.006)

High minus Low (HML) .013 .005 .001 .001 .012 .004 .001 .001
(.002) (.001) (.007) (.007) (.002) (.001) (.006) (.006)

Robust minus Weak (RMW) .005 .001 .001 .001
(.002) (.001) (.007) (.007)

Conservative minus Aggressive (CMA) .003 .002 .002 .002
(.002) (.001) (.006) (.006)

Sector - .000 .000 .000 - .000 .000 .000

Subsector .161 .173 .245 .120 .112 .055
(.025) (.026) (.036) (.031) (.034) (.023)

State .000 .000 .000 .000

City .000 .000 .000 .000

Distanceˆ(-1) .000 .000 .000 .000

Distanceˆ(-2) .000 .000 .000 .000

Sector x state .000 .107
(.023)

Subsector x state .000 .000

Density .124 .122 .077 .076 .124 .122 .068 .067
Clustering .026 .025 .013 .012 .025 .025 .012 .011
Size of largest component 75 75 75 75 75 75 75 75

Notes: Estimated model results with three and five Fama-French factors (Fama and French, 1993) for the cross-section of stock
returns of the N = 75 stocks with largest trading volume in 2017. T = 251. The five Fama-French factors are: the excess return
on the market (Rm-Rf) and measures of dispersion as captured by the average return on a portfolio of small stock minus big stocks
(Small minus Big, SMB), the average return on the value portfolios minus the average return on growth portfolios (High minus Low,
HML), the average return of operating profitability portfolios minus the return on weakly-operating return portfolios (Robust minus
Weak, RMW) and, finally, the difference between the return in conservative and aggressive investment portfolios (Conservative minus
Agressive, CMA). The first panel shows the estimated β coefficient with standard errors in parenthesis. The second panel shows
the estimated δ coefficients for four specifications: with no expert matrix, with economic expert matrices (sector and subsector of
activity), with geographic proximity matrices (state, city, inverse and inverse squared distance, calculated over the address of the
headquarters), and the interaction of economic and state. Density is one minus sparsity. Clustering coefficient is the fraction of
connected triads that are triangles. The size of the largest coefficient is the number of elements of the smallest submatrix such that
every stock is connected at least one other, possibly by paths of any length. In our case, the size of the largest component is always
equal to the number of stocks.
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6 Conclusion

In this paper, we unify the selection and estimation of a spatial weight matrix in a spatial au-

toregressive model through the introduction of a sparse adjustment matrix, added to a linear

combination of specified spatial weight matrices from expert knowledge. Without any expert kno-

wledge, the problem reduces to pure spatial weight matrix estimation. When one or more spatial

matrices are used, this is a selection plus estimation problem. The estimation of the sparse ad-

justment matrix, and the selection of which specified spatial weight matrix to include in a linear

combination, are done through solving two respective adaptive LASSO problems. Theoretical

results support inferences on various parameters including the elements in the sparse adjustment

matrix itself, with practical implementation also discussed.

From the simulations and real data analysis, we see that our method indeed practically allows

for the improvement of the spatial weight matrix estimation through giving a non-zero estima-

ted sparse adjustment matrix in the stock returns example. This provides insights into the co-

movements of different spatial units and how much our expert knowledge, translated into specified

spatial weight matrices, helps in understanding such co-movements.

Supplementary Material

All the proofs are presented in the supplementary materials in this paper.
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