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THE BASS AND TOPOLOGICAL STABLE RANKS FOR
ALGEBRAS OF ALMOST PERIODIC FUNCTIONS ON THE

REAL LINE, II

RAYMOND MORTINI 1∗ and AMOL SASANE 2

This paper is dedicated to the memory of Ronald Douglas

Abstract. Let Λ be either a subgroup of the integers Z, a semigroup in N, or
Λ = Q, respectively Q+. We determine the Bass and topological stable ranks
of the algebras APΛ = {f ∈ AP : σ(f) ⊆ Λ} of almost periodic functions on
the real line and with Bohr spectrum in Λ. This answers a question in the
first part of this series of papers under the same heading, where it was shown
that, in contrast to the present situation, these ranks were infinite for each
semigroup Λ of real numbers for which the Q-vector space generated by Λ had
infinite dimension.

Introduction

According to our definitions, N = {0, 1, 2, . . . } and N∗ = N \ {0}. Let AP be
the uniform closure in Cb(R,C) of the set of all functions of the form

Q(t) :=
N∑

j=1

aje
iλjt,

where aj ∈ C, λj ∈ R and N ∈ N∗. We call Q a generalized trigonometric poly-
nomial. Under the usual pointwise algebraic operations, AP is a point separating
function algebra on R with the property that f ∈ AP implies that f ∈ AP. Har-
ald Bohr developed the basic theory for this space in a series of papers [5, 6]. We
also refer to the books by Corduneanu [10] and Besicovich [3] for an introduction
into this important class of functions. Modern treatments and applications to
operator theory can be found for example in [7].

In the following we provide a solution to a question concerning the Bass and
topological stable ranks of a certain class of subalgebras of AP (see below for the
definition) and that was left open in the first part [13] of this series of papers.
Recall that D. Suárez [14] was the first who determined these ranks for the algebra
AP itself. The present work is conceptually a mixture of a research paper and a
survey paper.
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1. Our working setting

Let us recall from [13] the definitions of the fundamental notions in connection
with almost periodic functions. Proofs are for instance in [10].

Definition 1.1. Let f ∈ AP. If λ ∈ R, the associated Fourier-Bohr coefficient

f̂(λ) is defined as

f̂(λ) = lim
|I|→∞

1

|I|

∫

I

f(t)e−iλt dt,

where I runs through the set of all compact intervals in R.

Proposition A If f ∈ AP, then f̂(λ) exists for every λ ∈ R and f̂(λ) 6= 0 for at
most a countable number of λ.

Definition 1.2. If f ∈ AP, then the Bohr spectrum, σ(f), of f is the set of

all λ ∈ R for which the associated Fourier-Bohr coefficient f̂(λ) is not zero. If
σ(f) = {λn : n ∈ I}, I ⊆ N, then the Fourier-Bohr series associated with f is
the formal series

f ∼
∑

n∈I

f̂(λn)e
iλnt.

One of our main tools will be the following approximation theorem (see [10] or
[7]).

Theorem B The following assertions hold:

(1) The Fourier-Bohr series uniquely determines f whenever f ∈ AP.
(2) Let f be an almost periodic function on R with Bohr spectrum σ(f). Then

there exists a sequence (qn) of generalized trigonometric polynomials with
σ(qn) ⊆ σ(f) converging uniformly to f .

In the present paper we are concerned with the algebras

APΛ = {f ∈ AP : σ(f) ⊆ Λ},

where Λ runs through a certain class of groups/semigroups of the additive group
(R,+). Recall that a semigroup of R or N is just an additive subset of R, re-
spectively N, containing the origin. In [13] it was shown that APΛ is a closed
subalgebra of AP. Let us point out that AP has many other closed subalgebras
that are not of this form. For example, take fn(t) = ei(2n−1)t + ei2nt. Then the
uniform closure A of the linear span of these functions fj together with the con-
stants is such a counterexample . To see this, just observe that the Fourier-Bohr
coefficients of the fj have the property that an even one coincides with the odd
one just preceding it. This carries over to the linear hull of the fj with 1 and to
the closure.

One of the main results in [13] is that the stable ranks of APΛ are infinite
provided the dimension of the Q-vector space [Λ] generated by Λ is infinite. In
particular, bsrAP = bsrAP+ =∞ where AP+ := APR+ .

It remained an open problem whether there are any algebras of this type APΛ

with infinite stable ranks, but for which dim[Λ] < ∞. The algebra APQ seemed
to be a potential candidate. In the present paper we show that this is not the
case. More precisely, we will prove the following Theorem:
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Theorem 1.3.

(1) tsrAPQ = 1 and tsr APQ+ = 2.
(2) bsrAPQ = bsrAPQ+ = 1.

We will also determine the stable ranks of the algebras APΛ, where Λ is a
subgroup of Z or a sub-semigroup of N. Let us recall from [13, Theorem 3.6]
(also stated in the Epilog as Theorem F) that APZ is isometrically isomorphic to
C(T,C) and APN isometrically isomorphic to the disk algebra A(D). Here is our
second set of new results:

Theorem 1.4. Let Λ be a sub-semigroup of N such that gcdΛ = 1. Then the
following assertions hold:

(1) S := N \ Λ is finite.
(2) APΛ is isometrically isomorphic to

{f ∈ A(D) : f (j)(0) = 0 for j ∈ S}.

(3) bsrAPΛ = 1 and tsr APΛ = 2.

For the reader’s convenience, we also give the pertinent definitions of the alge-
braic concepts of stable ranks, introduced by Bass and Rieffel and first studied
in the realm of function spaces by Vaserstein [16].

Definition 1.5. Let A be a commutative unital algebra (real or complex) with
identity element denoted by 1.

[(1)] An n-tuple (f1, . . . , fn) ∈ An is said to be invertible (or unimodular), if
there exists (x1, . . . , xn) ∈ An such that the Bézout equation

∑n
j=1 xjfj = 1 is

satisfied. The set of invertible n-tuples is denoted by Un(A). Note that U1(A) =
A−1, the group of invertible elements in A.

An (n + 1)-tuple (f1, . . . , fn, g) ∈ Un+1(A) is called reducible (in A) if there
exists (a1, . . . , an) ∈ A

n such that (f1 + a1g, . . . , fn + ang) ∈ Un(A).
[(2)] The Bass stable rank of A, denoted by bsrA, is the smallest integer n such

that every element in Un+1(A) is reducible. If no such n exists, then bsrA =∞.
[(3)] If, additionally, A is endowed with a topology T , then the topological

stable rank, tsrA := tsrT A, of (A, T ) is the least integer n for which Un(A) is
dense in An, or infinite if no such n exists. Some people also call this the Rieffel
rank.

It is well known that for Banach algebras one has bsrA ≤ tsrA. For the most
basic function algebras we have the following facts:

Let X be a normal space. Then

tsrC(X,R) = bsrC(X,R) = dimX + 1,

tsrC(X,C) = bsrC(X,C) =
⌊
dimX

2

⌋
+ 1,

where dimX is the covering dimension of X. If X is not compact, then one
endows C(X,K) with the topology of uniform convergence, a basis of which is
given by the system

Uε(f) = {g ∈ C(X,K) : sup
x∈X

|f(x)− g(x)| < ε}, ε > 0.
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A similar statement holds for the algebras Cb(X,K) of bounded continuous
functions. These results are due to Vaserstein [16]. In particular, since for a
subgroup Λ of R the space A := APΛ is a selfadjoint, uniformly closed subalgebra
of Cb(R,C), hence (due to the Gelfand-Naimark Theorem) isomorphic isometric
to C(M(A),C), we have

bsrA = tsrA =

⌊
dimM(A)

2

⌋
+ 1,

where M(A) is the spectrum (=maximal ideal space) of A.
If A = A(D) or A = H∞(D), the algebra of bounded holomorphic functions on

D, then bsrA = 1 and tsrA = 2 (Jones-Marshall-Wolff [11] and Corach-Suárez
[8] for A(D) ) and Treil [15] for H∞(D). Actually, Treil [15] proved the following
refined version with norm control on the solutions of the equation 1 = uf +Gg,
u invertible:

Theorem C [Treil] Let f, g ∈ H∞(D) satisfy ||f ||∞ ≤ 1, ||g||∞ ≤ 1 and

inf
z∈D

(|f(z)|+ |g(z)|) =: δ > 0.

Then there exist G ∈ H∞(D) and u ∈ H∞(D) such that u is invertible in H∞(D),

1 = uf +Gg

and

||G||∞ + ||u||∞ + ||u−1||∞ ≤ c

for some constant c > 0 depending only on δ.

As a consequence, we obtain the following solution to the generalized Bézout
equation for polynomials. That result will be the key for constructing solutions to
this equation in the APΛ-setting. It is based on the use of the following function
spaces:

Definition 1.6. The Wiener algebra

W+(D) =
{ ∞∑

n=0

anz
n : ||f ||W+ =

∞∑

n=0

|an| <∞
}
,

and its associate Wiener-AP algebra

APWQ+ :=
{ ∑

rn∈Q+

ane
irnt ∈ APQ+ :

∞∑

n=0

|an| <∞
}
,

where (rn) is an enumeration of Q+ := {q ∈ Q : q ≥ 0}.

To better distinguish the different norms appearing here, we additionally use
the following notation: if E ⊆ C, then for a function f defined at least on E, we
put ||f ||E := sup{|f(z)| : z ∈ E}.

Corollary 1.7. Let p, q ∈ C[z] satisfy ||p||T ≤ 1, ||q||T ≤ 1 and

inf
z∈D

(|p(z)|+ |q(z)|) =: δ > 0.
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Then there exists χ ∈ C[z] such that

ϕ := p+ χq is invertible in W+(D)

and
||χ||D + ||ϕ||D + ||ϕ−1||D ≤ C

for some constant C > 0 depending only on δ.

Proof. By Treil’s result there are u,G ∈ H∞(D), u invertible in H∞(D), such
that 1 = up+Gq and

||G||∞ + ||u||∞ + ||u−1||∞ ≤ c

for some constant c = c(δ). We may assume that c ≥ 1.
Now consider the dilations Fr given by Fr(z) := F (rz), 0 < r ≤ 1, of all four

functions appearing here. Since p, q ∈ A(D) we may choose r so close to 1 that

||p− pr||D ≤
1

2c
, ||q − qr||D ≤

1

2c
.

Due to 1 = urpr +Grqr, we conclude that

v := urp+Grq ∈ H
∞(D) ∩H∞(D)−1,

because
|v| = |1 + ur(p− pr) +Gr(q − qr)| ≥ 1− 1/2 = 1/2.

Dividing by ur yields:

ψ :=
v

ur
= p+

Gr

ur
q.

Since ur has no zeros on D, h := Gr/ur ∈ A(D) and ψ ∈ H∞(D) ∩ H∞(D)−1.
Moreover, since |p| ≤ 1 and |q| ≤ 1,

1/2

c
≤ |ψ| =

|v|

|ur|
≤
|ur|+ |Gr|

|ur|
≤

c

1/c
= c2.

Now we approximate h by a polynomial χ such that ||h− χ||D ≤ 1/(4c). Then

ϕ := p+ χq ∈ C[z]

has no zeros on D, because (with ψ = p+ hq)

|ϕ| ≥ |ψ| − |ψ − ϕ| = |ψ| − |q| |χ− h| ≥
1

2c
−

1

4c
=

1

4c
> 0.

Hence, ϕ is invertible in W+(D). Finally, by noticing that |h| = |Gr|/|ur| ≤ c2,

|χ| ≤ 1 + ||h||D ≤ 1 + c2,

and so

||χ||D + ||ϕ||D + ||ϕ−1||D ≤ (1 + c2) + (2 + c2) + 4c ≤ 9c2 =: C. �

We also need the following general results on stable ranks. Theorem D, due to
C. Badea [2], gives a nice characterization of the topological stable rank.

Theorem D [Badea] Let A = (A, | · |) be a commutative unital Banach algebra
over K = R or K = C. For a = (a1, . . . , an) ∈ A

n, let ||a|| =
∑n

j=1 |aj| be a fixed
norm on the product space. Then the following assertions are equivalent:
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(1) tsrA ≤ n;
(2) For every (a, g) ∈ Un+1(A) and given ε > 0, there is v ∈ Un(A) and

y ∈ An such that
i) ||v − a|| < ε,
ii) v = a+ y g.

Part (3) of the next result was already given in [12]. For the reader’s conve-
nience we reprove it here in order to have a better comparison possibility with
the proofs of the other three items.

Theorem 1.8. Let A be a commutative unital algebra over the field K = R or
K = C and let I be a proper ideal in A. Then

(1) R := K+ I is a unital algebra with 1R = 1A ;
(2) Un(R) = Un(A) ∩R

n.
(3) bsrR ≤ bsrA.

If, additionally, A is a commutative unital Banach algebra over K and I a proper
closed ideal in A, then

(4) B := K+ I is a Banach algebra and tsrB ≤ tsrA.

Proof. (1) Just use that (α+ f)(β + g) = αβ + h for f, g, h ∈ I and α, β ∈ K. It
is clear that 1A = 1R. We denote this unit by 1.
(2) Let f = (f1, . . . , fn) ∈ Un(A)∩R

n. We first deal with the case n = 1. Then
there is α1 ∈ K, F1 ∈ I and x1 ∈ A such that f1 = α1 + F1 and

(α1 + F1)x1 = 1.

Now α1 6= 0, because otherwise F1 = f1 ∈ I ∩ A−1; a contradiction to the
assumption that I is a proper ideal. Since F1x1 ∈ I, we deduce that α1x1 =
1− F1x1 ∈ R. Hence x1 ∈ R (because α1 6= 0), and so f1 ∈ U1(R).

Now let n be arbitrary. Then at least one of the elements fj does not belong
to I, because otherwise A =

∑n
j=1 fjA ⊆ I, and so I would no longer be proper.

Say f1 /∈ I. Since f1 ∈ R, we have f1 = α1 + F1 with α1 ∈ K and F1 ∈ I, where
once again α1 6= 0.
Consider now the tuple

F := (α1 + F1, F1f2, . . . , F1fn) = (f1, F1f2, . . . , F1fn).

Then its components cannot belong to a joint maximal ideal of A. In fact, suppose
that there would exist a maximal ideal M such that f1 ∈ M and F1fj ∈ M for
each j. Then F1 ∈ M , because otherwise, due to the primeness of maximal
ideals, every fj would belong to M , which is a contradiction to f ∈ Un(A). But
α1 + F1 ∈ M , too. So α1 ∈ M ; which is impossible, since α1 6= 0. We conclude
that F ∈ Un(A) ∩R

n. Hence there exist xj ∈ A such that

x1(α1 + F1) +
n∑

j=2

xj(F1fj) = 1.

Where as usual K is identified with K · 1A.
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Since hj := xjF1 ∈ I ⊆ R, we obtain

r := x1(α1 + F1) ∈ R,

and so, due to α1x1 = r − x1F1 ∈ R + I ⊆ R, x1 ∈ R. We conclude that∑n
j=1 hjfj = 1 (where h1 := x1). In other words, f ∈ Un(R). Since the inclusion

Un(R) ⊆ Un(A) ∩R
n, is obvious we obtain assertion (2).

(3) We may assume that n := bsrA < ∞. Let (f1, . . . , fn, h) be an invertible
tuple in R.

Case 1: Suppose there is j0 such that fj0 = α + F for some F ∈ I and
α ∈ K, α 6= 0. Then (f1, . . . , fn, Fh) is an invertible tuple in R, too. In fact,
suppose that the ideal J = f1R + · · · + fnR + FhR is contained in a maximal
ideal M of R. Since M is prime, either F or h is in M . But, by our hypothesis,
h can’t; so F is in M . But then α = fj0 − F ∈M ; a contradiction.

Since A has stable rank n, there exist xj ∈ A such that

(f1 + x1Fh, . . . , fn + xnFh)

is an invertible tuple in An. But xjF ∈ I ⊆ R. Since by (2), Un(R) = Rn∩Un(A),
we conclude that the tuple (f1, · · · , fn, h) is reducible in R.

Case 2: If all the fj are in I, then necessarily h 6∈ I. Hence it is easily checked
that (f1 + h, f2, . . . , fn, h) is an invertible tuple in Rn+1. Note that f1 + h /∈ I; so
we have the situation of the first case (for j0 = 1). Thus there are yj ∈ R such
that

(f1 + h+ y1h, f2 + y2h, . . . , fn + ynh) = (f1 + (y1 + 1)h, f2 + y2h, . . . , fn + ynh)

is an invertible tuple in Rn. We deduce that (f1, . . . , fn, h) is reducible in R.
(4) It is straightforward to check that B is closed in A. For the remaining

assertion, we may assume that n := tsrA < ∞. Let f := (f1, . . . , fn) ∈ B
n and

ε > 0.
Case 1: If there is j0 such that fj0 = α+ F for some F ∈ I and α ∈ K, α 6= 0,

then

(f1, . . . , fn, F ) ∈ Un+1(B) ⊆ Un+1(A).

By Theorem D, there is v ∈ Un(A) and y ∈ An such that ||v − f || < ε and
v = f + y F . But y F ∈ In; so v ∈ Bn. Due to (2), v ∈ Un(B).

Case 2: If all the elements fj belong to I then, for each ε > 0, the n-tuple
(f1 + ε, . . . , fn) ∈ B

n satisfies the condition of Case 1. Hence, there is v ∈ Un(B)
such that ||v − f || < 2ε. Hence Un(B) is dense in Bn. �

2. The algebras APQ and APQ+

To study the algebra APQ+ we need the following result(s) given in [7] and [13]
that allow us to consider the functions in APQ+ , or more generally AP+ := APR+ ,
as boundary values of bounded holomorphic functions in the upper half plane

C+ = {z ∈ C : Im z > 0}.
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Theorem E Let AP+
hol denote the uniform closure in Cb(C

+,C) of the set of
all functions of the form

q(z) =
n∑

j=1

aje
iλjz,

where aj ∈ C, λj ∈ R+, and n ∈ N∗. Then

(1) AP+
hol is a closed subalgebra of H∞(C+).

(2) Every function f ∈ AP+
hol has a continuous extension, f ∗, to the boundary

R of C+.
(3) f ∗ ∈ AP+ and ||f ||C+ := supz∈C+ |f(z)| = ||f ∗||∞.
(4) AP+ is isomorphic isometric to AP+

hol.
(5) If g ∈ AP+, then its Poisson-integral

[g](z) :=

∫

R

Py(x− t)g(t) dt, z = x+ iy ∈ C+

belongs to AP+
hol and [g]∗ = g.

(6) The Poisson operator AP→ C(C+,C), f 7→ [f ] is multiplicative on AP+.
(7) AP+ is the set of functions in AP that admit a bounded holomorphic

extension to C+.
(8) C+ can be embedded in the spectrum (maximal ideal space) of APQ+ (and

AP+), via the functionals δz : f 7→ [f ](z) and the Gelfand transform f̂
restricted to these functionals coincides with this Poisson extension.

Now we are ready to prove Theorem 1.3.

tsr APQ = 1.

Let f ∈ APQ. According to Theorem B, let p be a generalized trigonometric
polynomial with σ(p) ⊆ Q such that ||f − p||∞ < ε/3, say

p(t) =
N∑

j=1

aje
irjt,

where aj ∈ C and rj = sj/m ∈ Q with sj ∈ Z and m ∈ N∗, (j = 1, . . . , N).
Associate with p the rational function

P (w) =
N∑

j=1

ajw
sj ∈ C(T).

Then P (eit/m) = p(t). Since tsrC(T) = 1 (see [16]), there exists G ∈ C(T), G 6= 0
on T such that ||G− P ||T < ε/3. Say |G| ≥ δ > 0 on T.

Using Weierstrass’ approximation theorem, there is a polynomial Q(ξ, η) ∈
C[ξ, η] such that

max
w∈T

|Q(w,w)−G(w)| < min{δ/2, ε/3}.

Now

q(t) := Q(eit/m, e−it/m) ∈ APQ
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and ||q − f ||∞ < ε. Moreover, |q| ≥ δ/2 on R. Hence, by Theorem [13, Proposi-
tion 2.4], q ∈ AP−1Q . Thus tsrAPQ = 1.

tsrAPQ+ = 2.

We first unveil a function f that cannot be uniformly approximated by func-
tions invertible in APQ+ , showing that tsrAPQ+ ≥ 2. Just take f(t) = eit − e−1

and note that the Poisson extension of f(t) has the form f(z) = eiz − e−1, a
holomorphic function that vanishes at z0 = i. By Hurwitz’s Theorem, f cannot
be uniformly approximated on C+ by holomorphic functions having no zeros on
C+. Theorem E (3), (8) now imply that f is the desired function.

Next we show that tsrAPQ+ ≤ 2. Let (f, g) ∈ (APQ+)2. By Theorem B, for

ε > 0, there is a pair of generalized trigonometric polynomials (p, q) ∈ (APQ+)2

such that ||p− f ||∞ + ||g − q||∞ < ε/2. Now

p(t) =
N∑

j=1

aje
irjt and q(t) =

N∑

j=1

bje
ir′jt,

where aj, bj ∈ C and rj, r
′
j ∈ Q+. We may write rj = mj/m and r′j = m′

j/m for
mj,m

′
j,m ∈ N, m 6= 0.

Associate with (p, q) the polynomials (P,Q) defined as

P (z) =
N∑

j=1

ajz
mj and Q(z) =

N∑

j=1

bjz
m′j .

Then
P (eit/m) = p(t) and Q(eit/m) = q(t).

Choose 0 < ε′ < ε/2 so that ε′ /∈ P (Z(Q)), where Z(Q) is the zero-set of Q.
Then (P − ε′, Q) is a pair of polynomials having no common zero. Hence there
is another pair (P ′, Q′) of polynomials in C[z] such that P ′(P − ε′)+Q′Q = 1. If
we let

p′(t) = P ′(eit/m) and q′(t) = Q′(eit/m)

then p′ and q′ belong to APQ+ and p′(p− ε′) + q′q = 1. Since

||p− ε′ − f ||+ ||q − g|| < ε′ + ε/2 < ε,

we have approximated (f, g) by an invertible pair (p − ε′, q) ∈ (APQ+)2. Hence
tsrAPQ+ ≤ 2.

bsrAPQ = 1.

This is obvious due to the inequality bsrA ≤ tsrA for any Banach algebra.

bsrAPQ+ = 1.

Let (f, g) be an invertible pair in APQ+ ⊆ AP+. Without loss of generality,
we may assume that ||f ||R ≤ 1/2 and ||g||R ≤ 1/2. Since C+ can be viewed of as
part of the spectrum of APQ+ (Theorem E), we have

inf
z∈C+

|f̂(z)|+ |ĝ(z)| =: δ > 0,
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where f̂ is the Gelfand transform (or equivalently) the Poisson extension of f .
According to Theorem B, let (p, q) be a pair of generalized trigonometric poly-
nomials with σ(p) ∪ σ(q) ⊆ Q+, such that

||p− f ||R + ||q − g||R < ε := min

{
δ

2
,
1

2
,

1

2C2

}
,

where C = C(δ/2) is the constant from Corollary 1.7. Without loss of generality,

we may assume that C > 1. Now, if f(t) = eiλt, λ ≥ 0, then f̂(z) = eiλz. Since
p and q are bounded on R, the maximum principle for holomorphic functions
therefore implies that

||p̂− f̂ ||C+ + ||q̂ − ĝ||C+ < ε

as well. Moreover, on C+,

|p̂(z)|+ |q̂(z)| ≥ |f̂ |+ |ĝ| −
(
|f̂ − p̂|+ |ĝ − q̂|

)
≥ δ − δ/2 = δ/2.

Next we use the special structure of the functions p̂ and q̂. We deduce from the
facts p ∈ APQ+ and q ∈ APQ+ that

p̂(z) =
∑N

j=1 aje
i(sj/m)z for some aj ∈ C, sj ∈ N and m ∈ N∗,

and
q̂(z) =

∑N
j=1 bje

i(kj/m)z for some bj ∈ C, kj ∈ N and m ∈ N∗.

Next we consider for z ∈ C the entire function h(z) = e(i/m)z. It is straight-
forward to check that h maps C+ ∪ R onto D \ {0}. Using the (non-injective)
variable transformation w = h(z), we see that the polynomials

P (w) =
∑N

j=1 ajw
sj and Q(w) =

∑N
j=1 bjw

kj

have the following properties:

i) |P (w)|+ |Q(w)| ≥ δ/2 for all w ∈ D;
ii) ||P ||D ≤ 1 and ||Q||D ≤ 1.

By Corollary 1.7, there exists χ ∈ C[z] such that

ϕ := P + χQ is invertible in W+(D)

and
||χ||D + ||ϕ||D + ||ϕ−1||D ≤ C

where C > 1 is the previously introduced constant. Let Φ(z) := ϕ(h(z)). Since
h(t) = e(i/m)t ∈ APQ+ , we see that

Φ|R ∈ (APWQ+)−1.

In particular, (Φ|R)
−1 ∈ APQ+ . With K(z) := χ(h(z)) ∈ APtrig

Q+ , we obtain

Φ = p̂+K q̂.

Now, on R,

f +Kg = Φ+ (f − p) + (g − q)K = Φ ·
(
1− Φ−1(p− f)− Φ−1(q − g)K

)
.

But

||Φ−1(p− f) + Φ−1(q − g)K||R ≤ C
1

2C2
+ C

1

2C2
C < 1.
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Hence, by a basic Banach-algebraic property, the restriction of the function
Φ−1(p− f)+Φ−1(q− g)K to R is invertible in APQ+ . Thus, by letting k := K|R,
we conclude that f + kg is invertible in AP+

Q. Consequently, bsrAPQ+ = 1 .

3. The algebras APΛ where Λ is a subgroup of Z or a semigroup in N

For matter of completeness we recall the following nice result, forming part of
common knowledge. Part (1) e.g. is in [1, p.45].

Theorem 3.1. Let Λ be a subgroup of Z. Then the following assertions hold:

(1) Λ = mZ for some m ∈ N.
(2) APΛ is a self-adjoint algebra; that is, f ∈ APΛ implies f ∈ APΛ.
(3) If ϕ(x) = xm, then APΛ is isometrically isomorphic to

{f ◦ ϕ : f ∈ C(R,C), f is 2π-periodic}.

(4) bsrAPΛ = tsrAPΛ = 1.

Proof. (1) Let Λ be a subgroup Z. We may assume that 1 /∈ Λ, otherwise Λ = Z.
Let m > 0 be the smallest positive element in Λ. Take k ∈ Λ. Due to the
Euclidean algorithm, k = qm + r with 0 ≤ r < m. Since k − qm ∈ Λ (as it is
a group), r ∈ Λ. This is a contradiction to the minimality of m if r 6= 0. Thus
Λ = mZ.

(2) If eiλt ∈ APΛ, then e−iλt ∈ APΛ (since Λ is a group). Hence APΛ is
self-adjoint.

(3) By (1), Λ = mZ. By Theorem B, each f ∈ APΛ is the uniform limit

of trigonometric polynomials of the form p(t) =
∑N

j=−N aje
ijmt. Since by Weier-

strass’ Theorem, each continuous 2π-periodic function is a limit of genuine trigono-
metric polynomials

∑k
j=−k cje

ijt, we conclude that APΛ is isometrically isomor-
phic to

R = {f ◦ ϕ : f ∈ C(R,C), f is 2π-periodic}.

(4) Since tsrC(T,C) = ⌊dimT

2
⌋+1 = 1, we may approximate p(z) =

∑N
j=−N ajz

j

on T by such a function q(z) =
∑N

j=−N bjz
j having no zeros on T. Hence q(eitm)

is uniformly close on R to p(eitm) which itself approximates f(t). �

It remains to prove Theorem 1.4.

Proof. (1) By assumption, let Λ be a sub-semigroup of N such that gcdΛ = 1.
We may assume that 1 /∈ Λ, otherwise Λ = N. In order to show that S := N \ Λ
is finite, we claim that there is n1, . . . , nm ∈ Λ such that gcd(n1, . . . , nm) = 1.
Write Λ = {n1, n2, . . . } in an increasing order and let dk := gcd{n1, n2, . . . , nk}.
Then dk+1 ≤ dk. Thus (dk) must eventually be stationary, say dk = d for k ≥ k0.
Then d divides all the elements in Λ and so d = 1. This proves the claim.

Using the Euclidean algorithm, there are sj ∈ Z such that 1 =
∑m

j=1 sjnj. Not
all sj can be positive. By re-enumerating the data here, we may assume that
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s1, . . . , sr ≥ 0 and sr+1, . . . , sm < 0. Hence

r∑

j=1

sjnj

︸ ︷︷ ︸
:=p

−

m∑

j=r+1

|sj|nj

︸ ︷︷ ︸
:=q

= 1.

Note that p, q ∈ Λ. Now we have

1 +m1q = p+ (m1 − 1)q ∈ Λ ∀m1 ≥ 1

2 +m2q = 2p+ (m2 − 2)q ∈ Λ ∀m2 ≥ 2
...

(q − 1) +mq−1q = (q − 1)p+
(
mq−1 − (q − 1)

)
q ∈ Λ ∀mq−1 ≥ q − 1.

Thus, j + kq ∈ Λ for all k ≥ q and j = 0, 1, . . . , q − 1, and we conclude that
S = N \ Λ is finite.

(2) Next we prove that APΛ is isometrically isomorphic to

AS := {f ∈ A(D) : f (j)(0) = 0 for j ∈ S}.

This is an easy consequence of the fact that the map

ΦΛ :

{
AS → APΛ

f 7→ f(eit)

assigning to the disk-algebra function f its boundary function is an isometric
isomorphism. The latter is due to the denseness in AS of the polynomials whose
coefficients associated with the monomials zn are zero whenever n ∈ S.

(3) In view of (2) it suffices to determine the stable ranks (which are invariant
under isometric isomorphisms) for the algebra AS. Let us first give a concrete
example to illustrate the method. If Λ = 3N + 5N, then S = {1, 2, 4, 7}. Now
each f ∈ AS writes as

f(z) = a0 + a3z
3 + a5z

5 + a6z
6 + z8g = a0 + z3(a3 + z2(a5 + z(a6 + z2g))).

for some g ∈ A(D). Note that the powers in the second representation are the
successive differences of the powers in the first representation. Thus

AS = C+ z3(C+ z2(C+ z(C+ z2A(D)))).

Since zkA(D) is a closed ideal in A(D), we get the conclusion bsrAS = 1 from
Theorem 1.8. Since z3 ∈ AS, tsrAS cannot be equal to one, because by Hurwitz’s
Lemma the uniform limit of zero-free functions is either zero-free or constant 0.
Thus, by Theorem 1.8 again, 2 ≤ tsrAS ≤ tsrA(D) = 2. The general case for an
arbitrary semigroup Λ of N should be clear by now. Here are the details. First
note that 1 ∈ S, but not 0. We may assume that Λ 6= N, as otherwise we know
bsrAPN = 1 and tsrAPN = 2.
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Let N\Λ = {d0, . . . , dr}, where d0 < d1 < · · · < dr. As Λ 6= N, we have d0 = 1.
Given f ∈ AS, we can write, analogously to the above example,

f(z) = a0 + a1z
d1+1 + · · ·+ ar−1z

dr−1+1 + zdr+1g

= a0 + zd1+1
(
a1 + · · ·

(
ar−2 + zdr−1−dr−2

(
ar−1 + zdr−dr−1g

) ))
,

for some complex numbers a0, · · · , ar and some g ∈ A(D). Thus

AS = C+ zd1+1
(
C+ · · ·

(
C+ zdr−2−dr−1(C+ zdr−dr−1A(D))

))
.

Since zdr+1A(D) is a closed ideal in A(D), we get the conclusion bsrAS = 1 from
Theorem 1.8. As zdr+1 ∈ AS, we see that tsrAS cannot be 1, thanks to Hurwitz’s
Lemma, since the uniform limit of zero-free functions (converging to zdr+1) must
be either zero-free or constant. So by Theorem 1.8 again, 2 ≤ tsrAS ≤ tsrA(D) =
2. �

As an amusing byproduct we obtain the following: Why the vector spaces
{f ∈ A(D) : f ′(0) = 0} and {f ∈ A(D) : f (j)(0) = 0} for j = 1, 2, 4, 7 are
algebras, whereas {f ∈ A(D) : f ′′(0) = 0} is not an algebra? Well, this is just
a consequence of the fact that {2} is not the complement of a semigroup in N,
whereas {1} = N \ (2N + 3N) and {1, 2, 4, 7} = N \ (3N + 5N) is. We have the
following result:

Proposition 3.2. Let I ⊆ N∗ be a finite set. Then the vector space

{f ∈ A(D) : f (j)(0) = 0 for j ∈ I}

is an algebra if and only if I is the complement of a semigroup Λ in N with
gcdΛ = 1.

4. Epilog

In view of the results in this paper and in [13], we conjecture that the following
holds:

Conjecture 4.1. Let Λ be an additive sub-semigroup of R+, but not a group,
for which N := dim Q[Λ] <∞ (the dimension of the Q-vector space generated by
Λ). Then

(1) bsrAPΛ =
⌊
N
2

⌋
+ 1;

(2) tsrAPΛ = N + 1.

If Λ is a group with N := dimQ[Λ] <∞, then we guess that

bsrAPΛ = tsrAPΛ =

⌊
N

2

⌋
+ 1.

The support for this conjecture comes from the results above and the following
result that was established in [13]:
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Theorem F Suppose that Λ0 = {λ1, . . . , λN} is a set of Q-linearly independent,
positive reals. Let

Λ1 :=
{ N∑

j=1

sjλj : sj ∈ N

}

and

Λ2 =
{ N∑

j=1

sjλj : sj ∈ Z

}
.

Then

A1 := APΛ1
= {f ∈ AP : σ(f) ⊆ Λ1}

is a uniformly closed subalgebra of AP+ that is isomorphic isometric to A(DN)
and

A2 := APΛ2
= {f ∈ AP : σ(f) ⊆ Λ2}

is a uniformly closed subalgebra of AP that is isomorphic isometric to C(TN ,C).
In particular, by [9],

bsrA1 = bsrA(DN) =

⌊
N

2

⌋
+ 1, tsrA1 = tsrA(DN) = N + 1,

bsrA2 = bsrC(TN ,C) =

⌊
N

2

⌋
+ 1 and tsrA2 = tsrC(TN ,C) =

⌊
N

2

⌋
+ 1.
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9. G. Corach, F. D. Suárez, Dense morphisms in commutative Banach algebras, Trans. Amer.

Math. Soc. 304 (1987), 537–547.
10. C. Corduneanu, Almost Periodic Functions Chelsea P.C., New York, 1989.
11. P.W. Jones, D. Marshall, T.H. Wolff, Stable rank of the disc algebra, Proc. Amer. Math.

Soc. 96 (1986), 603-604.



ALMOST PERIODIC FUNCTIONS 15

12. K. Mikkola, A. Sasane, Bass and topological stable ranks of complex and real algebras of

measures, functions and sequences, Complex Anal. Oper. Theory 4 (2010), 401–448.
13. R. Mortini, R. Rupp, The Bass and topological stable ranks for algebras of almost periodic

functions on the real line, Trans. Amer. Math. Soc. 368 (2016), 3059–3073.
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