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Systematic Analysis and Biomarker 
Study for Alzheimer’s Disease
Xinzhong Li  , Haiyan Wang , Jintao Long , Genhua Pan , Taigang He , Oleg Anichtchik , 

Robert Belshaw , Diego Albani  , Paul Edison , Elaine K Green  & James Scott

Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with 

Alzheimer’s Disease (AD) will help us to understand the pathology of this disease. In this study, we 

two independent AD blood datasets and performed a gene-based genome-wide association study to 

tissues and disease status, including the known , and the novel  and . A machine 

, , implicating mitochondrial 

and ribosomal function, was discovered which discriminated between AD patients and controls with 

= =

κ

important dysregulated pathways in AD pathogenesis.

Alzheimer’s Disease (AD) accounts for 60–80% of all dementia cases (http://www.alz.org). By 2050, the number 
of people with AD is predicted to increase from 5.4 million to between 11 and 16 million in the U.S alone, and it 
is estimated that dementia will cost $2 trillion by 2030 worldwide (http://www.alz.org). Despite these alarming 
numbers, there is no e!ective strategy to identify pre-symptomatic disease, which might be the only stage of the 
disease’s trajectory where we could intervene.

Genomics and genetics approaches have made great progress in revealing the mechanisms underlying 
Alzheimer’s disease. Genome-wide association studies (GWAS) and meta-analyses have identi"ed 23 statistically 
signi"cant AD associated genes1. In total 39 AD risk genes have been identi"ed so far2,3, including APOE, APP, 
TRIP4, ABCA7, and SORL1. #ese genes highlight the importance of various pathways involved in AD, such as 
immune response and in&ammation, cell migration, lipid transport and endocytosis, hippocampal synaptic func-
tion and other cell regulatory processes, along with the role of tau and amyloid protein1. #e majority of published 
gene expression studies have been performed using post-mortem brain tissues and as such have focused on the 
later stages of the advanced disease4–7. A key need is to explore how these changes in the brain relate to changes in 
the blood. #e availability of gene expression data from brain tissue and blood cells now make it possible to com-
pare these two tissues, and holds out the possibility of identifying in the blood a panel of predictive biomarkers 
that are mechanistically associated with this disease in the brain.

No single biomarker, e.g., gene or protein, is likely be a reliable biomarker for early AD. Previous studies have 
therefore used machine learning (ML) to build multi-biomarker models for clinical diagnosis and prediction of 
AD based on measurement of RNA, protein, and lipid levels in blood samples8,9. Support Vector Machine (SVM) 
and random forest (RF) models have proved predictive in distinguishing between cognitively normal, mild cogni-
tive impairment (MCI), i.e. prodromal AD, and subjects with AD using gene expression10,11 and blood analytes12. 
Pathway-based classi"cation approaches for blood-based AD diagnosis have also been used, with age and APOE4 
status of the subjects included as covariates (these are the two known biggest risk factors13). However, as these 
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studies were performed on a variety of platforms with di!erent initial feature sizes and relatively small sample 
size, very few potential biomarkers have so far been identi"ed or replicated in larger cohort study14.

Our study has two parts. #e "rst was a system analysis to identify di!erentially expressed genes (DEGs) and 
pathways in a large-scale human blood dataset, and integrate these with results from brain tissue to comprehen-
sively explore the correlations between blood and brain. #e second part was to apply ML techniques to identify 
a panel of potential predictive biomarkers in the blood, and to see whether gene expression in the blood can be 
used as a biomarker for AD diagnosis.

Two independent human whole blood nor-
malized mRNA gene expression datasets were downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/): 
GSE63060 and GSE63061 from the AddNeuroMed Cohort15. We merged these two normalized datasets (gen-
erated by di!erent Illumina platforms) using the inSilicoMerging R package16, and then extracted 143 patients 
with AD, 77 MCIs and 104 controls subjects (CTL) from GSE63060; 102 patients with AD, 65 MCIs and 78 
CTLs from GSE63061 with Western European and Caucasian ethnicity respectively. Probesets without annota-
tion (Entrez_Gene_ID) were "ltered out, which le$ 22756 probesets corresponding to 16928 unique genes. #e 
limma R package17 was then applied and adjusted by age and gender to identify DEGs (a) between AD patients 
and CTLs, (b) between MCI patients and CTL groups, and (c) between AD and MCI patients. #ese comparisons 
were carried out in the two GEO datasets and in the merged one (referred to as the merged discovery dataset) 
separately. We focused on this merged discovery dataset for downstream analysis with the Benjamini-Hochberg 
adjusted p-value, i.e. BH.pval of 0.01 used as the signi"cance level for DEG identi"cation.

In order to evaluate the DEGs identi"ed in our above discovery dataset, two additional datasets were down-
loaded for analysis. Firstly, the whole blood gene expression dataset (GSE6613) was download from GEO. #e 
A!ymetrix U133A CEL pro"les were normalized by RMA18 method implemented in a!y R package. Probesets 
were "ltered out if (1) they were not annotated or were multiply annotated; or (2) they were present in less than 
10 percent of the samples as determined by applying the MAS5 present/absent call algorithm (a!y R package). 
DEGs were identi"ed by applying limma with age and gender adjusting. Nominal pval < 0.01 was used for sig-
ni"cance because we observed that no DEG could pass multiple testing (BH.pval > 0.05, see discussion section). 
#is dataset includes samples for AD, MCI, CTL, as well as Parkinson disease (PD). We excluded PD samples a$er 
data normalisation.

The second evaluation blood gene expression dataset was downloaded from the Alzheimer’s Disease 
Neuroimaging Initiative website (ADNI, http://www.adni-info.org/). The ADNI was launched in 2003 as a 
public-private partnership led by Principal Investigator Michael W. Weiner, MD. #e primary goal of ADNI 
has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 
biological markers and clinical and neuropsychological assessment can be combined to measure the progression 
of MCI and early AD. In our study, we focused on the ADNI2 Caucasian population with disease status according 
to baseline diagnosis. #is cohort has APOE4 information for each individual participant. Limma was applied 
to each APOE4 group (APOE4 = 0, APOE4 = 1, APOE4 = 2), adjusting for age, gender, RIN, RNA purity ratio 
A260/280 and A260/230 separately to detect DEGs between patients with AD and CTL, early MCI (EMCI) and CTL, 
late-MCI (LMCI) and CTL. A nominal p-value of <0.01 was used for signi"cance since no DEG could pass 
multiple testing (see discussion section). We present results on the APOE4 = 1 group because there were similar 
numbers of cases for each disease status in this group, but very few AD cases in the other two APOE4 groups.

The GSE84422 dataset includes human 
post-mortem brain samples taken from 19 brain regions for an AD study6. #e cohort used is totally independ-
ent to the above blood cohorts. Gene expression pro"les of 17 brain regions were generated by both A!ymetrix 
U133A and U133B platforms, and pro"les for other two regions were generated by the U133plus2 platform. 
We processed the raw CEL "les as above, identi"ed DEGs for each platform separately adjusted by age, gender, 
post-mortem interval (PMI) and pH values using limma, as applied in the original study6, and merged them 
together a$erwards to obtain 19 lists of DEGs. Nominal pval < 0.01 was applied for signi"cance, again since no 
DEG could pass multiple testing (i.e. BH.pval > 0.05). We only analysed de"nite AD and CTLs in the Caucasian 
ethnic group. Supplementary Table 1 indicates the sample size in each comparison group including the cases for 
blood datasets.

To clarify, within our study, DEGs either refer to array probesets, when we discuss DEGs within the same data 
cohorts, or unique genes (Entrez_Gene_ID), when we compare results from di!erent cohorts for blood and brain.

Pathway analysis for DEGs. We performed pathway analysis on the identi"ed DEGs using commercial 
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) so$ware. We chose as 
signi"cant those canonical pathways with BH.pval < 0.01.

Gene-based Analysis of GWAS data. The International Genomics of Alzheimer’s Project (IGAP) 
Consortium reported a large-scale of AD GWAS dataset1. #e gene-based analysis tool MAGMA19 was applied 
to the IGAP stage 1 whole genome summary statistics (including 17,008 AD and 37,154 CTLs), with the 1000 
genomes European reference panel used to perform the joint SNP gene-based GWAS study. We searched for 
single-nucleotide polymorphisms (SNPs) within 20 kb up/downstream of each gene (NCBI37.3). Two signif-
icance levels were applied, nominal pval < 0.01 and Bonferroni BF.pval < 0.05 to identify signi"cant genes in 
GWAS, which we refer to as MAGMA genes. #e qvalue package in R was also applied.
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Biomarker discovery by machine learning. We attempted to identify blood biomarkers and classi!-
cation models trained/learned from the GSE63060 dataset and tested in GSE63061, and vice versa. Data were 
adjusted for age and gender by a robust regression model (applying the rlm function in MASS R package); the 
model residual was further centred and scaled to a mean of zero and standard variation of one across all sub-
jects in each dataset for those common probesets. We used the least absolute shrinkage and selection operator 
(LASSO) regression feature selection method20, implemented in the glmnet R package, to investigate the predic-
tion performance of di"erent ML approaches, including SVM, RF and logistic Ridge Regression (RR) models with 
a voting strategy to detect optimal biomarkers and classi!cation models to discriminate AD patients from control 
subjects. #e voting strategy of majority outcomes from the above three ML algorithms was applied to determine 
the !nal predictive outcome. #e LASSO approach shrank most of the coe$cients of variables that have no or 
less discriminatory power to zero, while variables with non-zero coe$cients remained in the !nal LASSO model 
representing the joint discriminatory power to separate patients with AD and controls subjects21. An optimal 
penalty factor lambda was tuned during the cross-validation process. We repeated such LASSO regression with 
5-fold cross-validation (CV) 100 times, and the subset of features with the best CV area under the curve (AUC) 
value for receiver operating characteristic (ROC), or most frequently selected on the training dataset, was kept 
as the selected biomarker panel (feature set). However, if the number of variables selected was less than two, then 
the feature set with sub-optimal AUC would be selected. Feature set selected by LASSO initially started from the 
full feature pool, i.e., 22756 common probesets between GSE63060 and GSE63061. For SVM and RF, we used the 
default setting when calculating the predict accuracy. For RR, we calculated the optimal cut-o" from training with 
optimal AUC and accuracy, and then applied this cut-o" to prediction in testing. Prediction performances of the 
classi!ers were evaluated by AUC, test accuracy (ACC), sensitivity (Sens), and speci!city (Spec). For comparison, 
the area under precision-recall curve (AUPR) were calculated as well using PRROC R package. ROC curves were 
plotted using the ROCR R package22. All this work was conducted by in-house R programs.

Results
DEGs identi!ed in the blood 

merged discovery dataset included 4980 (4276 unique genes) and 6739 (5746 unique genes) probesets for AD 
and MCI respectively (Supplementary Fig. 1), with 4158 common probesets representing 3601 unique genes. 
Only 82 probesets (76 unique genes) were identi!ed as DEGs comparing AD to MCI, and only three of these 82 
were DEGs in both AD and MCI (Supplementary Fig. 2 and Supplementary Table 2). It was observed that DEGs 
in AD (AD-DEGs) are likely to be DEGs in MCI (MCI-DEGs) with a highly signi!cant enrichment (OR = 29.1, 
95%CI 26.7–31.7, pval < 1.0E-16, Fisher test). In addition, those common DEGs shared the same regulatory 
directions in both AD and MCI (Supplementary Fig. 2), i.e., 2018 of them were up-regulated both in AD and 
MCI, while 2140 of them were down-regulated in both AD and MCI. Moreover, those common DEGs have 
larger changes in MCI compared to controls than in AD compared to controls (wilcox.test p.val < 2.2e-16). It is 
interesting that this observation holds for all the DEGs in MCI and AD (wilcox.test p.val < 4.06e-7). In addition, 
both AD-DEGs and MCI-DEGs in blood were signi!cantly associated (absolute Pearson correlation |r| > 0.5) 
with Braak pathological stage (OR > 1.4, pval < 8.62E-14) or frontal atrophy (OR > 1.2, pval < 8.4E-06) in the 
brain subjects with AD when mapped to the data in Zhang’s brain study4 (Supplementary Fig. 3). Furthermore, 
789 AD-DEGs in blood were also DEGs identi!ed by our previous meta-analysis in brain prefrontal cortex (PFC) 
region7 with signi!cant enrichment (OR = 1.48, 95%CI 1.34–1.62, pval < 6.28E-16), and 77.9% of them showed 
the same regulation direction between blood and brain (pval < 2.2E-16, sign test). Similarly, we observed that 
998 MCI-DEGs in blood are also DEGs in the brain of AD patients with signi!cant enrichment (OR = 1.39, 
95%CI 1.27–1.51, pval = 4.90E-13). Peters et al. recently identi!ed 1497 genes as being di"erentially expressed 
with chronological age23, and we observed that AD-DEGs or MCI-DEGs in blood were likely to be ageing-asso-
ciated genes (OR > 2.00, pval < 2.93E-36 for both, Supplementary Fig. 3). AD-DEGs in brain PFC region7 were 
also enriched with these ageing-associated genes, although with a slightly lower level of enrichment (OR = 1.8, 
95%CI 1.6–2.1, pval < 2.2E-16).

Table 1 lists the top 20 DEGs common to both AD and MCI, the top 10 AD-only DEGs, and the top 10 
MCI-only DEGs in blood (see Supplementary Table 2 for the whole list).

Among the 374 DEGs identi!ed in the 
GSE6613 validation dataset (see Methods and Supplementary Table 2), 357 were included in the merged discov-
ery dataset. Although DEGs identi!ed in the discovery dataset had an enrichment of DEGs identi!ed in GSE6613 
(OR = 2.37, 95%CI 1.91–2.95, pval = 8.35E-15; and OR = 2.78, 95%CI 2.24–3.46, pval = 2.74E-21, for AD and 
MCI respectively), only three of the top DEGs listed in Table 1 were re-discovered in GSE6613, namely WDFY3, 
TCIRG1, and NEMF/SDCCAG1.

In the ADNI2 dataset, we identi!ed 416, 630, and 157 DEGs (unique genes) for AD, early MCI (EMCI) and 
late MCI (LMCI) disease status respectively (see Supplementary Table 2). Both AD-DEGs and MCI-DEGs iden-
ti!ed in the merged discovery cohort were enriched with DEGs identi!ed in ADNI2 AD (OR = 1.88, 95%CI 
1.53–2.33, pval = 6.11E-09; OR = 2.02, 95%CI 1.65–2.48, 9.67E-12, for AD and MCI respectively, Supplementary 
Fig. 4). None of the top DEGs listed in Table 1 were re-discovered in the ADNI2 AD dataset. However, HELZ 
was identi!ed as an early MCI-DEG in the sub-cohort of ADNI2 with APOE4 = 1 genotype. #is gene had a 
12% up-regulation in both blood of AD and blood of MCI in the merged discovery dataset. An exome sequenc-
ing study revealed that variants in HELZ are associated with intellectual disability24. HELZ functions as a RNA 
helicases, and RNA helicases are involved in almost every RNA related process, including transcription, splicing, 
ribosome biogenesis, translation and degradation. #erefore, HELZ may have associations with the pathogenesis 
of neurodegenerative disease including AD25.
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Pathway Analysis shows large overlap between blood and brain. For the up-regulated AD-DEGs 
in blood, 119 significant canonical pathways were identified, including iNOS Signalling (BH.pval = 9.77E-
7, ratio = 21/43); B-Cell Receptor Signalling (BH.pval = 3.55E-6, ratio = 48/178); JAK/Stat Signalling (BH.
pval = 3.55E-6, ratio = 29/83); and Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 
(PNOROS, BH.pval = 3.55E-6, ratio = 50/192). For the down-regulated AD-DEGs, only eight significant 
pathways were identi!ed (Fig. 1 and Supplementary Table 3) including EIF2 Signalling (BH.pval = 3.98E-15, 
ratio = 64/210); Oxidative Phosphorylation (BH.pval = 2.00E-14, ratio = 39/92); Mitochondrial Dysfunction (BH.

Entrez 
ID Symbol

Blood 
AD 
FC

Blood AD 
BH.pval

Blood 
MCI FC

Blood MCI 
BH.pval

Brain 
AD FC

Brain AD 
meta pval

Brain AD 
BF.pval

Brain 
BraakR

Brain 
AtrophyR

Top 10 up and top 10 down AD DEGs in blood. Both are MCI DEGs in blood as well

51258 MRPL51 0.71 3.04E-44 0.74 1.49E-26 0.99 8.27E-01 1

4694 NDUFA1 0.52 2.34E-43 0.56 1.40E-27 0.86 2.49E-03 1 −0.46

6166 RPL36AL 0.63 7.18E-40 0.67 1.39E-20 1.05 2.19E-01 1

4725 NDUFS5 0.58 5.22E-38 0.63 4.58E-23 0.85 1.08E-03 1

401206 LOC401206 0.65 1.94E-36 0.71 2.56E-20

646200 LOC646200 0.56 1.94E-36 0.60 4.31E-23

6230 RPS25 0.64 1.49E-35 0.68 3.24E-21 1.16 2.82E-07 6.64E-03

521 ATP5I 0.64 6.06E-35 0.67 1.03E-22 1.02 9.51E-02 1

10063 COX17 0.73 1.29E-34 0.75 2.82E-23 0.97 3.02E-02 1

7388 UQCRH 0.62 1.19E-33 0.66 5.82E-21 0.88 2.87E-03 1 −0.63 −0.50

10312 TCIRG1 1.26 9.61E-21 1.24 8.90E-15 1.29 1.49E-13 3.51E-09 0.67 0.54

6645 SNTB2 1.18 1.88E-20 1.20 1.06E-19 1.12 2.36E-03 1 0.52 0.46

7297 TYK2 1.22 3.69E-20 1.21 5.48E-16 1.13 1.57E-09 3.68E-05 0.67 0.51

153222 C5orf41 1.20 6.74E-18 1.12 1.97E-06 1.12 3.47E-06 0.08 0.56

9931 HELZ 1.12 2.55E-17 1.12 8.45E-15 1.02 5.05E-04 1

730994 LOC730994 1.19 6.98E-17 1.21 4.28E-15

23218 NBEAL2 1.22 8.29E-17 1.18 9.96E-10 1.06 1.71E-03 1

4026 LPP 1.16 1.69E-16 1.13 1.16E-09 1.30 4.80E-05 1 0.61 0.51

23053 KIAA0913 1.17 2.72E-16 1.18 3.33E-14 1.20 1.29E-05 0.3 0.61 0.48

10482 NXF1 1.14 3.69E-16 1.16 7.99E-17 1.07 6.24E-04 1

Top 10 AD DEGs not MCI DEGs in blood

51186 WBP5 0.96 8.95E-10 0.98 1.22E-02 1.12 1.06E-08 2.50E-04 0.49

10287 RGS19 1.11 1.12E-09 1.04 7.18E-02 1.10 3.48E-08 8.19E-04

9147 SDCCAG1 0.93 2.53E-09 0.97 5.39E-02 1.20 1.24E-05 0.29

3276 PRMT1 0.92 9.52E-09 0.96 1.24E-02 0.91 6.55E-05 1 −0.48

51150 SDF4 0.91 1.02E-08 0.97 7.30E-02 1.04 8.70E-01 1

10623 POLR3C 0.94 1.16E-08 0.97 3.34E-02 0.90 1.53E-05 0.36 −0.49 −0.46

253018 HCG27 1.16 1.71E-08 1.06 6.14E-02 1.07 2.34E-02 1

4850 CNOT4 0.95 3.47E-08 0.97 2.20E-02 1.05 3.27E-01 1 0.53 0.47

80315 CPEB4 1.14 6.41E-08 1.07 2.17E-02 1.22 5.00E-01 1

23001 WDFY3 1.08 7.36E-08 1.04 3.49E-02 1.00 1.79E-03 1 0.48

Top 10 MCI DEGs not AD DEGs in blood

587 BCAT2 1.03 3.29E-02 1.09 8.93E-10 1.17 7.92E-10 1.86E-05 0.66 0.53

23338 PHF15 1.03 2.59E-01 1.13 1.61E-09 1.11 1.72E-01 1

26284 ERAL1 1.05 1.06E-02 1.12 5.20E-09 1.01 1.25E-01 1

8036 SHOC2 0.96 1.91E-02 0.89 7.53E-09 0.88 1.34E-03 1

23450 SF3B3 1.05 1.56E-02 1.12 9.88E-09 0.97 7.38E-02 1

4289 MKLN1 0.95 2.11E-02 0.87 1.18E-08 1.24 2.75E-09 6.48E-05 0.67 0.58

57666 KIAA1545 1.04 1.37E-02 1.09 1.28E-08 1.10 5.90E-02 1 0.51 0.49

9236 CCPG1 0.93 1.06E-02 0.85 2.30E-08 0.94 5.04E-04 1

94241 TP53INP1 0.94 2.18E-02 0.87 3.73E-08 1.26 2.37E-06 5.58E-02 0.66 0.56

78987 CRELD1 1.03 1.32E-02 1.08 4.00E-08 1.01 3.92E-01 1

Table 1. #e top DEGs in blood and their relationships with AD brain. Data shown are from (top rows) the top 
10 up-regulated and the top 10 down-regulated DEGs in AD blood that are also DEGs in MCI blood; (middle 
rows) the top 10 DEGs in AD blood that are not also DEGs in MCI blood; (bottom rows) the top 10 DEGs in 
MCI blood that are not also DEGs in AD blood. In addition, all these DEGs in blood were mapped to DEGs in 
the brain PFC region7 (columns 7 to 9) and we show their correlation coe$cient braak stage and brain frontal 
atrophy4 in patients with AD. FC represents Fold Change in gene expression.
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pval = 1.58E-11, ratio = 47/152); and Protein Ubiquitination (BH.pval = 7.92E-11, ratio = 63/254), Similarly, we 
identi!ed 63 and nine signi!cant canonical pathways for up- and down-regulated blood MCI-DEGs respectively. 
A total of 53 and seven signi!cant pathways were overlapping between AD and MCI for up- and down-regulated 
DEGs respectively including the top pathways mentioned above. "erefore, 83.3% (60 out of 72) signi!cant path-
ways identi!ed in MCI were also identi!ed in AD. In our previous gene expression meta-analysis, we identi-
!ed 168 signi!cant pathways in the brain PFC region7, and 60.1% of these (101 out of 168) were identi!ed in 
either blood AD or blood MCI, including PNOROS (BH.pval = 1.26E-12, ratio = 44/180), NFkB Signalling (BH.
pval = 1.26E-11, ratio = 41/173), iNOS Signalling (BH.pval = 5.37E-7,ratio = 15/44), Mitochondrial Dysfunction 
(BH.pval = 2.24E-06, ratio = 37/172), and Oxidative Phosphorylation (BH.pval = 4.27E-4, ratio = 24/110). Some 
pathways were only identi!ed in either blood AD or blood MCI, but not in brain PFC region with AD, such as 
EIF2 Signalling, Protein Ubiquitination, and mTOR Signalling (see Supplementary Table 3).

In total, we identified 5552 
AD-DEGs (unique genes) in 19 brain sub-regions (Supplementary Table 4), with the numbers of DEGs varying 
from 14 (Precentral Gyrus) to 1904 (Superior Temporal Gyrus), and an average of 453 DEGs in each region. 

Figure 1. Signi!cant pathways identi!ed by IPA in the blood dataset. IPA was applied to the DEGs identi!ed 
from the merged blood datasets (GSE63060 and GSE63061). We show the top ten signi!cant pathways 
identi!ed for the up-regulated DEGs (red bar) and pathways identi!ed for the down-regulated DEGs (green 
bar). "e dark blue curve shows the ratio between the number of DEGs and the total number of genes in each of 
these pathways (entire list of IPA pathways is in Supplementary Table 3). (a) Signi!cant pathways for AD-DEGs. 
Top ten signi!cant pathways identi!ed for the up-regulated DEGs and eight pathways identi!ed for the down-
regulated DEGs in AD. (b) Signi!cant pathways for MCI-DEGs. Top ten signi!cant pathways identi!ed for the 
up-regulated DEGs and nine pathways identi!ed for the down-regulated DEGs in MCI.
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With such a divergent distribution across 19 brain regions (Table 2), we did not identify any super genes which 
were DEGs in all 19 brain regions. Two genes (AKAP9, NEBL) were identi"ed as DEGs in eight brain regions, 
and 3640 DEGs were identi"ed from only a single region. 1048 of these DEGs (18.9%) were identi"ed in our pre-
vious meta-analysis in brain PFC region (OR = 1.78, 95%CI 1.64–1.94, pval < 3.53E-42). Figure 2 illustrates the 
DEGs in these 19 brain regions and the overlap with AD-DEGs or MCI-DEGs in blood. Among these 19 brain 
regions, Prefrontal Cortex (PC), Occipital Visual Cortex (OVC), and Dorsolateral Prefrontal Cortex (DPC) are 
the top three regions with the highest proportion of brain DEGs mapped to blood. Only 15% of brain DEGs in 
hippocampus (HIP) were identi"ed as AD-DEGs in blood. In addition, the mappings of brain AD-DEGs to blood 
AD-DEGs and brain AD-DEGs to blood MCI-DEGs, were highly associated (R = 0.80, pval < 3.33E-05, Pearson 
test, Table 2).

Gene-based GWAS reveals potential new risk genes. In total, 18229 genes were identi"ed in the IGAP 
stage 1 GWAS dataset by MAGMA, including all of the 39 GWAS risk genes in AD except INPP5D. Sixty seven 
MAGMA genes passed BF.pval < 0.05, including 17 AD risk genes, and 15 AD-DEGs and 20 MCI-DEGs in blood 
(Table 3). Among them, MS4A6A, MS4A4A, ABCA7, HLA-DRA, MTSS1L, NDUFS3, and CD2AP were identi-
"ed as DEGs in the brain PFC region in our previous brain meta-analysis; #irteen of them were di$erentially 
expressed in at least one brain region. ABCA7 showed 17%-, 19%-, and 13% signi"cant expression fold changes 
in blood of AD, blood of MCI and brain of AD respectively; this gene may thus be a potential biomarker for 
early diagnosis. MS4A6A showed >10% down-regulation in blood, and >43% up-regulation in brain; NDUFS3 
was >10% down-regulated, and HMHA1 >9% up-regulated in blood and brain. Although HMHA1 is not a 
risk gene in AD, it has been reported that methylation sites in this gene have a strong relationship to ABCA7 
and AD pathologies26. In addition, BCL3, a proto-oncogene candidate, might be a potential novel risk gene for 
AD, because it was 27% up-regulated in AD brain and identi"ed as a DEG in both AD blood and MCI blood. 
Supplementary Table 5 indicates the 751 IGAP MAGMA genes (nominal pval < 0.01) and the most signi"cant 
SNPs in their 20kbp up/downstream regions. We identi"ed 281 and 119 genes at 0.05 or 0.01 signi"cance level 
respectively when FDR testing was applied.

DEGs in blood did not show any enrichment for these IGAP MAGMA genes at the stringent signi"cance level 
(BF.pval > 0.05). However, if we apply nominal pval < 0.01 for MAGMA (751 genes identi"ed), both AD-DEGs 
and MCI-DEGs in blood show enrichment in IGAP genes (OR = 1.33, 95%CI 1.11–1.61, pval = 2.45E-03; 
OR = 1.36, 95%CI 1.14–1.62, pval = 5.33E-04, respectively). We previously identi"ed 3124 AD-DEGs in the 
brain PFC region7, and those DEGs had enriched MAGMA genes either for BF.pval < 0.05 or nominal pval < 0.01 
(OR = 2.27, 95%CI 1.23–4.02, pval = 5.67E-03; OR = 1.23, 95%CI 1.00–1.51, pval = 4.64E-02 respectively). #ese 
results revealed the signi"cant associations between genomics and gene expression in AD.

Region

Brain AD DEGs Blood AD DEGs Blood MCI DEGs

Region namesUp Down All Up Down All Ratio Up Down All Ratio

PFC 526 94 620 182 29 211 0.34 240 38 278 0.45 Prefrontal Cortex

OVC 154 73 227 62 15 77 0.34 77 16 93 0.41 Occipital Visual Cortex

DPC 238 87 325 79 17 96 0.30 109 26 135 0.42
Dorsolateral Prefrontal 
Cortex

STG 297 1607 1904 65 494 559 0.29 90 749 839 0.44 Superior Temporal Gyrus

AC 391 125 516 109 39 148 0.29 161 57 218 0.42 Anterior Cingulate

ITG 839 104 943 259 9 268 0.28 359 15 374 0.4 Inferior Temporal Gyrus

SPL 29 313 342 9 85 94 0.27 14 136 150 0.44 Superior Parietal Lobule

PU 46 201 247 8 58 66 0.27 12 77 89 0.36 Putamen

PCC 16 63 79 1 20 21 0.27 7 25 32 0.41 Posterior Cingulate Cortex

NA 864 527 1391 221 109 330 0.24 300 137 437 0.31 Nucleus Accumbens

IFG 94 241 335 15 62 77 0.23 22 88 110 0.33 Inferior Frontal Gyrus

CN 52 155 207 5 39 44 0.21 7 58 65 0.31 Caudate Nucleus

PG 5 9 14 1 2 3 0.21 1 1 2 0.14 Precentral Gyrus

AG 559 251 810 101 58 159 0.20 155 82 237 0.29 Amygdala

PHG 254 117 371 54 21 75 0.20 75 28 103 0.28 Parahippocampal Gyrus

TP 50 8 58 7 3 10 0.17 7 3 10 0.17 Temporal Pole

MTG 21 10 31 3 2 5 0.16 6 4 10 0.32 Middle Temporal Gyrus

FP 98 34 132 13 7 20 0.15 18 12 30 0.23 Frontal Pole

HIP 40 32 72 2 9 11 0.15 7 13 20 0.28 Hippocampus

Table 2. Numbers of DEGs identi"ed in brain regions and their overlapping in blood. #is table shows the 
number of DEGs identi"ed in 19 brain regions, and their overlap with DEGs in the blood. #e Ratio column 
in the table indicates the proportion of brain DEGs which are also DEGs in blood. For example, there are 620 
DEGs identi"ed in the brain Prefrontal Cortex (PFC) region, 211 of them (Ratio = 0.34) are also DEGs in AD 
blood, and 278 of them (Ratio = 0.45) are DEGs in MCI blood. #e PFC region has the highest proportion of 
DEGs which are also DEGs in the blood, both for AD and MCI patients.
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Our aim here was to identify a set of 
biomarkers and classi!cation models (classi!ers) which can discriminate patients with AD from healthy control 
subjects, e.g. 143 patients with AD from 104 controls in GSE63060 or 102 patients with AD from 78 controls in 
GSE63061. We trained classi!ers in one dataset and tested them in the other dataset (see Methods).

Figure 3a illustrates an optimal six-feature panel (named Full6set) that was identi!ed by measuring area 
under the curve (AUC) performance for SVM, RR and RF (0.875, 0.874, 0.849 respectively). #e voted AUC (the 

Figure 2. Number of DEGs common to both the blood and the di$erent brain regions. Overlap between DEGs 
(up-regulated and down-regulated) identi!ed in the merged blood datasets and DEGs identi!ed in each of the 
10 brain regions is shown as an arc, the area of which is proportional to the number of overlapping DEGs (see 
full name of brain region in Table 2).
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Entrez 
Gene Name CHR #SNPS BF.pval

Blood 
AD FC

Blood AD 
BH.pval

Blood 
MCI FC

Blood MCI 
BH.pval

Brain 
AD FC

Brain AD 
BF.pval

10452 TOMM40* 19 139 2.72E-150 1.03 0.14 1.06 6.87E-04 0.92 1.00

341 APOC1 19 82 2.70E-135 1.00 0.67 1.01 0.25 1.27 0.85

348 APOE* 19 97 1.52E-131 1.12 1.00

5819 PVRL2 19 268 3.34E-125 0.99 0.52 1.03 0.43 1.05 1.00

4059 BCAM 19 129 1.60E-38 1.00 0.69 1.00 0.73 1.04 1.00

5971 RELB 19 115 1.32E-14 1.08 6.64E-07 1.08 1.79E-05 1.00 1.00

602 BCL3 19 141 4.10E-13 1.07 1.41E-02 1.07 2.25E-02 1.27 6.18E-05

388551 CEACAM16 19 171 1.16E-11 1.02 1.00

346 APOC4 19 102 4.23E-10 1.04 1.00

1209 CLPTM1 19 198 1.39E-09 1.08 8.21E-05 1.15 1.25E-10 0.96 1.00

90332 EXOC3L2 19 148 3.12E-09 1.00 0.80 1.00 0.76 1.00 1.00

344 APOC2 19 105 1.06E-08 1.02 1.00

1191 CLU* 8 148 2.15E-08 1.00 0.96 1.00 0.83 1.31 1.12E-05

79090 TRAPPC6A 19 94 4.14E-08 0.99 0.62 1.01 0.46 0.93 0.02

2041 EPHA1* 7 125 6.05E-08 1.01 0.57 1.03 0.092 1.01 1.00

284353 NKPD1 19 73 9.90E-08 0.97 1.00

643680 MS4A4E 11 206 9.86E-07

8301 PICALM* 11 396 1.06E-06 1.01 0.55 0.93 1.90E-02 0.95 1.00

11129 CLASRP 19 111 1.27E-06 1.01 0.32 1.00 0.79 1.18 1.00

388552 BLOC1S3 19 70 1.49E-06 0.98 1.00

284352 PPP1R37 19 216 1.95E-06 0.97 1.00

64231 MS4A6A* 11 102 2.15E-06 0.89 4.16E-04 0.83 5.25E-07 1.43 0.00

5817 PVR 19 125 3.92E-06 1.00 0.78 1.01 0.20 0.96 1.00

2206 MS4A2 11 131 5.56E-06 0.99 0.48 0.98 0.22 0.98 1.00

51338 MS4A4A* 11 201 6.82E-06 0.98 1.08E-02 0.97 1.14E-05 1.44 3.38E-07

10347 ABCA7* 19 234 8.97E-06 1.17 7.97E-10 1.19 2.68E-09 1.13 2.47E-03

1378 CR1* 1 373 2.01E-05 1.08 9.70E-05 1.05 1.39E-02 1.03 1.00

23624 CBLC 19 118 2.83E-05 1.00 1.00

274 BIN1* 2 348 2.95E-05 1.04 0.11 1.11 1.81E-04 0.96 1.00

147710 IGSF23 19 155 3.08E-05 0.99 1.00

338398 TAS2R60 7 76 6.74E-05 1.00 1.00

79760 GEMIN7 19 138 7.40E-05 0.99 0.21 1.00 0.53 0.87 1.00

1839 HBEGF 5 77 9.99E-05 1.00 0.99 1.00 0.66 1.07 1.00

7791 ZYX 7 100 2.52E-04 1.13 1.51E-05 1.18 2.42E-07 1.03 1.00

23526 HMHA1 19 221 2.92E-04 1.09 3.77E-06 1.14 7.87E-10 1.20 4.05E-07

56971 CEACAM19 19 117 3.03E-04 1.01 0.14 1.00 0.56 1.07 1.00

1379 CR1L 1 420 4.27E-04 1.04 1.00

162979 ZNF296 19 98 4.85E-04 1.04 4.03E-02 1.10 2.34E-07 1.00 1.00

23403 FBXO46 19 82 9.57E-04 1.05 5.69E-06 1.08 5.47E-07 1.05 1.00

6653 SORL1* 11 354 1.25E-03 1.21 2.80E-08 1.31 1.02E-12 0.89 1.00

6688 SPI1 11 127 2.33E-03 1.13 3.72E-05 1.13 5.42E-04 1.09 1.00

3122 HLA-DRA 6 722 2.46E-03 0.95 0.076 0.90 1.43E-03 1.40 9.51E-08

3123 HLA-DRB1* 6 1550 2.83E-03 0.93 0.68 1.08 0.65 1.41 2.25E-03

1265 CNN2 19 203 2.88E-03 1.03 0.50 1.06 0.08 1.23 2.69E-03

245802 MS4A6E 11 200 3.10E-03 1.05 1.00

1135 CHRNA2 8 191 3.61E-03 1.03 0.21 1.06 3.74E-03 1.00 1.00

92154 MTSS1L 16 172 3.74E-03 1.24 1.16E-02

399888 FAM180B 11 35 5.27E-03 1.00 0.52 1.00 0.73 1.03 1.00

114971 PTPMT1 11 43 5.58E-03 0.92 1.00

4722 NDUFS3* 11 41 7.22E-03 0.90 7.38E-10 0.90 1.78E-08 0.86 1.32E-02

388553 BHMG1 19 76 7.26E-03 1.03 1.00

55709 KBTBD4 11 37 7.75E-03 1.02 0.087 1.02 3.74E-02 0.88 3.63E-02

945 CD33* 19 119 7.75E-03 1.04 0.058 1.03 0.17 1.22 9.72E-07

1762 DMWD 19 89 9.46E-03 1.05 1.56E-04 1.06 1.40E-06 0.96 1.00

2185 PTK2B* 8 486 1.00E-02 1.06 2.19E-03 1.03 0.15 0.99 1.00

Continued
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Entrez 
Gene Name CHR #SNPS BF.pval

Blood 
AD FC

Blood AD 
BH.pval

Blood 
MCI FC

Blood MCI 
BH.pval

Brain 
AD FC

Brain AD 
BF.pval

23788 MTCH2* 11 71 1.02E-02 1.00 0.66 1.00 0.71 0.86 1.00

55697 VAC14 16 274 1.57E-02 1.04 8.06E-05 1.06 1.76E-08 0.99 1.00

1760 DMPK 19 73 2.21E-02 1.00 0.72 1.01 2.60E-02 1.09 1.00

23607 CD2AP* 6 451 2.37E-02 0.99 0.12 0.97 1.53E-03 1.15 4.08E-07

3117 HLA-DQA1 6 2022 2.42E-02 0.92 0.14 0.98 0.74 1.20 1.00

932 MS4A3 11 142 2.46E-02 0.91 1.42E-03 0.88 1.58E-04 0.96 1.00

147912 SIX5 19 60 2.48E-02 1.00 0.84 1.01 0.19 1.27 1.92E-04

114900 C1QTNF4 11 38 2.83E-02 0.82 1.89E-03

23360 FNBP4 11 140 3.08E-02 0.98 0.58 0.96 0.19 1.00 1.00

56244 BTNL2 6 613 3.48E-02 1.01 1.00

28955 DEXI 16 138 4.19E-02 1.00 0.88 1.02 0.18 1.03 1.00

79841 AGBL2 11 128 4.83E-02 1.00 1.00

Table 3. Results of gene-based GWAS analysis. !is table lists 67 genes identi"ed by MAGMA (BF.pval < 0.05) 
from the IGAP stage 1 GWAS dataset, and compares their expression (fold-change and p-value) in AD and 
MCI blood datasets, and in the brain dataset from our previous study7. AD GWAS risk genes are marked 
with an asterisk, “*”. !e chromosome and the number of SNPs for each of these genes within 20 kbp up- and 
downstream regions are shown in the third and fourth columns. BF.pval indicates Bonferroni corrected p-value, 
while BH.pval indicates Benjamini & Hochberg corrected p-value.

Figure 3. Classi"cation performance of biomarker panels. Di#erent machine learning models were trained in 
one blood dataset (GSE63060 or GSE63061) and tested in the other (GSE63061 or GSE63060). Results shown 
from the di#erent ML models in (a,c) all use the same panel of six features (panel Full6set), while ML models in 
(b,d) use one with four features (panel Full4set). Full6set contains six probesets, i.e. ILMN_2097421 (MRPL51), 
ILMN_2189933 (RPL36AL), ILMN_1695645 (CETN2), ILMN_1703617 (AHSA1), ILMN_2237746 (ING3), 
and ILMN_1939297 (GALNT4). Full4set contains four probesets: ILMN_1784286 (NDUFA1), ILMN_2097421 
(MRPL51), ILMN_2189933 (RPL36AL) and ILMN_2189936 (RPL36AL). !e AUC of vote is the average 
testing AUCs of SVM, RR, and RF models. See Supplementary Table 6 for detailed performance.
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average of the three AUCs) was 0.866 with 0.783 (95%CI: 0.716–0.841) accuracy for voting outcome. !e Full6set 
contains six probesets: ILMN_2097421 (MRPL51), ILMN_2189933 (RPL36AL), ILMN_1695645 (CETN2), 
ILMN_1703617 (AHSA1), ILMN_2237746 (ING3), and ILMN_1939297 (GALNT4). In Fig. 3b, an optimal 
four-feature panel (named Full4set) was identi#ed containing ILMN_1784286 (NDUFA1), ILMN_2097421 
(MRPL51), ILMN_2189933 (RPL36AL) and ILMN_2189936 (RPL36AL). SVM, RR and RF classi#cation models 
had similar testing AUC performance (0.86, 0.86, 0.857) and accuracy (0.773, 0.765, 0.785) respectively. !e 
voting strategy yielded the average AUC of 0.859 and accuracy of 0.781 (95%CI: 0.725–0.831) with balanced 
sensitivity (0.776) and speci#city (0.788). See Supplementary Table 6 for further details.

All features in Full6set and Full4set were down-regulated DEGs in the blood merged discovery data-
set, except GALNT4 which was an up-regulated DEG (Supplementary Table 2); the two common features, 
ILMN_2097421 (MRPL51) and ILMN_2189933 (RPL36AL), were the top DEGs in the blood but not in the 
brain. In order to test the robustness of the classi#cation models and features used, we swapped the training 
dataset and testing dataset, i.e. we trained classi#cation models in GSE63060 using Full4set then tested in 
GSE63061, and we trained models in GSE63061 using Full6set and tested in GSE63060. !eir testing perfor-
mances are illustrated in Fig. 3c,d, and Supplementary Table 6. !e robustness of the selected features was 
also tested by random selection (Supplementary Fig. 6). !e models using Full6set demonstrated similar 
classi#cation performances to the models using Full4set. Voting AUC for Full6set models were 0.866 and 
0.864 in the two testing datasets (GSE63060 and GSE63061 respectively) with an average of 0.865. For Full4set 
models, the values were 0.859, 0.875 with an average of 0.867. Moreover, when we used the models trained 
from AD vs. controls to discriminate MCI from controls, most of the MCI (>72%) were predicted to be AD 
(Supplementary Table 7). Supplementary Fig. 7 shows the boxplots and swarm plots of each of the features in 
Full4set where MCI samples were also included, which demonstrates that each of the features had good clas-
si#cation performance.

Discussion
In this study, we observed that in blood samples more DEGs were identi#ed comparing MCI to controls than 
comparing AD to controls. !is suggests that the trajectory from control to MCI to AD is surely not linear. In 
addition, under the current classi#cation of MCI there are many clinical entities, not all evolving to AD in the 
same way or time (some MCI even revert to control). !erefore, it is possible that the increased di$erences we 
observed between MCI and controls re&ect the MCI’s dynamic and heterogeneous state. On the contrary, overt 
AD is a more stable clinical entity with possibly a more de#ned gene expression signature. We also observed that 
AD-DEGs tended to have the same regulation direction as the MCI-DEGs in blood (only a few genes were iden-
ti#ed as DEGs comparing AD to MCI samples), and the majority of those AD-DEGs that overlapped in the blood 
and brain showed consistent directions of regulation, suggesting the biomarkers to be investigated in blood can 
be potential early diagnostic signatures. Our study shows evidence for a role of ribosomal dysfunction. In blood, 
the top 10 up- and down-regulated AD-DEGs were also identi#ed as MCI-DEGs, and included ribosomal protein 
genes such as MRPL51, RPL36AL, and RPS25. Ribosome dysfunction is an early event in AD27, and the abnormal 
tau-ribosomal interactions in tauopathy lead to a decrease in RNA translation28. Two recent studies reported that 
reducing ribosomal protein S6 kinase 1 expression improves spatial memory and synaptic plasticity in a mouse 
model of AD29, and there are striking overlaps between non-steroidal anti-in&ammatory (NSAID) drugs-induced 
changes and gene expression in the blood of AD patients in the ribosome and oxidative phosphorylation path-
ways30. A novel mutation discovered in the gene NDUFA1 may also lead to a progressive mitochondrial complex 
I speci#c neurodegenerative disease31. TYK2 and STAT3 were identi#ed as up-regulated DEGs in both blood 
and brain (Supplementary Table 2). Tyk2/Stat3 signalling mediates beta-amyloid-induced neuronal cell death in 
AD32. TYK2 encodes a member of the tyrosine kinase speci#cally for the Janus kinases (JAKs) protein families, 
and inhibition of JAK1/JAK3 may provide an e*cient therapeutic agent for the treatment of in&ammatory dis-
eases33 which might bene#t AD patients as well since in&ammation drives progression of AD34. It is interesting 
to note that TCIRG1 showed a greater than 20% up-regulation in blood of AD, blood of MCI and brain of AD. 
Mutations in this gene can cause lower absolute neutrophil count and may be responsible for infantile malignant 
osteopetrosis (IMO) disease35,36. However, its role in AD or dementia is not yet proven, and it may be related to 
neutrophil function and immunity.

We observed that DEGs in blood have a high potential to be identi#ed as DEGs in brain prefrontal cortex 
region (PFC) through enrichment analysis. Table 2 shows that DEGs in brain PFC, Superior Temporal Gyrus 
(STG), Inferior Temporal Gyrus (ITG) regions are commonly DEGs in blood. Few DEGs were identi#ed in brain 
hippocampus (HIP) region due to the large shrinkage in HIP that radically reduces gene expressions, and these 
DEGs have a low likelihood of being identi#ed as DEGs in blood. It is well known that the hippocampus, a critical 
region for learning and memory, is especially vulnerable to damage at early stages of AD, hippocampal volume 
is one of the best AD biomarkers for diagnosis. !e brain temporal cortex including STG, ITG, HIP, etc. plays a 
critical role in cognitive processes, language comprehension, memory formation and recall6. Functional segmen-
tation analysis revealed that AD patients exhibit stronger hippocampus-PFC functional connectivity37. Actually 
27.8% of all the DEGs in brain (1544/5552) are also DEGs in AD blood with a signi#cant enrichment (OR = 1.27, 
95%CI: 1.18–1.38, pval = 9.8e-10, Fisher test); 2154 DEGs in brain are also DEGs in MCI blood with an enrich-
ment (OR = 1.44, 95%CI 1.34–1.55, pval = 2.2e-16, Fisher test). !is shows that gene expression in the blood is a 
strong representation of gene expressions in the brain.

It has been revealed that mitochondrial dysfunction and oxidative phosphorylation were identi#ed in AD/
MCI blood, AD brain and ageing brain, showing the relevance of mitochondrial function in AD38. In our present 
study, we also found strong evidence for dysregulation of the mitochondrial and oxidative phosphorylation path-
ways in the blood of patients with AD and MCI.
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IGAP provides a powerful data resource for the study of AD and it has been explored by several research 
teams39,40. To our knowledge, our study is the !rst to integrate IGAP with datasets from the blood of AD, blood of 
MCI and brain of AD. Moreover, recent trans-ethnic GWAS identi!ed !ve novel AD risk genes41 and three of them 
(TPBG, PFND1/HBEGF, BZRAP1-AS1) were MAGMA genes in our study. Fourteen out of 39 previously identi!ed 
risk genes of AD were identi!ed as DEGs in at least one brain region of this disease, including MAPT, APP, PSEN1 
and ABCA7. Genes simultaneously di"erentially expressed in several brain regions may be AD-relevant risk genes. 
For example, AKAP9 was identi!ed as a DEG in eight brain regions including the hippocampus, and two rare muta-
tions in this gene were recently discovered as AD-associated loci by whole exome sequencing42.#is gene is also at 
the signi!cance border in blood (BH.pval = 0.033 and 0.012 for AD and MCI respectively). Moreover, Low et al. 
discovered that variants of NEBL are relevant to atrial !brillation (AF) susceptibility43, and NEBL was identi!ed as a 
DEG in eight brain regions with AF recognized as a risk factor for cognitive decline and dementia44.

Discovering biomarkers in blood for the diagnosis of AD at the earliest and mildest stages is always clini-
cally required and would be hugely bene!cial. Recently, Nakamura and colleagues demonstrated the ability of 
amyloid-β precursor protein APP669–711/Aβ1–42 and Aβ1–40/Aβ1–42 ratios, and their composites in plasma to predict 
brain amyloid-β burden with very high performances45. Despite the relatively expensive IP-MS measurement 
method used, their results bring new hope for blood biomarker-based early diagnosis for AD.

In this study, we identi!ed an optimal classi!cation panel of four features, Full4set, by the LASSO feature 
selection approach. By applying classi!ers with Full4set, 75.4% and 72.7% of MCI were predicted as AD in 
GSE63061 and GSE63060 respectively (Supplementary Table 7). All features in Full4set were DEGs in blood, and 
this small feature size panel may have the potential to be applied in Point-of-Care (PoC) diagnostic devices that 
will be developed and validated in the future.

Our study has a number of limitations. For the two blood datasets (GSE63060 and GSE63061), which are the 
main focus of this study, we applied multiple testing for DEGs identi!cation. However, for the two validation blood 
datasets and the brain multiple regions dataset, no DEGs could pass the multiple-testing (BH.pval > 0.05), i.e. no sig-
ni!cant genes were identi!ed a&er allowing for multiple testing. We therefore were forced to apply nominal p-value 
with a more stringent signi!cance level (<0.01) for DEG detection. #e sample sizes used in previous transcriptomic 
and proteomic studies of AD were generally small, particularly in post-mortem brain studies. #erefore, there was 
a limited power to identify dysfunctional genes. We observed that most of our DEGs had small e"ect size, and the 
small sample sizes (particularly in the brain studies) gave us low statistical powers which resulted in a high level of 
false positives for DEG detection when nominal p-values were applied. Applying multiple testing may lose infor-
mation, and alternative network-based approaches could be applied for biomarker discovery4,46. In addition, more 
accurate and sensitive techniques are required to measure such gene expressions, for instance, droplet digital poly-
merase chain reaction (ddPCR)47 and RNA-seq48. Aside from sample size, another limitation is that the classi!cation 
e"ect of any genetic risk factors was not taken into account due to lack of information availability, e.g. for APOE 
which may be the most important genetic risk factors for AD49. #is may be a major limitation as the presence of 
the APOE4 allele has been shown to in'uence the classi!cation algorithms based on medical imaging and cerebro-
spinal 'uid (CSF) biomarkers50 (and by our unpublished works). Moreover, our classi!cation model only included 
gene transcript information and the e"ect from ageing and gender was adjusted during the data pre-processing. 
Finally, although AUC-ROC together with Sensitivity/Speci!city are frequently used as performance measure-
ments in biomedical research, for example recently in Nakamura and colleagues’ study45, it has been reported that 
Precision/Recall and Area Under Precision Recall (AUPR) can provide more information in imbalanced dataset51. 
We had applied ROC with class-weight adjustment in our model training process, and so we compared these results 
to those obtained using AUPR to assess the e"ect of data imbalance (please see Supplementary Fig. 8 and Table 6). In 
general, AUPR values are a bit lower than AUC-ROC values indicating the e"ect of data imbalance in our case, and 
there might have be rooms to improve classi!cation performance by applying AUPR in the feature selection process.

In conclusion, our study revealed that genes di"erentially expressed in the blood were likely to be di"erentially 
expressed in the brain and with the same regulation direction. Common pathways were identi!ed and found to be 
shared among brain AD, blood AD and ageing brain. We also identi!ed a four-feature panel classi!cation model that 
discriminated between AD patients and controls with promising performances. A larger cohort study is now neces-
sary to validate the reproducibility of this model’s results perhaps using target-based transcriptional measurement.

Data Availability Statement
#is link provides seven datasets: Two initial datasets downloaded from GEO (GSE63060_series_matirx.txt, 
GSE63061_series_matrix.txt); one merged dataset for DEGs analysis (gse63060_61.merged.exp); two cen-
tral-scaled datasets for training and testing ML models (!les contain 22756 features and disease status for each 
sample: gse63060_ADMCICtr_Residual_normT_lab.txt, gse63061_ADMCICtr_Residual_normT_lab.txt); and 
two information !les (Samples_gse63060.info, Samples_gse63061.info) extracted from the two GEO datasets. 
https://!gshare.com/s/78839db30d17d3f75aca.
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