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Interpreting the Skill Score Form of

Forecast Performance Metrics

Edward Wheatcroft

Abstract

Performance measures of point forecasts are commonly expressed as skill scores in
which the gain in performance from using some forecasting system over another
is expressed as a proportion of the gain made by forecasting that outcome per-
fectly. It is increasingly common to express scores of probabilistic forecasts in this
form. Three criticisms of this approach are presented. Firstly, initial condition
uncertainty (out of the control of the forecaster) limits the capacity to improve a
probabilistic forecast and thus a ‘perfect’ score is often unattainable. Secondly,
the skill score forms of the ignorance and the Brier scores are biased. Finally, it is
argued that the skill score form of scoring rules destroys the useful interpretation
in terms of the relative skill of two forecasting systems. Indeed, it is often mis-
leading and useful information is lost when the skill score form is used in place of
the original score.

1 Introduction

Forecasting is a common endeavour in a wide range of disciplines. The ques-
tion of how best to evaluate forecasts is therefore of fundamental importance
to much of the scientific community and beyond. One of the most com-
mon fields in which forecasting is deployed is weather forecasting, in which
deterministic models of the atmosphere are used to simulate the future.
Similar approaches are used in ecology [Hastings et al., 1993], hydrology
[Smith and Beven, 2014] and biology [Strogatz, 2018], among other fields. In
other areas, such as tourism [Smith, 1993], economics [Katz and Lazo, 2011]
and agriculture [Hansen et al., 2011], more statistical approaches tend to be
taken in which key driving variables of some dependent variable are sought
and used to make out-of-sample predictions. The issue of forecast evaluation,
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1 Introduction 2

however, is a more general one. Originally suggested as a means with which
to compare point forecasts, the skill score form of a forecast evaluation metric
is an approach that expresses the relative skill of two competing forecasting
systems [Murphy and Daan, 1985]. In this paper, a number of weaknesses of
this approach are identified and an alternative approach is suggested.
In weather forecasting and in the forecasting of other physical systems, deter-
ministic models are used to simulate the underlying system. The dynamics
of systems such as the atmosphere are often highly nonlinear [Lorenz, 1963]
and thus physical models generally also have nonlinear, or even chaotic, dy-
namics. Combined with the fact that observations of physical variables are
usually both incomplete and obscured by measurement error, a single model
trajectory launched from a noisy observation would diverge from the truth
even if the underlying dynamics were reproduced perfectly by the model.
A noisy observation of the initial condition can thus usually, at best, yield
a set of model trajectories, called an ensemble, all of which are consistent
with that observation. Whilst accounting for observations stretching into
the past can discount some of these trajectories, in a chaotic system, it
is never possible to narrow this set down just to the true initial condition
[Smith and Judd, 2001, Smith and Judd, 2004] and thus the best possible
forecast of a nonlinear system is, at best, probabilistic, even if the underlying
model/system dynamics are, themselves, deterministic. It is thus common to
use ensembles to construct forecast probabilities (for discrete events) or prob-
abilistic forecast densities (for continuous events) [Bröcker and Smith, 2008].
Probabilistic forecasting is also widely used in applications in which purely
statistical models, such as linear regression, are utilised. For example, in
sales forecasting, it is common to use regression models to identify key driv-
ing factors for sales and use these to make predictions of future sales patterns
[Böse et al., 2017]. In sports forecasting, typically some rating is applied to
each team and a statistical approach is used to relate those ratings to forecast
probabilities [Constantinou et al., 2012]. Statistical approaches are also of-
ten used in energy price forecasting [Ziel and Steinert, 2018] and population
forecasting [Alkema et al., 2015] among many other fields.
A scoring rule is a function of a probabilistic forecast and its corresponding
outcome intended to measure predictive performance. Due to the probabilis-
tic nature of the forecasts, scores are only meaningful when multiple forecasts
and outcomes are considered and thus, commonly, the mean or median score
is given and used for comparison purposes.
A skill score is defined as the gain in forecast accuracy, given some measure,
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as a proportion of the total possible gain in accuracy were a perfect point
forecast to be issued, i.e. were the forecast able to predict the outcome
perfectly [Murphy and Daan, 1985]. The aim of a skill score is to give some
context to the gain in skill achieved from using one forecasting system over
another reference one. Whilst the skill score form of a scoring rule is intended
to yield an intuitive measure of the relative skill of two forecasting systems,
it is argued in this paper that a number of shortcomings tend to outweigh
the benefits of taking this approach.
In the weather forecasting literature, scores of probabilistic forecasts are of-
ten converted into skill score form [Siegert et al., 2011, Christensen et al., ,
Weigel et al., 2007, Wilks, 2001] before they are presented. This approach
is also commonly used in operational weather forecasting. For example,
skill scores are used as headline evaluation tools at both the European
Centre for Medium Range Weather Forecasting (ECMWF) [ECMWF, ]
and the UK Met-Office [Met Office, ]. Although most commonly used in
the forecasting of physical systems such as the weather, skill scores have
also been used in a wide range of fields such as macroeconomic forecast-
ing [Lahiri and Wang, 2013],[Bluedorn et al., 2016], forecasting of baseball
[Richards, 2014] and association football [Haave and Høiland, 2017] and in
medicine [Karoly et al., 2017].
In this paper, firstly, it is argued that, in the context of simulation models,
since the presence of observational uncertainty in an initial condition makes a
perfect point forecast impossible, the skill score form of a scoring rule repre-
sents the gain in skill as a proportion of the total possible gain were a perfect
forecasting system available and no observational uncertainty were present in
the initial condition from which the forecast were launched. This is arguably
not a useful measure, however, as the observational noise is usually out of the
control of the forecaster. Secondly, using a number of examples, it is shown
that the skill score form of a number of scoring rules is biased when a finite
number of forecasts and outcomes are evaluated. This particular criticism
is common both to point and probabilistic forecasts and is demonstrated in
both cases. Finally, whether the proportion of possible skill gained has a
useful interpretation regarding the relative value of two forecasting systems
is called into question.
This paper is organised as follows. In section 2, background methodology de-
scribing scoring rules and skill scores is presented. In section 3, the relevance
of the ‘optimal’ score necessary to calculate the skill score form is discussed
and it is argued that, in some cases, the optimal score renders the skill score
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form unusable and, in many cases, unachievable without improving the ac-
curacy of the observations (which is not usually an option for a forecaster).
In section 4, it is demonstrated analytically that the skill score form of the
mean squared error (for point forecasts) can be biased. Using an empirical
example, it is then shown that the skill score form of the Ignorance and Brier
scores can also give biased results. Section 5 discusses whether the skill score
form of scoring rules have a useful interpretation and section 6 is used for
discussion and conclusions.

2 Background Definitions

2.1 Evaluating Point Forecasts

Although this paper is mostly concerned with probabilistic forecasts, some
of the issues raised also apply to point forecasts and these are demonstrated
using the two measures of point forecast accuracy given below. The two
measures considered are the mean squared error, described by

MSE =
1

N

N∑

i=1

(fi − Yi)
2 (1)

and the mean absolute error, described by

MAE =
1

N

N∑

i=1

|fi − Yi| (2)

where fi and Yi represent the point forecast and outcome respectively for the
ith period.

2.2 Scoring Rules

A scoring rule is a function of a probabilistic forecast and its outcome that
evaluates forecast performance. Since scoring rules consider only probabilistic
forecasts, this means that measures of the performance of point forecasts such
as the mean squared error do not fall under the definition of a scoring rule.
By convention, scoring rules are defined to be negatively oriented, that is
lower scores imply better forecast accuracy. Many scoring rules have been
proposed over the years and the choice of which to use to evaluate a set of
forecasts is of great importance.
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A scoring rule is proper if is optimised in expectation by a perfect probabilis-
tic forecast, that is, the true distribution from which the outcome was drawn.
To be useful, a scoring rule should be proper since, otherwise, there would
be no incentive to choose a perfect forecasting system, were one available.
In addition, under a perfect model with some well defined but unknown pa-
rameters, optimising those parameters with respect to an improper scoring
rule would result in convergence to the wrong values. For these reasons, only
proper scoring rules are considered in this paper. One particular score that
fits this requirement is the ignorance score, introduced by I.J Good in 1951,
[Good, 1952, Roulston and Smith, 2002] defined, for discrete forecasts, by

IGN = − log2(p(Y )) (3)

where p(Y ) represents the probability placed on the outcome by the forecast.
In the continuous case, the probability is replaced by the probability density
and the ignorance is thus defined by

IGN = − log2(f(Y )) (4)

where f(Y ) is the forecast density placed on the outcome Y .
Another proper scoring rule is the Brier Score [Brier, 1950] which is defined
to evaluate the performance of binary probabilistic forecasts. It is given1 by

BS = (p(Y )− Y )2 (5)

where p(Y ) represents the forecast probability and Y is 1 or 0 if the event
did or didn’t occur respectively. The Brier Score is bounded between zero
and one with a score of zero corresponding to the case in which a probability
of one is placed on the eventual outcome and a score of one if the probability
placed on the outcome is zero.

2.3 Skill Scores

It is commonly argued for measures of forecast accuracy to be expressed
in the form of a skill score [Murphy and Epstein, 1989, Siegert et al., 2011,
Christensen et al., , Tödter and Ahrens, 2012]. A skill score is defined as

SS =
Af − Ar

Ap − Ar

(6)

1 Note that the Brier Score is often defined as an average over N forecasts and out-
comes. Here, for consistency with the definition of the ignorance score, it is defined for
one particular forecast and outcome.
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Tab. 1: Values of Ap for discrete and continuous (when applicable) forecasts
for the scoring rules considered in this paper.

Scoring Rule Discrete forecast Ap Continuous forecast Ap

Ignorance 0 ∞
Brier Score 0 NA

where Af and Ar represent the ‘accuracy’, according to some given measure,
of the forecasting system of interest and some reference forecasting system
respectively. The quantity Ap represents the optimal value of the measure,
that is, the value of the metric if the outcome were known perfectly. The value
of SS can be interpreted as the increase in accuracy achieved by using some
forecasting system of interest as a proportion of the total possible increase in
accuracy. The reference forecasting system could be a competing forecasting
system over which improvement is sought or some benchmark forecasting
system such as a climatology (a forecast based purely on past states).

3 Defining a ‘Perfect Score’

The skill score representation of a measure of forecast accuracy, as defined
in equation 6, can be interpreted as the improvement in accuracy, according
to the measure, as a proportion of the total possible improvement if the true
outcome were known perfectly. The value Ap does not depend on the forecast
and is, in fact, a property of the measure of accuracy itself. Values of Ap

for discrete and continuous (when applicable) forecasts for each scoring rule
considered in this paper are shown in table 1. Note that, for the ignorance
score, in the continuous case, Ap is infinite and thus the skill score repre-
sentation is not informative in this case. The Brier score is only defined for
binary categorical forecasts.
When forecasting is performed using deterministic simulation models, the
existence of observational uncertainty in an initial condition prevents point
forecasts from being perfect (i.e. consistently predicting the exact outcome),
regardless of the accuracy of the forecasting system. In addition, all real
world models will contain some degree of structural error. Inasmuch as
observational uncertainty can be considered an unavoidable feature of the
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real world, limitations to predictability resulting from this factor should,
arguably, be differentiated from limitations stemming from the forecasting
system itself. Were this not the case, the impression that the forecasts could
be further improved upon could be given even if the forecasting system were
already as informative as it could possibly be, given the information avail-
able. In the presence of observational noise, the best possible forecast would
be a probability distribution, henceforth referred to as a perfect probabilis-
tic forecast. Since the only uncertainty is in the initial condition, a perfect
probabilistic forecast can be considered to be the distribution from which
the eventual outcome is drawn, given only the initial condition uncertainty.
This would be achieved by evolving forward the distribution of possible ini-
tial conditions that are consistent with both the observation of the initial
condition and with the system dynamics. Some uncertainty regarding the
outcome will therefore remain. As a result, the best possible score given
the observations available would come from a perfect probabilistic forecast
rather than a perfect point forecast and thus the optimal score Ap would be
unattainable. A more useful quantity, if available, would be

SSprob =
Af − Ar

App − Ar

(7)

where App represents the score achieved with a perfect probabilistic forecast.
This quantity represents the skill gained over the reference forecast as a
proportion of the total possible gain in skill given the observation and the
distribution of the observational uncertainty. Since the skill of a perfect
probabilistic forecast is never expected to be known, however, SSprob is
never available in practice. The proportion of potential skill gained is thus
never expected to be available for probabilistic forecasts. This places question
marks over the value of the skill score representation of scoring rules.
In some studies and applications, instead of using ensembles to construct
probabilistic forecasts, the ensemble mean is calculated and treated as a
point forecast. This is arguably ill advised since, under this approach, im-
portant information regarding the shape of the distribution is discarded.
Worse still is that, when the dynamics of the model are nonlinear, the mean
of the forecast distribution is often an unlikely quantity. Consider a forecast
distribution of the waiting time between eruptions of Old Faithful geyser in
Yellowstone National Park in the USA which famously has a bimodal dis-
tribution [Rinehart, 1969]. A probabilistic forecast distribution may suggest
that either a relatively long or short waiting time is likely. A point forecast
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based on the mean, on the other hand, would make a prediction somewhere
between the two; a relatively unlikely outcome. Nonetheless, it is still worth
pointing out that, in such situations, since the outcomes will be drawn from
some underlying distribution and the forecast will, at best, represent the
mean of that distribution, the initial condition uncertainty that differenti-
ates the ensemble members means that perfect point forecasts, i.e forecasts
that always coincide with the outcome, are not attainable and the arguments
presented above still apply.
The arguments above consider the case in which forecasts are generated using
deterministic simulation models. In many applications, however, it is often
the case that statistical models are applied. For example, in linear regres-
sion, the resulting forecast is a single point estimate that forms the mean
of some Gaussian forecast distribution. In theory, however, the simulation
model approach taken in numerical weather prediction could be applied to
such cases though, in practice, it may be the case that statistical models
are deemed more effective in relating important variables to the predictand
(economic data to sales volumes, for example). Whilst one can never expect
statistical models to yield perfect point forecasts, in theory, the deterministic
modelling approach could be taken (though building such a model may be
highly impractical). Consider, for example, making a forecast for the out-
come of a football match. Generally, forecasting of this kind is done using
statistical approaches. In theory, however, if one knew the dynamics of the
world perfectly and had perfect observations of its exact state at a given
time, it would be possible to make a perfect point forecast of the state of the
world [Laplace, 2012] and therefore the outcome of that match. Once the
assumption that perfect observations are available is removed, however, the
very best forecast of that match would, again, be a probability distribution
even with a perfect model [Frigg et al., 2014]. Obtaining perfect observations
of the world is, of course, out of the control of the forecaster (and impossible
in practice) and thus, as discussed above, skill scores do not represent the
proportion of possible skill achieved by the forecaster.

4 Sampling Distributions

Whilst, so far, general properties of scoring rules and their skill score form
have been considered, the question of how each behaves in the context of
a finite sample is also of importance. In practice, any measure of forecast
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accuracy is calculated over a finite sample of forecasts and outcomes. The
skill score form of a scoring rule aims to give a direct comparison between
the skill of two forecasting systems. It is shown in this section that the skill
score form of a measure of forecast accuracy can be biased for finite samples.
First, this is demonstrated analytically using a point forecasting example in
which the mean squared error is used as the measure of accuracy. This is
then demonstrated with the skill score form of scoring rules in the context
of probabilistic forecasts. This is compared with an alternative approach to
expressing the relative skill of two forecasting systems which is shown to be
unbiased.
An alternative statistic to a skill score for comparing the performance of two
forecasting systems is defined by

Arel = Af − Ar (8)

where Arel will be referred to as the relative skill. The relative skill is closely
related to a skill score since

SS =
Arel

Ap − Ar

(9)

and, when Ap = 0,

SS = −
Arel

Ar

. (10)

The skill score form of a measure of accuracy is thus a simple transformation
of the relative skill. The relative skill is an unbiased estimator of the actual
difference in skill. It is shown, however, that the skill score form is not
necessarily an unbiased estimator of the underlying skill score (that is the
skill score that would be obtained from an infinite number of forecasts and
outcomes). To demonstrate this, a simple example using point forecasts is
presented.
Consider a simple case in which, for each outcome Yi, both the forecasts from
the forecasting system of interest uf,i and the reference forecasting system ur,i

are created by taking random draws from a Gaussian distribution N(Yi, 1)
centred on the outcome Yi. Both forecasting systems are thus expected, on
average, to have the same mean squared error. The mean squared error skill
score in this case is given by

MSESS = 1−
1
N

∑N
i=1(uf,i − Yi)

2

1
N

∑N
i=1(ur,i − Yi)2

. (11)
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Note that
1

N

∑N

i=1
(uf,i−Yi)

2

1

N

∑N

i=1
(ur,i−Yi)2

∼ F (v1, v2) where v1 = v2 = N . Since the mean of

an F distribution is v2
v2−2

, the expected value of the skill score for this special

case is E(MSESS) = 1− N
N−2

. Since both forecasting systems are defined to
have the same mean squared error, on average, the mean squared error skill
score is biased.
In the special case outlined above, the sampling distribution was derived
analytically under some strong assumptions. In most cases, the sampling
distribution will not be known but it can, however, be estimated. This is
now done for both the ignorance and Brier scores in a special case in which
both probabilistic forecasting systems are expected to have the same skill.
Define pf = pf,1, .., pf,N and pr = pr,1, .., pr,N to be two sets of iid random
draws from a standard uniform distribution U(0, 1). Let each of pf,i and pr,i
represent two different probabilistic forecasts of the same binary outcome Yi

such that each one represents a single forecast probability. The distribution of
the outcome Yi is then defined to be Bernoulli with the parameter randomly
chosen to be pf,i or pr,i with equal probability. The outcome Yi is then
a random draw from the randomly selected true distribution. This means
that each of the forecast probabilities has an equal chance of coinciding with
the true probability. Given that it is not known with which probability the
outcome was drawn,the result is that pf and pr represent equally useful
probabilistic forecasts, on average. For an infinite number of forecasts and
outcomes, both the relative skill and the skill score form of any evaluation
measure are both zero. To test whether there is any bias in either measure for
finite samples, sets of forecasts and outcomes of size N are randomly drawn
and both the relative skill and the skill score calculated. The mean of each is
then calculated to give an estimate of the expected value and thus the bias.
This is repeated for various values of N . The results of the experiment are
shown in figure 1. In the top panel, the estimated bias of the relative skill
and the skill score form of the ignorance are shown whilst these are both
shown for the Brier score in the lower panel. Here, it is clear that the skill
score form of both scoring rules is biased whilst this does not appear to be
the case for the relative skill. The bias appears in the skill score because of
the quotient that is required in its calculation.
The bias in the skill score also has an impact on tests of whether there is
a significant difference between two forecasting systems. For the relative
skill, bootstrap resampling can be applied to the differences to infer whether
the mean difference in skill is significant. This is a reasonable thing to do
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Fig. 1: The estimated bias of the relative skill (red) and the skill score form
(blue) of the ignorance (top panel) and the Brier Score (lower panel)
as a function of the sample size.

because the relative skill is an unbiased estimator of the underlying difference
in skill between the two forecasting systems. Whilst something similar could
be applied to the skill score form, the bias would mean that there would be
an overinflated probability of finding the reference forecasting system to be
superior to the forecasting system of interest.

5 Interpreting and Comparing Skill Scores

The skill score form of a measure of accuracy gives a scaling between 1 and
−∞ and measures the gain in skill, according to some measure, as a propor-
tion of the total possible gain. For example, a skill score of 0.5 means that half
of the total possible increase in the measure of accuracy has been achieved.
In probabilistic forecasting, the measure of accuracy usually consists of a
scoring rule. The skill score form of a measure of accuracy, however, as de-
scribed in equation 6, was first suggested for the evaluation of point forecasts
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[Murphy and Daan, 1985]. Although this paper is mostly concerned with
skill scores in the context of probabilistic forecasts, for comparison, it is use-
ful to illustrate the intended interpretation of skill scores in the context of
point forecasts. Consider the mean squared error and mean absolute error,
defined in section 2.1. In both cases, the value Ap in equation 6 is zero since,
for an optimal point forecast, the forecast and the outcome would coincide.
If the mean absolute error achieved from the forecasting system of interest
and the reference forecasting system is 3 and 4 respectively, the skill score
form of the mean absolute error would be MAESS = 3−4

0−4
= 0.25 which can be

interpreted as a reduction of 25% in the mean distance between the forecasts
and the outcomes. This is an intuitive measure of the difference in accuracy
between two forecasting systems. The value of using the skill score form of
the mean squared error is less obvious. Consider, for example, a similar case
in which the mean squared error of the forecast system of interest and ref-
erence forecasting system is, again, 3 and 4 respectively. The mean squared
error skill score would then also be 0.25. However, a 25 percent reduction in
the mean squared error is harder to interpret than a 25 percent reduction in
the mean absolute error. This is arguably because the mean squared error
has a less intuitive interpretation in the first place and so forcing it into skill
score form adds little or nothing of value and arguably makes it less intuitive.
The nature of probabilistic forecasts means that the evaluation techniques
described above can not be applied (without compromising the information
content of the forecast) and thus a scoring rule is required. Whilst, as previ-
ously discussed, the skill score form of some distance metrics like the mean
absolute error can have a simple and useful interpretation, this is not neces-
sarily the case for scoring rules. Consider the ignorance score for example.
The relative skill of the ignorance score, as described in section 4, can be in-
terpreted as the mean bits of information gained from using one forecasting
system over some reference forecasting system (say, the climatological distri-
bution). This can then be converted back to infer how much more density
or probability is placed on the outcome, on average. The skill score form
can be interpreted as the number of bits of information gained over the total
possible gain. The proportion of possible bits gained, however, should not be
considered a linear gain in value. In fact, using the skill score form alone, the
gain in probability or density placed on the outcome by using one forecasting
system over another cannot be recovered. Arguably, then, it does not make
sense to express the ignorance in the skill score form at all.
The Brier score can be interpreted as the mean squared distance between the
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probabilities and the outcome (either a one or a zero) in a binary probabilistic
forecast. Similarly to the ignorance score, an increase or decrease in the Brier
score does not correspond to a linear increase or decrease in the utility of
the forecasts (this will depend on how the forecasts are to be used) in any
conceivable way. Arguably, a weakness of the Brier score over the ignorance
score is that the former has a far less clear interpretation and, if there is no
useful interpretation in the score in the first place, transforming it into skill
score form will not create one.
Scoring rules such as the Ignorance and the Brier Score are clear, mathe-
matically precise and informative scores. Forcing them into skill score form
destroys this utility. There are no persuasive arguments establishing that
there is any benefit in doing so. From the above, it should also be clear
that skill scores based on different measures of accuracy cannot be directly
compared, even though they are forced to be on the same scale.

6 Discussion

The skill score form of a forecast evaluation metric is designed to give an
intuitive measure of the gain in skill achieved by using one forecasting sys-
tem over another. Whilst a skill score represents the mean gain in accuracy
achieved by using one forecasting system over another as a proportion of the
total possible gain given a perfect point forecast, care needs to be taken in
interpreting this as the gain in skill that is achievable. When observational
noise is present in the initial condition, even a perfect forecasting system
cannot yield a perfect point forecast and thus the skill score does not repre-
sent the proportion of possible skill that could be gained by improving the
forecasting system. In addition, even if it were possible for the forecasting
system to yield a perfect point forecast, it is unclear that the proportion
of potential skill gained represents a useful indication of the proportion of
actual value gained by using the forecasting system of interest. It has been
shown that the skill score form of an unbiased measure of accuracy is not
necessarily unbiased itself due to the ratio that is introduced into the for-
mula. The skill score form of a measure of accuracy is intended to give some
context to the gain in skill from using one forecasting system over another.
In many cases, the intended interpretation is arguably misleading as a mea-
sure of the proportion of possible skill gained. Combined with the fact that
the skill score form can introduce a bias to the score, it should be treated
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with caution. Pressure to express forecast system evaluation in terms of skill
scores is found to be misplaced; in the lack of better motivation, forecast
evaluation can be more effective when considered in terms of raw scores with
more meaningful units.
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[Bröcker and Smith, 2008] Bröcker, J. and Smith, L. A. (2008). From ensem-
ble forecasts to predictive distribution functions. Tellus A, 60(4):663–678.

[Christensen et al., ] Christensen, H. M., Moroz, I. M., and Palmer, T. N.
Evaluation of ensemble forecast uncertainty using a new proper score: Ap-



6 Discussion 15

plication to medium-range and seasonal forecasts. Quarterly Journal of the
Royal Meteorological Society, 141(687).

[Constantinou et al., 2012] Constantinou, A. C., Fenton, N. E., and Neil, M.
(2012). pi-football: A bayesian network model for forecasting association
football match outcomes. Knowledge-Based Systems, 36:322 – 339.

[ECMWF, ] ECMWF. Quality of our forecasts. https://www.ecmwf.int/

en/forecasts/quality-our-forecasts. Accessed: 29/09/2018.

[Frigg et al., 2014] Frigg, R., Bradley, S., Du, H., and Smith, L. A. (2014).
Laplaces demon and the adventures of his apprentices. Philosophy of Sci-
ence, 81(1):31–59.

[Good, 1952] Good, I. J. (1952). Rational decisions. Journal of the Royal
Statistical Society: Series B, 14:107–114.

[Haave and Høiland, 2017] Haave, H. S. and Høiland, H. (2017). Evaluating
association football player performances using markov models. Master’s
thesis, NTNU.

[Hansen et al., 2011] Hansen, J. W., Mason, S. J., Sun, L., and Tall, A.
(2011). Review of seasonal climate forecasting for agriculture in sub-
saharan africa. Experimental Agriculture, 47(2):205–240.

[Hastings et al., 1993] Hastings, A., Hom, C. L., Ellner, S., Turchin, P., and
Godfray, H. C. J. (1993). Chaos in ecology: is mother nature a strange
attractor? Annual review of ecology and systematics, 24(1):1–33.

[Karoly et al., 2017] Karoly, P. J., Ung, H., Grayden, D. B., Kuhlmann, L.,
Leyde, K., Cook, M. J., and Freestone, D. R. (2017). The circadian profile
of epilepsy improves seizure forecasting. Brain, 140(8):2169–2182.

[Katz and Lazo, 2011] Katz, R. W. and Lazo, J. K. (2011). Economic value
of weather and climate forecasts. In The Oxford Handbook of Economic
Forecasting.

[Lahiri and Wang, 2013] Lahiri, K. and Wang, J. G. (2013). Evaluating
probability forecasts for gdp declines using alternative methodologies. In-
ternational Journal of Forecasting, 29(1):175–190.



6 Discussion 16

[Laplace, 2012] Laplace, P.-S. (2012). Pierre-Simon Laplace Philosophical
Essay on Probabilities: Translated from the fifth French edition of 1825
With Notes by the Translator, volume 13. Springer Science & Business
Media.

[Lorenz, 1963] Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. J.
Atmos. Sci., 20(2):130–141.

[Met Office, ] Met Office. Mosac-21 annex ii - forecast accuracy. https:

//www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/

library/mosac/2016/mosac21_annex_ii_forecast_accuracy.pdf.
Accessed: 29/09/2018.

[Murphy and Epstein, 1989] Murphy, A. and Epstein, E. (1989). Skill scores
and correlation coefficients in model verification. Monthly Weather Review,
117(3):572–582.

[Murphy and Daan, 1985] Murphy, H. and Daan, H. (1985). Forecast eval-
uation. Probability, Statistics and Decision Making in the Atmospheric
Sciences, pages 379–437.

[Richards, 2014] Richards, J. A. (2014). Probabilities of victory in head-to-
head team matchups. Fall 2014 Baseball Research Journal, 43(2).

[Rinehart, 1969] Rinehart, J. (1969). Old faithful geyser performance 1870
through 1966. Bulletin Volcanologique, 33(1):153–163.

[Roulston and Smith, 2002] Roulston, M. S. and Smith, L. A. (2002). Eval-
uating probabilistic forecasts using information theory. Monthly Weather
Review, 130:1653–1660.
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