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Abstract

In this paper, we explore the use of the stochastic EM algorithm (Celeux & Diebolt, 1985)

for large-scale full-information item factor analysis. Innovations have been made on its

implementation, including (1) an adaptive-rejection-based Gibbs sampler for the stochastic

E step, (2) a proximal gradient descent algorithm for the optimization in the M step, and

(3) diagnostic procedures for determining the burn-in size and the stopping of the

algorithm. These developments are based on the theoretical results of Nielsen (2000), as

well as advanced sampling and optimization techniques. The proposed algorithm is

computationally efficient and virtually tuning-free, making it scalable to large-scale data

with many latent traits (e.g. more than five latent traits) and easy to use for practitioners.

Standard errors of parameter estimation are also obtained based on the missing information

identity (Louis, 1982). The performance of the algorithm is evaluated through simulation

studies and an application to the analysis of the IPIP-NEO personality inventory.

Extensions of the proposed algorithm to other latent variable models are discussed.

Keywords: Multidimensional item response theory, stochastic EM algorithm,

full-information item factor analysis, Gibbs sampler, rejection sampling, proximal gradient

descent
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An Improved Stochastic EM Algorithm for Large-Scale Full-information

Item Factor Analysis

1 Introduction

Large-scale data, which contain large numbers of participants and manifest variables,

are often collected in psychology, education, and other social science disciplines that

involve measuring many latent variables (e.g., personalities, emotional distress, etc.) and

explicating the relationship thereof. When the survey is composed of items,

multidimensional item response theory (MIRT; e.g., Y. Liu, Magnus, Quinn, & Thissen, in

press; Reckase, 2009), also known as item factor analysis (IFA; e.g., Wirth & Edwards,

2007), provides a unified framework and convenient statistical tools for item analysis and

scoring. The increasing scale and complexity of survey designs call for MIRT models with

many latent traits. For example, the revised version of the Minnesota Multiphasic

Personality Inventory (Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) consists

of over 30 clinical subscales (traits) formed by in total more than 550 discretely scored

items. The full-information maximum likelihood estimation has been regarded as the “gold

standard” method for IFA parameter estimation with many desirable and well-known

statistical properties1. It is referred to as the large-scale full-information item factor

analysis, when analyzing large-scale item response data based on an MIRT model with

many latent traits.

The classical approach for the maximum likelihood estimation for MIRT models is

through the Expectation-Maximization algorithm (EM; Bock & Aitkin, 1981; Dempster,

Laird, & Rubin, 1977). Even when the number of latent traits K is only moderately large

(e.g. K ≥ 5), the computational burden of the EM algorithm becomes high, because the

complexity of evaluating K-dimensional numerical integrals in the E step grows

1It is noted that limited-information approaches such as the weight least square estimator (Muthén, 1978,
1984, 1993) and the bivariate composite likelihood estimator (Jöreskog & Moustaki, 2001; Zhao & Joe, 2005),
albeit computationally more economical, do not yield asymptotically efficient solutions; therefore, they are
not further considered in the current work.
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exponentially with K. Various methods have been proposed, including adaptive Gaussian

quadrature EM algorithms (Rabe-Hesketh, Skrondal, & Pickles, 2005; Schilling & Bock,

2005), Laplace approximation methods (Huber, Ronchetti, & Victoria-Feser, 2004; Kass &

Steffey, 1989; Thomas, 1993), Monte Carlo EM algorithms (Meng & Schilling, 1996; Song

& Lee, 2005), Markov chain Monte Carlo methods (Albert, 1992; Béguin & Glas, 2001;

Edwards, 2010; Patz & Junker, 1999a, 1999b; Shi & Lee, 1998), and stochastic

approximation methods (Cai, 2010a, 2010b; Delyon, Lavielle, & Moulines, 1999; Gu &

Kong, 1998; von Davier & Sinharay, 2010). Readers are referred to Cai (2010a) for a

comprehensive review of the advantages and weaknesses of those methods. In particular,

the Metroplis-Hastings Robbins-Monro (MH-RM) algorithm (Cai, 2010a, 2010b), which is

a stochastic approximation method, has been widely applied in education and psychology

due to its flexibility and computational efficiency.

In this paper, we investigate an alternative method, the Stochastic EM algorithm

(StEM; Celeux & Diebolt, 1985; Ip, 2002), which has been applied to IRT and

low-dimensional MIRT models (Diebolt & Ip, 1996; Fox, 2003; Ip, 1994). Similar to the

EM algorithm, the StEM algorithm iterates between two steps, the stochastic expectation

(StE) step and the maximization (M) step. This algorithm avoids calculating the

conditional expectation required in the E step of the classical EM algorithm by Monte

Carlo simulations in its StE-step. The StEM algorithm is closely related to the stochastic

approximation Newton-Raphson (SA-NR) algorithm (Gu & Kong, 1998) and the MH-RM

algorithm (Cai, 2010a, 2010b) which adopt a data generation step similar to the StE step

of the StEM algorithm. The major difference is that instead of solving a maximization

problem exactly in the M-step, the SA-NR and MH-RM algorithms update the parameter

estimates by a Robbins-Monro update rule. The StEM algorithm is also similar to the

stochastic approximation EM algorithm (SA-EM; Camilli & Fox, 2015; Delyon et al.,

1999). They differ by that the SAEM algorithm uses a Robbins-Monro update in its E-step

which is avoided in the StE step of the StEM algorithm.
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The major contribution of this paper is to propose an improved StEM algorithm

whose implementation is tailored to large-scale full-information item factor analysis. This

algorithm is developed under a general family of MIRT models, the multidimensional

generalized partial credit (MGPC) model (Yao & Schwarz, 2006). The MGPC model

handles ordinal response data and is a generalization of the multidimensional

two-parameter logistic (M2PL) model (e.g. Reckase, 2009), one of the most widely used

compensatory MIRT models. For this family of MIRT models, we develop (1) an

adaptive-rejection-based Gibbs sampler (Gilks & Wild, 1992) for the StE step, (2) a

proximal gradient descent algorithm (Parikh, Boyd, et al., 2014) for the optimization in the

M step, and (3) diagnostic procedures for determining the burn-in size and the stopping

based on the asymptotic properties of the StEM algorithm (Nielsen, 2000). These new

developments lead to an efficient and virtually tuning-free algorithm that is scalable to

large-scale data with many latent traits (e.g. more than five latent traits) and easy to use

for practitioners. This algorithm can be easily generalized to many other MIRT models,

such as the multidimensional graded response model (Muraki & Carlson, 1995), partially

compensatory MIRT models (Sympson, 1978), etc.

The proposed method tends to perform more stably for large-scale IFA than other

stochastic algorithms, including the SA-NR, MH-RM, and SA-EM algorithms. This is

because, the proposed algorithm is virtually tuning-free, while the SA-NR, MH-RM, and

SA-EM algorithms tend to be sensitive to tuning. Specifically, the SA-NR, MH-RM, and

SA-EM algorithms algorithms involve Robbins-Monro update, which is sensitive to the

choice of a decaying step size (Nemirovski, Juditsky, Lan, & Shapiro, 2009; Spall, 2005). In

addition, the MH-RM algorithm can also be sensitive to the choice of step size in its

random-walk Metropolis-Hastings (MH) sampler. Based on the simulation results, our

algorithm tends to outperform the MH-RM algorithm implemented in the flexMIRT

software (Cai, 2013) for larger-scale IFA, and perform similarly for small- to median-scale

problems.
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The rest of the paper is organized as follows. The problem of full-information

maximum likelihood estimation for item factor analysis is formally stated in Section 2.

Then in Section 3, an improved stochastic EM algorithm is proposed. Section 4 discusses

the advantages and the extensions of the proposed algorithm and compares it with the

MH-RM algorithm. Sections 5 and 6 present simulation studies and an application to the

IPIP-NEO personality inventory. Finally, concluding remarks are provided in Section 7.

The implementation details are provided in the appendix.

2 Full-Information Item Factor Analysis

2.1 MGPC Model

We consider N respondents answering J items. Let Yij be a random variable,

denoting the response from respondent i to item j, and yij be its realization. The responses

are assumed to be ordinal, Yij ∈ {0, 1, . . . , mj}. We denote Yi = (Yi1, . . . , YiJ) and

yi = (yi1, . . . , yiJ) the vectors of responses. Each respondent is represented by a

K-dimensional latent vector, θi = (θi1, . . . , θiK). Specifically, we consider item factor

analysis under the multidimensional generalized partial credit (MGPC) model (Yao &

Schwarz, 2006), one of the most popular IFA model for ordinal response data. In the

special case where all the items are dichotomously scored (i.e., mj = 1), the MGPC model

becomes the multidimensional two-parameter logistic (M2PL) model (e.g. Reckase, 2009),

one of the most widely used compensatory MIRT models. The MGPC model assumes an

adjacent categories logit model (Chapter 6, Agresti, 1996) when regressing the response Yij

on the latent traits θi, that is,

P (Yij = y|θi, Yij ∈ {y − 1, y}) = exp(θi · aj + djy)

1 + exp(θi · aj + djy)
, y = 1, . . . , mj, (1)

where aj = (aj1, . . . , ajK) and dj = (dj1, . . . , djmj
) are known as the slope parameters and

the intercept parameters, respectively, and θi · aj =
∑K

k=1 ajkθik denotes the inner product

of two vectors. Equation (1) implies that, when restricted to two adjacent categories y and

y + 1, the conditional probability of the response in the higher category takes the same
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form as the item response function of the multidimensional two-parameter logistic (M2PL)

model. Equation (1) implies that the item response function takes the form

P (Yij = y|θi) =
exp(yaj · θi +

∑y
l=1 djl)

1 +
∑mj

n=1 exp(naj · θi +
∑n

l=1 djl)
, y = 0, 1, . . . , mj, (2)

where
∑y

l=1 djl = 0 when y = 0. The local independence assumption is adopted. That is,

given the latent trait θi, Yi1, . . . , YiJ are conditionally independent. Moreover, θi is

assumed to follow a K-variate normal distribution, with mean zero and covariance matrix

Σ = (σkk′)K×K . The multivariate normality of the latent variable is typically assumed in

MIRT (see Chapter 6, Reckase, 2009) by default; however, we are aware of the recent

development aiming to relax the assumption (see e.g., Monroe, 2014). While the proposed

estimation algorithm can be extended to accommodate a more flexible density for θi, we

focus on the multivariate normal case in the current paper. We denote φ(θ|Σ) the density

function of θi, that is,

φ(θ|Σ) = 1
√

|2πΣ|
exp

(

−1
2

θ
⊤Σ−1

θ

)

.

To identify the scale of the latent traits, σkks are set to be 1, k = 1, . . . , K. Under the

confirmatory setting, ajk is constrained to be zero if item j does not measure latent trait k.

More precisely, the measurement design is indicated by a pre-specified matrix

Q = (qjk)J×K , each entry of which takes value 0 or 1. In particular, qjk = 1 indicates that

item j measures latent trait k and therefore ajk is freely estimated, and qjk = 0 indicates

that item j does not measure latent trait k and therefore ajk is set to zero. We assume that

the test is well designed, so that the latent factors cannot be freely rotated given the zero

constraints and consequently the model is identifiable. We refer the readers to Anderson

and Rubin (1956) for sufficient conditions on Q that anchor the rotation. For ease of

exposition, we use Ψ to denote all the unknown parameters, including ajks, djys, and σkk′s.
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2.2 Marginal Maximum Likelihood Estimation

Full-information item factor analysis relies on the marginal maximum likelihood

estimator (MMLE). More precisely, the MMLE is defined as

Ψ̂MLE = argmax
Ψ

l(Ψ), (3)

where

l(Ψ) =
N

∑

i=1

log





∫ J
∏

j=1

exp(yijaj · θ +
∑yij

l=1 djl)

1 +
∑mj

n=1 exp(naj · θ +
∑n

l=1 djl)
φ(θ|Σ)dθ





is the marginal log-likelihood of observed data where the latent traits have been

marginalized out. Traditionally, the optimization in (3) is solved by the EM algorithm

(Bock & Aitkin, 1981; Dempster et al., 1977), which is an iterative algorithm that requires

to evaluate N K-dimensional integrals in each iteration. When K is large, numerical

integration becomes computationally infeasible, because the computational complexity

grows exponentially as the dimensionality of the latent traits increases.

3 Stochastic EM Algorithm

3.1 Stochastic EM Algorithm

Similar to other stochastic algorithms, including the Monte Carlo EM, MH-RM, and

SAEM, the StEM algorithm avoids the numerical integration in the optimization of (3) by

Monte Carlo simulations. The algorithm iterates between two steps, i.e. the StE step and

the M step. Let Ψ(0) be the initial parameter values and θ̃
(0)

i , i = 1, . . . , N be the initial

values of person parameters. In each step t (t ≥ 1), the following StE step and M step are

performed.

StE step: Sample θ̃
(t)

i from the conditional density f(θ|yi,Ψ
(t−1)), where

f(θ|yi,Ψ
(t−1)) ∝ φ(θ|Σ(t−1))

J
∏

j=1

exp(yija
(t−1)
j · θ +

∑yij

l=1 d
(t−1)
jl )

1 +
∑mj

n=1 exp(na
(t−1)
j · θ +

∑n
l=1 d

(t−1)
jl )

, (4)

and the notation “∝” means that the two sides of (4) only differ by a constant that

does not depend on θ.
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M step: Obtain parameter estimate

Ψ(t) = argmax
Ψ

N
∑

i=1

l(yi, θ̃
(t)

i ; Ψ), (5)

where

l(yi, θ̃
(t)

i ; Ψ)

= log(φ(θ̃
(t)

i |Σ)) +
J

∑

j=1

{

yijθ̃
(t)

i · aj +
yij
∑

l=1

djl − log
(

1 +
mj
∑

n=1

exp
(

nθ̃
(t)

i · aj +
n

∑

l=1

djl

)

)}

is the complete data log-likelihood of a single observation.

The final estimate of Ψ is given by the average of Ψ(t)s from the last m iterations, i.e.,

Ψ̂ =
1

m

T+m
∑

t=T+1

Ψ(t), (6)

for sufficiently large values of T and m. Choosing T and m is the major tuning aspect of

the algorithm, as discussed in Section 3.2 and Appendix C. As pointed out by Ip (2002),

the single draw at the StE-step could be translated into practical computational saving, as

compared to other methods such as the Monte Carlo EM.

The theoretical properties of the StEM algorithm has been studied comprehensively

in Nielsen (2000). According to Nielsen (2000), the stochastic EM algorithm has the

following properties under suitable regularity conditions.

1. When the observed data y1, . . . , yN are viewed as fixed (i.e. conditioned upon), the

estimates Ψ(t), t = 1, 2, . . . , obtained from the M step, form a time-homogeneous

Markov chain. Moreover, the Markov chain is ergodic.

2. For ease of exposition, we add subscript N to the output from each M step, Ψ
(t)
N , to

emphasize its dependence on data. As the number of iterations t goes to infinity, Ψ
(t)
N

converges in distribution to a random variable Ψ̃N , satisfying Ψ̃N = Ψ
∗ +Op(

1√
N
),

where Ψ∗ is the true parameter.

3. Moreover, for a fixed large value of m and sufficiently large burn-in size T = TN , the
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final estimate (6), Ψ̂N = 1
m

∑TN+m
t=TN+1

Ψ
(t)
N , performs similarly as the MMLE for

sufficiently large N . More precisely,
√

N(Ψ̂N − Ψ∗) is asymptotically normal (as

N → ∞) with mean zero and variance V (Ψ∗) satisfying

‖V (Ψ∗) − I(Ψ∗)−1‖ ≤ C∗

m
. (7)

Here, I(Ψ∗) is the Fisher information under the marginal likelihood based on one

observation and thus I−1(Ψ∗) is the asymptotic variance of
√

N(Ψ̂MLE
N − Ψ∗), where

Ψ̂MLE
N is the MMLE. C∗ is a positive constant that only depends on the true model

parameters and the norm is the matrix L2 norm. Equation (7) implies that the

asymptotic variance of Ψ̂ (after scaled by
√

N) is close to that of the MMLE, with a

gap bounded by C∗/m. The gap comes from the use of simulation in the StE step.

For sufficiently large m, this gap is negligible and Ψ̂ can be used as the MMLE Ψ̂MLE
N .

3.2 Implementation Details

In what follows, we describe the implementation details of the algorithm.

Gibbs sampler. In the StE-step of each iteration, we sample θ̃
(t)

i from the

conditional distribution F (θ|yi,Ψ
(t−1)) by one Gibbs sampling iteration. That is, we

iterate over k = 1, . . . , K. For each k, sample θ̃
(t)
ik from f(θk|yi,Ψ

(t−1), θ̃
(t)

i,−k), where

f(θk|yi,Ψ
(t−1), θ̃

(t)

i,−k) is the conditional distribution of θk given Yi = yi and

θi,−k = θ̃
(t)

i,−k = (θ̃
(t)
i1 , . . . , θ̃

(t)
i,k−1, θ̃

(t−1)
i,k+1, . . . , θ̃

(t−1)
i,K ) and parameters Ψ(t−1) are from the

previous step. Adaptive rejection sampling (Gilks & Wild, 1992) is used, where a piecewise

log-linear density function is constructed adaptively as the proposal distribution (i.e.

envelop). This adaptive rejection sampler is computationally efficient, because the proposal

distribution is effectively constructed by making use of the fact that f(θk|yi,Ψ
(t−1), θ̃

(t)

i,−k) is

log-concave thanks to the exponential family form of (2). The details of this adaptive

rejection sampler are provided in Appendix A.
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Optimization in the M step. The M step optimizes

Ψ(t) = argmax
Ψ

N
∑

i=1

l(yi, θ̃
(t)

i ; Ψ),

where Ψ(t) includes covariance σkk′s, slope ajks and intercept parameters djs. Due to the

separable form of the objective function, the optimization splits into the following problems:

Σ̂(t) = argmax
Σ

N
∑

i=1

log(φ(θ̃
(t)

i |Σ)), Σ ² 0, σkk = 1, k = 1, . . . , K, (8)

(a
(t)
j , d

(t)
j ) = argmax

aj ,dj

{

N
∑

i=1

yijθ̃
(t)

i · aj +
yij
∑

l=1

djl − log
(

1 +
mj
∑

n=1

exp
(

nθ̃
(t)

i · aj +
n

∑

l=1

djl

)

)}

,

s.t. a
(t)
jk = 0, if qjk = 0, k = 1, . . . , K, j = 1, . . . , J

(9)

where Σ ² 0 denotes that Σ is positive semi-definite and qjks are entries of the pre-specified

design matrix Q. Optimization problem (9) is a smooth low-dimensional convex

optimization problem, with trivial constraints that some ajks are set to be zero due to the

measurement design. Such a problem can be handled by many standard numerical solvers

and in particular, we solve it by the limited-memory BFGS algorithm (D. C. Liu &

Nocedal, 1989).

The optimization of (8) is a convex optimization problem with equality constraints

and a positive semi-definite constraint. It is known as a semidefinite programming (SDP)

problem in convex optimization. Making use of recent advances in convex optimization, we

propose a proximal gradient descent algorithm (Parikh et al., 2014) for solving (8). The

details of the proposed proximal gradient descent algorithm are provided in Appendix B.

Determining T and m. As mentioned earlier, the estimates Ψ(t), t = 1, 2, . . . ,

obtained from the M-steps form an ergodic Markov chain, similar to the posterior samples

of parameters from a Markov Chain Monte Carlo (MCMC) algorithm under a Bayesian

setting. Under this connection, we call the value of T in (6) as the burn-in size. This is

because in our final estimate Ψ̂, an initial portion (Ψ(1), . . . , Ψ(T )) of the Markov chain is

discarded, so that the effect of the initial value is minimized. Methods for determining the
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burn-in of MCMC algorithms can be adopted here for determining the value of T , such as

the Geweke statistic (Geweke, 1992) and the Gelman-Rubin statistic (Gelman & Rubin,

1992). In our implementation, the value of T is determined using a batch procedure based

on the Geweke statistic. See Appendix C for the details.

We determine the value of m based on a similar batch procedure, after the

determination of burn-in size T . More precisely, we choose m such that the conditional

variance of each entry of Ψ̂N = 1
m

∑TN+m
t=TN+1

Ψ
(t)
N given the the observed data y1, . . . yN falls

below a pre-specified threshold. The conditional variance is estimated by a batch variance

procedure (Roberts, 1996), a standard approach in the MCMC literature that takes into

account the autocorrelation between samples from the Markov chain. See Appendix C for

the details.

3.3 Standard Error of Parameter Estimation

Once the final point estimate Ψ̂ is obtained from the StEM algorithm, we use the

missing information identity (Louis, 1982) to compute the Fisher information of observed

data, based on which standard errors of parameter estimates are obtained. According to

the missing information identity, the observed data Fisher information is

I(Ψ̂) = − ∂2l(Ψ)

∂Ψ∂ΨT
|Ψ=Ψ̂ =

N
∑

i=1

E(H(yi, θi; Ψ̂) − s(yi, θi; Ψ)[s(yi, θi; Ψ̂)]⊤|Yi = yi)

+ E(s(yi, θi; Ψ̂)|Yi = yi)E([s(yi, θi; Ψ̂)]⊤|Yi = yi),

(10)

where

H(yi, θi; Ψ) = −∂2l(yi, θi; Ψ)

∂Ψ∂Ψ⊤ and s(yi, θi; Ψ) =
∂l(yi, θi; Ψ)

∂Ψ

are the complete data information matrix and score of observation i, respectively. The

expectation is with respect to the conditional distribution of θi given Yi = yi, under the

model with parameters Ψ̂. In particular, we use Monte Carlo integrations to evaluate the

conditional expectation in (10), based on posterior samples of θi from the Gibbs sampler

described in Section 3.2 and Appendix A. Notice that standard errors of parameter

estimates can be obtained by making use of (10), because I(Ψ̂)/N converges to I(Ψ∗)
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when Ψ̂ is a consistent estimate. According to our discussion after equation (7), I(Ψ∗) is

the per-observation Fisher information based on a single observation, so that I−1(Ψ∗) is

the asymptotic variance of
√

N(Ψ̂MLE
N − Ψ∗).

4 Discussions

4.1 Alternative Gibbs Sampler

The use of adaptive rejection sampling in the StE step relies on the log-concavity of

the conditional distribution f(θk|yi,Ψ
(t−1), θ̃

(t)

i,−k), which is true for many popular IRT and

MIRT models, such as the Rasch model (Rasch, 1960), two-parameter logistic model

(Birnbaum, 1968), the partial credit model (Masters, 1982), the nominal response model

(Bock, 1972), and their multidimensional extensions (Revuelta, 2014; Yao & Schwarz,

2006). When the log-concavity is not satisfied, for example, when noncompensatory MIRT

models (e.g., Chapter 4, Reckase, 2009) are considered, alternative methods are available

for sampling from f(θk|yi,Ψ
(t−1), θ̃

(t)

i,−k). In particular, the slice sampler may be a good

choice, which is also virtually tuning free and tailors to the form of the target distribution

(Neal, 2003). See Neal (2003) for the implementation details.

4.2 Comparison with MH-RM Algorithm

The StEM algorithm is similar to the MH-RM algorithm to some extent. Specifically,

both algorithms avoid the numerical integration in the classical EM algorithm by Monte

Carlo simulation. In what follows, we list the key differences between the two methods,

based on which we argue that the proposed StEM algorithm may be a better choice when

N , J , and K are all relatively large. The advantage of the proposed algorithm is further

confirmed by simulation results in Section 5.

1. The MH-RM algorithm iteratively updates the parameter estimates by a

Robbins-Monro procedure (Robbins & Monro, 1951) and use the parameter estimates

in the last update upon convergence as the final estimate. This procedure requires

the specification of the step size γt in each iteration t, where γt satisfies
∑∞

t=1 γt = ∞
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and
∑∞

t=1 γ2t < ∞. In particular, γt is set to be 1/t in Cai (2010a). As reported by

many studies on the Robbins-Monro stochastic approximation method, algorithms

based on the Robbins-Monro update are sensitive to the choice of the step size and

thus its performance can be unstable upon implementation (Nemirovski et al., 2009;

Spall, 2005). On the other hand, the StEM algorithm does not involve a

Robbins-Monro update and thus does not suffer from this issue.

2. In addition, little research has been done on the stopping rule of Robbins-Monro type

algorithms (e.g. Wada & Fujisaki, 2015). Since the step size γt converges to zero as

the number of iteration t grows, early stopping may occur if one terminates the

algorithm when the difference between two subsequent updates falls below a certain

threshold. On the other hand, the stopping rule of the proposed StEM algorithm is

supported by the asymptotic property of the outputs Ψ(t) from the M steps.

3. The MH-RM algorithm samples from f(θ|yi,Ψ
(t−1)) using a random-walk

Metropolis-Hastings (MH) sampler. The random-walk MH sampler requires the

specification of a tuning parameter, which is the step-size of the random walk. The

performance of the algorithm is sensitive to the choice of this tuning parameter and

choosing a good tuning parameter is not an easy task (Neal, 2003). The Gibbs

sampler adopted here avoids this issue by making use of adaptive rejection sampling.

4. Finally, as discussed in Sections 4.4-4.6, the StEM algorithm can be easily extended

to more complex settings which require solving optimization problems with

constraints or nonsmooth penalties. On the other hand, the generalization of the

MH-RM algorithm to such problems is more challenging, since the Robbins-Monro

update does not handle inequality constraints or nonsmooth objective functions.

Specifically, the MH-RM algorithm implemented in the mirt R package fails when

the latent dimension K = 20, because non-positive definite estimates of the latent

variable covariance matrix are produced in intermediate Robbins-Monro iterations.
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For the current problem, one may modify the MH-RM algorithm by reparameterizing

Σ = BB⊤, where B is a lower triangle matrix, and estimate B instead2. However,

this solution is not flexible enough. For example, it does not handle confirmatory IFA

with additional zero constraints (i.e., independence between some traits) in the

covariance matrix, while as discussed in Section 4.5, the StEM algorithm can be

easily adapted to deal with such constraints.

4.3 Parallel Computing

Thanks to the special model structure of MIRT models, computational algorithms for

MIRT estimation can typically be speeded up through parallel computing (Cai, 2013; von

Davier, 2016). Similar to the MH-RM algorithm, both the StE-step and M step of this

StEM algorithm can be paralleled and therefore the algorithm can be substantially speeded

up by parallel computing. More precisely, in the StE step, θ̃
(t)

i s can be sampled in parallel

for different individuals and in the M step, (aj, dj), j = 1, . . . , J , and Σ can all be updated

in parallel. This is known as an “embarrassingly parallel” structure, for which little effort is

needed to separate the problem into a number of parallel tasks (Herlihy & Shavit, 2011).

This feature of the algorithm makes it scalable to very large-scale data when the

computing environment supports multiple processors. For the proposed algorithm, parallel

computing is implemented through an Open Multi-Processing (OpenMP; Dagum &

Menon, 1998) application programming interface.

4.4 Extension: Exploratory IFA

Thanks to the simple procedure of the StEM algorithm, the algorithm can be

generalized to solving many other problems. In particular, an StEM algorithm can be used

to solve the optimization for the L1 regularized estimator for exploratory IFA (Sun, Chen,

Liu, Ying, & Xin, 2016). Specifically, under the exploratory IFA setting, no Q-matrix is

pre-specified and thus no constraint is imposed on the slope parameters ajk. To impose a

2Since this reparametrization does not guarantee σkk = 1, k = 1, . . . , K, some of the slope parameters
have to be constrained to be 1 to ensure the identifiability of the model.
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simple structure on the slopes, Sun et al. (2016) propose a L1 regularized maximum

likelihood estimator, under which many of the ajks are estimated to be zero. In other

words, the L1 regularized estimator automatically rotates the factors to achieve a sparse

slope structure. More precisely, under the MGPC model, the L1 regularized maximum

likelihood estimator is obtained by solving the following optimization problem

Ψ̂λ =argmax
Ψ

l(Ψ) − λ
J

∑

j=1

K
∑

k=1

|ajk|,

s.t. Σ ² 0, σkk = 1, k = 1, 2, . . . , K,

(11)

where λ is a positive tuning parameter.

With slight modification, the algorithm described in Section 3.1 can be used to solve

(11). Specifically, the StE step and the optimization for Σ in the M step remain the same.

The optimization for the item parameters in (9) becomes an L1 regularized regression

problem, which can be solved using either a coordinate decent algorithm (Friedman,

Hastie, & Tibshirani, 2010) or a proximal algorithm (Parikh et al., 2014).

4.5 Extension: Constraints on Σ

In confirmatory IFA, it is usually of interest to study the relationship between the

latent traits by comparing models where different zero constraints are imposed on the

covariance Σ. For example, one may test the independence between traits 1 and 2 by

comparing two models, where one constrains σ12 = σ21 = 0 and the other does not. Such

constraints can be easily handled using an StEM algorithm.

More precisely, let E denote the set of constraints E = {(k, k′) : σkk′ = 0}. To

incorporate these constraints in the estimator, only the update of Σ in (8) of the M-step

needs to be modified. Instead of solving (8), we solve

max
Σ

N
∑

i=1

log(φ(θ̃
(t)

i |Σ)),

s.t. Σ ² 0, σkk = 1, k = 1, . . . , K,

σkk′ = 0, (k, k′) ∈ E,
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which is again an SDP problem that can be solved similarly using a proximal gradient

descent algorithm.

4.6 Extension: Latent Regression

The StEM algorithm can also be extended to solving latent regression item response

theory models, which are two-level latent variable models in which covariates serve as

predictors of the conditional distribution of the latent traits (Camilli & Fox, 2015; von

Davier & Sinharay, 2010). In such models, each respondent is associated with p covariates,

denoted by xi = (xi1, . . . , xip). When adopting the MGPC model as the measurement

model, the latent regression item response theory model differs from the model described in

Section 2.1 by assuming

θi ∼ N(Γxi,Σ),

where Γ is K × p matrix containing all the regression coefficients. Moreover, when p is

large, L1 and/or L2 regularization can be imposed on Γ, for the purposes of model

selection, handling the collinearity among covariates, etc. The StEM algorithm can be

easily modified to estimate aj, dj, j = 1, . . . , J , Σ and Γ under this model, even with the

presence of L1 and/or L2 regularization.

5 Simulation Study3

5.1 Study I

In this study, we verify the theoretical properties of the StEM algorithm using a

small Monte Carlo simulation study. In particular, we compare the StEM algorithm with

the classical EM algorithm (Bock & Aitkin, 1981) in terms of parameter recovery.

We consider a single latent trait (K = 1), ten items (J = 10), and sample sizes

N = 500, 1000, and 2000. We further assume all the responses are binary (i.e., mj = 1) and

thus the MGPC model becomes the M2PL model. For ease of exposition, we simplify the

3All simulations, except for the comparison between the proposed algorithm and the MH-RM algorithm
implemented in the flexMIRT software in Section 5.2, are conducted on Intel(R) machines with the speci-
fications: Xeon(R) CPU E5-2687W v4 @ 3.00GHz; R version 3.4.1 (2017-06-30); gcc version 4.8.5 20150623
(Red Hat 4.8.5-16).
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notation, aj = aj1 and dj = dj1. The parameters aj and dj are generated once from the

uniform distribution over the interval (0.5, 1.5) and the standard normal distribution,

respectively; see Table 1 for their true values. For each sample size, we generate 500

independent data sets and fit each data set with the proposed StEM algorithm and the

classical EM algorithm. We adopt the implementation of the EM algorithm in the mirt

package (Chalmers, 2012) in statistical software R. Moreover, the EM algorithm is

implemented with 100 quadrature points for the E step, so that the approximation error in

the numerical integrals of the E step is negligible.

Table 1
True values of parameters in study I.

a∗
1 a∗

2 a∗
3 a∗

4 a∗
5 a∗

6 a∗
7 a∗

8 a∗
9 a∗

10

True 1.39 1.40 0.73 0.55 0.71 1.05 0.92 0.50 0.68 0.90

d∗
1 d∗

2 d∗
3 d∗

4 d∗
5 d∗

6 d∗
7 d∗

8 d∗
9 d∗

10

True 1.55 -1.04 0.60 1.10 0.27 0.19 -0.67 0.45 0.13 1.20

Results are summarized in Figures 1-3. In Figure 1, the mean squared errors (MSE)

for the aj and dj parameters over 500 replications are presented. For example, the MSE for

a1 is computed as

1

500

500
∑

i=1

(â
(i)
1 − a∗

1)
2,

where â
(i)
1 is the estimate of a1 from the ith replication. The left, middle, and right panels

of Figure 1 correspond to the three sample sizes, N = 500, 1000, and 2000, respectively. In

each panel, the boxplots with labels “StEM.A”, and “StEM.d” are based on the MSEs for

a1, . . . , a10 and d1, . . . , d10, respectively, from the StEM algorithm. Similarly, the boxplots

with labels “EM.A”, and “EM.d” are based on results from the EM algorithm. According

to this plot, it is found that the MSEs of the parameter estimation based on the StEM

algorithm are very close to, if slightly larger than, the oracle ones based on the EM

algorithm.
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Figure 1 . The boxplot of MSEs of slope parameters aj and intercept parameters dj for the
StEM and the EM algorithm. Left: N = 500; Middle: N = 1000; Right: N = 2000.

Second, Figure 2 shows the mean squared differences (MSD) between the estimate

from the StEM algorithm and that from the EM algorithm. For example, the MSD for

parameter a1 is defined as

1

500

500
∑

i=1

(a
(i)
1,StEM − a

(i)
1,EM)

2,

where a
(i)
1,StEM and a

(i)
1,EM denote the StEM and EM estimates of a1, respectively, based on

data from the ith replication. The left panel of Figure 2 corresponds to the MSDs for the aj

parameters and the right panel corresponds to those for the dj parameters. In each panel, a

boxplot corresponds to a sample size, as indicated by its label. According to these boxplots,

the MSDs are negligible comparing to the values of MSEs given in Figure 1. According to

Figures 1-2, under all sample sizes and for all the model parameters, the point estimation

given by the StEM algorithm and that given by the EM algorithm are almost the same.
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Figure 2 . The boxplot of mean squared differences of slope parameters aj and intercept
parameters dj between the StEM and the EM algorithm under different sample size N .
Left: mean squared differences of slope parameters. Right: mean squared differences of
intercept parameters.

Finally, for the purpose of illustration, we present the results on the selection of T

and m, two important parameters of the StEM algorithm that affect the accuracy of

parameter estimation. In Figures 3 and 4, the histograms of the selected m and T are

presented, respectively, under different sample sizes. According to these figures, both the

selected m and T vary in different replications.
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Figure 3 . The histogram of selected m in the StEM algorithm. Left: N = 500; Middle:
N = 1000; Right: N = 2000.



STOCHASTIC EM 21

N=500

0 20 40 60 80 100 120 140

0
1
0
0

2
0
0

3
0
0

4
0
0

N=1000

0 20 40 60 80 100 120 140

0
1
0
0

2
0
0

3
0
0

4
0
0

N=2000

0 20 40 60 80 100 120 140

0
1
0
0

2
0
0

3
0
0

4
0
0

Figure 4 . The histogram of selected burn in length T in the StEM algorithm. Left:
N = 500; Middle: N = 1000; Right: N = 2000.

5.2 Study II

In the second study, we compare the proposed StEM algorithm and the MH-RM

algorithm under settings where the dimensionality of the latent space is high (K = 10, 20),

where two implementations of the MH-RM algorithm are adopted including the one

implemented in the mirt R package that is mainly written in programming language R

and the other implemented in the flexMIRT software that is written in C++. In this

comparison, the proposed StEM algorithm is implemented in R with core functions written

in C++. For these high-dimensional settings, the classical EM algorithm is

computationally infeasible. For fairness, all the algorithms are compared within a single

core, which does not allow for parallel computing.

We first compare the proposed algorithm and the MH-RM algorithm implemented in

the mirt package, under two settings: (1) K = 10, J = 100, and N = 2000, and (2)

K = 20, J = 200, and N = 2000. We consider a simple confirmatory design, where each

latent trait is measured by 10 items. That is, items 1-10 measure latent trait 1, items 11-20

measure latent trait 2, and so forth. The true nonzero slope parameters ajk and the

intercept parameters dj are generated once from the uniform distribution over the interval

(0.5, 1.5) and the standard normal distribution, respectively. The latent traits θi are

generated from a multivariate normal distribution with mean zero and covariance matrix
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Σ, where σkk = 1, and σkk′ = 0.6, k Ó= k′, k, k′ = 1, . . . , K.

The comparison between the two algorithms is based on 100 replications for each

setting. The results on the estimation precision and computation time are presented in

Figures 5 and 6. According to these results, the two algorithms have similar accuracy on

the slope and intercept parameters, but the proposed algorithm is substantially more

accurate in estimating the correlations among the latent traits. In addition, to achieve this

accuracy, the StEM algorithm is about 2.5 times faster than the MH-RM implementation

in the mirt package. For setting (2), no result is obtained for the MH-RM algorithm for

any of the replications, with an error message “MH sampler failed”, which is possibly due

to that non-positive definite estimates of the latent variable covariance matrix Σ are

produced in intermediate Robbins-Monro iterations. On the other hand, valid results are

obtained from the StEM algorithm for all the replications; See Figures 7-8 for the results

on its accuracy and computation time.

We then compare the proposed algorithm with the MH-RM algorithm implemented

in the flexMIRT software. Since the flexMIRT software can only be run in the Microsoft

Windows system, the comparison is conducted under a Windows system based on five

replications for each setting4. Results are given in Table 2 and Figure 9-10. It is worth

noting that the MH-RM algorithm implemented in flexMIRT is able to provide valid

estimates even when K = 20, which may be due to that the flexMIRT has a better

implementation of the MH-RM algorithm that takes the positive definiteness of the Σ

matrix into account. When K = 10, based on the five replications, the two algorithms

achieve similar accuracy within comparable computation time. When K = 20, our

algorithm takes substantially less time to achieve a similar accuracy level.

4Both algorithms are conducted on a personal computer with specifications: Processor 2.2 GHz Intel
Core i7; Memory 8 GB 1600 MHz DDR3.
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Figure 5 . The boxplot of MSEs of parameters estimation for the StEM and the MH-RM
algorithm implemented in the mirt package when the latent dimension is 10. Left: MSEs
of non-zero slope parameters aj; Middle: MSEs of intercept parameters dj; Right: MSEs of
correlation parameters σij.
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Figure 6 . The boxplot of elapsed time (minutes) of the estimation procedure for the StEM
and the MH-RM algorithm implemented in the mirt package when the latent dimension is
10.
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Figure 7 . The boxplot of MSEs of parameters estimation for the StEM when the latent
dimension is 20. Left: MSEs of non-zero slope parameters aj; Middle: MSEs of intercept
parameters dj; Right: MSEs of correlation parameters σij.
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Figure 8 . The boxplot of elapsed time (minutes) of the estimation procedure for the StEM
when the latent dimension is 20.

Table 2
The computation time (minutes) for the estimation based on the StEM and MH-RM
algorithms implemented in flexMIRT.

1 2 3 4 5

StEM (K=10) 2.5 3.2 5.8 2.9 3.1

MH-RM (K=10) 3.2 2.2 6.0 2.4 4.8

StEM (K=20) 20.3 19.0 18.7 15.4 17.1

MH-RM (K=20) 82.8 48.9 93.3 70.7 64.6
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Figure 9 . The boxplot of MSEs of the estimated parameters for the StEM and the
MH-RM algorithm implemented in the flexMIRT software when the latent dimension is
10. Left: MSEs of non-zero slope parameters aj; Middle: MSEs of intercept parameters dj;
Right: MSEs of correlation parameters σij.
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Figure 10 . The boxplot of MSEs of the estimated parameters for the StEM and the
MH-RM algorithm implemented in the flexMIRT software when the latent dimension is
20. Left: MSEs of non-zero slope parameters aj; Middle: MSEs of intercept parameters dj;
Right: MSEs of correlation parameters σij.

6 Application to Big Five Personality Test

We further illustrate the use of the proposed algorithm through an application to a

personality assessment dataset based on an International Personality Item Pool (IPIP)

NEO personality inventory (Johnson, 2014). This inventory is a public-domain version of

the widely used NEO personality inventory (Costa & McCrae, 1985), which is designed to

measure the big five personality factors, including Neuroticism (N), Agreeableness (A),

Extraversion (E), Openness to experience (O), and Conscientiousness (C). According to
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(Johnson, 2014), each personality factor can be further split into six personality facets,

resulting in 30 facets. For example, the Neuroticism factor is split into (N1) anxiety, (N2)

anger, (N3) depression, (N4) self-consciousness, (N5) immoderation, and (N6)

vulnerability. A list of the thirty personality facets is provided in Table 3.

The dataset was collected via the Web (Johnson, 2005), containing 20,993

participants and 300 items5. We analyzed a subset of this dataset, containing data from

7,325 participants who completed all the items. All the 30 personality facets are measured,

with each facet measured by 10 items. All the items are on a five-category rating scale. An

example item is “Worry about things”, and the response categories are “Very Inaccurate”,

“Moderately Inaccurate”, “Neither Accurate nor Inaccurate”, “Moderately Accurate”, and

“Very Accurate”. Reverse-worded items were reversely recorded

(1 → 5, 2 → 4, 4 → 2, 5 → 1) at the time the respondent completed the inventory. Based on

the structure of data, we fit a thirty dimensional MGPC model where each factor

represents a facet. The path diagram of the model is visualized in Figure 11.

Table 3
Interpretation of the thirty personality facets in IPIP-NEO inventory.

Facet Facet Facet

N1 Anxiety A1 Trust E1 Friendliness

N2 Anger A2 Morality E2 Gregariousness

N3 Depression A3 Altruism E3 Assertiveness

N4 Self-Consciousness A4 Cooperation E4 Activity Level

N5 Immoderation A5 Modesty E5 Excitement-Seeking

N6 Vulnerability A6 Sympathy E6 Cheerfulness

Facet Facet

O1 Imagination C1 Self-Efficacy

O2 Artistic Interests C2 Orderliness

O3 Emotionality C3 Dutifulness

O4 Adventurousness C4 Achievement-Striving

O5 Intellect C5 Self-Discipline

O6 Liberalism C6 Cautiousness

5The dataset and items can be downloaded from https://osf.io/tbmh5/.
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Figure 11 . Visualization of an MIRT model with thirty latent traits fitted to the NEO
data.
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Figure 12 . The Markov chain of estimated parameters. Left (a)-(b): correlation parameters
σ12, σ13; Middle (c)-(d): slope parameters a11, a21; Right (e)-(f): slope parameters d21, d22.

We provide a discussion on the details of the results. Using parallel computing, the

algorithm converges within 32 minutes on a computer cluster with 24 cores6. The burn-in

size T and the length m of the effective Markov chain are chosen as T = 100, m = 300 by

6The real data analysis is conducted on an Intel(R) machine with the specifications: Xeon(R) CPU
E5-2687W v4 @ 3.00GHz; R version 3.4.1 (2017-06-30); gcc version 4.8.5 20150623 (Red Hat 4.8.5-16).
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the proposed procedure, respectively. The dynamic process of the StEM algorithm is

visualized in Figure 12, where the Markov chains of the correlation σ12 and σ13, the slope

parameters a11 and a21 and the intercept parameters d12 and d22 are shown as illustrative

examples in panels (a)-(f), respectively. In these plots, the x-axis shows the iteration

number t and the y-axis shows the parameter value. As we can see, all these Markov chains

stabilize quickly after a few StEM iterations. After the burn-in size T = 100, which is

chosen by the proposed procedure, the effect of the starting points seems to be negligible.

As shown in Table 4, all the estimated slopes are positive, which is consistent with

the confirmatory design of the measurement scale. The values of estimated slope

parameters vary substantially, implying the heterogenous psychometric properties of the

items. The estimated correlation matrix among the 30 latent traits is visualized in

Figure 13. It is observed that bubbles within the diagonal blocks formed by facets

belonging to the same personality factor are mostly large and in black color, indicating

strong positive associations thereof. The Neuroticism facets tend to be negatively

correlated with most of the facets within the other four factors, with only a few exceptions

(e.g., with A5 “Modesty” and O3 “Emotionality”). In addition, most of the Agreeableness

and Conscientiousness facets are positively correlated, and most of the Extraversion and

Openness facets are positively correlated as well. These overall patterns of inter-factor

correlations echo existing findings in the literature of Big-five personality (e.g., Steel,

Schmidt, & Shultz, 2008).

To the best of our knowledge, this is the first time that the 30 facets of the NEO

personality inventory are simultaneously analyzed at the item level, while previous studies

analyzed the latent structure of the 30 facets based on the total scores of the corresponding

scales (e.g., Johnson, 2005). Our analysis has a few advantages. First, by making use of

item level data and taking into account the ordinal nature of the items, the 30 facets may

be better measured, which may further lead to a better estimation of the facet-facet

correlations. Second, estimates of the item parameters are available from our analysis,
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Table 4
The estimated slope parameters of the NEO dataset.

Latent trait Loading Description

N1 1.06 0.91 1.01 1.68 1.15 0.95 0.92 0.73 0.74 0.72 Item 1-10.

N2 1.91 1.70 1.53 0.97 2.10 1.86 1.58 1.48 1.09 0.63 Item 11-20.

N3 1.42 1.76 1.99 1.77 0.85 1.16 0.62 1.11 1.78 1.58 Item 21-30.

N4 0.81 0.65 1.13 0.94 0.74 0.48 0.68 0.56 0.79 0.80 Item 31-40.

N5 0.54 0.42 0.48 0.74 0.46 1.01 0.84 1.04 0.39 0.54 Item 41-50.

N6 1.16 1.02 1.15 0.58 1.00 1.19 0.66 1.21 0.77 1.10 Item 51-60.

A1 1.41 1.67 1.72 0.92 1.13 0.53 2.26 0.99 0.76 0.92 Item 61-70.

A2 0.43 0.62 0.43 1.00 0.70 1.07 0.66 0.61 1.24 0.84 Item 71-80.

A3 0.98 0.88 1.25 1.31 0.68 0.80 1.17 0.67 0.98 1.06 Item 81-90.

A4 0.39 0.30 0.44 0.72 0.73 0.53 0.91 1.14 0.82 0.55 Item 91-100.

A5 0.22 0.33 0.29 0.26 0.58 4.19 4.41 0.37 0.33 0.35 Item 101-110.

A6 1.00 1.21 0.47 0.66 1.00 0.86 0.35 0.70 0.60 0.49 Item 111-120.

E1 1.29 1.07 2.09 1.79 0.94 0.75 1.35 1.62 0.59 1.12 Item 121-130.

E2 1.25 0.99 0.99 0.69 0.64 0.98 1.03 1.39 1.63 1.06 Item 131-140.

E3 1.73 1.41 0.74 0.56 1.57 1.28 1.08 0.82 0.64 0.74 Item 141-150.

E4 1.24 1.33 0.88 0.60 0.35 0.53 0.33 0.40 0.28 0.41 Item 151-160.

E5 1.04 1.37 1.26 0.75 1.08 1.17 0.62 1.02 0.49 0.47 Item 161-170.

E6 1.16 1.60 0.54 0.76 1.26 1.26 0.88 0.73 0.66 0.54 Item 171-180.

O1 1.01 1.06 1.49 1.41 0.76 0.68 1.50 0.96 0.91 0.98 Item 181-190.

O2 1.67 0.49 0.93 0.49 0.81 1.80 0.91 1.54 0.26 0.49 Item 191-200.

O3 1.41 0.67 0.37 0.15 0.37 1.41 1.46 0.72 0.87 0.93 Item 201-210.

O4 0.67 0.55 0.47 0.77 1.02 2.33 2.23 0.74 0.28 0.72 Item 211-220.

O5 0.56 0.89 0.91 0.72 0.77 1.04 1.27 1.39 1.40 1.05 Item 221-230.

O6 0.61 0.33 0.83 0.25 0.70 0.47 0.75 0.94 1.25 0.31 Item 231-240.

C1 0.91 1.04 1.19 0.86 0.94 1.20 0.79 0.85 0.97 0.54 Item 241-250.

C2 1.27 1.35 0.50 1.28 0.87 0.85 1.02 0.84 0.64 0.92 Item 251-260.

C3 0.95 0.68 0.38 0.93 0.67 1.07 0.77 0.85 0.93 0.79 Item 261-270.

C4 0.74 1.30 0.91 0.91 1.23 0.65 0.45 0.60 1.17 1.23 Item 271-280.

C5 0.91 0.81 1.55 1.16 1.08 1.62 1.15 1.32 1.78 0.70 Item 281-290.

C6 0.41 0.43 0.32 1.82 1.47 0.80 1.73 0.70 2.05 0.55 Item 291-300.

providing diagnostic information about the items. For example, the estimated slope of item

204 (“Enjoy examining myself and my life”) is relatively small (â204 = 0.15). It suggests

that this item contains a relatively small amount of information about the corresponding

facet, O3 (Emotionality). Such an item may be removed when developing a short scale.

Finally, although not considered in this analysis, it is much easier to compare different

hypotheses of the personality structure under the adopted full-information IFA framework.

In particular, the full-information IFA framework turns the different hypotheses into

different MIRT models and then compares them using standard statistical inference tools.
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Figure 13 . Visualization of the estimated correlation matrix of the 30 latent traits for the
IPIP-NEO dataset. Positive and negative correlations are shown in black and white circles,
respectively. The size of the circle is proportional to the absolute value of the correlation.

7 Concluding Remarks

In this paper, we propose an improved stochastic EM algorithm for estimating MIRT

model parameters. Thanks to the asymptotic properties of the stochastic EM algorithm, as

well as advanced sampling and optimization techniques, the developed algorithm not only

produces a point estimator that closely resembles the MMLE but is also computationally

efficient and virtually tuning-free. As discussed in Section 4, this algorithm can be easily

generalized to the estimation of latent variable models with constraints and nonsmooth

penalties, including L1 regularized estimation of slope parameters in exploratory IFA,

confirmatory IFA with constrained covariance matrix, and estimation of multilevel latent
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variable models. Our simulation studies suggest that the performance of this algorithm is

comparable to the popular MH-RM algorithm. Moreover, when the dimensionality of the

latent space is high, our algorithm tends to outperform the MH-RM algorithm for greater

computational efficiency and less tuning burden. These evidence suggest that the proposed

StEM algorithm has the potential to become a popular research and operational tool.

This current study will be extended along the following directions in future research.

First, the performance of the StEM algorithm on solving a regularized estimator for

exploratory IFA will be investigated and its statistical properties, such as the consistency

in parameter estimation and model selection, will be studied. Second, a generic StEM

algorithm will be developed for the estimation of general structural equation models, such

as the latent regression IRT analysis, which can be very useful in educational and

psychological research for analyzing structural equation models with many latent variables.

Finally, the potential applications of the StEM algorithm for analyzing latent variable

models with more complex structures will be investigated, including the latent Dirichlet

allocation (Blei, Ng, & Jordan, 2003) for natural language processing and the mixed

membership stochastic blockmodels (Airoldi, Blei, Fienberg, & Xing, 2008) for network

data analysis.
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Appendix A

Adaptive Rejection Sampling in StE Step

We elaborate on the adaptive rejection sampler (Gilks & Wild, 1992) used in the StE-step,

for sampling from f(θk|yi,Ψ
(t−1), θ̃

(t)

i,−k). The problem becomes to sampling from a

probability density function g(x)/C, where C is an unknown normalizing constant and

g(x) is log-concave, continuous and differentiable everywhere. Consequently,

h(x) = log g(x) is concave, continuous and differentiable everywhere. The adaptive

rejection sampler consists of the following three steps.

Figure A1 . An illustration of the construction of the proposal distribution in the adaptive
rejection sampler. h(x) = log(g(x)), where g(x)/

∫

g(x′)dx′ is the target distribution to be
sampled from. u(x) is a piecewise linear upper bound of h(x) and l(x) is a piecewise linear
lower bound of h(x).

1. Construction of envelope. Let set D = {xi : i = 1, ..., M}, satisfying

x1 < · · · < xM , h′(x1) > 0 and h′(xM) < 0, where h′(x) is the derivative of h(x).

Calculate the following for the starting points in D:

(a) u(x), the piecewise linear upper bound formed by the tangents to h(x) at each
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point in D. More precisely, let

zi =
h(xi+1)− h(xi)− xi+1h

′(xi+1) + xih
′(xi)

h′(xi)− h′(xi+1)
,

for i = 1, . . . , M − 1, and z0 = −∞ and zM = ∞. Then

u(x) = h(xj) + (x − xj)h
′(xj), x ∈ [zj−1, zj], j = 1, . . . , M.

(b) s(x) = exp(u(x))/
∫

exp(u(x′))dx′.

(c) l(x), the piecewise linear lower bound formed by the chords between adjacent

points in D. More precisely,

l(x) =
(xi+1 − xi)h(xi) + (x − xi)h(xi+1)

xi+1 − xi

,

for x ∈ [xi, xi+1], i = 1, . . . , M − 1, and l(x) = −∞ for x < x1 and x > xM .

Note that u(x), s(x), and l(x) all have analytical forms. Note that s(x) is a

cumulative distribution function, which serves as the cumulative distribution

function. See Figure A1 for an illustrative example, where M = 3.

2. Sampling. Sample a value x∗ from s(x) and a value u∗ independently from uniform

distribution over the interval (0, 1). If u∗ ≤ exp{l(x∗)− u(x∗)} then accept x∗,

otherwise evaluate h(x∗) and h′(x∗). If further u∗ ≤ exp{h(x∗)− uM(x
∗)} then accept

x∗, otherwise reject x∗.

3. Updating. If h(x∗) and h′(x∗) are evaluated in the previous sampling step, include

x∗ in D. Relabel the elements of D in ascending order and reconstruct functions

u(x), s(x), and l(x).

Our sampler iterates among the three steps, until one sample has been accepted. In our

implementation, we use M = 3 and D = {−5, 0, 5} as the default starting point.
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Appendix B

Optimization in the M Step

We then consider the optimization of (8), which is a convex optimization problem with a

positive semi-definite constraint. It follows after some simple algebra that(8) is equivalent

to

minΣ 〈Σ−1, Σ̂〉+ log det(Σ)

s.t. Σ ² 0, σkk = 1, k = 1, 2, . . . , K,

(12)

where Σ̂ = (σ̂k1k2
)K×K , σ̂k1k2

= 1
N

∑N
i=1 θ̃

(t)
ik1

θ̃
(t)
ik2
. We solve the estimation problem by

developing a proximal gradient descent algorithm (Parikh et al., 2014). Denote

C = {MK×K : mkk = 1}. The optimization problem becomes:

minΣ 〈Σ−1, Σ̂〉+ log det(Σ) s.t. Σ ∈ C, Σ ² 0. (13)

We have the following procedure:

1. Initialization. Given Θ = (θ̃
(t)

1 , θ̃
(t)

2 , . . . , θ̃
(t)

N ) which is sampled from StE step, set

initial value Σ(0) as the sample correlation of Θ.

2. Proximal gradient descent. For s = 1, 2, . . . , update

Σ(s+1) = ProxC

(

Σ(s) − λs∇f(Σ(s))
)

,

where ∇f (Σ) = −Σ−1Σ̂Σ−1 + Σ−1, the gradient of

f (Σ) = 〈Σ−1, Σ̂〉+ log det(Σ),

P roxC(·) is a matrix operator that set the diagnal elements of a matrix to be 1.

λs > 0 is a step size obtained by line search which grantees that f(Σ(s+1)) < f(Σ(s)).

3. Output. Iterate step 2 until convergence. Output Σ(S), where S is the last iteration

number.
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Due to the presence of the logarithm of determinant term in the objective function,

the positive semi-definite constraint is satisfied automatically and thus Σ(S) is strictly

positive definite given that the initial value Σ(0) is strictly positive definite.
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Appendix C

Details on Determining T and m

Determining T . We determine the burn-in size T using a batch procedure based

on the Geweke statistic (Gelman & Rubin, 1992). Let batch size be B, where B is chosen

as 20 as the default value in our implementation. We also use M batches as a moving

window for the Markov chain of {Ψ(t) : t = 1, 2, . . . }, based on which the Geweke statistics

are computed; in our implementation, M = 10 is chosen as the default value. We denote

the number of parameters in Ψ as p. More precisely, we have the following batch procedure:

1. Initialization. Set iteration number k = 0. Run MB iterations of the StEM

algorithm, and obtain Ψ(1), . . . , Ψ(MB).

2. Check stationarity. For each entry j of Ψ, we compute the Geweke statistic zj

based on the Markov chain {Ψ(kB+1)
j , . . . ,Ψ

((k+M)B)
j }, based on the mean difference

between first 10% and last 50% part of chain. We regard stationary being reached

when all |zj|s are sufficiently small. In the implementation, we terminate the burn-in

procedure if
p

∑

j=1

z2j < pǫ1,

where ǫ1 is chosen as 1.5 in the implementation.

3. Updating. If burn-in has not been terminated, we increase iteration number k by 1,

discard the first batch in the current moving window, and run an additional batch (B

iterations) of the StEM algorithm.

We iterate between Steps 2 and 3, until burn-in is terminated according to Step 2.

Upon stopping, we set burn-in size T = kB.

Determining m. We determine the value of m based on a similar batch

procedure, after the determination of burn-in size T .
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1. Initialization. Once T has been determined, we have a Markov chain of length MB,

{Ψ(T+1), . . . ,Ψ(T+MB)}. We start with this initial chain and initialize the number of

batches for averaging as n = M .

2. Check convergence. For each parameter Ψj, we estimate the variance of

Ψ̂j(n) =
1

nB

T+nB
∑

t=T+1

Ψ
(t)
j

by the batch variance procedure (Roberts, 1996),

δ̂j(n) =

∑n
i=1(Ψ̄j(i)− Ψ̂j(n))

2

(n − 1)n ,

where Ψ̄j(i) is the mean of the ith batch. This estimate adjusts for the

autocorrelation among the Ψ
(t)
j s. We declare convergence when δ̂j(n) < ǫ2/N for all

j = 1, . . . , p. In our implementation, ǫ2 = 0.4 is chosen as the default value.

3. Updating. If convergence has not been reached, we increase n by 1 and run an

additional batch (B iterations) of the StEM algorithm. We then obtain a Markov

chain of length nB, Ψ(T+1), . . . , Ψ(T+nB).

We iterate between Steps 2 and 3, until convergence has been reached according to Step 2.

Upon stopping, we set m = nB.
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