
 

 

Yuan Ke, Degui Li and Qiwei Yao 
Nonlinear regression estimation using 
subset-based kernel principal components 
 
Article (Accepted version) 
(Refereed) 
 
 
 Original citation: 
Ke, Yuan and Li, Degui and Yao, Qiwei (2018) Nonlinear regression estimation using subset-
based kernel principal components. Statistica Sinica, 28 (4). pp. 2771-2794. ISSN 1017-0405 (In 
Press) 
 
DOI: 10.5705/ss.202016.0369 
 
© 2018 Institute of Statistical Science 
 
This version available at: http://eprints.lse.ac.uk/id/eprint/90945 
 
Available in LSE Research Online: November 2018 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final accepted version of the journal article. There may be 
differences between this version and the published version.  You are advised to consult the 
publisher’s version if you wish to cite from it. 
 
 
 

http://www.lse.ac.uk/Statistics/People/Professor-Qiwei-Yao
http://www3.stat.sinica.edu.tw/statistica/
http://apps.webofknowledge.com/InboundService.do?product=WOS&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com%3FDestParams%3DUT%253DWOS%25253A000450217700055%2526customersID%253DAlerting%2526smartRedirect%253Dyes%2526action%253Dretrieve%2526mode%253DFullRecord%2526product%253DCEL%26UT%3DWOS%253A000450217700055%26SrcAuth%3DAlerting%26SrcApp%3DAlerting%26DestApp%3DCEL%26e%3Df8FtuL0eoAV03mSdpgXQA1xcclrnXtlpa53EHHzC7NWtTZbZvrFt1A%253D%253D&SrcApp=Alerting&SrcAuth=Alerting&SID=D6lorHAKJ6Gn1WfgCzS&customersID=Alerting&smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000450217700055
http://www.stat.sinica.edu.tw/statnewsite/?locale=en_US
http://eprints.lse.ac.uk/id/eprint/90945


NONLINEAR REGRESSION ESTIMATION USING

SUBSET-BASED KERNEL PRINCIPAL

COMPONENTS

Yuan Ke1, Degui Li2, Qiwei Yao3

1Princeton University, 2The University of York, 3London School of Economics

Abstract: We study the estimation of conditional mean regression functions

through the so-called subset-based kernel principal component analysis (KPCA).

Instead of using one global kernel feature space, we project a target function into

different localized kernel feature spaces at different parts of the sample space.

Each localized kernel feature space reflects the relationship on a subset between

the response and covariates more parsimoniously. When the observations are col-

lected from a strictly stationary and weakly dependent process, the orthonormal

eigenfunctions which span the kernel feature space are consistently estimated by

implementing an eigenanalysis on the subset-based kernel Gram matrix, and the

estimated eigenfunctions are then used to construct the estimation of the mean

regression function. Under some regularity conditions, the developed estimator

is shown to be uniformly consistent over the subset with a convergence rate faster

than those of some well-known nonparametric estimation methods. In addition,

we also discuss some generalizations of the KPCA approach, and consider using

the same subset-based KPCA approach to estimate the conditional distribution
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function. The numerical studies including three simulated examples and two

real data sets illustrate the reliable performance of the proposed method. In

particular, the improvement over the global KPCA method is evident.

Key words and phrases: Conditional distribution function, eigenanalysis, kernel

Gram matrix, KPCA, mean regression function, nonparametric regression.

1 Introduction

Let Y be a scalar response variable and X be a p-dimensional random vector. We are interested

in estimating the conditional mean regression function defined by

hpxq “ EpY |X “ xq, x P G, (1.1)

where G Ă R
p is a measurable subset of the sample space of X, and PpX P Gq ą 0. We allow

that the mean regression function hp¨q is not specified except certain smoothness conditions,

which makes (1.1) more flexible than the traditional parametric linear and nonlinear regression.

Nonparametric estimation of hp¨q has been extensively studied in the existing literature such

as Green and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996), Fan and Yao

(2003) and Teräsvirta, Tjøstheim and Granger (2010). When the dimension of random covari-

ates p is large, a direct use of the nonparametric regression estimation methods such as the

spline and kernel-based smoothing typically perform poorly due to the so-called “curse of di-

mensionality”. Hence, some dimension-reduction techniques/assumptions (such as the additive

models, single-index models and varying-coefficient models) have to be imposed when estimat-

ing the mean regression function. However, it is well known that some dimension reduction
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techniques may result in systematic biases in estimation. For instance, the estimation based

on an additive model may perform poorly when the data generation process deviates from the

additive assumption.

In this paper we propose a data-driven dimension reduction approach through using a

Kernel Principal Components Analysis (KPCA) for the random covariate X. The KPCA is a

nonlinear version of the standard linear Principal Component Analysis (PCA) and overcomes

the limitations of the linear PCA by conducting the eigendecomposition of the kernel Gram

matrix, see, for example, Schölkopf, Smola and Müller (1999), Braun (2005) and Blanchard,

Bousquet and Zwald (2007). See also Section 2.2 below for a detailed description on the KPCA

and its relation to the standard PCA. The KPCA has been applied in, among others, feature ex-

traction and de-noising in high-dimensional regression (Rosipal et al., 2001), density estimation

(Girolami, 2002), robust regression (Wibowo and Desa, 2011), conditional density estimation

(Fu, Shih and Wang, 2011; Izbicki and Lee, 2013), and regression estimation (Lee and Izbicki,

2013).

Unlike the existing literature on KPCA, we approximate the mean regression hpxq on

different subsets of the sample space of X by linear combinations of different subset-based

kernel principal components. The subset-based KPCA identifies nonlinear eigenfunctions in a

subset, and thus reflects the relationship between Y and X on that set more parsimoniously

than, for example, a global KPCA (see Proposition 1 in Section 2.2 below). The subsets may

be defined according to some characteristics of X and/or those on the relationship between Y

and X (e.g., MACD for financial prices, different seasons/weekdays for electricity consumption,

or adaptively by some change-point detection methods) and they are not necessarily connected

sets. This is a marked difference from some conventional nonparametric regression techniques

such as the kernel smoothing and nearest neighbour methods. Meanwhile, we assume that the
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observations in the present paper are collected from a strictly stationary and weakly dependent

process, which relaxes the independence and identical distribution assumption in the KPCA

literature and makes the proposed methodology applicable to the time series data. Under some

regularity conditions, we show that the estimated eigenvalues and eigenfunctions which are

constructed through an eigenanalysis on the subset-based kernel Gram matrix are consistent.

The conditional mean regression function hp¨q is then estimated through the projection to the

kernel spectral space which is spanned by a few estimated eigenfunctions whose number is

determined by a simple ratio method. The developed conditional mean estimation is shown to

be uniformly consistent over the subset with a convergence rate faster than those of some well-

known nonparametric estimation methods. We further extend the subset-based KPCA method

to estimation of the conditional distribution function:

FY |Xpy|xq “ PpY ď y|X “ xq, x P G, (1.2)

and establish the associated asymptotic property.

The rest of the paper is organized as follows. Section 2 introduces the subset-based KPCA

and the estimation methodology for the mean regression function. Section 3 derives the main

asymptotic theorems of the proposed estimation method. Section 4 extends the proposed subset-

based KPCA for estimation of conditional distribution functions. Section 5 illustrates the finite

sample performance of the proposed methods by simulation. Section 6 reports two real data

applications. Section 7 concludes the paper. All the proofs of the theoretical results are available

in an online supplementary material.
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2 Methodology

Let tpYi,Xiq, 1 ď i ď nu be observations from a strictly stationary process with the same

marginal distribution as that of pY,Xq. Our aim is to estimate the mean regression function

hpxq for x P G, as specified in (1.1). We first introduce the kernel spectral decomposition in

Section 2.1, followed by the illustration on the kernel feature space and the relationship between

the KPCA and the standard PCA in Section 2.2, and finally propose an estimation method for

the conditional mean regression function in Section 2.3.

2.1 Kernel spectral decomposition

Let L2pGq be the Hilbert space consisting of all the functions defined on G which satisfy the

following conditions: for any f P L2pGq,

ż

G

fpxqPXpdxq “ E
“
fpXqIpX P Gq

‰
“ 0,

and
ż

G

f
2pxqPXpdxq “ E

“
f
2pXqIpX P Gq

‰
ă 8,

where PXp¨q denotes the probability measure of X, and Ip¨q is an indicator function. The inner

product on L2pGq is defined as

xf, gy “
ż

G

fpxqgpxqPXpdxq “ Cov tfpXqIpX P Gq, gpXqIpX P Gqu , f, g P L2pGq. (2.1)

Let Kp¨, ¨q be a Mercer kernel defined on G ˆ G, i.e., Kp¨, ¨q is a bounded and symmetric

function, and for any u1, ¨ ¨ ¨ ,uk P G and k ě 1, the k ˆ k matrix with Kpui,ujq being its
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pi, jq-th element is non-negative definite. For any fixed u P G, Kpx,uq can be seen as a function

of x. A Mercer kernel Kp¨, ¨q defines an operator on L2pGq as follows:

fpxq Ñ
ż

G

Kpx,uqfpuqPXpduq.

It follows from Mercer’s Theorem (Mercer, 1909) that a Mercer kernel admits the following

spectral decomposition:

Kpu,vq “
dÿ

k“1

λkϕkpuqϕkpvq, u,v P G, (2.2)

where λ1 ě λ2 ě ¨ ¨ ¨ ě λd ą 0 are the positive eigenvalues of Kp¨, ¨q, and ϕ1, ϕ2, ¨ ¨ ¨ are the

orthonormal eigenfunctions in the sense that

ż

G

Kpx,uqϕkpuqPXpduq “ λkϕkpxq, x P G, (2.3)

and

xϕi, ϕjy “
ż

G

ϕipuqϕjpuqPXpduq “

$
’’&
’’%

1 i “ j,

0 i ‰ j.

(2.4)

As we can see from the spectral decomposition (2.2), d “ maxtk : λk ą 0u and is possible

to be infinity. We say that the Mercer kernel is of finite-dimension when d is finite, and of

infinite-dimension when d “ 8. To simplify the discussion, in this section and Section 3 below,

we assume d is finite. This restriction will be relaxed in Section 4. We refer to Ferreira and

Menegatto (2009) for Mercer’s Theorem for metric spaces. The eigenvalues λk and the associated

eigenfunctions ϕk are usually unknown, and they need to be estimated in practice. To this end,
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we construct the sample eigenvalues and eigenvectors through an eigenanalysis of the kernel

Gram matrix which is defined in (2.6) below, and then obtain the estimate of the eigenfunction

ϕk by the Nyström extension (Drineas and Mahoney, 2005).

Define

 
pY G

j ,X
G
j q, j “ 1, ¨ ¨ ¨ ,m

(
“

 
pYi,Xiq

ˇ̌
1 ď i ď n, Xi P G

(
, (2.5)

where m is the number of observations satisfying Xi P G, and define the subset-based kernel

Gram matrix:

KG “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

KpXG
1 ,X

G
1 q KpXG

1 ,X
G
2 q ¨ ¨ ¨ KpXG

1 ,X
G
mq

KpXG
2 ,X

G
1 q KpXG

2 ,X
G
2 q ¨ ¨ ¨ KpXG

2 ,X
G
mq

...
...

. . .
...

KpXG
m,X

G
1 q KpXG

m,X
G
2 q ¨ ¨ ¨ KpXG

m,X
G
mq

˛
‹‹‹‹‹‹‹‹‹‹‹‚

. (2.6)

Let pλ1 ě ¨ ¨ ¨ ě pλm ě 0 be the eigenvalues of KG , and pϕ1, ¨ ¨ ¨ , pϕm be the corresponding m

orthonormal eigenvectors. Write

pϕk “
“
pϕkpXG

1 q, ¨ ¨ ¨ , pϕkpXG
mq

‰T
. (2.7)

We next use the so-called Nyström extension to obtain the estimate of the eigenfunction.

The Nyström method is originally introduced to get the approximate numerical solution of an

integral equation by replacing the integral with a representative weighted sum. The integral

in (2.3) can be approximated by 1
m

řm

i“1Kpx,XG
i qϕkpXG

i q. Under some mild conditions (e.g.,

Assumption 3 in Section 3), and using the Law of Large Numbers, such an approximation is

sensible. Hence, the eigenfunction ϕkpxq can be approximated by 1
mλk

řm

i“1Kpx,XG
i qϕkpXG

i q.
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Replacing λk and ϕkpXG
i q by pλk{m and

?
mpϕkpXG

i q, respectively, we may define the Nyström

extension of the eigenvector pϕk as

rϕkpxq “
?
m

pλk

¨
mÿ

i“1

Kpx,XG
i qpϕkpXG

i q, x P G, k “ 1, ¨ ¨ ¨ , d. (2.8)

Let

rλk “ pλk{m, k “ 1, ¨ ¨ ¨ , d. (2.9)

Proposition 3 in Section 3 below shows that, for any x P G, rλk and rϕkpxq are consistent

estimators of λk and ϕkpxq, respectively.

Another critical issue in practical application is to estimate the dimension of the Mercer

kernelKp¨, ¨q. When the dimension ofKp¨, ¨q is d and d ! m, we may estimate d by the following

ratio method (Lam and Yao, 2012):

pd “ argmin
1ďkďtmc0u

pλk`1{pλk “ argmin
1ďkďtmc0u

rλk`1{rλk, (2.10)

where c0 P p0, 1q is a pre-specified constant such as c0 “ 0.5 and tzu denotes the integer part

of the number z. The numerical results in Sections 5 and 6 show that this ratio method works

well in finite sample cases.

2.2 Kernel feature space and KPCA

Let MpKq be a d-dimensional linear space spanned by the eigenfunctions ϕ1, ¨ ¨ ¨ , ϕd, and

dim tMpKqu “ d “ maxtk : λk ą 0u.
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By the spectral decomposition (2.2), MpKq can also be viewed as a linear space spanned by

functions gup¨q ” Kp¨,uq for all u P G. Thus we call MpKq the kernel feature space as it

consists of the feature functions extracted by the kernel function Kp¨, ¨q, and call ϕ1, ¨ ¨ ¨ , ϕd the

characteristic features determined by Kp¨, ¨q and the distribution of X on set G. In addition,

we call ϕ1pXq, ϕ2pXq, ¨ ¨ ¨ the kernel principal components of X on set G, and one can see they

are nonlinear functions of X in general. We next give an interpretation to see how the KPCA

is connected to the standard PCA.

Any f P MpKq whose mean is zero on set G admits the following expression:

fpxq “
dÿ

j“1

xf, ϕjyϕjpxq for x P G.

Furthermore,

||f ||2 ” xf, fy “ Var
 
fpXqIpX P Gq

(
“

dÿ

j“1

xf, ϕjy2.

Now we introduce a generalized variance incited by the kernel function Kp¨, ¨q:

VarKtfpXqIpX P Gqu “
dÿ

j“1

λj xf, ϕjy2, (2.11)

where λj is assigned as the weight on the “direction” of ϕj for j “ 1, ¨ ¨ ¨ , d. Then it follows

from (2.2) and (2.3) that

ϕ1 “ arg max
fPMpKq, ||f ||“1

ż

GˆG

fpuqfpvqKpu,vqPXpduqPXpdvq

“ arg max
fPMpKq, ||f ||“1

dÿ

j“1

λj xf, ϕjy2

“ arg max
fPMpKq, ||f ||“1

VarKtfpXqIpX P Gqu,

9



which indicates that the function ϕ1 is the “direction” which maximizes the generalized variance

VarKtfpXqIpX P Gqu. Similarly it can be shown that ϕk is the solution of the above maximiza-

tion problem with additional constraints xϕk, ϕjy “ 0 for 1 ď j ă k. Hence, the kernel principal

components are the orthonormal functions in the feature space MpKq with the maximal kernel

induced variances defined in (2.11). In other words, the kernel principal components ϕ1, ϕ2, ¨ ¨ ¨

can be treated as “directions” while their corresponding eigenvalues λ1, λ2, ¨ ¨ ¨ can be considered

as the importance of these “directions”.

A related but different approach is to view MpKq as a reproducing kernel Hilbert space,

for which the inner product is defined different from (2.1) to serve as a penalty in estimating

functions via regularization; see section 5.8 of Hastie, Tibshirani and Friedman (2009) and

Wahba (1990). Since the reproducing property is irrelevant in our context, we adopt the more

natural inner product (2.1). For the detailed interpretation of KPCA in a reproducing kernel

space, we refer to section 14.5.4 of Hastie, Tibshirani and Friedman (2009).

We end this subsection by stating a proposition which shows that the smaller G is, the

lower the dimension of MpKq is. This indicates that a more parsimonious representation can

be obtained by using the subset-based KPCA instead of the global KPCA. The proof of the

proposition follows immediately from (2.2) and Proposition 2 in Section 2.3 below.

Proposition 1. Let Ḡ be a measurable subset of the sample space of X such that G Ă Ḡ, and

Kp¨, ¨q be a Mercer kernel on Ḡ ˆ Ḡ. The kernel feature spaces defined with sets G and Ḡ are

denoted, respectively by MpKq and M̄pKq. Then dimtMpKqu ď dim
 
M̄pKq

(
.
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2.3 Estimation for conditional mean regression

For the simplicity of presentation, we assume that the mean of random variate hpXq “ EpY |Xq

on set G is 0, i.e.

E rhpXqIpX P Gqs “ E rEpY |XqIpX P Gqs “ E rY IpX P Gqs “ 0.

This amounts to replacing Y G
i by Y G

i ´ Ȳ G in (2.5) with Ȳ G “ m´1 ř
1ďjďm Y G

j . In general

MpKq is a genuine subspace of L2pGq. Suppose that on set G, hpxq “ EpY |X “ xq P MpKq,

i.e., hpxq may be expressed as

hpxq “
ż
yfY |Xpy|xqdy “

dÿ

k“1

βkϕkpxq, x P G, (2.12)

where fY |Xp¨|xq denotes the conditional density function of Y given X “ x, and

βk “ xϕk, hy “
ż

xPG

ϕkpxqPXpdxq
ż
yfY |Xpy|xqdy “ E rY ϕkpXq IpX P Gqs .

This leads to the estimator for βk which is constructed as

rβk “ 1

m

mÿ

i“1

Y
G
i rϕkpXG

i q, k “ 1, ¨ ¨ ¨ , d, (2.13)
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where pY G
i ,X

G
i q, i “ 1, ¨ ¨ ¨ ,m, are defined in (2.5), and rϕkp¨q are given in (2.8). Consequently

the estimator for hp¨q is defined as

rhpxq “
dÿ

k“1

rβk rϕkpxq, x P G. (2.14)

When the dimension of the kernel Kp¨, ¨q is unknown, the sum on the right hand side of the

above expression runs from j “ 1 to pd with pd determined via (2.10).

The estimator in (2.14) is derived under the assumption that on set G, hpxq P MpKq.

When this condition is unfulfilled, (2.14) is an estimator for the projection of hp¨q on MpKq.

Hence the goodness of rhp¨q as an estimator for hp¨q depends critically on (i) kernel function K,

(ii) set G and PXp¨q on G. In the simulation studies in Section 5 below, we will illustrate an

approach to specify G. Ideally we would like to choose a Kp¨, ¨q that induces a large enough

MpKq such that h P MpKq. Some frequently used kernel functions include

• Gaussian kernel: Kpu,vq “ expp´||u ´ v||2{cq,

• Thin-plate spline kernel: Kpu,vq “ ||u ´ v||2 logp||u ´ v||q,

• Polynomial kernel (Fu, Shih and Wang, 2011):

Kpu,vq “

$
’’&
’’%

r1 ´ pu1
vqℓ`1s{p1 ´ u

1
vq, if u1

v ‰ 1,

ℓ` 1, otherwise,

where || ¨ || denotes the Euclidean norm, c is a positive constant, and ℓ ě 1 is an integer. Also

note that for any functions in ψ1, ¨ ¨ ¨ , ψd P L2pGq,

Kpu,vq “
dÿ

k“1

ψkpuqψkpvq (2.15)
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is a well-defined Mercer kernel. A possible choice of the kernel function is to let tψ1puq, ¨ ¨ ¨ , ψdpuqu

be a set of basis functions of u, e.g., Fourier series, polynomial series, wavelets, B-spline, etc.

The numerical studies in Sections 5 and 6 use (2.15) with appropriately chosen functions ψk in

the estimation and dimension reduction procedure, which performs reasonably well. The follow-

ing proposition shows that the dimension of MpKq with Kp¨, ¨q defined above is controlled by

d.

Proposition 2. For the kernel function Kp¨, ¨q defined in (2.15), dimtMpKqu ď d.

3 Large sample theory

In this section, we study the asymptotic properties for the estimators of the eigenvalues and

eigenfunctions of the Mercer kernel as well as the mean regression estimation. We start with

some regularity conditions which are sufficient to derive our asymptotic theory.

Assumption 1. The process tpYi,Xiqu is strictly stationary and α-mixing (or strongly mixing)

dependent with the mixing coefficient satisfying

αt “ Opt´κq, κ ą 2δ˚ ` p` 3

2
, (3.1)

where p is the dimension of the random covariate, 0 ď δ˚ ă 8 such that the volume of

the set G has the order mδ˚ .

Assumption 2. The positive eigenvalues of the Mercer kernel Kp¨, ¨q are distinct and satisfy

0 ă λd ă ¨ ¨ ¨ ă λ2 ă λ1 ă 8.
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Assumption 3. The eigenfunctions ϕj , j “ 1, ¨ ¨ ¨ , d, are Lipschitz continuous and bounded

on the set G. Furthermore, the kernel Kp¨,xq is Lipschitz continuous and bounded on

the set G for any x P G.

Remark 1. In Assumption 1, we allow the process to be stationary and α-mixing dependent,

which is mild and can be satisfied by some commonly-used time series models; see e.g., Section

2.6 of Fan and Yao (2003) and the references within. For example the causal ARMA processes

with continuous innovations are α-mixing with exponentially decaying mixing coefficients. Note

that for the processes with exponentially decaying mixing coefficients, (3.1) is fulfilled automat-

ically, and the technical arguments in the proofs can be simplified. We allow set G to expand

with the size of the sub-sample in G in the order of mδ˚ , and δ˚ would be 0 if G is bounded.

Assumptions 2 and 3 impose mild restrictions on the eigenvalues and eigenfunctions of the Mer-

cer kernel, respectively. They are crucial to ensure the consistency of the sample eigenvalues

and eigenvectors constructed in Section 2.1. The boundedness condition on ϕj and Kp¨,xq in

Assumption 3 can be replaced by the 2p2 ` δq-order moment conditions for some δ ą 0, and

Proposition 3 below still holds at the cost of more lengthy arguments. Furthermore, by the

smoothness condition on the kernel function and using (3.2) in Proposition 3 below, we may

easily show that rϕjp¨q defined in (2.8), j “ 1, ¨ ¨ ¨ , d, are Lipschitz continuous and bounded with

probability tending to one.

Proposition 3. Suppose that Assumptions 1–3 are satisfied. Then we have

max
1ďkďd

ˇ̌
ˇrλk ´ λk

ˇ̌
ˇ “ max

1ďkďd

ˇ̌
ˇ̌ 1
m

pλk ´ λk

ˇ̌
ˇ̌ “ OP

´
m

´1{2
¯

(3.2)

and

max
1ďkďd

sup
xPG

|rϕkpxq ´ ϕkpxq| “ OP pξmq , (3.3)

14



where ξm “ m´1{2 log1{2m.

Remark 2. Proposition 3 presents the convergence rates of the estimated eigenvalues and eigen-

functions of the Mercer kernel Kp¨, ¨q. The result is of independent interest. It complements

some statistical properties of the KPCA in the literature such as Braun (2005) and Blanchard,

Bousquet and Zwald (2007). Note that PpX P Gq can be consistently estimated by m{n. If it is

assumed that PpX P Gq “ c0 ą 0, m would be of the same order as the full sample size n (with

probability tending to one). As a consequence, the convergence rates in (3.2) and (3.3) would

be equivalent to OP

´
n´1{2

¯
and OP

´
n´1{2 log1{2 n

¯
, respectively, which are not uncommon

in the context of functional principal component analysis (Bosq, 2000; Horváth and Kokoszka,

2012). Based on Proposition 3, we can easily derive the following uniform consistency result for

rhp¨q.

Theorem 1. Suppose that Assumptions 1–3 are satisfied, Er|Y |2`δs ă 8 for some δ ą 0 and

hp¨q P MpKq. Then it holds that

sup
xPG

ˇ̌
ˇrhpxq ´ hpxq

ˇ̌
ˇ “ OP pξmq , (3.4)

where ξm is defined in Proposition 3.

Remark 3. As stated above, the uniform convergence rate in (3.4) is equivalent toOP

´
n´1{2 log1{2 n

¯
,

which is faster than the well-known uniform convergence rate OP

´
pnbq´1{2 log1{2 n

¯
in the ker-

nel smoothing method (Fan and Yao, 2003), where b is a bandwidth which converges to zero as

n tends to 8. The intrinsic reason of the faster rate in (3.4) is that we assume the dimension of

the subset-based kernel feature space is finite, and thus the number of the unknown elements in

(2.12) is also finite. Section 4 below shows that the increasing dimension of the kernel feature

space would slow down the convergence rates.
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4 Extensions of the estimation methodology

In this section, we consider two extensions of the methodology proposed in Section 2: the

estimation for the conditional distribution function, and the case when the dimension of a

kernel feature space diverges together with the sample size.

4.1 Estimation for conditional distribution functions

Estimation of the conditional distribution function defined in (1.2) is a key aspect in various

statistical topics (such as the quantile regression), as the conditional mean regression may be

not informative enough in many situations. Nonparametric estimation of the conditional dis-

tribution has been extensively studied in the literature including Hall, Wolff and Yao (1999),

Hansen (2004) and Hall and Yao (2005). In this section, we use the subset-based KPCA ap-

proach discussed above to estimate a conditional distribution function in low-dimensional kernel

feature space when the random covariates are multi-dimensional.

Let F˚py|xq “ FY |Xpy|xq ´ c˚, where c˚ “ PpY ď y,X P Gq. Then E rF˚py|Xqs “ 0. In

practice c˚ can be easily estimated by the relative frequency. Suppose that F˚py|¨q P MpKq,

i.e.,

F˚py|xq “ FY |Xpy|xq ´ c˚ “
ż y

´8

fY |Xpz|xqdz ´ c˚ “
dÿ

k“1

β
˚
k ϕkpxq, x P G. (4.1)

Note that the coefficients β˚
k in the above decomposition depend on y. The orthonormality of

ϕi implies that

β
˚
k “ xF˚py|¨q, ϕky “

ż

G

ϕkpxqPXpdxq
„ż y

´8

fY |Xpz|xqdz ´ c˚



“
ż
Ipz ď y, x P GqϕkpxqfY |Xpz|xqdzPXpdxq ´ c˚

ż

G

ϕkpxqPXpdxq

“ E rIpY ď y, X P GqϕkpXqs ´ c˚E rIpX P GqϕkpXqs .
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This leads to the following estimator for β˚
k :

rβ˚
k “ 1

m

mÿ

i“1

IpY G
i ď yqrϕkpXG

i q ´ rc˚

m

mÿ

i“1

rϕkpXG
i q, (4.2)

where pY G
i ,X

G
i q are defined in (2.5), rϕkp¨q are defined in (2.8), and

rc˚ “ 1

n

nÿ

i“1

I pYi ď y, Xi P Gq , (4.3)

n is the full sample size. Consequently, we obtain the estimator for the conditional distribution:

rFY |Xpy|xq “
dÿ

k“1

rβ˚
k rϕkpxq ` rc˚. (4.4)

The estimator rFY |Xp¨|xq is not necessarily a bona fide distribution function. Some further

normalization may be required to make the estimator non-negative, non-decreasing and between

0 and 1 (Glad, Hjort and Ushakov, 2003).

By the classic result for the α-mixing sequence, we may show that rc˚ is a consistent

estimator of c˚ with a root-n convergence rate. Then, by Proposition 3 and following the proof

of Theorem 1, we have the following convergence result for rFY |Xpy|xq.

Theorem 2. Suppose that Assumptions 1–3 are satisfied and F˚py|¨q P MpKq. Then it holds

that

sup
xPG

ˇ̌
ˇ rFY |Xpy|xq ´ FY |Xpy|xq

ˇ̌
ˇ “ OP pξmq (4.5)

for any given y, where ξm is defined in Proposition 3.
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4.2 Kernel feature spaces with diverging dimensions

We next consider the case when the dimension of the kernel feature space dm ” maxtk : λk ą 0u

depends on m, and may diverge to infinity as m tends to infinity. Let

ρm “ min tλk ´ λk`1, k “ 1, ¨ ¨ ¨ , dmu .

In order to derive a more general asymptotic theory, we need to slightly modify Assumption 2.

Assumption 2˚. The positive eigenvalues of the Mercer kernel Kp¨, ¨q are distinct and satisfy

0 ă λdm ă ¨ ¨ ¨ ă λ2 ă λ1 ă 8,
řdm

k“1 λk ă 8.

The following proposition shows that the diverging dm would slow down the convergence

rates in Proposition 3.

Proposition 4. Suppose that Assumptions 1, 2˚ and 3 are satisfied, dm “ o
`
mρ2mλ

2
dm

{ logm
˘
,

and the α-mixing coefficient decays to zero at an exponential rate. Then it holds that

max
1ďkďdm

ˇ̌
ˇrλk ´ λk

ˇ̌
ˇ “ max

1ďkďdm

ˇ̌
ˇ̌ 1
m

pλk ´ λk

ˇ̌
ˇ̌ “ OP

´
d
1{2
m ξm

¯
(4.6)

and

max
1ďkďdm

sup
xPG

|rϕkpxq ´ ϕkpxq| “ OP

´
d
1{2
m ξm{pρmλdmq

¯
. (4.7)

Remark 4. When dm is fixed, it may be reasonable to assume both ρm and λdm are bounded

away from zero, and consequently the convergence rates in Proposition 4 would be simplified.

When dm Ñ 8 as m Ñ 8, we usually have ρm Ñ 0 and λdm Ñ 0. This implies that the
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convergence rates in (4.6) and (4.7) would be generally slower than those in (3.2) and (3.3). Let

ci, i “ 1, ¨ ¨ ¨ , 5, be five positive constants. For any two sequences am and bm, am 9 bm means

that 0 ă c4 ď am{bm ď c5 ă 8 when m is sufficiently large. If dm “ c1 logm, ρm “ c2 log
´1m

and λdm “ c3 log
´1m, we have

d
1{2
m ξm 9 m

´1{2 logm, d
1{2
m ξm{pρmλdmq 9 m

´1{2 log3m.

Using Proposition 4 and following the proof of Theorem 1, we can easily obtain the uniform

convergence rate for the conditional mean regression estimation when dm is diverging.

In practice, we may encounter the more challenging case when the dimension of the Mercer

kernel is infinite (e.g., λk 9 k´ι1 with ι1 ą 0 or λk 9 ιk2 with 0 ă ι2 ă 1). In this case, the

convergence result in Proposition 4 is not directly applicable as the rates in (4.6) and (4.7)

become divergent when the dimension is infinite. However, the proposed subset-based KPCA

approach can still be used to estimate the conditional mean regression function. Assuming that

the mean regression function hpxq P MpKq and noting that the dimension of MpKq is infinite,

we have

hpxq “
8ÿ

k“1

βkϕkpxq “
dmÿ

k“1

βkϕkpxq `
8ÿ

k“dm`1

βkϕkpxq ” h1pxq ` h2pxq, (4.8)

where βk and ϕkpxq are defined as in Section 2, and dm is a divergent number satisfying the

condition in Proposition 4. Let M1pKq be a dm-dimensional kernel feature space spanned by

ϕ1, ¨ ¨ ¨ , ϕdm . From (4.8), the mean regression function hpxq can be well approximated by its

projection onto the dm-dimensional kernel feature space M1pKq as long as the approximation

error h2pxq uniformly converges to zero at certain rate. The latter usually holds if we impose
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some smoothness condition on hpxq and let dm divergent at an appropriate rate, which is similar

to the conditions on sieve approximation accuracy (Chen, 2007).

Let b‹
m “ sup

xPG |h2pxq|. We may estimate βk and ϕk, k “ 1, ¨ ¨ ¨ , dm, in the same manner

as in Sections 2.2 and 2.3. Denote the estimates by rβk and rϕk, and let rhmpxq “ řdm
k“1

rβk rϕkpxq.

By Proposition 4 and following the proof of Theorem 1, we can establish the following uniform

convergence rate:

sup
xPG

ˇ̌
ˇrhmpxq ´ h1pxq

ˇ̌
ˇ “ OP pν‹

mq,

where ν‹
m “ d

3{2
m ξm{pρmλdmq. Furthermore, we can prove, via the decomposition in (4.8), that

sup
xPG

ˇ̌
ˇrhmpxq ´ hpxq

ˇ̌
ˇ “ sup

xPG

ˇ̌
ˇrhmpxq ´ h1pxq

ˇ̌
ˇ ` sup

xPG
|h2pxq| “ OP pν‹

m ` b
‹
mq.

5 Simulation Studies

In this section, we use three simulated examples to illustrate the finite sample performance of

the proposed subset-based KPCA method and compare it with the global KPCA and other

existing nonparametric estimation methods, i.e., cubic spline, local linear regression and kernel

ridge regression. We start with an example to assess the out-of-sample estimation performance

of conditional mean function based on a multivariate nonlinear regression model. Then, in the

second example, we examine the one-step ahead out-of-sample forecast performance based on a

multivariate nonlinear time series model. Finally, in the third example, we examine the finite

sample performance of the estimation of conditional distribution function.

Throughout this section, the kernel function is either the Gaussian kernel or formulated
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as in (2.15) with tψ1puq, ¨ ¨ ¨ , ψdpuqu being a set of normalized polynomial basis functions (with

the unit norm) of u “ pu1, ¨ ¨ ¨ , upqT of order 2 and 3, i.e., t1, uk, ¨ ¨ ¨ur
k, k “ 1, ¨ ¨ ¨ , pu, where

r “ 2, 3 and d “ rp ` 1. For the latter case, we call the kernel as the quadratic kernel when

r “ 2 and the cubic kernel when r “ 3. In practice, d is estimated by the ratio method as

in (2.10). The simulation results show that (2.10) can correctly estimate pd “ d with frequency

close to 1. The subset is chosen to be the tκnu nearest neighbors, where n is the sample size

and κ P p0, 1q is a constant bandwidth. The bandwidth κ and the tuning parameter c in the

Gaussian kernel are selected by a 5-fold cross validation.

Example 5.1. Consider the following model:

yi “ gpx2iq ` sintπpx3i ` x4iqu ` x5i ` logp1 ` x
2
6iq ` εi,

where x1i, ¨ ¨ ¨ , x6i and εi are i.i.d. Np0, 1q, gpxq “ e´2x2

for x ě 0, and gpxq “ e´x2

for x ă 0.

In the model, the covariate x1i is irrelevant to yi.

We draw a training sample of size n “ 500 or 1000 and a testing sample of size 200. We

estimate the conditional mean regression function using the training sample, and then calculate

the mean squared errors (MSE) and out-of-sample R2s over the testing sample as follows:

MSE “ 1

200

200ÿ

i“1

”
yi ´ rhpxiq

ı2
, R

2 “ 1 ´
ř200

i“1ryi ´ rhpxiqs2
ř200

i“1 pyi ´ ȳq2
,

where rhp¨q is defined as in (2.14), xi “ px1i, ¨ ¨ ¨ , x6iqT and ȳ is the sample mean of yi over the

training sample.

By repeating this procedure over 200 replications, we obtain a sample of MSE and R2 with

size 200. The estimation performance is assessed by the sample mean, median and variance
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of MSE and R2. The simulation results are reported in Table 1. In this simulation, for the

quadratic kernel and cubic kernel, the ratio method in (2.10) can always correctly estimate

pd “ rp ` 1. According to the results in Table 1, the subset-based KPCA with the quadratic

kernel outperforms the global KPCA methods and other nonparametric methods as it has the

smallest sample mean, median and variance of MSE and the highest R2. In addition, both the

quadratic kernel and cubic kernel perform better than the Gaussian kernel due to the fact that

they can better capture different degree of smoothness on different directions.

To assess the the bandwidth choice for subset-based KPCA, we set n “ 500, let κ vary

from 0.05 to 0.8 and calculate the sample mean of MSE over 100 replications. The results are

plotted in Figure 1. According to Figure 1, the subset-based KPCA method is not sensitive to

the choice of κ. The smallest MSE is achieved at κ “ 0.27, and any κ between 0.15 and 0.45

yields similar result.

Furthermore, we compare the computational costs between the subset-based KPCA and

global KPCA approaches with quadratic kernel function. The computational cost of subset-

based KPCA includes the selection of bandwidth κ. The bandwidth κ is selected by 5-fold

cross validation over 10 grid points equally spaced between 0.1 and 0.5. We let the sample size

increase from 400 to 1000 with a step size of 20 and record the computational time over 100

replications for both approaches. The comparison results are presented in Figure 2. The major

computational cost of the global KPCA methods is the eigen-decomposition of the nˆ n gram

matrix which is of computational complexity Opnωq for some ω ą 2. To see this, we calculate

the empirical order of growth for both approaches:

pω “ 1

30

30ÿ

l“1

logpTl`1{Tlq
logpnl`1{nlq

,
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where nl is the l-th component in the set t400, 420, ¨ ¨ ¨ , 980, 1000u and Tl is the corresponding

computational cost over 100 replications. The empirical order of growth for the global KPCA is

2.69, whereas that for the subset-based KPCA is 2.17. Hence, both Figure 2 and the calculation

of empirical order of growth show the subset-based KPCA method scales with sample size much

better than the global counterpart.

Table 1: Out-of-sample estimation performance in Example 5.1

MSE ( the smaller the better) R
2 ( the larger the better)

n “ 500 Mean Median Variance Mean Median Variance
sKPCA+Quadratic 1.300 1.294 0.017 0.548 0.550 0.0020
sKPCA+Cubic 1.337 1.335 0.018 0.536 0.536 0.0021

sKPCA+Gaussian 1.573 1.586 0.026 0.454 0.448 0.0031
gKPCA+Quadratic 2.389 1.871 0.059 0.170 0.350 0.0071
gKPCA+Cubic 2.586 1.937 0.064 0.102 0.327 0.0077

gKPCA+Gaussian 3.023 2.021 0.093 -0.049 0.298 0.0112
Cubic Spline 1.386 1.383 0.018 0.518 0.519 0.0022
Local Linear 1.429 1.431 0.020 0.504 0.503 0.0024
Kernel Ridge 1.897 1.866 0.048 0.340 0.351 0.0056
n “ 1000 Mean Median Variance Mean Median Variance

sKPCA+Quadratic 1.243 1.236 0.013 0.575 0.578 0.0015
sKPCA+Cubic 1.278 1.271 0.016 0.564 0.566 0.0018

sKPCA+Gaussian 1.531 1.528 0.025 0.477 0.478 0.0029
gKPCA+Quadratic 2.380 2.371 0.051 0.187 0.191 0.0059
gKPCA+Cubic 2.541 2.508 0.059 0.133 0.144 0.0069

gKPCA+Gaussian 3.015 2.790 0.086 -0.029 0.047 0.0100
Cubic Spline 1.371 1.372 0.017 0.532 0.531 0.0020
Local Linear 1.404 1.418 0.018 0.520 0.516 0.0021
Kernel Ridge 1.858 1.831 0.042 0.324 0.346 0.0055

“sKPCA” and “gKPCA” stand for the subset-based KPCA and global KPCA; “Quadratic”, “Cu-

bic” and “Gaussian” stand for the quadratic kernel, cubic kernel and Gaussian kernel, respectively;

“Cubic Spline”, “Local Linear” and “Kernel Ridge” stand for non-parametric estimation methods

based on cubic spline, local linear regression and kernel ridge regression.

Example 5.2. Consider the following time series model:

yt “ sinp0.02πyt´1q ` expp´y2t´2q ` lnp1 ` |yt´3|q ´ 0.3|yt´4| ` 0.2ǫt,
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Figure 1: The out-of-sample estimation performance of the subset-based KPCA approach with
the quadratic kernel with respect to the bandwidth κ when n “ 500.
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Figure 2: The computation costs for global KPCA method and subset-based KPCA method (with
κ selected by 5-fold cross validation) with respect to the sample size.

where y0 “ 0 and tǫtu is a sequence of independent Np0, 1q random variables. We next estimate

the conditional mean Epyt|yt´1, yt´2, yt´3, yt´4q and denote the estimator as pyt which is to be

used as the one-step-ahead predictor of yt.

We generate a time series sample from the above model with the length T ` 100. For
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k “ 1, ¨ ¨ ¨ , 100, we use the T observations right before time T ` k as the training set to predict

yT`k. The performance is measured by MSE and out-of-sample R2:

MSPE “ 1

100

100ÿ

k“1

pyT`k ´ pyT`kq2 , R
2 “ 1 ´

ř100
k“1 pyT`k ´ pyT`kq2
ř100

k“1 pyT`k ´ ȳq2
,

where ȳ is the sample mean of yt over the training sample.

We set T “ 500, and repeat the experiment 200 times for each method. The sample means,

medians and variances of MSE and R2 are presented in Table 2. Similar to Example 5.1, the

subset-based KPCA method with the quadratic kernel provides the most accurate prediction.

The subset-based KPCA method with the cubic kernel is a close second best in terms of both

MSE and R2. Figure 3 plots a typical path together with their one-step-ahead forecasts for

each method. The typical path is the replication with median R2. Figure 3 shows that the

forecasted path from the subset-based KPCA method with the quadratic kernel follows the true

path closely. A similar pattern can also be found for other subset-based KPCA method with

the cubic and Gaussian kernel and the three nonparametric methods (cubic spline, local linear

and kernel ridge). However the global KPCA methods fail to capture the variation of the series

and tend to forecast the future values by the overall mean value, which is not satisfactory.

Example 5.3. Consider the model:

X1 „ Np0, 1q, X2 „ Np0, 1q,

Y |pX1, X2q „ NpX1, 1 `X
2
2 q.

The conditional distribution of Y given X ” pX1, X2qT is a normal distribution with mean

X1 and variance 1 ` X2
2 . According to the method proposed in Section 4.1, we estimate the

25



0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

sKPCA+Quadratic

Time

Y
t

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

gKPCA+Quadratic

Time

Y
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

sKPCA+Cubic

Time

Y
t

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

gKPCA+Cubic

Time

Y
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

sKPCA+Gaussian

Time

Y
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

gKPCA+Gaussian

Time

Y
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Cubic Spline

Time

Y
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Local linear

Time

Y
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Kernel ridge regression

Time

Y
t

Figure 3: One-step ahead out-of-sample forecasting performance based on the replication with
median R

2 for each method. The black solid line is the true value and the red dashed line is the
predicted value.
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Table 2: One-step ahead forecasting performance in Example 5.2

MSE ( the smaller the better) R
2 ( the larger the better)

Mean Median Variance Mean Median Variance
sKPCA+Quadratic 0.0435 0.0428 3.9 ˆ 10´5 0.804 0.807 7.9 ˆ 10´4

sKPCA+Cubic 0.0445 0.0437 4.6 ˆ 10´5 0.799 0.803 9.3 ˆ 10´4

sKPCA+Gaussian 0.0756 0.0751 4.1 ˆ 10´4 0.659 0.661 8.3 ˆ 10´3

gKPCA+Quadratic 0.1900 0.1908 6.9 ˆ 10´4 0.144 0.141 0.014
gKPCA+Cubic 0.2042 0.2058 9.5 ˆ 10´4 0.080 0.073 0.019

gKPCA+Gaussian 0.2172 0.2211 0.0038 0.022 0.041 0.077
Cubic Spline 0.0516 0.0512 4.7 ˆ 10´5 0.767 0.769 9.5 ˆ 10´4

Local Linear 0.0522 0.0515 4.9 ˆ 10´5 0.764 0.768 9.9 ˆ 10´4

Kernel Ridge 0.0721 0.0717 6.8 ˆ 10´5 0.675 0.677 1.4 ˆ 10´3

conditional distribution function FY |Xpy|xq using the subset-based KPCA with the quadratic

kernel.

We draw a training sample of size n “ 300 or 500 and a testing sample of size 100. The

estimated conditional distribution rFY |Xpyi|xiq is obtained using the training data. We repeat

the simulation 200 times and measure the performance by MSE as well as largest absolute error

(LAE) over the testing sample:

MSE “ 1

100

100ÿ

i“1

”
rFY |Xpyi|xiq ´ FY |Xpyi|xiq

ı2
,

LAE “ sup
py,xqPΩ˚

ˇ̌
ˇ rFY |Xpy|xq ´ FY |Xpy|xq

ˇ̌
ˇ ,

where Ω˚ is the union of all validation sets. The results are reported in Table 3. As the values of

MSE and LAE in Table 3 are very small, the proposed method provides very accurate estimation

for the conditional distribution function.
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Table 3: Estimation of the conditional distribution function

MSE LAE
Mean Median Variance

n “ 300 6.0 ˆ 10´4 4.1 ˆ 10´4 3.6 ˆ 10´7 0.098
n “ 500 3.7 ˆ 10´4 2.8 ˆ 10´4 8.6 ˆ 10´8 0.080

6 Real data analysis

In this section, we apply the proposed subset-based KPCA method to two real data examples.

Throughout this section, the kernel function is set to be either Gaussian or Quadratic kernel.

The subset is chosen to be the tκnu nearest neighbors, where n is the sample size and κ P p0, 1q.

The bandwidth κ is selected by 5-fold cross validation.

6.1 Circulatory and respiratory problem in Hong Kong

We study the circulatory and respiratory problem in Hong Kong via an environmental data

set. This data set contains 730 observations and was collected between January 1, 1994 and

December 31, 1995. The response variable is the number of daily total hospital admissions for

circulatory and respiratory problems in Hong Kong, and the covariates are daily measurements

of seven pollutants and environmental factors: SO2, NO2, dust, temperature, change of tem-

perature, humidity and ozone. We standardize the data so that all the covariates have zero

sample mean and unit sample variance. To check the stationarity, we apply the augmented

Dickey-Fuller test (e.g., Dickey and Fuller, 1981) to each variable in the data set. The tests are

applied using the “urca” package in R and the lags included are selected by AIC. For each vari-

able, the test result suggests us to reject the unit root null hypothesis. Therefore, we consider

the variables in the dataset to be stationary.

The objective of this study is to estimate the number of daily total hospital admissions for
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circulatory and respiratory problem using the collected environmental data, i.e., estimate the

conditional mean regression function. The estimation performance is measured by the mean

and variance of the out-of-sample R2, which are calculated by a bootstrap method described

as follows. We first randomly divide the data set into a training set of 700 observations and a

testing set of 30 observations. For each observation in the testing set, we use the training set

to estimate its conditional mean regression function. Then we calculate out-of-sample R2 for

the testing set as in Example 5.1. By repeating this re-sampling and estimation procedure 1000

times, we obtain a bootstrap sample of R2s, and calculate its sample mean and variance.

Table 4: Estimation performance for the Hong Kong environmental data

R
2 (the larger the better)

Method Mean Variance
sKPCA + Quadratic 0.1544 0.0025
sKPCA + Gaussian 0.1262 0.0027
gKPCA + Quadratic -0.3613 0.2232
gKPCA + Gaussian -3.7058 1.6653

Cubic spline 0.0687 0.0042

We compare the performance among the following five methods: the subset-based KPCA

with the quadratic kernel, the subset-based KPCA with the Gaussian kernel, the global KPCA

with the quadratic kernel, the global KPCA with the Gaussian kernel and the cubic spline. The

cubic spline is fitted with 10 knots using the “splines” package in R. The results are presented

in Table 4. According to the results in Table 4, the subset-based KPCA with the quadratic

kernel has the best estimation performance and the subset-based KPCA method outperforms

the global KPCA method and cubic spline.
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6.2 Forecasting the log return of CPI

The CPI is a statistical estimate that measures the average change in the price paid to a market

basket of goods and services. The CPI is often used as an important economic indicator in

macroeconomic and financial studies. For example, in economics, CPI is considered as closely

related to the cost-of-living index and used to adjust the income eligibility levels for government

assistance. In finance, CPI is considered as an indicator of inflation and used as the deflater to

translate other financial series to inflation-free ones. Hence, it is always of interest to forecast

the CPI. We next perform one-step-ahead forecasting for the monthly log return of CPI in USA

based on the proposed subset-based KPCA method with the quadratic kernel. The data span

from January 1970 to December 2014 with 540 observations. The augmented Dickey-Fuller test

suggests the monthly log return of CPI over this time span is stationary.

Instead of using the traditional linear time series models, we consider that the log return

of CPI follows a nonlinear AR(3) model:

yt “ gpyt´1, yt´2, yt´3q ` ǫt,

where gp¨q is an unknown function and ǫt denotes an unobservable noise at time t. The regression

function gp¨q is estimated by the subset-based KPCA method with the quadratic kernel.

For the comparison purpose, we also forecast yt based on a linear AR(p) model with the

order p determined by AIC. Suppose the testing set starts from time T and ends at time T `S,

the forecast performance is measured by the out-of-sample R2 as

R2 “ 1 ´

Sř
s“1

pyT`s ´ pyT`sq2

Sř
s“1

pyT`s ´ ȳq2
,
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where pyT`s is the estimator of yT`s, and ȳ is the sample mean of yt over the training set.

We set the data from January 2005 to December 2014 as the testing set, which contains 120

observations. We forecast each observation in the testing set with the data up to its previous

month. The out-of-sample R2 is calculated over the testing set. The out-of-sample R2 of the

nonlinear AR(3) model is 0.2318 while the R2 of the linear AR model is 0.0412. The detailed

forecasting result is plotted in Figure 4, which shows clearly that the forecast based on the

subset-based KPCA method is more accurate as it captures the variations much better than

the linear AR modelling method.
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Figure 4: One step ahead out-of-sample forecast for the log return of CPI from January 2005 to
December 2014. The black solid line is the true value, the red dashed line is the forecast value
obtained by the subset-based KPCA, and the blue dotted line is the forecast value obtained by
the linear AR model.
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7 Conclusion

In this paper, we have developed a new subset-based KPCA method for estimating nonparamet-

ric regression functions. In contrast to the conventional (global) KPCA method which builds

on a global kernel feature space, we use different lower-dimensional subset-based kernel feature

spaces at different locations of the sample space. Consequently the resulting localized kernel

principal components provide more parsimonious representation for the target regression func-

tion, which is also reflected by the faster uniform convergence rates presented in Theorem 1, see

also the discussions immediately below Theorem 1. The reported numerical results with both

simulated and real data sets illustrate clearly the advantages of using the subset-based KPCA

method over its global counterpart. It also outperforms some popular nonparametric regression

methods such as the cubic spline and kernel regression (the results on kernel regression are not

reported to save the space). It is also worth mentioning that the quadratic kernel constructed

based on (2.15) using normalized univariate linear and quadratic basis functions performs better

than the more conventional Gaussian kernel for all the examples reported in Sections 5 and 6.

Supplementary materials

The online supplementary material contains the detailed proofs of Propositions 1–4 and Theorem

1.
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Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer Series

in Statistics.

Izbicki, R. and Lee, A.B. (2013). Nonparametric conditional density estimation in high-dimensional

regression setting. Manuscript.

Lam, C. and Yao, Q. (2012). Factor modelling for high-dimensional time series: inference for the number

of factors. The Annals of Statistics, 40, 694-726.

Lee, A.B. and Izbicki, R. (2013). A spectral series approach to high-dimensional nonparametric regres-

sion. Manuscript.

Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of

integral equations. Philosophical Transactions of the Royal Society of London, A, 209, 415-446.

Rosipal, R., Girolami, M., Trejo, L.J. and Cichocki, A. (2001). Kernel PCA for feature extraction and

de-noising in nonlinear regression. Neural Computing & Applications, 10, 231-243.

34



Schölkopf, B., Smola, A. J. and Müller, K. R. (1999). Kernel principal component analysis. Advances

in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 327–352.
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