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Background: Ischaemic stroke remains a significant contributor to permanent disability

world-wide. Therapeutic interventions for acute ischaemic stroke (AIS) are available, but

need to be administered early after symptom onset in order to be effective. Currently,

one of the main factors responsible for poor clinical outcome is an unnecessary long

time between symptom onset and arrival at a hospital (pre-hospital delay). In the future,

technological devices with the capability of real-time detection of AIS may become

available. The health economic implications of such devices have not been explored.

Methods: We developed a novel probabilistic model to estimate the maximally

allowable annual costs of different hypothetical real-time AIS detection devices in different

populations given currently accepted willingness-to-pay thresholds. Distributions of

model parameters were extracted from the literature. Effectiveness of the intervention

was quantified as reduction in disability-adjusted life-years associated with faster access

to thrombolysis and mechanical thrombectomy. Incremental costs were calculated from

a societal perspective including acute treatment costs and long-term costs for nursing

care, home help, and loss of production. The impact of individual model parameters was

explored in one-way and multi-way sensitivity analyses.

Results: Themodel yields significantly shorter prehospital delays and a higher proportion

of acute ischaemic patients that fulfill the time-based eligibility criteria for thrombolysis

or mechanical thrombectomy in the scenario with a real-time stroke detection device

as compared to the control scenario. Depending on the sociodemographic and

geographic characteristics of the study population and operating characteristics of

the device, the maximally allowable annual cost for the device to operate in a cost-

effective manner assuming a willingness-to-pay threshold of GBP 30.000 ranges

from GBP 22.00 to GBP 9,952.00. Considering the results of multiway sensitivity

analyses, the upper bound increases to GBP 29,449.10 in the subgroup of young

patients with a very high annual risk of ischaemic stroke (50 years/20% annual risk).
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Conclusion: Data from probabilistic modeling suggest that real-time AIS detection

devices can be expected to be cost-effective only for a small group of highly

selected individuals.

Keywords: ischaemic stroke, endovascular treatment, thrombectomy, thrombolysis, prehospital triage,

mathematical modeling, cost-effectiveness analysis, health economics

INTRODUCTION

Background
Ischaemic stroke is among the leading causes for permanent
disability world-wide (1). Treatment options for patients with
acute ischaemic stroke (AIS) include intravenous thrombolysis
and mechanical thrombectomy (MT) (2, 3). These therapeutic
interventions are most effective when initiated early (4),
with previous studies having shown a reduction in long-term
disability of up to 12.5 disability-adjusted days for each minute
that treatment is initiated earlier (5, 6). In the past years,
efforts to develop efficient intra-hospital processes and high-
priority standardized pathways for hyper-acute stroke care have
led to significant reductions in intra-hospital delays (7–10).
However, prehospital delays, i.e., time from symptom onset
to arrival at the hospital, have remained largely unchanged
and are therefore seen as a potential opportunity for further
improvement in the provision of timely access to effective
treatment for patients with AIS (11). Prehospital delays result
mainly from two different factors: (1) patients and/or bystanders
do not recognize the urgency of their symptoms and do not
present to hospitals immediately (11); and (2) strokes happen
at night and patients recognize their symptoms only when
waking up (12). In addition, patients may be ineligible for
acute treatment if the time of symptom onset is unknown
(either due to stroke-related symptoms such as aphasia or
due to strokes occurring during the night). Efforts have
been undertaken to reduce the impact of these contributing
factors, namely the implementation of education campaigns
aiming to improve recognition of stroke symptoms (13, 14),
and use of advanced magnetic resonance imaging protocols
as “tissue clocks” to determine the time of symptom onset
(15). In the domain of cardiac electrophysiology, implantable
cardioverter-defibrillators are available to constantly monitor
high-risk patients for the occurrence of potentially lethal
cardiac arrhythmias and to administer treatment immediately
(16, 17). Similar technologies for the real-time detection of
AIS do not currently exist but would have the potential
to significantly reduce onset-to-treatment times and improve
outcome for patients with ischaemic stroke. The health economic
implications associated with the availability and use of such
real-time stroke detection devices have not been explored.
Since the likelihood of market access and reimbursement
of new medical devices is closely linked to their cost-
effectiveness, a health economic assessment of the potential
impact of real-time stroke detection devices should precede
the decision about potential financial investments in their
development.

Objective of the Current Study
In the current study, we aim to assess whether real-time stroke
detection devices could be expected to operate in a cost-effective
manner. For this, we derive maximally allowable total annual
costs for different hypothetical devices in different populations
given currently accepted willingness-to-pay thresholds.

METHODS

Overview
We built a conditional probabilistic model to estimate the
number of disability-adjusted life-years (DALYs) that could be
prevented by real-time pre-hospital detection of patients with
AIS. For this, we compared a scenario in which a real-time
AIS detection device is available, with a scenario without such a
device (control scenario, current standard of care). We calculated
expected incremental costs and incremental benefits, expressed
as estimated reduction in DALYs associated with faster access to
thrombolysis and MT. Assuming a range of commonly accepted
societal willingness-to-pay-thresholds, we obtained estimates for
the maximally allowable annual cost of a real-time AIS detection
device (MAACD). Parameters of the model were chosen
according to empirical distributions extracted from the literature.
Since MAACD is expected to depend on demographic (age, sex),
clinical (annual risk of ischaemic stroke), and socio-geographic
characteristics (prehospital delay due to poor education with
regards to symptoms of AIS; expected time the patients was
last seen well before the incident [TLSW]/is found after the
incident [TFAI]; and expected transfer times and treatment time
metrics at the hospital [urbanictiy];Table 1) of the population the
device is intended for, results are reported according to different
combinations of these individual characteristics. Only patients
without contraindications to thrombolysis and MT and without
known conditions predisposing to the development of symptoms
similar to those of AIS (stroke mimics; e.g., epilepsy, migraine,
multiple sclerosis) were considered as potential candidates in our
model.

Description of the Model
A graphic representation of the model is presented in Figure 1.
For a detailed exposition of the parameters used in the model,
see Tables 1–6. The process starts in the upper left hand corner.
First, it is determined whether an ischaemic stroke occurs in a
given year (“Incident?”) according to the a priori defined annual
risk of ischaemic stroke (range 1–20%). If no ischaemic stroke
occurs, the incremental benefit of the stroke detection device
is 0 DALYs, and the incremental cost (excluding the device
cost) is GBP 0.00. If an ischaemic stroke occurs, the model
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TABLE 1 | Parameters representing individual characteristics and living circumstances used in the model.

Parameter Structure Base case

parameters

Range References/details

Age, a Single parameter 50–90 years – –

Sex, s Single parameter Male, Female – –

Absolute annual risk of ischaemic

stroke, r

Single parameter 0.01–0.2 – –

Urbanicity, U(TD1, DTN, NTG) Set of parameters

TD1: time to nearest PSC

DTN: door-to-needle time at nearest PSC

NTG: needle-to-groin time

TD1: 30min

DTN: 45min

NTG: 90min

Urban environment:

TD1: 15min; DTN: 30min;

NTG: 60min

Rural environment:

TD1: 60min; DTN: 60min;

NTG: 120min

Used to define

socio-geographic

scenarios I – VIII

Delay due to poor education with

regards to stroke symptoms, ED

ED
(

NIHSS
)

= 60a×

(

1−
1

1+e
b−NIHSS

c

)

a = 3; b = 2;

c = 3;

Poorer education:

a = 1; b = 0; c = 2;

Better education:

a = 12; b = 2; c = 2;

Used to define

socio-geographic

scenarios I – VIII;

Figure S1

Expected time last seen well before

ischaemic stroke incident / expected

time found after ischaemic stroke

incident, TLSW / TFAI

Single parameter 30min More frequent visits: 10min

Less frequent visits: 180min

Used to define

socio-geographic

scenarios I – VIII

NIHSS stands for National Institutes of Health Stroke Scale.

determines the incident characteristics (Figure 1, Box 1): time
of day, stroke severity, presence of large vessel occlusion (LVO),
whether the patient is able to communicate (ATC), time delay
before the patient would be found after the incident (TFAI), and
length of time since the patient was last seen well before the
incident (TLSW). Next, it is determined whether a real-time AIS
detection device with a certain assumed mode of operation and
sensitivity detects the ischaemic stroke incident. If the device fails
to detect the incident, the incremental benefit and incremental
cost (excluding the annual cost of the device), are 0 DALYs and
GBP 0.00, respectively. Otherwise, for both the scenario with a
real-time AIS detection device and the control scenario, potential
onset-to-treatment times are calculated based on the time of the
day, the ability to communicate, the likelihood of the patient
to recognize the need for rapid medical attention (quantified
as expected delay due to poor education with regard to stroke
symptoms [ED]), expected time delay before the patient is found
after the incident [TFAI], and the stroke care infrastructure in
the patient’s environment (urbanicity: transport time, door-to-
needle time, needle-to-groin time; Figure 1, Box 2). Next, for the
control scenario, potential onset-to-treatment times are adjusted
to account for the uncertainty of time windows, which can results
from either the stroke incidence occurring during the night, or
the patient being unable to communicate, or both (Figure 1,
Box 3). According to these adjusted onset-to-treatment times
(which in clinical praxis form the basis of treatment decisions
if no other means of determining the time of symptom-onset
such as magnetic resonance imaging is available) and the vessel
status, the model categorizes the patients in the control scenario
in one of six treatment scenarios defined by the time-based
eligibility criteria for thrombolysis and MT (Figure 1, Box 4;
note that the patients in the scenario with a real-time AIS
detection device always fulfill the time-based eligibility criteria

for both thrombolysis and MT). Next, the potential onset-to-
treatment times, the vessel status, and the treatment scenario,
i.e., the time-based eligibility for thrombolysis and/or MT, are
used to determine the type of acute treatment administered (i.v.
thrombolysis, MT, or both) and the effective treatment times.
For patients without LVO, the relevant treatment time metric is
symptom onset-to-needle time; for patients with LVO, symptom-
onset-to-reperfusion time. Regarding the latter, reperfusion of
LVO can either be achieved by thrombolysis alone, or through
successful MT. Last, the incremental costs and benefits are
determined by comparing costs and benefits between the control
scenario and the scenario with a detection device. Based on these
incremental effects, themaximally allowable annual cost of a real-
time AIS detection device is calculated. For each set of input
parameters (age, sex, risk, and socio-geographic scenario), the
simulation was repeated n= 20.000 times, and the resultingmean
and standard deviation of the MAACDwere calculated. The time
frame for the intervention was one single year because data on the
evolution of annual risk of ischaemic stroke over time and on the
relationship between risk for ischaemic stroke andmortality were
not available. Consequences of the intervention were considered
over a time frame of 25 years for costs and over the whole lifetime
for benefits.

Effectiveness Estimate
Estimated number of DALYs preventable by a real-time
ischaemic stroke detection device are calculated based on data
from Meretoja et al. (5, 6) The authors used logistic regression
models to estimate the improvement in functional outcome
and subsequently the reduction in DALYs associated with a
1-min decrease in time to thrombolysis for patients without
LVO, and in time to reperfusion for patients with LVO. For
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FIGURE 1 | Flow diagram. Graphic representation of the probabilistic conditional model. For a detailed description, see main text. (x) represents multi-parametric

functions of age, sex, NIHSS, and reduction in symptom onset-to-needle/symptom onset-to-reperfusion times. If patients do not fulfill the time-based eligibility criteria

for thrombolysis or mechanical thrombectomy, or if no reperfusion is achieved, the upper end of the respective treatment time window at which the administration of

the respective treatment is associated is with no benefit used for the calculation of the reduction in time-to-treatment (indicated by brackets []).

General Abbreviations: T stand for the time of day at which the acute ischaemic stroke incident occurs, NIHSS for National Institutes of Health Stroke Scale, LVO for

large vessel occlusion, ASD for average sleep duration (night time), ATC for ability to communicate (i.e., call emergency medical services and/or give information about

symptom onset), tPA for intravenous thrombolysis with tissue-type plasminogen activator, MT for mechanical thrombectomy, TS for treatment scenario, pR1 for the

probability of reperfusion of large vessel occlusion during mechanical thrombectomy, pR2 for the Probability of reperfusion of large vessel occlusion 70min after

intravenous thrombolysis, WTP for willingness-to-pay threshold, and MAACD for the maximally allowable annual cost of the device.

Time interval abbreviations: OTSR stands for symptom onset-to-recognition time, RTDH for symptom recognition-to-(decision to go to hospital)-time, ED for

prehospital delay between recognition of symptoms and the decision to go to a thrombolysis-ready hospital attributable to poor education about stroke symptoms,

TFAI for the average time a patient is found after an incident, pOTN for potential symptom onset-to-needle time, pOTGP for potential symptom onset-to-groin

puncture time, pOTNa and pOTGPa for potential symptom onset-to-needle time and potential symptom onset-to-groin puncture time, respectively, after adjustment

for the uncertainty of time windows, TD1 for travel time to the nearest thrombolysis-ready hospital, DTN for door-to-needle time, NTG for needle-to-groin puncture

time, TLSW for the average time a patient was last seen well before the incident, OTRep for symptom onset-to-reperfusion time.
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TABLE 2 | Clinical parameters used in the model.

Parameter Structure Base case

parameters

Range References/details

Time of ischaemic stroke occurrence, T Probability distribution (uniform)

p (T) = 1
24×60

– – Figure S1

Symptom severity, NIHSS Probability distribution

p
(

NIHSS
)

=
p1×NIHSS+p2

NIHSS2+q1×NIHSS+q2

p1 = 0.068;

p2 = 1.137;

q1 = −2.288;

q2 = 10.02

More severe strokes:

p1 = 1; p2 = 1;

q1 = −1; q2 = 4

Less severe strokes:

p1 = 0.02; p2 = 1;

q1 = − 0.3; q2 = 5

(18)

Figure S2

Ability to communicate, ATC Probability function of NIHSS

PATC=1
(

NIHSS
)

= 1−
1

1+e
a−NIHSS

b

PATC=0
(

NIHSS
)

= 1− PATC=1
(

NIHSS
)

a = 15; b = 3 Less able to communicate:

a = 10; b = 2.5

More able to communicate:

a = 20; b = 2

Reasonable

assumption. Wide

range for sensitivity

analyses.

Figure S3

Presence of large vessel occlusion, LVO Probability function of NIHSS

PLVO=1
(

NIHSS
)

=
a

1+e
b−NIHSS

c

PLVO=0
(

NIHSS
)

= 1− PLVO=1
(

NIHSS
)

a = 0.957;

b = 14.12;

c = 5.551

More frequent LVO:

a = 0.985; b = 9.359;

c = 3.718

Less frequent LVO:

a = 0.941; b = 18.61;

c = 5.62

(19)

(20)

(21)

Figure S4

NIHSS stands for National Institutes of Health Stroke Scale, ATC for ability to communicate (defined as inability to contact emergency medical personnel independently and to give

information about symptom onset due to stroke symptom severity [e.g., aphasia, motor impairment, reduced level of consciousness]), and LVO for large vessel occlusion.

TABLE 3 | Treatment related parameters used in the model.

Parameter Structure Base case parameters Range References/details

Treatment time window for intravenous

thrombolysis (maximal symptom onset-to

needle time)

Single parameter 270min – (2)

Treatment time window for mechanical

thrombectomy (maximal symptom

onset-to-groin puncture time)

Single parameter 360min – (3)

Treatment effect: reduction in DALYs per

minute faster treatment, TE

1DALY =

f(sex,age,NIHSS,LVO)

Point estimates fitted using a locally

weighted smoothing linear regression

(span 0.2)

Upper and lower

95% prediction

interval

(5, 6)

Probability of reperfusion of LVO 70min

after thrombolysis, pR2

Single parameter 0.1; linear adjustment if time from begin of

thrombolysis to groin puncture

(needle-to-groin [NTG]) is <70 min:

pR2*min(1, NTG/70)

– (22)

(22)

Probability of reperfusion of LVO during

mechanical thrombectomy, pR1

Single parameter 0.8 – (22)

Groin puncture-to-reperfusion time, GPR Single parameter 30min – (22)

DALY stands for disability-adjusted life-year, TE for treatment effect, NIHSS for National Institutes of Health Stroke Scale, LVO for large vessel occlusion, and NTG for needle-to-groin

time.

TABLE 4 | Device related parameters used in the model.

Parameter Structure Base case parameters Range References/details

Mode of operation, M Classification with regard to

possible modes of operation

M3: Detection of all acute ischaemic

strokes during day and night

M1: detection limited to ischaemic

stroke due to LVO

M2: detection limited to ischaemic

strokes occurring during the day

–

Device sensitivity, S Sensitivity to detect acute

ischaemic stroke

S3: 75% S1: 50%

S2 100%

–

Frontiers in Neurology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 814

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schlemm Cost-Effectiveness of Real-Time Stroke Detection

TABLE 5 | Cost parameters used in the model.

Parameter Structure Base case value/parameters Range References/details

Intravenous thrombolysis Single parameter GBP 1,926.13

(USD 2,953.59 in 2015; exchange rate

GBP 1 = USD 1.5388)

– (23)

Mechanical thrombectomy Single parameter GBP 9,050.98

(USD 13,803.04 in 2015; exchange rate

GBP 1 = USD 1.5388)

– (23)

Reduction in indirect long-term costs

after ischaemic stroke due to home

help, nursing care, and loss of

production

1IndirectCosts =

f(sex,age,NIHSS,LVO)

Age-specific data on indirect cost savings per

minute faster treatment was anchored to

reductions in DALYs (median NIHSS = 14) and

transformed to other NIHSS values assuming

proportionality of reductions DALYs and indirect

cost savings.

– (24)

(6)

Figure S5

Willingness-to-pay threshold Single parameter GBP 30,000.00 GBP 20.000,00,

GBP 40.000,00

(25)

NIHSS stands for National Institutes of Health Stroke Scale, LVO for large vessel occlusion, and DALY for disability-adjusted life-year.

thrombolysis, their results were based on a published meta-
analysis of randomized controlled trials (27). ForMT, the authors
used data on the relationship between time to reperfusion
and treatment effect observed in a single large randomized
controlled trial (28). For patients with LVO, we therefore adopted
a physiological perspective focusing on reperfusion instead of
time-to-groin puncture. DALYs were calculated according to
current WHO guidelines without age-weighing or discounting
(1). We used the age-, sex-, vessel status- and stroke severity-
specific estimates presented by Meretoja et al. to create multi-
parametric fits (locally weighted smoothing linear regression
with a span of 0.2) for the age range 50–90 years and the stroke
severity range 0–42 points on the NIHSS scale. Due to limited
availability of data, stroke severities >25 points were mapped to
corresponding values of NIHSS= 25.

Cost Estimate
For our analysis, we adopted a societal point of view and
considered three different types of cost in our analyses (Table 5).
First, direct in-hospital costs associated with the administration
of thrombolysis and/or MT (23). Additional costs, such as day
costs in the neurological department and diagnostic procedures,
were not considered as these would not generally be affected
by the use of a real-time AIS detection device. Potential cost
savings attributable to reduced length of stay due to better
clinical outcome as a consequence of faster treatment were
not considered due to lack of data. Second, long term costs
for home help, nursing home care, and loss of production.
Average age-specific estimates for these costs were extracted
from Steen Carlsson et al. (24) and, assuming a proportional
relationship with DALYs, transformed to account for different
stroke severities and reductions in onset-to-treatment times
using the multi-parametric functions derived from Meretoja
et al. (5) and Meretoja et al. (6) Third, the annual cost of
the real-time AIS detection device was considered. Here, we
did not differentiate between costs to set up the device and
annual running costs, because the time-frame of the intervention
was limited to 1 year. False positive detections (i.e., visits
to the emergency department with a final diagnosis other

TABLE 6 | Miscellaneous parameters used in the model.

Parameter Structure Base case

parameters

Range References/

details

Average sleep

duration, ASD

Single

parameter

7.5*60min Less sleep:

6*60min

More sleep:

9*60min

(26)

Figure S6

TABLE 7 | Definition of socio-geographic scenarios I–VIII.

Frequency of

visits (quantified

by TLSW/TFAI)

Urbanicity Education with regards to stroke symptoms

Better Worse

More frequent Urban I V

Rural II VI

Less frequent Urban III VII

Rural IV VIII

For parameter values, see Table 1. TLSW stands for the expected time the patient was

last seen well before the ischaemic stroke incident; TFAI for the expected time the patient

would be found after the ischaemic stroke incident.

than AIS [stroke mimic or haemorrhagic stroke]) were not
considered in the calculation of incremental costs, because
these patients should not receive thrombolysis or MT after
careful examination and history taking by a neurologist and
neuroimaging, and because, given our exclusion criteria of
known medical conditions leading to stroke mimics, such
patients should receive an urgent neurological diagnostic workup
in the control scenario also. All costs are expressed as GBP of
the year 2018 with an inflation rate of 3%. Official exchange rates
from the Bank of England were used for the conversion of foreign
currencies.

Main Outcome
The main outcome of the analyses was the MAACD for
individuals with different demographic, clinical, and socio-
geographic characteristics given a willingness-to-pay threshold of
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GBP 30,000 (25). All simulations and analyses were performed in
MATLAB (29). For the sake of clarity of presentation, results for
men and women were aggregated through arithmetic averaging;
however, sex-specific results were also calculated and are available
upon request.

Analysis Plan
First, we present results using a set of base-case scenario
parameters. We then examine the influence of different modes
of detection of the device and different sensitivities. Next, the
impact of individual model parameters on outcome is explored
in one-way and multiway sensitivity analyses. Last, we present
results for populations with exemplary demographic and clinical
characteristics with uncertainty quantified by 95% confidence
intervals.

RESULTS

Impact of Real-Time Stroke Detection
The beneficial effect of real-time detection of AIS and immediate
notification of emergency medical services is achieved through
reduced prehospital delays, less uncertainty regarding the true
time of symptom onset, and a higher probability to fulfill the
time-based eligibility criteria for thrombolysis and MT. First,
we calculated the estimated reduction in time from symptom
onset-to-hospital arrival in our model according to vessel status
and socio-geographic scenario (I–VIII; Figure 2A). For patients
without LVO, the reduction in time from symptom onset-to-
hospital arrival is most strongly influenced by delay due to poor
education about the urgency of stroke symptoms and the need
for immediate treatment (ED). For patients with LVO, the main
difference is observed between socio-geographic scenarios I, II, V,
VI on one hand, and III, IV, VII, VIII on the other hand, which
implies a strong influence of the parameter “time found after the
incident/time last seen well before the incident” (TFAI/TLSW).
This difference in the influence of model parameters between
the group of patients with and without LVO is explained by
the observation that patients with LVO are more likely to have
more severe stroke symptoms and are therefore more likely to
depend on being found by others, while patients without LVO
are more likely to have less severe stroke symptoms, in which
case the prehospital delay depends more strongly on the patients’
own educational status. Next, we modeled the percentage of
all AIS patients fulfilling the time-based eligibility criteria for
thrombolysis and the percentage of all AIS patients with LVO
fulfilling the time-based eligibility criteria MT in the control
scenario without a real-time AIS detection device (Figure 2B;
note that in the scenario with a real-time AIS detection device,
all patients would, by definition, fulfill the time-based eligibility
criteria for thrombolysis and MT). With regards to the eligibility
for thrombolysis, the difference between the control scenario
and the intervention scenario is most pronounced in socio-
geographic scenarios V–VIII, again corresponding to poorer
education about stroke symptoms. With regards to eligibility
for MT, the most pronounced reductions are observed in
socio-geographic scenarios III and VIII, corresponding to the
combination of a rural geographic environment and a longer

expected time the patient is found after the incident/last seen well
before the incident (TFAI/TLSW).

The longer delay from symptom onset to the administration
of thrombolysis or MT, or indeed the ineligibility for these
treatments due to exceeded treatment time windows, translates
directly into worse functional outcome. In Figure 2C we display
the expected reduction in DALYs achievable by real-time AIS
detection for the base-case scenario according to age and annual
ischaemic stroke risk. The estimated reduction in long-term
disability ranges from 0.00 to 0.10 DALYs and shows a strong
correlation with both age and annual ischaemic stroke risk.

Maximally Allowable Annual Cost of the
Device in the Base-Case Scenario
Combining these estimated reductions in DALYs with
incremental costs and assuming a willingness-to-pay threshold
of GBP 30,000, we obtain the maximally allowable annual
cost of the device for the base-case scenario. It ranges from
GBP 22.00–9,952.00 and is again strongly correlated with age,
annual risk of ischaemic stroke, and socio-geographic scenario
(Figure 3).

Impact of Assuming Different Modes of
Operation
In the base-case scenario, we assumed a real-time AIS detection
device that is able to detect ischaemic stroke irrespective of the
presence or absence of an associated LVO and irrespective of
time of day (night time or day time; mode M3) with a sensitivity
of 75%. The impact of assuming different modes of operation
(detection limited to incidents due to LVO [mode M1], detection
limited to day time when the patients is active [mode M2])
and different sensitivities (50%, 100%) is shown in Figure 4.
In all socio-geographic scenarios, devices operating in mode
M1 and M2 have a consistently lower MAACD than devices
operating in mode M3. For devices with a mode of operation
M3, increasing the sensitivity of stroke detection from 75 to 100%
is associated with an increase in the MAACD of 31.2–32.2%
(Figure 4B).

One-Way and Multi-Way Sensitivity
Analyses of Model Parameters
The impact of variation of model parameters (distribution
of stroke severity, probability of LVO, probability of inability
to communicate, distribution in reduction in DALYs per
minute faster treatment, average sleep duration, and willingness-
to-pay threshold) was investigated in one-way and multi-
way sensitivity analyses. The results according to socio-
geographic scenario are displayed in Figure 5. The largest
MAACD changes observed in multiway sensitivity analyses are
−57.1% and +162.0% in socio-geographic scenario IV and III,
respectively.

Illustration of Results for Specific
Populations
To illustrate our results, we calculated MAACD according to
socio-geographic scenario, mode of operation and sensitivity
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FIGURE 2 | Impact of real-time stroke detection. (A) Reduction of symptom onset-to-hospital time for patients with and without large vessel occlusion (LVO) in

socio-geographic scenarios I–VIII and in the base-case scenario (BC). Shown are the median (circles), interquartile range (black boxes), and full range. (B) Proportion

of all patients with acute ischaemic stroke fulfilling time-based eligibility criteria for thrombolysis (top), and proportion of all patients with acute ischaemic stroke with

LVO fulfilling the time-based eligibility criteria for mechanical thrombectomy (bottom). Shown are the median (circles), interquartile range (black boxes), and full range.

(C) Disability adjusted life-years (DALYs) preventable by real-time stroke detection according to age and annual risk for ischaemic stroke assuming parameters of the

base-case scenario. For a definition of socio-geographic scenarios, see main text and Table 7.

for AIS detection for four demographically distinct populations
(Figure 6). Consistent with the previous results, MAACD is
highest in a population of 50 year old individuals with a
high annual ischaemic stroke risk belonging to socio-geographic
scenario VIII (rural environment, poor education with regards to
stroke symptoms, long expected time found after incident/time
last seen well before incident) under the assumption of an
ischaemic stroke detection device with 100% sensitivity and
detection of ischaemic stroke irrespective of vessel status and
time of day (mode of operation M3). For these individuals,
the MAACD is GBP 13,255.23 (95% confidence interval: GBP
12,607.58–13,902.89).

DISCUSSION

Summary of Findings
We used a probabilistic conditional analytical model and
empirical parameter distributions derived from the literature
to estimate the maximal annual cost that would render a real-
time ischaemic stroke detection device a cost-effective health
care intervention given currently accepted willingness-to-pay
thresholds. We found that the MAACD varies significantly
with age, annual risk of ischaemic stroke, and the social and
geographic environment of the targeted individual. Even for
young patients with an extremely high risk of ischaemic stroke

(50 years old/20% risk) and living circumstances that would favor
the use of a real-time ischaemic stroke detection device with
100% sensitivity, the upper limit for the annual cost would be
GBP 29,449.10 including the uncertainty derived from multiway
sensitivity analyses. For a population with more commonly
encountered demographic and clinical characteristics (80 years
old/1% annual risk of ischaemic stroke)(30), the MAACD in the
base-case scenario would be only GBP 81.51.

Availability of Real-Time Stroke Detection
Devices
To the best of our knowledge, there does not currently
exist a device that would be able to continually monitor
patients and to automatically detect an ischaemic stroke.
However, with the ongoing technological improvements in
the areas of miniaturization, decreased energy consumption,
automated analysis of complex and large data sets, and
man-machine interfaces, and our increased understanding of
the pathogenesis and pathophysiology of ischaemic stroke,
construction of such a device might be possible in the future.
Based on the currently available technologies, methods employed
could include implantable continuous Doppler ultrasound
(31–33), motion analysis (34, 35), video surveillance, surface
electromyography (36–39), or cerebral oximetry (40).
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FIGURE 3 | Maximally allowable annual cost of device according to age and annual risk of ischaemic stroke for socio-geographic scenarios I–VIII. For a definition of

socio-geographic scenarios, see main text and Table 7.

FIGURE 4 | Impact of mode of operation of the device and sensitivity of stroke detection on maximally allowable annual cost of device (MAACD) according to age and

annual risk of ischaemic stroke. (A) MAACD according to age (vertical axes, 50–90 years) and annual risk of ischaemic stroke (horizontal axis, 1–20%) for different

combinations of mode of operation of the device (M1, M2, M3) and sensitivity for stroke detection (50%, 75%, 100%) in the base-case socio-geographic scenario. (B)

Mean fold-increase of MAACD associated with different combinations of mode of operation of the device (M1, M2, M3) and sensitivity for stroke detection (50%, 75%,

100%) compared to the base-case scenario (mode M3/sensitivity 75%) in socio-geographic scenarios I–VIII. MAACD ratios are not influenced by age or annual risk of

ischaemic stroke (data not shown). For a definition of socio-geographic scenarios and modes of operation of the device, see main text and Tables 4, 7.
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FIGURE 5 | One-way and multi-way sensitivity analyses. Impact of changes of model parameters (distribution of stroke severity, probability of large vessel occlusion

as a function of stroke severity, ability to communicate as a function of stroke severity, estimated reduction in disability-adjusted life-years per minute faster treatment

as a function of age, sex, stroke severity, and treatment modality [thrombolysis or mechanical thrombectomy], and average sleep duration) on maximally allowable

annual cost of device (MAACD) according to age and annual risk of ischaemic stroke. (A) MAACD according to age and annual risk of ischaemic stroke (base-case

socio-geographic scenario). Rows 1–6 show MAACD maps for the contra-device (left hand side) and pro-device (right hand side) values of model parameters

indicated on the left. Row 7 shows MAACD maps for multiway sensitivity analyses including all parameters of row 1–6. (B) relative changes of MAACD associated with

individual and joint changes of model parameters in socio-geographic scenarios I–VIII. For a definition of socio-geographic, see main text and Table 7. NIHSS stands

for National Institutes of Health Stroke Scale, LVO for large vessel occlusion, ATC for ability to communicate, TE for treatment effect, ASD for average sleep duration,

and WTP for willingness-to-pay threshold.

Profitability of Investments in Real-Time
Stroke Detection Devices
Our results suggest that for real-time AIS detection to be
cost-effective in large group of unselected patients, devices
would need to operate at a very low annual cost. Conversely,
devices with higher annual cost would be cost-effective only
in a very small group of selected patients at a young age
with high risk of ischaemic stroke. Considering the large
financial investments likely to be required to develop a real-time
ischaemic stroke detection device and the expected magnitude of
annual running costs given their likely technological complexity,
it seems doubtful that investments in the development of
functioning real-time AIS detection devices or indeed their
sale and distribution / marketing in a public health insurance
environment could be profitable.

Study Limitations
The following limitations of our study need to be considered
when interpreting our results. First, we only considered a time-
horizon of one single year, which allowed us to examine the
annual running costs and the costs to set up the device together.

This would not be appropriate for devices that require relatively
high costs for installment and that could be used for several
years, e.g., long-living electronical implants. Modelling of a
longer time-horizon with separate accounting for setup costs
and maintenance costs would require data on the evolution of
annual risk of ischaemic stroke over time and on the relationship
between risk for ischaemic stroke and mortality. In spite of this
limitation, our results can be applied to hypothetical devices that
are used over several years if the total costs that accrue over the
whole time are expressed as appropriately discounted equivalent
annual costs. Second, while we presented results for hypothetical
devices with different modes of operation (detection independent
of vessel status vs. detection limited to patients with LVO;
and detection irrespective of time of day vs. detection limited
to daytime when the patient would be active) and different
sensitivities, we did not separately consider false positives, i.e.,
the incorrect detection of a stroke mimic or haemorrhagic stroke
as AIS. However, due to the chosen characteristics of our target
population, this does not lead to the introduction of bias: by
excluding patients with known conditions that may produce
stroke like symptoms such as epilepsy or migraine, patients
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FIGURE 6 | Maximally allowable annual cost of device according to socio-geographic scenario (I–VIII), mode of operation (M1–M3) and sensitivity (50, 75, and 100%)

for acute ischaemic stroke detection in four demographically distinct sub-populations. Vertical lines represent standard errors of the mean. For a definition of

socio-geographic scenarios and modes of operation of the device, see main text and Tables 4, 7. Note the different scaling of the vertical axes.

in whom the device detects an ischaemic stroke incorrectly
would be expected to receive prompt diagnostic work-up in the
control scenario as well as in the intervention scenario, albeit
with a greater delay. As no specific therapeutic interventions
with a time-dependent effect-size exist for most stroke mimics
and for haemorrhagic stroke not associated with the use of
anticoagulants, costs and clinical outcome are expected to be
similar in the control and intervention scenario, i.e. false positives
do not contribute to incremental cost or benefit within the
scope of the model. Third, it is conceivable that patients with
transient stroke symptoms that would have resolved by the
time the patients arrives at the hospital in the control scenario
would be treated with thrombolysis or MT in the intervention
scenario due to earlier evaluation by a stroke neurologist. In
this case, early detection would be associated with additional
costs for the acute treatment, but would not confer additional
benefit. This possibility was not accounted for in our model
due to lack of reliable information on the required parameters;
as a consequence, our model may have overestimated MAACD
which would not alter the interpretation of our findings. Last,
we extracted most model parameters and distributions from the
literature. However, for a subset of parameters, for example the
sigmoid relationship between stroke severity and the ability to
communicate, and the distributions of stroke severity used in
sensitivity analyses, reasonable assumptions based on clinical
experience had to be used. To ensure transparency, all parameters
including their distributions and ranges used in sensitivity
analyses are presented in theOnline Data Supplement.

CONCLUSION

In conclusion, we examined hypothetical devices to continually
monitor at-risk patients for the occurrence of ischaemic stroke
and present maximally allowable annual costs for these devices
to operate in a cost-effective manner given a willingness-to-pay
threshold of GBP 30,000.00. Our data suggest that such devices
are expected to be cost-effective only for a small group of highly
selected individuals.
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