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Abstract

We consider the problem of systemic risk assessment in interbank networks in which interbank
liabilities can have multiple maturities. In particular, we allow for both short-term and long-term
interbank liabilities. We develop a clearing mechanism for the interbank liabilities to deal with the
default of one or more market participants. Our approach generalises the clearing approach for the
single maturity setting proposed by |[Eisenberg & Noe|(2001).

Our clearing mechanism focuses on the vector of each bank’s liquid assets at each maturity
date and develops a fixed-point formulation of this vector for a given set of defaulted banks. Our
formulation is consistent with the main stylised principles of insolvency law.

We show that in the context of multiple maturities, specifying a set of defaulted banks is chal-
lenging. We propose two approaches to overcome this challenge: First, we propose an algorithmic
approach for defining the default set and show that this approach leads to a well-defined liquid asset
vector for all financial networks with multiple maturities. Second, we propose a simpler functional
approach which leads to a functional liquid asset vector which need not exist but under a regularity
condition does exist and coincides with the algorithmic liquid asset vector.

Our analysis permits construction of simple dynamic models and furthermore demonstrates that

systemic risk can be underestimated by single maturity models.
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1. INTRODUCTION

1 Introduction

Since the financial crisis of 2007-8 there has been a rapid expansion of literature which aims to ex-
plain bank failure in interconnected financial systems, see e.g.|Glasserman & Young| (2016)) for a recent
overview. One main modelling aim is to find a suitable contagion mechanism that describes how losses
can spread through a financial network. The ultimate objective of such an analysis is to assess the de-
gree of systemic risk in a financial network and use this to make informed policy decisions to increase
financial stability.

One approach to assess systemic risk in financial networks is to derive clearing cash flows between
financial institutions and to study which market participants default during the clearing process. Such
clearing payments represent the actual payments made by the market participants and are constructed
such that they obey certain stylised principles of contract and insolvency law.

We contribute to this area of research by proposing an extension of the clearing approach first devel-
oped by |[Eisenberg & Noe| (2001)) from financial networks with only one maturity date to networks with
multiple maturity dates. In practice, financial networks do consist of liabilities with different maturity
dates. When the clearing process is triggered at the first maturity date long-term debt must not be ig-
nored. We develop clearing mechanisms that account for long-term debt in a way that is consistent with
the main principles of insolvency law. This approach is also extended to a multi-period model that can
be used as a basis for a full dynamic model of systemic risk.

Typically bank default models assume, as e.g. proposed by [Eisenberg & Noe|(2001), three stylised
principles of insolvency law which are common to many jurisdictions. These are the principles of
limited liability, which says that a financial institution never pays more than it has, absolute priority of
debt claims, implying that all outstanding debt has to be completely paid off first before shareholders can
be considered, and proportionality. The principle of proportionality states that the total value of assets
paid out in this case is distributed between all the creditors in proportion to the size of their nominal
claims.

A crucial nuance of the principle of proportionality is that all liabilities, including future liabilities,
are required to be treated equally for the purposes of proportional distribution to creditors. For example,
the UK Insolvency Service Technical Manual stipulates that: “A creditor may prove for a debt where
payment would have become due at a date later than the insolvency proceedings [...] and it is only
because the company [...] has entered into insolvency proceedings that the debt is claimed by the
creditor in advance of its due payment date. Where this occurs, the creditor is entitled to the dividend
equally with others [...],” The Insolvency Service| (2010, Chapter 36A, Section 48).

Our model explicitly incorporates this important feature. This contrasts with single maturity models
where it is assumed that assets of defaulting banks are distributed to creditors proportionally to the

short-term liabilities only. The failure to account for future liabilities in calculating the proportional
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distributions, leads to an incomplete view of systemic risk in financial systems. We show that two
financial systems with the same overall interbank liabilities but different maturity profiles can lead to
different clearing outcomes. In particular, it follows that uncertainty about maturity profiles of banks’
portfolios is a distinct source of systemic risk that is unaccounted for in single maturity models. Our
approach can be used in an analysis of systemic risk to evaluate the effect of such maturity profile
uncertainty.

This paper makes four main contributions. First, in Section [2| we introduce the notion of an equilib-
rium achieved by clearing the financial markets at the first maturity date and accounting for long-term
liabilities which are due beyond the first maturity date (Definition [2.3). We also show that in contrast to
the single maturity setting, developing a notion of default in a multiple maturity setting is challenging.
A key insight that emerges out of this observation is that characterising the set of banks in default is an
integral part of the solution to the clearing problem. This is in contrast to much of the literature where
default sets are treated as secondary quantities derived from the clearing cash flows. In particular, we
show in Lemma and Remark [3.20] that under a mild assumption financial systems have at most a
finite number of clearing solutions each uniquely determined by a corresponding default set.

Our second contribution, in Section [3] is to introduce two possible approaches to clearing at the
first maturity date. We show that these two approaches — algorithmic (Definition [3.1)) and functional
(Definition [3.3) — solve the general equilibrium problem in Propositions [3.2] and [3.5] In Section [3.3|
we describe how the algorithmic approach extends the functional approach, which in turn extends the
Eisenberg & Noe|(2001) model. Construction of clearing solutions under both approaches is addressed
in Section 3.4

Our third contribution is to show that the functional approach, used in much of the literature in
a single maturity setting, is problematic in a multiple maturity setting. In particular, we elucidate the
importance of monotonicity in clearing problems. In general, under the functional approach, the clearing
function is not monotone and may not have a fixed point solution. Nevertheless, we show in Section
that a simple condition, the Monotonicity Condition is sufficient to ensure the existence of a
solution.

Finally, we highlight some applications of the algorithmic approach. In Section [3.5] we apply the
algorithmic approach to demonstrate how single maturity models can underestimate systemic risk. In
Section {] we discuss the evolution of the financial system after clearing at the first maturity. In par-
ticular, in Section [4.3] we describe a simple multi-period extensions of our model. Such an extension
then captures both the multi-maturity and multi-period aspects and therefore is a basis for a full dynamic
model of financial systems.

The remainder of this section provides a summary of the current literature and how it relates to the

multiple maturity clearing problem that we consider here.
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1.1 Literature review

The role of complexity and contagion in financial networks has been studied by numerous authors, e.g.
Allen & Gale|(2000), Gai et al.|(2011)), Battiston et al.|(2012) and|David & Lehar|{(2017). There has been
an increasing recognition that there are in fact multiple channels through which network complexity can
give rise to systemic risk. [Bisias et al.| (2012), for example, provide a wide-ranging overview.

In most studies it is assumed that the financial network itself is observable. We will also make this
assumption here. Under incomplete information network reconstruction methods could be applied first,
see e.g. the Bayesian approach proposed by |Gandy & Veraart (2017alb) and the references therein.

We focus on one specific channel of contagion, namely the domino effect which arises when complex
networks of debt obligations are cleared. This places our work at the intersection of two strands of
literature. The first focuses on contagion and domino effects, e.g. (Cifuentes et al. (2005)), Upper (2011)),
Liu et al.| (2012), [Elsinger et al.| (2013)), Cont et al.| (2013)), \Georg| (2013) and [Elliott et al.| (2014). The
second investigates clearing, typically in the context of central counterparty clearing in OTC markets.
Some contributions from this latter strand include|Cont & Kokholm)|(2014), Duffie et al.|(2015)), Capponi
et al. (2015) and |[Amini et al.|(2015]).

Our paper presents a generalisation of the classic static single maturity approach that originates
with |[Eisenberg & Noe| (2001). While the model in |[Eisenberg & Noe| (2001) was concerned primarily
with payment systems, the key ideas have been adapted by numerous authors to model systemic risk
in a financial system. In this stream of literature, an interbank system is modelled as a directed graph
with weighted edges. The nodes of this graph correspond to systemically significant banks which are
endowed with initial assets. Each edge represents an outstanding debt owed by the bank at the tail of
the edge to the bank at the head of edge. The weights correspond to the nominal values of the debt.
A central question is of clearing the financial system, that is calculating the actual amounts that banks
transfer to each other in satisfaction of their nominal obligations. This question is particularly pertinent
when a shock is applied to the asset side of their balance sheets, which may cause some banks to default.

The key findings include the existence and construction of clearing solutions and the conditions
for their uniqueness. These results rely on a number of simplifying assumptions on clearing, which
subsequent authors have attempted to relax. Thus |[Hurd| (2016)) clarifies the effect that the external
liabilities play, Rogers & Veraart| (2013) investigate the effect of liquidation costs, while |[Elsinger| (2011)
incorporates cross-holdings and different seniorities of debt. The combined effect of cross-holdings and
bankruptcy costs is investigated in|Weber & Weske|(2017). All these extensions are single period models
and hence assume a single maturity for the liabilities.

Glasserman & Young|(2014) provides an alternative interpretation of clearing as dynamic re-valuation
of bank assets by the market. Since in many extensions the uniqueness of clearing solutions is lost, this
interpretation is particularly interesting in the systemic risk context as different solutions can be given

meaningful interpretation in terms of alternative valuations. |Veraart| (2017) follows this approach and
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investigates the effect of pre-default contagion, i.e., contagion that can be triggered prior to the actual
default event due to distress and mark-to-market losses. The notions of distress and time-dependent
valuation are also developed in Barucca et al.| (2016)).

Recent papers (e.g. (Capponi & Chen| (2015)), [Ferrara et al.| (2016), Banerjee et al.| (2018)) have
developed multi-period models. The model in |Capponi & Chen| (2015)) has a “central bank” node and
random interbank liabilities. In particular, it highlights the distinction between illiquid and insolvent
banks which arises whenever liabilities can become due at different times. This model focuses on the
role of liquidity injection policies by the central bank and only tangentially analyses the differences in
the default behaviour that arises from this generalisation. Meanwhile, Ferrara et al.|(2016) describe how
a multi-period system can be cleared simultaneously for every period. Similarly, Banerjee et al.| (2018])
consider both a discrete and a continuous-time dynamic extension of the Eisenberg & Noe|(2001) model.

While these models generalise the single period aspect of |[Eisenberg & Noe (2001), they remain
fundamentally single maturity models. Future liabilities are only revealed one period at a time and
are not considered as long-term debt at the short-term maturity date, but are rather considered as new
short-term debt that started at a later point in time. The clearing mechanism they consider therefore
corresponds effectively to a repeated application of a single maturity clearing algorithm.

Sonin & Sonin| (2017) provide a dynamic solution approach to the static |[Eisenberg & Noe| (2001)
setting, but again do not account for a multiple maturity structure as we do in our paper.

In contrast, our model accounts for long-term debt before short-term debt is cleared and settled. In
practice, banks have instruments of many maturities in their portfolio and therefore it is important to
account for this feature. To the best of our knowledge, our contribution is the first attempt to explicitly
account for multiple maturities in a manner consistent with the insolvency rules.

Related work is the approach by [Feinstein| (2017) who considers an extension of the single network
approach by Eisenberg & Noe|(2001)) to a multi-layered financial network to study contagion in multiple

asset classes. This approach could also be applied to a multi-period or multi-maturity setting.

2 Clearing in financial systems with multiple maturities

2.1 The financial market

We consider a financial market consisting of N banks with indices in ' = {1,..., N}. Banks have
liabilities to each other and to external entities which are due at two different maturity dates 0 < T < T5.
We will later show that we can easily generalise our model to more than two maturities. Hence, time
t = 0 represents the starting point of the analysis and we model what happens at the two maturity dates
t € {T1,T>}. We assume that all liabilities of the same maturity have the same seniority.

Each bank’s liabilities for some maturity can be represented by a liability matrix. Together with

vectors representing bank’s cash assets these are sufficient to describe the financial system at ¢t = T7.



2. CLEARING WITH MULTIPLE MATURITIES

These and other related concepts are summarised in Definition 2.1
Definition 2.1 (Financial system).
1. A matrix M € RY*N is called a liability matrix if, for all i € N, My; = 0.
2. A financial system is given by the tuple (a, LG Lo, ), where LG, LY are liability matrices
with maturity dates Ty and Ty respectively, and a € RY, v € [0,1].

We will refer to the following quantities:

e the cash assets a,

« the short-term, long-term and overall liability matrices L), LY and L := L) + 1O,

respectively;

* the short-term, long-term and overall total nominal liability vectors L) = 1)1, LO =
LW and L := L) + L, respectively;

« the short-term, long-term and overall interbank asset vectors A(®) := (L)1, AW .=
(LWYT1, A:= (L)1, respectively;

* the short-term and overall relative liability matrices 1) and II, respectively, which are
L g _ _
given by HE;) = # and 11;; = %for all i,j e N ile(S) > 0 (respectively, L; > 0) and
Hl(;) = 0 (respectively, 11;; = 0) otherwise;

* the bankruptcy cost parameter 7.

Assets Liabilities

e Cash assets: a;

e Short-term interbank liabilities: f/l(s) = ij\i1 LZ(;)

e Short-term interbank loans: AES) =y, L;f)

o Long-term interbank liabilities: El@ = Zj]\il Lg.)

e Long-term interbank loans: f_ll(l) = Zj]\il L;é)

e Equity: E;

Table 1: Initial stylised balance sheet at ¢ = 0 of bank ¢ € V.

Thus, given a matrix M of liabilities of some maturity, a bank ¢ has an outstanding liability of that
maturity to bank j if M;; > 0 and the nominal value of this liability is given by M;;. If M;; = 0 then
1 does not owe anything to j and in particular M has a zero diagonal since we assume banks do not
owe anything to themselves. The i*" row sum of M then gives the total nominal value of liabilities of
each bank of the relevant maturity and the i column sum gives the total nominal value of assets of that
maturity.

Table [T| shows the stylised balance sheet at time ¢ = 0 of bank ¢ € A/ where the equity is defined as
Ei=a;+ AP + AV -1 [,



2. CLEARING WITH MULTIPLE MATURITIES

Remark 2.2. The set of banks N is assumed to contain a ‘sink node’, e.g. in this paper N € A/. This
node has no cash assets or liabilities. However other banks may well have liabilities to the sink node.
These represent banks’ liabilities external to the interbank market but for ease of reference we refer to
all entries of the liability matrices as ‘interbank’ liabilities. In Elsinger|(2011) it is pointed out that in
order to use a sink node in this manner external liabilities need to be treated as having the same seniority

as interbank liabilities; this is indeed our assumption in this paper.

2.2 General equilibrium

In this paper we formulate a characterisation of an equilibrium achieved by clearing the market at the first
maturity date that is based on the requirements of the UK insolvency rules as outlined in|The Insolvency

Service| (2010), which can be heuristically summarised as follows:

* Banks are not required to make any payments either in excess of the total value of their liquidated

assets nor the total amount they owe across all maturities.

* Conversely, shareholders are not permitted to retain any value of the defaulting banks as long as

any part of any creditor’s outstanding claims remains.

* Such claims include both short-term and long-term liabilities, which are treated with the same

priority within the same seniority class.

A bank that is liquidated under the insolvency rules ceases to exist and cannot recover even if

liquidators recover sufficient assets to fully compensate all creditors.

Suppose we are at the first maturity date ¢ = 7} and suppose some banks with indices in D ¢ \ are
in default at ¢ = T7. We postpone the discussion on the cause of these defaults to Section [2.3] We will
now determine a clearing equilibrium at ¢ = 77.

We start by considering the case where a bank j does not default, i.e., 7 € A\ D. Then it pays
its short-term nominal obligations l_lg.s) in full; in particular, it pays L§f) to every bank 7. Next, we
consider a bank j that defaults, i.e. j € D. Bank j is liable to pay its creditors all of its available liquid
asset resources, denoted by v;, subject to two constraints. First, since default is costly and lawyers and
other service providers need to be paid, only a fraction € [0, 1] of its liquid asset resources reaches its
creditors. Second, we now need to consider both its short-term and its long-term liabilities. In general,
Lj> E;S) and if j has any long-term liabilities then L; > ﬁ;s). We assume that the creditors are not
entitled to more than the overall total liabilities Ej.

Finally, we also need to model what is permitted to happen to the long-term interbank assets flgo
of a bank j at or prior to the first maturity date. In practice they can be auctioned to provide additional
cash to satisfy the total liabilities, especially if the bank j is attempting to avoid being in default. In the

interests of model parsimony and tractability, we refrain from modelling an auction mechanism here and
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take a reduced approach where, following an auction, the bank j would have a further amount R[lg.l) of
liquid assets where R > 0 is the recovery rate. See, for example, |Capponi et al.| (2015) for an example
of an auction mechanism. We discuss this further in Section (4l

Provided the auction of long-term assets does not take place concurrently with the clearing process,
the two can be separated in time. In other words, we assume that the auctions take place before the
clearing at the first maturity date and any auction proceeds are already incorporated into the cash assets
a; of the bank j by the time the clearing process commences. Therefore we make this explicit by making
a further modelling assumption that, during clearing, R = 0. The situation can become significantly
more complex if the auctions can take place concurrently with the clearing process. To keep the model
tractable, the assumption that R = 0 then also allows us to avoid dealing with such a case.

We therefore need to determine the liquid asset resources v that each bank has at time ¢ = T7. We
characterise v in terms of a fixed point problem for a given financial system (a, L), L(l);v). Note
that in this paper O denotes the vector of zeros which in Definition [2.3] below corresponds to an N-

dimensional vector.

Definition 2.3. Ler (a, L), L1);~) be a financial system and D € N. Define (D) : [0,a + A] -
[0,a + A] where [0,a + A] c RY and, for eachi e N,

\Ifi(’U;D) =a; + Z L;f) + ZHJ'Z'(I:J'/\’)/’U]').
jeN\D 7€D
We refer to any vector v € [0, a + A] satisfying v = ¥ (v; D) as a general liquid asset vector with respect

to D.

Remark 2.4. Note that, indeed, 0 < ¥ (v;D); < a; + A; for all v and i. This follows directly from the
fact that for each 7, j € N and v € Riv, Hji(l_/j AYv;) < Hjiij = Lj;. Therefore, since L§f) < Lj; for all
i,7 € N, we have that ¥(v; D); < a; + Yjen Lji = a; + A;.

Importantly, the set [0, a + A] forms a complete lattice under the component-wise ordering of RY .

Definition [2.3] defines the liquid asset vector with respect to a default set D. In the following we
discuss properties of the default set D before we propose two approaches to define it in Subsection 3.1}
2.3 Identification of default

Most models based on the [Eisenberg & Noe (2001) framework define default by checking whether
some value is less than the total nominal short-term liabilities Z(*). This leads to the following general

definition.

Definition 2.5. Let (a, JASN AR 7v) be a financial system of bank N with the total nominal short-term
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liabilities vector L) We define the function D by setting, for each vector x € ]M ,
D(z)={ie N |z < L} (1)

This allows us to define fundamental defaults, i.e., defaults that occur even if everyone is assumed

to satisfy their payment obligations. The fundamental default set is given by
. ()Y Z 15 A () . 7(9)
F:=D(a+A )-{zeN!az+j§/Lﬁ <L;”}.

Fundamental defaults can be read off directly from the stylised balance sheet. It is reasonable to assume
that any default set D satisfies F € D. Furthermore it is reasonable to assume that 7 = @ implies D = &.

Nevertheless, F is too small to be a suitable choice for the default set D. Not all defaults are
fundamental defaults. A bank may have interbank assets whose book value is sufficient but contingent
on its counterparties avoiding default. If some of the counterparties default this would cause the market
value of assets to be adjusted down, making the bank illiquid and thus triggering its default. This type
of default is known as a contagious default and is well-established as one of the key drivers of systemic
risk. These contagious defaults cannot be directly determined from the stylised balance sheet.

To capture some of these contagious defaults, we can ask whether some bank ¢ is illiquid in the
sense that its liquid assets v; are insufficient for it to meet its own short-term liabilities in full. The set
of such illiquid banks is then given by D(v). We would expect that for any default set D one should
have D(v) € D. As with the fundamental defaults, the converse is not necessarily true. Since default
changes the rules of distribution between counterparties, it may be the case that after a bank defaults its
liquid assets exceed its short-term liabilities. However, default is an absorbing state and, once defaulted,
a bank cannot recover. Thus D(v) may also be too small to be a suitable choice for the default set D.

Combining these considerations leads to the necessary condition on the default set D:

1.)D2FuD(), 2)(F=0=D=02). (2

3 Clearing at the first maturity

3.1 Algorithmic and functional approaches to defining default

In the following we introduce two particular approaches to formalise the notion of default and hence to
define the default set D, which we refer to as the algorithmic approach and the functional approach. In
Section we will discuss the conditions under which these approaches are well-defined and ensure
existence of liquid asset vectors. Alternative definitions of a default set are also possible but we will not

investigate them further here.
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3.1.1 Algorithmic approach

In the algorithmic approach we will start by providing an algorithm which outputs a vector and a set,
which we define as a liquid asset vector and a default set.

It is similar in spirit to the Fictitious Default Algorithm (FDA ) developed by [Eisenberg & Noe|(2001)),
but in contrast to the FDA we use it to define default and the liquid asset vector and do not just use it as
a convenient computational tool to calculate a predefined quantity of interest.

We consider a fixed financial system (a, AN AOR ) and make the crucial modelling assumption
that default is an absorbing state. In particular, we assume that once a bank enters the default set it will
stay there. Furthermore, a bank enters the default set if and only if it has less liquid assets than total

short-term liabilities. Algorithm |I|{formalises this idea.

Algorithm 1: Algorithmic definition of the default set

1 Set DO = a, v =g+ ]1(8), n=1.
2 Set

D™ = p=b y p(p(nD),

3 If D = D=1 gt0p and return D* = DD and v* = v~ 1.
4 Else determine the greatest fixed point v satisfying

o™ = w(uM; D), 3)

where U is defined in Definition 2.3]
5 Set n=n+1 and go to 2.

Thus, for a given financial system (a, L(*), L(®); ~) Algorithm computes a vector v* and a set D*

which will correspond to a liquid asset vector with respect to the default set D*.
Definition 3.1. Let D* and v* be the outputs of Algorithm[I} We refer to

» D* as the algorithmic default set; and

* v* as the algorithmic liquid asset vector with respect to D*.

Proposition 3.2. Let (a, JAQNAOR v) be a financial system and let D* and v* be the outputs of Al-

gorithm|l} Then, the algorithmic liquid asset vector v* is a general liquid asset vector with respect to

D*.

Since Proposition [3.2]follows directly from the definition, we omit the proof.
The algorithmic approach incorporates the intuition of default sets discussed in Section[2.3] Namely,
it ensures that default is an absorbing state and that the necessary criteria on the default set D* specified

in are satisfied. To see that the latter claim is true, consider that 7 = D(a + fl(s)) = D(v(o)) =

10
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D) ¢ D*. Furthermore, if F = @ = D(® then Algorithmterminates with D* = gand v* = a+ A®) =
U(v*; @).

The other key intuition behind the algorithmic approach is that it views the clearing process as a
dynamic process that proceeds in several rounds. It starts with the assumption that initially the default
set is empty and then it computes in every round the best possible outcome for the financial system based
on the given (absorbing) default set by finding the greatest fixed point.

The algorithmic approach therefore introduces an ordering of financial institution, depending on the
round in which they default. This ordering depends on the initial default set (in our case the empty
set which corresponds to no defaults). One could consider modifications of the algorithm with different
(initial) default sets, but it would be less clear what the output of the algorithm represents. Intuitively, we
think of the solution returned by the algorithmic approach as a best case outcome similar to the greatest
clearing vector in Eisenberg & Noe|(2001)), since we start with no defaults and in every round compute
the greatest fixed point rather than just any fixed points to keep the number of additional defaults minimal

in every step of the algorithm.

3.1.2 Functional approach

We will argue in the following sections that the algorithmic approach is a more general approach that
works for any financial system with multiple maturities. However, it is instructive to consider why
the more conventional route along the lines of [Eisenberg & Noe| (2001)) is problematic in the multiple
maturity setting. To this end we consider an alternative approach where the default set is characterised

as a closed-form function D(v) of the liquid asset vector.
Definition 3.3. Let (a, L(®), L1); ) be a financial system. Define W : [0,a + A] - [0,a + A] where

Cf/l(U) =a; + Z L;f) +y Z Hjﬂ}j. (4)
JeN<D(v) jeD(v)

We refer to any vector v € [0,a + A] satisfying v = U(v) as a functional liquid asset vector and the set
D(v) as a functional default set.

Proposition 3.4. Let (a, L), L1);~) be a financial system. Then U(v) = ¥(v; D(v)) for all v €
[0,a+ A].

The following proposition is a direct corollary to the definitions and Proposition [3.4] and provides

the link between functional and general liquid asset vectors.

Proposition 3.5. Let (a, L), L(l); ) be a financial system and let v be a functional liquid asset vector.

Then v is a general liquid asset vector with respect to D(v).

We will show that in contrast to the algorithmic liquid asset vector, which exists for all financial

systems, a functional liquid asset vector need not exist in a multiple maturity setting.

11
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3.2 Existence of liquid asset vectors

To see that the algorithmic liquid asset vector and the algorithmic default set are well-defined and exist

for any financial system, consider the following theorem:

Theorem 3.6. Let (a, L), L(l); ) be a financial system. Then, the greatest solution to the fixed-point
problem exists and lies in [0,a + A]. Furthermore, Algorithm|l|terminates after a finite number of

steps.

The proof of Theorem [3.6] and all subsequent results can be found in Appendix, unless indicated
otherwise. We will discuss the construction of the algorithmic liquid asset vector in Section [3.4]

The functional liquid asset vector does not exist for all financial systems. There is a sufficient (but
not necessary) monotonicity condition, however, that guarantees existence of a functional liquid asset

vector:

Definition 3.7 (Monotonicity Condition). Let (a, L(S),L(l); v) be a financial system, with short term
and overall relative liability matrix ) and 11, respectively. We refer to a financial system as satisfying

the Monotonicity Condition [3.7)if and only if
8 > 410 Vi, j e N

From a financial point of view Monotonicity Condition just asserts that for any bank 7 in the
system it is guaranteed that if it defaults it does not pay a larger proportion of its liquid assets to any
bank j in the system than its original proportion of short-term liabilities to this particular bank j. In this
sense no bank benefits from the default of another bank in the system.

From a mathematical point of view, Monotonicity Condition is a sufficient condition for the
function ¥ being non-decreasing. Furthermore, it highlights the fact that the distinction between )

and IT in our model is a crucial element that is missing in single maturity models.

Remark 3.8. Note, that networks in which ng) = 0 and LEJZ.) > (0 for some 7,; will never satisfy

Monotonicity Condition Furthermore, if v = 1, Monotonicity Condition implies ) = 11.

Remark 3.9. Suppose L") = Z where Z is a zero matrix. Then the short-term and overall nominal
liabilities vectors L(®) and L are equal and hence so are the short-term and overall relative liability

matrices I1(*) and II. Thus Monotonicity Conditionis always satisfied if LW =17,

Theorem 3.10 (Sufficient conditions for the existence of a functional liquid asset vector). Let (a, L(S), LM )

be a financial system.

1. If T is non-decreasing, then there exist functional liquid asset vectors v~ (the least functional
liquid asset vector) and v* (the greatest functional liquid asset vector) such that for any functional

liquid asset vector v we have that v~ <v < v™.
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3. CLEARING AT THE FIRST MATURITY

2. Ifthe Monotonicity Condition is satisfied, then the function U is non-decreasing. In particular,

the greatest and least functional liquid assets vectors exist.

In practice, checking whether T is non-decreasing can be quite cumbersome, whereas checking
whether the Monotonicity Condition[3.7]is satisfied is straightforward.
The following proposition demonstrates that the Monotonicity Condition[3.7)is not a necessary con-

dition but nor is it a redundant condition.
Proposition 3.11.

1. There exists a financial system that does not satisfy the Monotonicity Condition 3.7 for which a

functional liquid asset vector exists.

2. There also exists a financial system that does not satisfy the Monotonicity Condition[3.7|for which

no functional liquid asset vector exists.

3.3 Relationship between clearing models

In this section we look at the relationship between several clearing models. In particular, we show that
the algorithmic approach is indeed a proper generalisation of the functional approach, which in turn
generalises the models of [Eisenberg & Noe (2001)) and |Rogers & Veraart (2013)).

We introduce a new Algorithm 2] which can be used to construct a functional liquid asset vector under
the Monotonicity Condition We then show that under the Monotonicity Condition Algorithm
[T)is reduced to Algorithm [2] Therefore the algorithmic liquid asset vector and the algorithmic default
set coincide with the functional liquid asset vector and the functional default set under the Monotonicity
Condition[3.71

The only difference between Algorithm [T]and Algorithm [2]is in step 2 when the new default set is
defined. Algorithm[2]only considers banks in default which in the current round have fewer liquid assets
than nominal short term liabilities. Algorithm [1|makes the absorbing property of default explicit in the
definition, by additionally always keeping those banks in the default set that have defaulted in one of the
previous rounds of the algorithm.

From the definition of Algorithm 2] and Proposition [3.4 we immediately get the following result:

Proposition 3.12. Let D* and ©* be the output of Algorithm 2l Then, D* = D(4*) and hence D* is a

functional default set and U* is a functional liquid asset vector.
Theorem 3.13. Let (a, JAQNAOR v) be a financial system satisfying Monotonicity Condition Then

(i) Algorithmproduces a monotone sequence of vectors (v(") )ns0 Such that o™ <D < g4 AG)
Vn > 1 and a monotone sequence of sets (D(”))mo such that DY ¢ DM v > 1. In particular

D™ = D™ D) vn > 1.
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3. CLEARING AT THE FIRST MATURITY

Algorithm 2: Functional approach to define the default set and the liquid asset vector under the
Monotonicity Condition

1 Set DO = &, v =g+ fl(s), n=1.

2 Set

DM = D) = (i e N [0 < L),

3 If D = D=1 gt0p and return D* = D™D and 5* = v(*~ 1.
4 Else determine the greatest fixed point o™ satisfying

o™ = w(uM; D), (5)

where U is defined in Definition 2.3]
5 Set n=n+1 and go to 2.

(ii) Algorithms[l|and[2| coincide.
(iii) The output of Algorithm 2| satisfies v* = v™.

The assumption of Monotonicity Condition is crucial. Without it Algorithm 2] can fail to termi-

nate.

Proposition 3.14. There exists a financial system not satisfying the Monotonicity Condition such
that the sequence of vectors (v(”))n>0 constructed in Algorithm |2| is not monotone and Algorithm

does not terminate.

By Remark , a functional liquid asset vector exists for any financial system (a, L)z ) where
Z is a zero matrix. In fact, the system then reduces to a special case of the model by Rogers & Veraart
(2013) where the parameters modelling the default costs in|Rogers & Veraart| (2013)) denoted by «, 3 are
all the same and equal to , i.e v = a = 3. Proposition [3.15|formalises this relationship.

Proposition 3.15. Let (a, L(S), Z;~) be a financial system where Z is a zero matrix.
1. Let v be a functional liquid asset vector. Let q be a vector defined by,
L, ifie N\ D(v),
q; =
YVi, le € D(U)7

for each i € N'. Then q is a clearing vector in the sense of [Rogers & Veraart (2013)), i.e., q solves

the fixed-point problem:

Li, if ai + Ljen Wjigj > Ly,
4 = B (0)
vai + v Xjen Wjiqy,  if ai + X jen Wiy < Ly

14



3. CLEARING AT THE FIRST MATURITY

2. Let q be a clearing vector in the sense of Rogers & Veraart (2013), i.e., a solution of (). Then

v = a + I1"q is a functional liquid asset vector.

If v = 1, then (a, L) 7z 1) is effectively a (single maturity) financial system as defined in|Eisenberg

& Noe| (2001)) as the following proposition demonstrates.
Proposition 3.16. Let (a, L) Z: 1) be a financial system where Z is a zero matrix.

1. Let v a functional liquid asset vector. Let p := L&) Av. Thenpisa clearing vector in the sense of

Eisenberg & Noe|(2001)), i.e., p solves the fixed-point problem

p=L® A(a+IT"p). (7

2. Let p be a clearing vector in the sense of [Eisenberg & Noe| (2001), i.e., a solution of (7). Then

v =a +I"p is a functional liquid asset vector.

3.4 Construction of liquid asset vectors

One of the questions we postponed answering was how to construct the liquid asset vectors (and hence
default sets) using Algorithms [I] and [2] given that it requires us to compute a solution to the fixed-point
problems (3)) and (), respectively.

In the statements and proofs of the results in this section we use the following notation for (sub-

)vectors and (sub-) matrices. For a vector v € RL{\/ and some non-empty index set A € N, v4 € ]R';4|
denotes the vector given component-wise by (v4), = v; for all ¢ € A. Similarly, for another non-empty
index set B ¢ N and a matrix M ¢ RW'X‘M, Mg € R‘f“xlB' denotes the matrix given component-wise
by (Mag);; = M;j for all i € A and j € B. Furthermore, for n € N we denote by I the n x n identity
matrices, and by 1 the n-dimensional vector of ones.

In both fixed-point problems, for each n, the relevant set D) is fixed. This leads to the following

general lemma, which we will use to construct the solutions to these fixed-point problems.

Lemma 3.17. Let (a, L), LY ~) be a financial system, D € N some fixed set of m := |D| banks and

b € R some vector. Suppose that
1. v<1;o0r
2. b;>0forallieD.

Then the system of m linear equations x; = b; + v ¥ jepljix; Vi € D has a unique non-negative

solution.

We can now state the result on how to construct the functional liquid asset vector.
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3. CLEARING AT THE FIRST MATURITY

Proposition 3.18. Let (a, LG Lo, ) be a financial system satisfying the Monotonicity Condition
such that a; > 0 for all i € N'. Then, for each n, the fixed-point problem (3) in Algorithm 2| has a unique
non-negative solution given by
(n) T4, le € D(n))

v, =

0+ Ljenpe LS + 7 jepe Wjizj, if i e NN DO,

-1 s T n n
where z = (1 -~ (Ilpwype ) ") (aD(n> + (L(L()Mz)(n)) 1£(n)) and L™ = N~ D),

We now turn to the algorithmic approach. First, note that for v = 0 the fixed-point problem (3] in

. e . . 3 (s) T
Algorlthmls trivial since, for each n in Algorlthm we have v(™ = q + (LLS(H)N) 1,(. Thus v(™
is explicitly fixed and no fixed point needs to be found. For ~y > 0, the key observation is that, for each n
in Algorithm the banks in the set D{™) can be treated as a financial system in its own right. Moreover,
such a financial system satisfies the Monotonicity Condition and hence we can apply Proposition

[3.18]to construct the fixed point satisfying fixed-point problem (3] in Algorithm T}

Proposition 3.19. Let (a, JAQN AOR ) be a financial system such that a; > 0 for all i € N and ~y > 0.
For each n in Algorithm |l\with D) + @ we can construct a financial system S,, of |D(")| + 1 banks

such that Sy, satisfies the Monotonicity Condition and v, the solution to the fixed-point problem
B), is given by
(n) L, ifie D(n)7

I
Qi + X jeA D) L§-§) + X jepo Wii( Ly Ayay), ifi e N~ D),

(2

where x is the greatest functional liquid asset vector of S,.
The precise form of the system .5, is given in the proof of Proposition [3.19|in the Appendix.

Remark 3.20. We showed in Proposition that clearing in the Rogers & Veraart| (2013) model can
be formulated in terms of the functional liquid asset vector. In that paper it was observed that, unlike in
Eisenberg & Noe|(2001), even when a > 0 the clearing vectors are not necessarily unique and therefore
the same observation must hold of functional liquid asset vectors.

One interesting consequence of Lemma [3.17|is that it implies that there are at most a finite number
of functional liquid asset vectors for any given financial system with a > 0. This follows from the fact
that there are only a finite number of possible default sets and for each such possible default set there is

at most one v satisfying Definition
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3.5 Uncertainty of the maturity profile

The ability to construct algorithmic liquid asset vectors and default sets for any financial system allows
us to demonstrate that the maturity profile of a financial system has a substantial impact on which banks

can default.

Proposition 3.21. There exists a financial system S, = (a, LG, L(Z);y) with the algorithmic default
set DY such that the financial system Sy := (a,L(S) + L0 Z;~), where Z is a zero matrix, has the

algorithmic default set D5 that satisfies D5 ¢ D7

In Proposition [3.21]the system S5 has the same overall interbank liabilities as Sy but all the interbank
liabilities are now short-term liabilities. The proposition shows that if we treat all maturities to be the
same then we could end up with the financial system S5 in which fewer banks default than if we account
for the different maturity dates as in .S1. Therefore, this shows that approximating multiple maturity
systems by single maturity systems can underestimate the severity of the risk of default. More generally,
any uncertainty about the maturity profile in a financial system is itself a potential source of systemic
risk.

This observation is particularly pertinent because in practice regulators do not have precise infor-
mation about the banks’ maturity profiles. Typically regulatory reports group liabilities into broad cat-
egories without recording the exact maturity dates. According to |[Langfield et al.| (2014)), in the UK,
“banks report exposures with breakdown by the maturity of the instrument” and “Categories of maturi-
ties are: open; less than 3 months; between 3 months and 1 year; between 1 year and 5 years; and more
than 5 years. Derivatives are not reported with a maturity breakdown.” It is therefore an open question
whether these five categories are a sufficient representation of the maturity profile in the UK financial

system for the purposes of assessing systemic risk.

4 Financial system after the first clearing

4.1 Stylised balance sheet after clearing at the first maturity date

Let us denote the financial system (a, L(*), L():~) that we have been considering so far by S(0) to
indicate that it represents the system at time ¢ = O, prior to clearing at ¢ = 7. Following clearing at
t = T using the algorithmic approach described above, we obtain the algorithmic liquid asset vector and
the algorithmic default set, which we now denote by v*(77) and D*(7T}). This allows us to formulate
a new financial system S(77) := (a(T}), L™ (T1), LY (T1);~) of banks in some set N'(T}) € N after
clearing at ¢t = T7. The banks that defaulted as part of the clearing at ¢ = T} are no longer a part of the

financial system and so
N(Ty) = N \D*(Ty). )
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4. FINANCIAL SYSTEM AFTER FIRST CLEARING

Note that the sink node N € N does not default as it has no liabilities and hence N € N (7). We assume
that the only changes between ¢ = 0 and ¢ = T are attributable exclusively to the clearing process itself.
Thus the new cash assets a(77) are just the liquid assets of banks in A/(7}) less their payments at 77.
Since the banks that do not make their full payments at 77 default and are not in AV'(77) it follows that
for all i e N'(T}),

a(Ty); =v* (T1); - L. )

At maturity date 77, a typical surviving bank in A/ (7} ) may have had outstanding long-term liabilities
both to banks in D*(T}) that defaulted at 77 and to banks in N (T7) that did not. As between the
surviving banks in N (77), the new short-term liabilities at 77 are just the remaining liabilities that were

not due at 7. Thus for all i, j € N(T) such that i,j + N
L (Ty)y = LY. (10)

The outstanding liabilities of surviving banks in N'(7}) to the defaulting banks in D* (7} ) may comprise,
for example, long-term interbank assets that the defaulting banks were not able to liquidate in time to
avert the default. The surviving banks do not escape those liabilities by virtue of the defaults. There
is, however, the question of who now owns these liabilities and thus to whom are they owed. In reality,
such liabilities are assets of the banks in D* (7)) and these assets typically would be re-distributed
by liquidation administrators, likely through an auction. Such an auction would then determine who
becomes their new owner. However, as discussed earlier in the paper, modelling such auctions is outside
the scope of this paper and we refer to|Capponi et al.|(2015)) for a model of an auction in this context.

We address the problem of who acquires the long-term assets of defaulting institutions by just assum-
ing that all defaulting banks sell their long-term interbank assets to the sink node N. This assumptions
keeps the model clear and does not require arbitrary choices of who else in the network would be willing
to acquire these assets.

The important consequence of this transaction is that, coupled with (I0) above, we can now complete
the characterisation of the new short-term liability matrix L(*)(T1). As before, we continue with the

assumption that the sink node has no liabilities. Hence for all 4, j € N'(T})

LE(T)n = LS\)/ + ) LE,?, (11)
keD*(T1)
LE(Ty) ;= LY (Ty)w; = 0. (12)

In particular, it follows that L) (T}); = YN (T1)uD* (1) Lg) = f/z(l) for all i € N'(T7).

Furthermore, since these are the only liabilities of banks A/ (7}) at t = T}, we also have that for all
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i,7 € N'(T) there are no new long-term liabilities:
LO(Ty) = 0. (13)

The following proposition confirms that we have indeed constructed a new financial system.

Proposition 4.1. Let N'(T}) be a set given in . The tuple S(T1) = (a(Ty), L) (T1), LY (T1);7)
satisfying (9) — (I3) is a financial system.

The stylised balance sheet of each bank except the sink node in this new financial system is given
by Table 2] The sink node in the new financial system has no cash assets or short-term interbank li-
abilities and hence E(T1)y = A(s)(Tl) ~. Its short-term interbank loans are given by A(S)(Tl) N =

1 l
2. jeN (Th) L§13/ + L jeN (T1) LheD*(T1) Lgk) :

Assets Liabilities

e Cash assets: a(T}); =v*(T}); - Egs) e Short-term interbank liabilities:

L)), = Sjen LY

v

e Short-term interbank loans: A®)(T}); = YN (1) L%) ¢ Equity:
E(Tl)l = CL(Tl)Z + A(s) (Tl)z - E(s) (Tl)z

Table 2: Stylised balance sheet at ¢ = T} of bank 7 € N'(7}) ~ { N} after clearing.

4.2 Clearing at the second maturity date

The financial system S(7} ), described in Section can be cleared again by the application of Algo-
rithm (1} In fact, by Remark S(T1) satisfies the Monotonicity Condition and so can be cleared
by the application of the simpler Algorithm 2] Moreover, by Propositions[3.16/and [3.15] we can see that
at the last maturity the financial system is reducible to the familiar models of [Eisenberg & Noe| (2001
or Rogers & Veraart (2013)).

Let 9*(Ty) and D*(T%) be the output of Algorithm [2|applied to the financial system S(7}). Then,
after clearing at ¢ = Th, we obtain a new financial system S(7%) consisting of banks in the set N (7T%) :=
N (T1)~ D*(T3). Since the banks in \'(T3) have only cash assets and no liabilities, this system is given
by S(1%) := (a(1%),Z,Z;~). Thus S is characterised by the cash assets given by

a(T); =% (Th)i - LO(TY)  Vie N(Tb).

We also have that A(*)(T3) = L(9) (T3) = 0 and hence a(T3); = E(T3); for all i e N'(T). Moreover no

further clearing of S(7%) is necessary.
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4.3 Extension to more than two maturity dates

So far we have focused on financial systems with at most two maturities. However, provided we track
the precise maturity profile of all the liabilities amalgamated in the long-term liability matrix LY, we
can readily extend our modelling framework to n > 2 maturity dates 0 < 17 < T < ... <Tj,.

We write L(T) ¢ RM*N for the matrix containing all interbank liabilities maturing at T}, i €
{1,...,n}. We then consider an n-maturity financial system as a tuple S = (a, L(™)  L(T2) _ L(Tn);~),
At t = 0 we can define a 2-maturity financial system S(0) = (a, L®), L(); ) given by L(*) = L(T1)
and LEJZ.) =", Lgf) for all 4, j € A/. Then clearing the n-maturity financial system S at time ¢ = T}
reduces to clearing the 2-maturity financial system S(0) at time ¢ = 73 using Algorithm [I|{ and, using
the methodology similar to the one described in Section[d.1] produces a new 2-maturity financial system
S(T1) = (a(T1), L) (T1), LO(T1); 7).

The new liquid assets vector a(7}) is as in @]) and only the definition of the new short-term and
new long-term interbank liability matrices change so that the liabilities maturing at ¢ = 75 become the
new short-term liabilities and all liabilities maturing at ¢ > T3 are aggregated into the new long-term
liabilities. Thus we obtain, for all 4, j € N'(T1) with 4, j # N, that

LT, - L),

ij

LOM)iv =L+ 3 LYY,
kED*(Tl)

(M), = Ly,
T=3

LT =YL+ > 2Ly,
=3 keD*(T1) 7=3

L(S)(TI)N]' = L(l)(TI)Nj =0

Similarly, we can clear S(7%) using our methodology for two maturities and then repeat this ap-

proach until we reach the point ¢ = T},_; where, for all 7, € N'(T}) withi,7 # N,

LE(Tyr)in = Lgfp"),
LN (T;,1)ns =0,
L T)n =L+ Y L,
keD* (Tn_1)
and LW (T,_1) = Z.
This system can now be cleared using Algorithm [2} analogously to what we did in Section In
the end we obtain the last financial system S(7},) := (a(71y),Z, Z;~) such that a(T},) = E(T},) and no
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further clearing is necessary.

5 Conclusion

This paper has developed a rigorous clearing framework for interbank networks with multiple maturities.
We have shown that a vector of clearing cash flows (a vector of liquid assets, in our case) on its own is
not sufficient to fully describe the clearing framework. A suitable definition of the set of banks in default
is needed. This does not arise naturally from the description of the stylised balance sheets and must be
specified as part of the model. We discussed the necessary conditions on such a default set. These
conditions are not sufficient and we considered the algorithmic approach and the functional approach as
two possible approaches to specifying default.

The functional default set corresponds to the definitions that have been used in previous literature and
has a simple functional representation. It does not have an absorbing property and, as a consequence, a
liquid asset vector using the functional default set may not exist for every financial system. On the other
hand, the algorithmic default set has a more complex algorithmic definition that guarantees that default is
an absorbing state. Therefore the algorithmic liquid asset vector can be found for any financial system.
We proposed Algorithm |1} which produces a sequence of vectors that converges to the algorithmic
liquid asset vector. This sequence of vectors is not in general monotone but the absorption property of
the default sets ensures the algorithm converges in a finite number of steps.

The functional approach has a number of uses despite restrictions on the existence of functional
liquid asset vectors. We have shown that for certain types of financial systems the algorithmic approach
reduces to the functional approach. Furthermore, we have shown that the functional approach reduces to
the models by [Eisenberg & Noe|(2001) and Rogers & Veraart (2013) if only one maturity is considered.
In addition, we have shown that functional liquid asset vectors can be used in the construction of clearing
solutions under the algorithmic approach. For these reasons the properties of functional liquid asset
vectors are important. We have shown that under a regularity condition functional liquid asset vectors
can be characterised as fixed points and a greatest and a least functional liquid asset vectors exist. We
have also shown that functional liquid asset vectors are in general not unique but under a mild condition
we could show that there can be at most one such vector corresponding to any given default set.

We have illustrated two key applications of Algorithm [I] We demonstrated that the default risk of
a bank depends in a non-trivial manner on the precise maturity profile of its liabilities. Relying on the
assumption that all interbank liabilities have the same maturity can lead to an inaccurate assessment of
risks. Our clearing approach provides a rigorous tool to incorporate different maturities in the clearing
process. We also showed how to extend the model to a multi-period one by describing a settlement
mechanism, which characterises the stylised balance sheets of the surviving banks after clearing.

There are many directions in which one could extend this line of research. The most ambitious ex-
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tension of the multiple maturity model would be to develop a full dynamic model of interbank networks.
The multi-period approach in Section 3] provides a solid basis for this. The next steps would involve
developing a control theory by deciding on a set of actions that financial institutions can choose from as
they move forward in time. Examples of such actions could, for example, be new borrowing or lending
activities. For such dynamic models one could then also include stochastic dynamics for some of the

quantities of interest.

A Appendix

Proof of Proposition3.4) Let v € RY, then for all j € D(v) = {i e N | v; < EZ(S)} it holds that

Yvj < E;s) < L; and hence L; A yv; = yv;. Hence for all i € N/

U, D))i=ai+ Y LY+ Y ML Avy)

JNND(v) jeD(=)

=a; + Z L;f) + Z Hji'yvj
jeN~D(v) jeD(x)

= U;(v).

In order to prove Theorem [3.6]and Theorem [3.10] we need the following Lemma.

Lemma A.1. Let S = (a, L) 1O, 7) be a financial system and d : RY — P(N') some function, where
P denotes the power set. Let ¥¢: [0,a + A] - [0,a + A] be the function given by x — U (x;d(z)) for
all z € [0,a + A].

1. Suppose d = D, i.e. d(x) = D for all x ¢ [0,a + A] and some fixed D € N'. Then ¥? = U(-; D)

and U is non-decreasing; i.e. for all ¥’ x € [0,a + A] with ' < x we have that ¥4 (2') < U4 (z).

2. Suppose d = D, i.e. d(x) = D(x) ={ieN |z; < EES)}for all z € [0,a + A] and suppose
that S satisfies Monotonicity Condition Then O = U and U9 is non-decreasing; i.e. for all

z' 2 € [0,a+ A] with 2’ < 2 we have that ¥ (z') < T4(z).

Proof of Lemma[A} 1. Suppose d = D for some fixed D € N. Then, for each z € [0,a + A],
Ue(z) = U(z;d(x)) = U(x; D) and hence ¥ = ¥(-; D).

Let 2’,z € R, with 2’ < x. Define E(2') == {i € D | v2} < L;} and, similarly, E(z). Since

22



A. APPENDIX

vyl < ~ya; forall i € N, we see that E(z) ¢ E(z") € N. Then, for each i € N/, we have

V(') = Uy(a'sD) =ai+ Y, L)+ Y Ii(Ly ayal)
JjeND jeD

a; + Z L§.j)+ 2 Hjiij +y Z Hﬂx;
jEND jEDNE(a') jeB(a")

a; + Z Lj(f) + Z Lji + 7y Z Hﬂ:c;
JeN D jeDNE(z') jeE(x")

a; + Z Ly(f) + Z sz' + 7y Z Hﬂx; + Z (Hﬂ’yx; - Lﬂ)
JEN\D jeDNE(x) jeE(x) jeE(z")NE(x)

g+ Y LW+ Y Lty Y T
JeN D jeDNE(z) jeE(x)

a; + Z L§~f)+ Z Lji-i-’)/ Z Hji:cj
JjeND jeDNE(zx) jeE(x)

,(2:D) = W (a).

IN

IN

The first inequality (on the fifth line) follows since yx; < L; for j € E(z") and hence Iyl —
Lj; < Hjl-I:j — Lj; = 0. The second inequality (on the sixth line) follows since z’ < = by assump-

tion. Therefore ¥¢ is non-decreasing.

2. Suppose d = D. Then, for each z € [0,a + A], ¥4(z) = U(x;d(x)) = U(z; D(z)) and hence, by
Proposition U=,

Again, let ', x € R, with 2’ < z. Note that D(x) ¢ D(z") ¢ N. Then, for each i € N/, we have

d I s
N (') = U;(2') = a; + Z L§i) + Z Hjia:;-

JENND(a') jeD(x")

=ai+ Y, L;ff) +y > Wyl +v Y, Tyl
JeN D () jeD(@)<D () jeD()

<a;+ Z L§f) + Z H;f)x; +y Z Hjix;-
jeN~D(z") jeD(x")ND(x) jeD(x)

<ai+ y LD+ > mWLP vy P I,
jeN~D(z") jeD(z")\D(z) jeD(z)

=a; + Z L;f) + Z LS) + Z Hjixj
JeNND(z') jeD(z")ND(z) jeD(x)

=a; + Z L§f) + 7y Z Hjixj
jeN~D(z) jeD(x)

- Ti(2) = W(2).

The first inequality (on the third line) follows due to the Monotonicity Condition and the fact

that v < 1. The second inequality (on the fourth line) follows because =’ < x by assumption and

23



A. APPENDIX

) < E;S) for all j € D(z"). Therefore U¢ is non-decreasing.

O]

Proof of Theorem[3.6] For each n, D) depends on v 1) but not on v(™. Therefore by Lemma
U(:; D(")) is non-decreasing and by Remark is a mapping from a complete lattice to itself. Hence,
by the Tarski-Knaster Theorem, W (-; D(")) has the greatest fixed point, which lies within the image of
U(; D(”)), ie. in[0,a + A]. In Algorithm this fixed point is denoted v("). Hence whenever D) is
well-defined, D("*1) is also well-defined until the algorithm terminates.

In particular, (D(") )ns0 is a well-defined and, by construction, increasing sequence of subsets of the
finite set AV. Hence there exists the least n such that D™ = D(*~1) and so Algorithmterminates after

n iterations. O

Proof of Theorem 1. The result follows directly by the application of the Tarski-Knaster Theo-

rem since ¥ is non-decreasing by assumption and it is a mapping from a complete lattice to itself

by Remark

2. Since ¥ is non-decreasing by Lemma the result follows directly from part 1. of this theorem.
O

Proof of Proposition[3.11] 1. We first provide one example of a financial system in which the func-

tional liquid asset vector exists even though the Monotonicity Condition [3.7]is not satisfied.

Let (a, L), L®; 1) be a financial system of three banks where

1 0 2 2 0 00 0 2 2
a=]98|, L& =[2 0 98| LW=|1 0 1| L=[3 0 99}
10 00 O 000 00 O
Then,
4 4 0o+ 1 o 1+ 1
[(s) = [ = (s) = | L 49 -l 33
L 5 - 100 ’ L - 102 B H 5 - % 0 % s H - ﬂ O 3_4
0 0 0 0 O 0 0 0
In particular, we see that Monotonicity Condition is not satisfied because Hgi) = % < 13—2 =
Il51. Nevertheless, it can be verified that (v1,v2,v3)" = (332,99133 1095)™ ~ (3.94,99.97,109.5)"

is a functional liquid asset vector.
One can check that in this example the function U is non-decreasing even though the Monotonicity
Condition[3.7]is not satisfied.

2. Next, we provide an example of a financial system in which the Monotonicity Condition[3.7]is not
satisfied and a functional liquid asset vector does not exist.

We construct an example with three banks in which only bank 1 is in fundamental default. We

set up the network such that this leads to a contagious default of bank 2 which is asset rich. We
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introduce long-term liabilities in such a way that once bank 2 defaults it repays a much larger
proportion of its debt to bank 1 than if it were not in default. This leads to bank 1 being able to

7 (s)
pay more than L;”’.

Let (a, L®), L1; 1) be a financial system of three banks where

1 02 2 0 2 2 0 4 4
a=]98|, L®=|2 0 98|, LW=|100 0 o L=]102 0 98]
10 00 0 0 00 0 0 0
Then,
4 8 o+ 1 0o % 3
L& =l100], L=|200f O®=|L o 8] =[5 o 10
0 0 0 0 0 0 0 0

Note that Monotonicity Condition [3.7|is not satisfied, since for example Hgsl) = % < % = 1.
Hence, if bank 2 defaults it repays a larger proportion to bank 1 than if it survives. We show in the

following that no functional liquid asset vector exists.

According to Definition bank 3 can never default since it does not have any short-term (or
indeed any) liabilities. In particular, since W is non-negative, we have that {i e A" | ¥(v); <0} = &

for any v. Hence we need to consider four cases:

All banks survive. Suppose there exists a functional liquid asset vector v, such that D(v) = @.

Hence, v; > Egs) for all . Then, for all i € A/,

vi=ai+ 3 LY.
jeN

Consider i = 1. Thenv; = 1+2=3<4 = EES), implying that 1 € D(v) and therefore
contradicting the assumption that D(v) = @.

Only bank 1 defaults. Suppose there exists a functional liquid asset vector v, such that D(v) =
{i:v; < L} = {1}. Then,
V1 = (S) = = = _(S)
1=a1+ Y. Ly’ =1+2+0=3<4=1y",
je{2,3}

s 1 1 = (s
vgza2+Lg2)+H12v1:98+0+§3:99§<1OO:L§).

Hence 2 € D(v) contradicting the assumption that D(v) = {i € D : v; < [jl(s)} ={1}.

Only bank 2 defaults. Suppose there exists a functional liquid asset vector v, such that D(v) =
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{ieD:v; < L} = {2}. Then,

v=az+ Y LY =98+42+0=100= L.
je(13}

Hence 2 ¢ D(v), contradicting our assumption.

Both bank 1 and bank 2 default. Suppose there exists a functional liquid asset vector v, such
that D(v) = {i:v; < I:Z(S)} ={1,2}. Then,
5)

( 51
vi=ai+ Ly +H21v2=1+0+m~v2,

1
(%) =CL2+L§;)+H12U1 =98+§-U1.

We then obtain that (1 — 21.'1_%10)1’1 =1+ 9815—010 and hence v; ~ 68.43 > 4 = I}gs). Therefore

1 ¢ D(v), contradicting our assumption.

Hence, in all cases we get a contradiction and therefore no functional liquid asset vector exists.

O]

Proof of Theorem[3.13] The proof uses similar arguments as in[Rogers & Veraart| (2013| Proof of The-

orem 3.7).

(i) We prove that v(™ < v < g+ A®) vp > 1 and D™ = D(v(™1) vn > 1 by induction.
Note that for all n and j € N we have L; A 7”3('n) j(n)

J e D(v(”)) we also have v](") < E§S). Therefore, by the Monotonicity Condition for all n,

i e N and j € D(v(™) we have that

<vs < vj(."). Furthermore, for all n and

Iji(L aqo™); <P L = L) (14)

Now let 7 = 1. Then by the definition of the algorithm DY) = D) u D(v(?) = gu D(v(D) =
D(v(®)). Next we show that v <v(®) = ¢+ A(),

By (T4), for all i € N, we have

\I/i(v(o); D(l)) =a; + Z L;f) + Z H],(f/] A ’)/’U](-O))

jeN~D) jeD(D)
(s) (s)
<ai+ ), L+ Y Ly
JeNND) jeD()
n 0
=a; + Z Lg.f.) :ai+A§S) =vl.( ).
jeN
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By Lemma (part 1.), U(-; D) is non-decreasing and so
0 < TF (O, DMy < Wk (@, DM < (O = g 4 A

for all k where U¥ is a k-fold composition of W. Since this sequence is bounded from below by

zero, the limit v(Y := limy,_, . ¥¥(0(9); DM exists and solves v1) = ¥ (v(D); DM)),

Induction hypothesis: Suppose for an n € N it holds that

D) _ D(v(”_l)),

™ <) < (0 = g 4 4G

We show that

pn+l) _ D(U(”)),

oD <M <O = g4 4G,
We start with the default sets:
D+1) _pn) | D(v(")) ind. hyp. part 1 D(fu("’l)) ¥ D(v(”)) ind. hyp. part 2 D(v(")).
Next we consider the vector
) = @ (p( D, DDy - g (D D (™)),

Then by (T4)), for all i € N/, we have

0, (v™; D) =

=a; + Z Léf) + Z Hﬂ(i] A 711](."))

jGN\D(n+1) jE'D("+1)
~———
D(v(”))
sai+ Y LY+ Y MWLy avei™)+ 2 Wji(L; A yof™)
JEN~D(v(™) jeD(v(n-1) jeD(M)\D(v(n=1)
<ar Y LY+ Y Mu@yavel™)+ 2. L3
FeNND(v(m) jeD(v(n=1)) jeD(v(M)ND(v(n-1))
e Y DY Al
jEN\D(U(n_l)) jeD(v(n—l))
—— e —— —

= U;(v™; DM = UZ-(n) <a;+ flgs).
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(ii)

(iii)

Again, as before one can show by Lemma [A.T]| that

(n) ind. hyp. part 2

0< \Ilk+1(v(n);D(n+l)) < \I]k(v(n);p(”“)) <w < a+ f_l(s)

for all k. Therefore the sequence (\Iik(v(”); D(”+1))) k>0 decreases monotonically to the limit
limgeo UF(v(™ > 0, which we denote by v"*1). 1In particular, this limit satisfies v("*1) =

T (oD DY and v+ < (™) < (),

Since the only difference between the two algorithms is the definition of the default sets in Step 2
and we have just proved in (i) that the default sets coincide, both algorithms are indeed identical

under the Monotonicity Condition

By Proposition and maximality of v*, we have that o* < v™ and so the result follows as soon
as we show that 3 > v*. Since o* = v(") for some n, we proceed by induction to show that

(™ > u* for all n.

First, observe that by the Monotonicity Condition [3.7] we have for each i € N

= \Tli(zﬁ) =a;+ Z Lgf) + Z 1L v;r
jeN~D(v*) jeD(vt)~—~— —~
H(‘S) <L( )

<o+ Y LW+ ¥ mYLE
JeNND(vt) jeD(vt) \.._,___/

=L

ji

=a; + Z L(S = a; +A(s) —v(o).
JeN

Hence v(9) > v*. Now suppose that v(™) > v* for some n. We then show that v("*1) > v*,

By the induction hypothesis and Lemma it follows that ¥ (v(™); D)) > W (yp+; D),
We will also show that W (v*; D("*1)) > v*. Therefore by Lemma Tk (u™; DY > 4+ for
all £ > 0. But we showed in the proof of Theorem that the sequence (\Ilk (v(™); DD ))kzo
decreases monotonically to its limit oD Therefore v("*1) > v*, which completes the induc-

tion.

It remains to show that, indeed, ¥ (v*; D(”H)) > v" given the induction hypothesis above. This
follows by the Monotonicity Condition as follows. Note that DD = D(v(™) ¢ D(v*)

since v(™) > v* by the induction hypothesis. Moreover, for j € D(v(™) we also have that yv; <
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vj(.n) < E;S) < L;j and so ILj;(L; A yv}) =Yl v} . Then, for any i € N’ we have that

(v DY) = g, + > Lg-f) + > M)

jeN~D(v(™) jeD(v(n))
=a; + Z Lgf) + Z ’}/H]‘ﬂ);r + Z L;f) - ’}/Hji ’U;-r
jeN~D(v*) jeD(v*) jeD(vt)ND(v(™) — =~

>a;+ Z Lgf) + Z ’}/H]’ﬂ};
JeN~D(v*) jeD(vt)

= \I/Z‘(U+) = U;.

O]

Proof of Proposition Let (a, L), L®);1) be as in the proof of Proposition 2 where, as men-
tioned above, Monotonicity Condition[3.7]fails. Algorithm[2]would fail to terminate since the sequences

v and D(v(™) would evolve as follows

v = (3,100, 110) D) = {1}
v = (3,99.5,109.5) DMy ={1,2}
v ~ (68.43,132.21,93.43) D(w®) =g
v =(3,100,110) D(®) = {1}
and it is clear that this sequence would not terminate. O

Proof of Proposition[3.13] Since L) = Z, we have that L = L(*) and TI = I1(),

1. Fori e N we have

Vi = a; + Z L§f) + Z I yvj

JENND(v) ~~—— jeD(v) —
7(s =q;
=11;; LY I
N
=4;
=a; + ) TLjig;.
jeN

Hence, D(v) = {i € N'| a; + ¥ jen ILjiqj < L;}. Hence, for all i € D(v)

g =i =va; +v Y. jiqj,
JjeN
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and for all i € A"\ D(v) we have that ¢; = I_/gs) = L;. Hence, ¢ satisfies the fixed point equation
(©).

2. Let g be a solution to @) We show that v = a + II"q is a functional liquid asset vector, i.e.,

T(v) = v. Note that D(v) = {i e N | a; + ¥ jen Ijiq; < L;}. Therefore, for all i € N

i‘I}Z(’l}) =a; + Z L§f) + Z sz‘ YU
JND() ——  jeD(v) = ——
——
=q;
=a; + Z Hinj = V;.
jeN

O]

Proof of Proposition[3.16] Since L) = Z, we have that L = L(*), L = L(*) and TI = I1(*). The result
follows directly from Proposition [3.15with v = 1.

1. Let v be a functional liquid asset vector and D(v) = {i € N | v; < I_Lgs)}. Hence, with v = 1
in Proposition , g = L A v. Furthermore, the fixed point equation @ simplifies to g =
L) A a+TI"q which is exactly ([7) and hence the result follows.

2. Similarly, since the fixed point equations (6) and (7) coincide for v = 1 the result follows directly

from Proposition 3.1

The following Lemma is used in the proof of Lemma [3.17] below.

Lemma A.2. Suppose 11 € ]Riv *N s a row-substochastic matrix, 0 < p < 1 its spectral radius and

0 <+ <1 aconstant.

(i) If v < 1 or p < 1 then the matrix (1 —~II") is invertible and (1 - ~I17) 7! is non-negative.

(ii) If v =1 and p = 1 then there exists a set C € N such that for all i € C we have that >jec Hij = 1.
Proof. (i) If v =0 then (I - ~II") = I, which is clearly invertible with a non-negative inverse. So we

assume that 0 < 7.

Since p is the spectral radius of II, it is also the spectral radius of II". Since II is a row sub-
stochastic matrix, we have that p < 1. As II" is non-negative, standard results for M-matrices (see,
for example, Theorem 2.5.3.2 and 2.5.3.17 in |Horn & Johnson| (1991)) imply that (ol — II7) is
invertible with a non-negative inverse if and only if &« > p. Set =~y > 0. If y < 1 thena>1>p
and if v = 1 but p < 1 then a = 1 > p. Hence (I-~II") = o~ (al - 1I") is invertible with a

non-negative inverse.
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(i1) As a standard result in the theory of finite-state Markov chains (see, for example, Theorem 2.1
in [Karlin & Taylor (1981)), the number of sets C € N satisfying the property that for all i € C
> jec ILij = 1 is equal to the multiplicity of the eigenvalue 1 of II. Since p = 1 by assumption, the
multiplicity must be at least 1 and hence at least one such set C must exist.

O]

Proof of Lemma[3.17} The system of m linear equations has a unique solution, = € R, if it can be

expressed as

z=(1-~(Ipp)") ' b,

where (I-~ (IIpp)") is invertible.

We note that IIpp is a row-substochastic matrix. By Lemma we only need to consider the
case where v = 1 and the spectral radius of IIpp is exactly 1. In this case, by Lemma[A.2][(ii)] there is a
set C € D such that ) ;¢ II;; = 1 for each i € C. By assumption, if v = 1 then b > 0 and so

xT; = bi + Z Hjia:j

jeD
> bz + Z Hji.ilfj > Z Hji:cj.
jeC jeC

By summing x; for all ¢ € C, we arrive at the contradiction

IIEEDIET] DIT EDIE
1eC jeC jeC jeC
Thus v < 1or p<1andso (I — v (I p(nyp(n) )T) is invertible and x is the well-defined and unique

solution to the system of linear equations.

Non-negativity of « follows by Lemma O

Proof of Proposition By Theorem , D) ¢ p+1) = D(y(™M) and, under the Monotonicity
Condition v(™ is a fixed point of W(+;D™). Then for all j € D™ we have that L; /\vvj(.n) = 'yv](.n).
Therefore the fixed-point problem (5) in Algorithm 2]is in a fact a system of linear equations:

v; z(v ) ) a; + Z i + Z gil5 s (15)

JEN~D(™) jeD()

for ¢ € N'. Moreover, it is sufficient to consider only for ¢ € DM, Indeed, if z € R*, where
m := [D™)], is some such solution then we can simply set vi(") := x; for i € D and vf") = a; +
S jenrpon LS 44 8jepen Wi for i e N\ D,

Setting b; := a; + ZjEN\D(n) L;j) for each i € D™ we note that b; > a; >0 forallice D),
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Therefore, by Lemma , x is a unique solution to the system of linear equations for i e D™ In

particular, letting £(™) := A"\ D™ we can write

-1
z=(I-v(Ipwmpm)') b,
here (1 -~ (II ™) is invertible and b = AR
where (I -+ (ILpm)py) ) is invertible and b = apen) + ( L(">D(”)) £(n)-
Non-negativity of v("™ then follows by Lemma and the fact that ¥ is non-decreasing (Lemma
A.T). O

Proof of Proposition To simplify the notation we set m := |D(”)| and in this proof assume that
whenever, for some 7, we let 1 < 7 < m that means that ¢ € D) In this context, if ¢ = m + 1 then

7¢ DM, Moreover, we set £ = N <D™ and let b e RT“, AG) ¢ Rﬁm“)*(m“) be given by

a1+ Xjesm Lﬁ) Ly - Ly % -t Lig
b= E IO I
JAS B I i L L _ym [
Ay, + Zjeﬁ(n) im ml mm ~ Zk:l mk
0 0 0 0

It is clear that Z, the (m + 1) x (m + 1) zero matrix, is a liability matrices. To see that A(*) is a liability
matrix, we need to check that the last column is nonnegative and all other properties follow immediately
from the definition. For all i € {1,...,m} we have vY.*; L < Y3ty Li < fo:l L, = L;. Since
Li>~ Yoy Lik < % — Yt Lig > 0 the last column is indeed nonnegative.
So we define a financial system S,, := (b, AB) Z: 1) on the set of m + 1 banks containing D),
Since S, has no long-term liabilities, we denote both the short-term and overall total nominal liabil-
ities vector of .S, by A and we immediately see that A; = %Iji for 1 <i <m and A,,.1 = 0. Moreover,
the short-term and overall relative liability matrices of S, are also the same. Denoting them by ©(*) and
O, respectively, we have that 0() =© >1-0 and so the Monotonicity Condition is satisfied. Note
that for 1 <4, 7 <m we have
Aij _ Lij
Ao L

@ij = ”sz‘j.

Suppose that 2 € R"*! is some functional liquid asset vector of .S,, with respect to
D(z)={ie{l,....mm+1}|z; <A;} = {i e D™ | ya; < L;},

where we used the convention that the m elements of D™ are labelled by 1,...,m, and the last equality

holds because A,,,;+1 = 0 and hence the index m + 1 will never be in the default set.

Since z is a functional liquid asset vector we have that z; < A; = + L; and hence ©j;x; < Lj; for

1
5
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i,7 € D). Moreover, Aijlli =0 for all i e D(™ and hence we have for each i ¢ D(")

r=T@)=bi+ Y AP+ Y Oy

jeDMI\D(x) jeD(z)
=a; + Z L;f) + Z le' + Z ’YHjixj
jEN\D(”) je'D(”)\D(x) jED(l’)
=a; + Z L;f) + Z Hjil_/j + Z Hjixj (16)
jEN\D(”) je'D(”)\D(x) jED(.’E)
=a; + Z L;f) + Z Hﬂ(l_/j A ’y[lﬁj)
jeN\D(n) jeD(n)
= U;(z; D).
Then, we set
z; fori e DM,

o

8 ) (17)
Ui+ 2N D() L§i) + 2 jepn) IL;i(Lj Ayxj) forieN D),

Note that ¥ (v(™); D(™)) does not depend on vi(n) for i e N\D(™) Hence, from we immediately
see that vi(") =0 (v(™; D) for all i € D),

Furthermore, for all i € A x D(™) we have by that vl.(n) =0, (v(™; D),
Hence we have shown that ¥ ((v(™); D)) = ("), O

Proof of Proposition Let S; = (a, L), L1 1) denote the financial system introduced in the proof
of Proposition 2 and also used in the proof of Proposition |3.14] above. In Algorithm (1} using the
construction in Proposition , the sequences v(™ and D(v(”) ) would evolve as follows

0 = (3,100, 110) Dw®) = {1}

o = (3,99%, 109%) D(vW) ={1,2}
1 1

) = (53—-,102,65— D(®) = {2

v = (5355,102,65-) (') = {2}

Thus we conclude that v* = v(?) and D} = {1,2}.

Now let 53 = (a, JAQRY JON/A 1). Then we can verify that the vector v*, obtained above, is also the
unique functional liquid asset vector of Sy with the functional default set D(v*) = {2}. By Remark
Sy satisfies the Monotonicity Condition [3.7| and hence by Theorem D; := {2} is the algorithmic
default set of So. O

Proposition of .1} We need to show that a(T}) is non-negative and L(*) (T}) and L) (T}) are liability
matrices.

By construction of Algorithm (1| v*(71) = W (v*(T1); D*(T1)) such that D(v*(T1)) € D*(T1).
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Suppose there is some 7 € N'(7}) such that v*(7}); < EZ(S). Then i € D(v*(Ty1)) and so i ¢ N (T1).
Hence, for all i € N (T1), a(T1); = v*(T1); — ZES) > 0.
The fact that L(*)(T}) and L) (T}) are liability matrices follows from the definitions since it is

immediately clear they are non-negative matrices with zero diagonals. O

Acknowledgement

The first named author gratefully acknowledges financial support by the Centre for Doctoral Training in
Financial Computing & Analytics funded by the Engineering and Physical Sciences Research Council

(EPSRC).

References

Allen, F. & Gale, D. (2000). Financial contagion. Journal of Political Economy 108, 1-33.

Amini, H., Filipovi¢, D. & Minca, A. (2015). Systemic risk and central clearing counterparty design.
Swiss Finance Institute Research Paper 13.

Banerjee, T., Bernstein, A. & Feinstein, Z. (2018). Dynamic clearing and contagion in financial net-
works. Preprint, Available at arXiv: arXiv:1801.02091.

Barucca, P., Bardoscia, M., Caccioli, F., D’Errico, M., Visentin, G., Battiston, S. & Cal-
darelli, G. (2016). Network valuation in financial systems. Preprint, Available at SSRN:
http://ssrn.com/abstract=2795583.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B. & Stiglitz, J. E. (2012). Liaisons dangereuses:
Increasing connectivity, risk sharing, and systemic risk. Journal of Economic Dynamics and Control
36, 1121-1141.

Bisias, D., Flood, M., Lo, A. W. & Valavanis, S. (2012). A survey of systemic risk analytics. Annual
Review of Financial Economics 4, 255-296.

Capponi, A. & Chen, P.-C. (2015). Systemic risk mitigation in financial networks. Journal of Economic
Dynamics and Control 58, 152-166.

Capponi, A., Cheng, W. A. & Rajan, S. (2015). Enterprise value dynamics in centrally cleared markets.
Preprint, Available at SSRN: http://ssrn.com/abstract=2542684.

Cifuentes, R., Ferrucci, G. & Shin, H. S. (2005). Liquidity risk and contagion. Journal of the European
Economic Association 3, 556-566.

Cont, R. & Kokholm, T. (2014). Central clearing of otc derivatives: bilateral vs multilateral netting.
Statistics & Risk Modeling 31, 3-22.

Cont, R., Moussa, A. & Santos, E. B. (2013). Network structure and systemic risk in banking systems.

In Handbook of Systemic Risk (eds. J.-P. Fouque & J. A. Langsam), Cambridge University Press.

34



REFERENCES REFERENCES

David, A. & Lehar, A. (2017). Imperfect renegotiations in interbank financial networks. Management
Science (forthcoming) Available at https://doi.org/10.1287/mnsc.2017.2869.

Duffie, D., Scheicher, M. & Vuillemey, G. (2015). Central clearing and collateral demand. Journal of
Financial Economics 116, 237-256.

Eisenberg, L. & Noe, T. H. (2001). Systemic risk in financial systems. Management Science 47, 236—
249.

Elliott, M., Golub, B. & Jackson, M. O. (2014). Financial networks and contagion. American Economic
Review 104, 3115-3153.

Elsinger, H. (2011). Financial networks, cross holdings, and limited liability. Oesterreichische Nation-
albank Working Paper 156.

Elsinger, H., Lehar, A. & Summer, M. (2013). Network models and systemic risk assessment. In Hand-
book on Systemic Risk (eds. J.-P. Fouque & J. A. Langsam), Cambridge University Press.

Feinstein, Z. (2017). Obligations with physical delivery in a multi-layered financial network. Preprint
available at arXiv: arXiv:1702.07936.

Ferrara, G., Langfield, S., Liu, Z. & Ota, T. (2016). Systemic illiquidity in the interbank network. Tech.
Rep. 586, Bank of England.

Gai, P, Haldane, A. & Kapadia, S. (2011). Complexity, concentration and contagion. Journal of Mone-
tary Economics 58, 453—470.

Gandy, A. & Veraart, L. A. M. (2017a). Adjustable network reconstruction with applications to CDS
exposures. Available at SSRN: https://ssrn.com/abstract=2895754.

Gandy, A. & Veraart, L. A. M. (2017b). A Bayesian methodology for systemic risk assessment in finan-
cial networks. Management Science 63, 4428 — 4446.

Georg, C.-P. (2013). The effect of the interbank network structure on contagion and common shocks.
Journal of Banking & Finance 37, 2216-2228.

Glasserman, P. & Young, H. P. (2014). How likely is contagion in financial networks? Journal of Bank-
ing & Finance 50, 383-399.

Glasserman, P. & Young, H. P. (2016). Contagion in financial networks. Journal of Economic Literature
54, 779-831.

Horn, R. A. & Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge University Press, Cam-
bridge.

Hurd, T. (2016). Contagion! The Spread of Systemic Risk in Financial Networks. Springer.

Karlin, S. & Taylor, H. E. (1981). A Second Course in Stochastic Processes. Elsevier.

Langfield, S., Liu, Z. & Ota, T. (2014). Mapping the UK interbank system. Journal of Banking &
Finance 45, 288-303.

Liu, M., Feng, M. & Staum, J. (2012). Systemic risk components in a network model of contagion. I/E
Transactions 48, 501-510.

35



REFERENCES REFERENCES

Rogers, L. C. G. & Veraart, L. A. M. (2013). Failure and rescue in an interbank network. Management
Science 59, 882—-898.

Sonin, I. M. & Sonin, K. (2017). Banks as tanks: A continuous-time model of financial clearing. Preprint
available at arXiv: arXiv:1705.05943.

The Insolvency Service (2010). The Insolvency Service Technical Manual. UK Government. Available
at: https://www.insolvencydirect.bis.gov.uk/technicalmanual/Ch25-36/Chapter

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank markets. Journal
of Financial Stability 7, 111-125.

Veraart, L. A. M. (2017). Distress and default contagion in financial networks. Available at SSRN:
https://ssrn.com/abstract=3029702.

Weber, S. & Weske, K. (2017). The joint impact of bankruptcy costs, fire sales and cross-holdings on

systemic risk in financial networks. Probability, Uncertainty and Quantitative Risk 2, 9.

36



	Veraart_Interbank clearing_2018_cover
	Veraart_Interbank clearing_2018_author
	Introduction
	Literature review

	Clearing with multiple maturities
	The financial market
	General equilibrium
	Identification of default

	Clearing at the first maturity
	Algorithmic and functional approaches
	Algorithmic approach
	Functional approach

	Existence of liquid asset vectors
	Relationship between clearing models
	Construction of liquid asset vectors
	Uncertainty of maturity

	Financial system after first clearing
	Stylised balance sheet
	Clearing at second maturity date
	Extension to more maturity dates

	Conclusion
	Appendix


