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Abstract

We consider the problem of systemic risk assessment in interbank networks in which interbank

liabilities can have multiple maturities. In particular, we allow for both short-term and long-term

interbank liabilities. We develop a clearing mechanism for the interbank liabilities to deal with the

default of one or more market participants. Our approach generalises the clearing approach for the

single maturity setting proposed by Eisenberg & Noe (2001).

Our clearing mechanism focuses on the vector of each bank’s liquid assets at each maturity

date and develops a fixed-point formulation of this vector for a given set of defaulted banks. Our

formulation is consistent with the main stylised principles of insolvency law.

We show that in the context of multiple maturities, specifying a set of defaulted banks is chal-

lenging. We propose two approaches to overcome this challenge: First, we propose an algorithmic

approach for defining the default set and show that this approach leads to a well-defined liquid asset

vector for all financial networks with multiple maturities. Second, we propose a simpler functional

approach which leads to a functional liquid asset vector which need not exist but under a regularity

condition does exist and coincides with the algorithmic liquid asset vector.

Our analysis permits construction of simple dynamic models and furthermore demonstrates that

systemic risk can be underestimated by single maturity models.
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1. INTRODUCTION

1 Introduction

Since the financial crisis of 2007-8 there has been a rapid expansion of literature which aims to ex-

plain bank failure in interconnected financial systems, see e.g. Glasserman & Young (2016) for a recent

overview. One main modelling aim is to find a suitable contagion mechanism that describes how losses

can spread through a financial network. The ultimate objective of such an analysis is to assess the de-

gree of systemic risk in a financial network and use this to make informed policy decisions to increase

financial stability.

One approach to assess systemic risk in financial networks is to derive clearing cash flows between

financial institutions and to study which market participants default during the clearing process. Such

clearing payments represent the actual payments made by the market participants and are constructed

such that they obey certain stylised principles of contract and insolvency law.

We contribute to this area of research by proposing an extension of the clearing approach first devel-

oped by Eisenberg & Noe (2001) from financial networks with only one maturity date to networks with

multiple maturity dates. In practice, financial networks do consist of liabilities with different maturity

dates. When the clearing process is triggered at the first maturity date long-term debt must not be ig-

nored. We develop clearing mechanisms that account for long-term debt in a way that is consistent with

the main principles of insolvency law. This approach is also extended to a multi-period model that can

be used as a basis for a full dynamic model of systemic risk.

Typically bank default models assume, as e.g. proposed by Eisenberg & Noe (2001), three stylised

principles of insolvency law which are common to many jurisdictions. These are the principles of

limited liability, which says that a financial institution never pays more than it has, absolute priority of

debt claims, implying that all outstanding debt has to be completely paid off first before shareholders can

be considered, and proportionality. The principle of proportionality states that the total value of assets

paid out in this case is distributed between all the creditors in proportion to the size of their nominal

claims.

A crucial nuance of the principle of proportionality is that all liabilities, including future liabilities,

are required to be treated equally for the purposes of proportional distribution to creditors. For example,

the UK Insolvency Service Technical Manual stipulates that: “A creditor may prove for a debt where

payment would have become due at a date later than the insolvency proceedings [...] and it is only

because the company [...] has entered into insolvency proceedings that the debt is claimed by the

creditor in advance of its due payment date. Where this occurs, the creditor is entitled to the dividend

equally with others [...],” The Insolvency Service (2010, Chapter 36A, Section 48).

Our model explicitly incorporates this important feature. This contrasts with single maturity models

where it is assumed that assets of defaulting banks are distributed to creditors proportionally to the

short-term liabilities only. The failure to account for future liabilities in calculating the proportional
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1. INTRODUCTION

distributions, leads to an incomplete view of systemic risk in financial systems. We show that two

financial systems with the same overall interbank liabilities but different maturity profiles can lead to

different clearing outcomes. In particular, it follows that uncertainty about maturity profiles of banks’

portfolios is a distinct source of systemic risk that is unaccounted for in single maturity models. Our

approach can be used in an analysis of systemic risk to evaluate the effect of such maturity profile

uncertainty.

This paper makes four main contributions. First, in Section 2 we introduce the notion of an equilib-

rium achieved by clearing the financial markets at the first maturity date and accounting for long-term

liabilities which are due beyond the first maturity date (Definition 2.3). We also show that in contrast to

the single maturity setting, developing a notion of default in a multiple maturity setting is challenging.

A key insight that emerges out of this observation is that characterising the set of banks in default is an

integral part of the solution to the clearing problem. This is in contrast to much of the literature where

default sets are treated as secondary quantities derived from the clearing cash flows. In particular, we

show in Lemma 3.17 and Remark 3.20 that under a mild assumption financial systems have at most a

finite number of clearing solutions each uniquely determined by a corresponding default set.

Our second contribution, in Section 3, is to introduce two possible approaches to clearing at the

first maturity date. We show that these two approaches — algorithmic (Definition 3.1) and functional

(Definition 3.3) — solve the general equilibrium problem in Propositions 3.2 and 3.5. In Section 3.3

we describe how the algorithmic approach extends the functional approach, which in turn extends the

Eisenberg & Noe (2001) model. Construction of clearing solutions under both approaches is addressed

in Section 3.4.

Our third contribution is to show that the functional approach, used in much of the literature in

a single maturity setting, is problematic in a multiple maturity setting. In particular, we elucidate the

importance of monotonicity in clearing problems. In general, under the functional approach, the clearing

function is not monotone and may not have a fixed point solution. Nevertheless, we show in Section

3.2 that a simple condition, the Monotonicity Condition 3.7, is sufficient to ensure the existence of a

solution.

Finally, we highlight some applications of the algorithmic approach. In Section 3.5 we apply the

algorithmic approach to demonstrate how single maturity models can underestimate systemic risk. In

Section 4, we discuss the evolution of the financial system after clearing at the first maturity. In par-

ticular, in Section 4.3, we describe a simple multi-period extensions of our model. Such an extension

then captures both the multi-maturity and multi-period aspects and therefore is a basis for a full dynamic

model of financial systems.

The remainder of this section provides a summary of the current literature and how it relates to the

multiple maturity clearing problem that we consider here.
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1. INTRODUCTION

1.1 Literature review

The role of complexity and contagion in financial networks has been studied by numerous authors, e.g.

Allen & Gale (2000), Gai et al. (2011), Battiston et al. (2012) and David & Lehar (2017). There has been

an increasing recognition that there are in fact multiple channels through which network complexity can

give rise to systemic risk. Bisias et al. (2012), for example, provide a wide-ranging overview.

In most studies it is assumed that the financial network itself is observable. We will also make this

assumption here. Under incomplete information network reconstruction methods could be applied first,

see e.g. the Bayesian approach proposed by Gandy & Veraart (2017a,b) and the references therein.

We focus on one specific channel of contagion, namely the domino effect which arises when complex

networks of debt obligations are cleared. This places our work at the intersection of two strands of

literature. The first focuses on contagion and domino effects, e.g. Cifuentes et al. (2005), Upper (2011),

Liu et al. (2012), Elsinger et al. (2013), Cont et al. (2013), Georg (2013) and Elliott et al. (2014). The

second investigates clearing, typically in the context of central counterparty clearing in OTC markets.

Some contributions from this latter strand include Cont & Kokholm (2014), Duffie et al. (2015), Capponi

et al. (2015) and Amini et al. (2015).

Our paper presents a generalisation of the classic static single maturity approach that originates

with Eisenberg & Noe (2001). While the model in Eisenberg & Noe (2001) was concerned primarily

with payment systems, the key ideas have been adapted by numerous authors to model systemic risk

in a financial system. In this stream of literature, an interbank system is modelled as a directed graph

with weighted edges. The nodes of this graph correspond to systemically significant banks which are

endowed with initial assets. Each edge represents an outstanding debt owed by the bank at the tail of

the edge to the bank at the head of edge. The weights correspond to the nominal values of the debt.

A central question is of clearing the financial system, that is calculating the actual amounts that banks

transfer to each other in satisfaction of their nominal obligations. This question is particularly pertinent

when a shock is applied to the asset side of their balance sheets, which may cause some banks to default.

The key findings include the existence and construction of clearing solutions and the conditions

for their uniqueness. These results rely on a number of simplifying assumptions on clearing, which

subsequent authors have attempted to relax. Thus Hurd (2016) clarifies the effect that the external

liabilities play, Rogers & Veraart (2013) investigate the effect of liquidation costs, while Elsinger (2011)

incorporates cross-holdings and different seniorities of debt. The combined effect of cross-holdings and

bankruptcy costs is investigated in Weber & Weske (2017). All these extensions are single period models

and hence assume a single maturity for the liabilities.

Glasserman & Young (2014) provides an alternative interpretation of clearing as dynamic re-valuation

of bank assets by the market. Since in many extensions the uniqueness of clearing solutions is lost, this

interpretation is particularly interesting in the systemic risk context as different solutions can be given

meaningful interpretation in terms of alternative valuations. Veraart (2017) follows this approach and
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2. CLEARING WITH MULTIPLE MATURITIES

investigates the effect of pre-default contagion, i.e., contagion that can be triggered prior to the actual

default event due to distress and mark-to-market losses. The notions of distress and time-dependent

valuation are also developed in Barucca et al. (2016).

Recent papers (e.g. Capponi & Chen (2015), Ferrara et al. (2016), Banerjee et al. (2018)) have

developed multi-period models. The model in Capponi & Chen (2015) has a “central bank” node and

random interbank liabilities. In particular, it highlights the distinction between illiquid and insolvent

banks which arises whenever liabilities can become due at different times. This model focuses on the

role of liquidity injection policies by the central bank and only tangentially analyses the differences in

the default behaviour that arises from this generalisation. Meanwhile, Ferrara et al. (2016) describe how

a multi-period system can be cleared simultaneously for every period. Similarly, Banerjee et al. (2018)

consider both a discrete and a continuous-time dynamic extension of the Eisenberg & Noe (2001) model.

While these models generalise the single period aspect of Eisenberg & Noe (2001), they remain

fundamentally single maturity models. Future liabilities are only revealed one period at a time and

are not considered as long-term debt at the short-term maturity date, but are rather considered as new

short-term debt that started at a later point in time. The clearing mechanism they consider therefore

corresponds effectively to a repeated application of a single maturity clearing algorithm.

Sonin & Sonin (2017) provide a dynamic solution approach to the static Eisenberg & Noe (2001)

setting, but again do not account for a multiple maturity structure as we do in our paper.

In contrast, our model accounts for long-term debt before short-term debt is cleared and settled. In

practice, banks have instruments of many maturities in their portfolio and therefore it is important to

account for this feature. To the best of our knowledge, our contribution is the first attempt to explicitly

account for multiple maturities in a manner consistent with the insolvency rules.

Related work is the approach by Feinstein (2017) who considers an extension of the single network

approach by Eisenberg & Noe (2001) to a multi-layered financial network to study contagion in multiple

asset classes. This approach could also be applied to a multi-period or multi-maturity setting.

2 Clearing in financial systems with multiple maturities

2.1 The financial market

We consider a financial market consisting of N banks with indices in N = {1, . . . ,N}. Banks have

liabilities to each other and to external entities which are due at two different maturity dates 0 < T1 < T2.

We will later show that we can easily generalise our model to more than two maturities. Hence, time

t = 0 represents the starting point of the analysis and we model what happens at the two maturity dates

t ∈ {T1, T2}. We assume that all liabilities of the same maturity have the same seniority.

Each bank’s liabilities for some maturity can be represented by a liability matrix. Together with

vectors representing bank’s cash assets these are sufficient to describe the financial system at t = T1.
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2. CLEARING WITH MULTIPLE MATURITIES

These and other related concepts are summarised in Definition 2.1.

Definition 2.1 (Financial system).

1. A matrix M ∈ RN×N+ is called a liability matrix if, for all i ∈ N , Mii = 0.

2. A financial system is given by the tuple (a,L(s), L(l);γ), where L(s), L(l) are liability matrices

with maturity dates T1 and T2 respectively, and a ∈ RN+ , γ ∈ [0,1].

We will refer to the following quantities:

• the cash assets a;

• the short-term, long-term and overall liability matrices L(s), L(l) and L ∶= L(s) + L(l),

respectively;

• the short-term, long-term and overall total nominal liability vectors L̄(s) ∶= L(s)1, L̄(l) ∶=

L(l)1 and L̄ ∶= L̄(s) + L̄(l), respectively;

• the short-term, long-term and overall interbank asset vectors Ā(s) ∶= (L(s))⊺1, Ā(l) ∶=

(L(l))⊺1, Ā ∶= (L)⊺1, respectively;

• the short-term and overall relative liability matrices Π(s) and Π, respectively, which are

given by Π
(s)
ij =

L
(s)
ij

L̄
(s)
i

and Πij =
Lij
L̄i

for all i, j ∈ N if L̄(s)i > 0 (respectively, L̄i > 0) and

Π
(s)
ij = 0 (respectively, Πij = 0) otherwise;

• the bankruptcy cost parameter γ.

Assets Liabilities

● Cash assets: ai

● Short-term interbank liabilities: L̄(s)i = ∑
N
j=1L

(s)
ij

● Short-term interbank loans: Ā(s)i = ∑
N
j=1L

(s)
ji

● Long-term interbank liabilities: L̄(l)i = ∑
N
j=1L

(l)
ij

● Long-term interbank loans: Ā(l)i = ∑
N
j=1L

(l)
ji

● Equity: Ei

Table 1: Initial stylised balance sheet at t = 0 of bank i ∈ N .

Thus, given a matrix M of liabilities of some maturity, a bank i has an outstanding liability of that

maturity to bank j if Mij > 0 and the nominal value of this liability is given by Mij . If Mij = 0 then

i does not owe anything to j and in particular M has a zero diagonal since we assume banks do not

owe anything to themselves. The ith row sum of M then gives the total nominal value of liabilities of

each bank of the relevant maturity and the ith column sum gives the total nominal value of assets of that

maturity.

Table 1 shows the stylised balance sheet at time t = 0 of bank i ∈ N where the equity is defined as

Ei ∶= ai + Ā
(s)
i + Ā

(l)
i − L̄

(s)
i − L̄

(l)
i .
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2. CLEARING WITH MULTIPLE MATURITIES

Remark 2.2. The set of banks N is assumed to contain a ‘sink node’, e.g. in this paper N ∈ N . This

node has no cash assets or liabilities. However other banks may well have liabilities to the sink node.

These represent banks’ liabilities external to the interbank market but for ease of reference we refer to

all entries of the liability matrices as ‘interbank’ liabilities. In Elsinger (2011) it is pointed out that in

order to use a sink node in this manner external liabilities need to be treated as having the same seniority

as interbank liabilities; this is indeed our assumption in this paper.

2.2 General equilibrium

In this paper we formulate a characterisation of an equilibrium achieved by clearing the market at the first

maturity date that is based on the requirements of the UK insolvency rules as outlined in The Insolvency

Service (2010), which can be heuristically summarised as follows:

• Banks are not required to make any payments either in excess of the total value of their liquidated

assets nor the total amount they owe across all maturities.

• Conversely, shareholders are not permitted to retain any value of the defaulting banks as long as

any part of any creditor’s outstanding claims remains.

• Such claims include both short-term and long-term liabilities, which are treated with the same

priority within the same seniority class.

• A bank that is liquidated under the insolvency rules ceases to exist and cannot recover even if

liquidators recover sufficient assets to fully compensate all creditors.

Suppose we are at the first maturity date t = T1 and suppose some banks with indices in D ⊆ N are

in default at t = T1. We postpone the discussion on the cause of these defaults to Section 2.3. We will

now determine a clearing equilibrium at t = T1.

We start by considering the case where a bank j does not default, i.e., j ∈ N ∖ D. Then it pays

its short-term nominal obligations L̄(s)j in full; in particular, it pays L(s)ji to every bank i. Next, we

consider a bank j that defaults, i.e. j ∈ D. Bank j is liable to pay its creditors all of its available liquid

asset resources, denoted by vj , subject to two constraints. First, since default is costly and lawyers and

other service providers need to be paid, only a fraction γ ∈ [0,1] of its liquid asset resources reaches its

creditors. Second, we now need to consider both its short-term and its long-term liabilities. In general,

L̄j ≥ L̄
(s)
j and if j has any long-term liabilities then L̄j > L̄

(s)
j . We assume that the creditors are not

entitled to more than the overall total liabilities L̄j .

Finally, we also need to model what is permitted to happen to the long-term interbank assets Ā(l)j
of a bank j at or prior to the first maturity date. In practice they can be auctioned to provide additional

cash to satisfy the total liabilities, especially if the bank j is attempting to avoid being in default. In the

interests of model parsimony and tractability, we refrain from modelling an auction mechanism here and
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2. CLEARING WITH MULTIPLE MATURITIES

take a reduced approach where, following an auction, the bank j would have a further amount RĀ(l)j of

liquid assets where R ≥ 0 is the recovery rate. See, for example, Capponi et al. (2015) for an example

of an auction mechanism. We discuss this further in Section 4.

Provided the auction of long-term assets does not take place concurrently with the clearing process,

the two can be separated in time. In other words, we assume that the auctions take place before the

clearing at the first maturity date and any auction proceeds are already incorporated into the cash assets

aj of the bank j by the time the clearing process commences. Therefore we make this explicit by making

a further modelling assumption that, during clearing, R = 0. The situation can become significantly

more complex if the auctions can take place concurrently with the clearing process. To keep the model

tractable, the assumption that R = 0 then also allows us to avoid dealing with such a case.

We therefore need to determine the liquid asset resources v that each bank has at time t = T1. We

characterise v in terms of a fixed point problem for a given financial system (a,L(s), L(l);γ). Note

that in this paper 0 denotes the vector of zeros which in Definition 2.3 below corresponds to an N -

dimensional vector.

Definition 2.3. Let (a,L(s), L(l);γ) be a financial system and D ⊆ N . Define Ψ(⋅;D) ∶ [0, a + Ā] →

[0, a + Ā] where [0, a + Ā] ⊂ RN+ and, for each i ∈ N ,

Ψi(v;D) ∶= ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D

Πji(L̄j ∧ γvj).

We refer to any vector v ∈ [0, a+ Ā] satisfying v = Ψ(v;D) as a general liquid asset vector with respect

to D.

Remark 2.4. Note that, indeed, 0 ≤ Ψ(v;D)i ≤ ai + Āi for all v and i. This follows directly from the

fact that for each i, j ∈ N and v ∈ RN+ , Πji(L̄j ∧ γvj) ≤ ΠjiL̄j = Lji. Therefore, since L(s)ji ≤ Lji for all

i, j ∈ N , we have that Ψ(v;D)i ≤ ai +∑j∈N Lji = ai + Āi.

Importantly, the set [0, a + Ā] forms a complete lattice under the component-wise ordering of RN+ .

Definition 2.3 defines the liquid asset vector with respect to a default set D. In the following we

discuss properties of the default set D before we propose two approaches to define it in Subsection 3.1.

2.3 Identification of default

Most models based on the Eisenberg & Noe (2001) framework define default by checking whether

some value is less than the total nominal short-term liabilities L̄(s). This leads to the following general

definition.

Definition 2.5. Let (a,L(s), L(l);γ) be a financial system of bank N with the total nominal short-term
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3. CLEARING AT THE FIRST MATURITY

liabilities vector L̄(s). We define the function D by setting, for each vector x ∈ RN+ ,

D(x) ∶= {i ∈ N ∣ xi < L̄
(s)
i }. (1)

This allows us to define fundamental defaults, i.e., defaults that occur even if everyone is assumed

to satisfy their payment obligations. The fundamental default set is given by

F ∶=D(a + Ā(s)) = {i ∈ N ∣ ai + ∑
j∈N

L
(s)
ji < L̄

(s)
i }.

Fundamental defaults can be read off directly from the stylised balance sheet. It is reasonable to assume

that any default setD satisfies F ⊆ D. Furthermore it is reasonable to assume that F = ∅ impliesD = ∅.

Nevertheless, F is too small to be a suitable choice for the default set D. Not all defaults are

fundamental defaults. A bank may have interbank assets whose book value is sufficient but contingent

on its counterparties avoiding default. If some of the counterparties default this would cause the market

value of assets to be adjusted down, making the bank illiquid and thus triggering its default. This type

of default is known as a contagious default and is well-established as one of the key drivers of systemic

risk. These contagious defaults cannot be directly determined from the stylised balance sheet.

To capture some of these contagious defaults, we can ask whether some bank i is illiquid in the

sense that its liquid assets vi are insufficient for it to meet its own short-term liabilities in full. The set

of such illiquid banks is then given by D(v). We would expect that for any default set D one should

have D(v) ⊆ D. As with the fundamental defaults, the converse is not necessarily true. Since default

changes the rules of distribution between counterparties, it may be the case that after a bank defaults its

liquid assets exceed its short-term liabilities. However, default is an absorbing state and, once defaulted,

a bank cannot recover. Thus D(v) may also be too small to be a suitable choice for the default set D.

Combining these considerations leads to the necessary condition on the default set D:

1.) D ⊇ F ∪D(v), 2.) (F = ∅⇒ D = ∅). (2)

3 Clearing at the first maturity

3.1 Algorithmic and functional approaches to defining default

In the following we introduce two particular approaches to formalise the notion of default and hence to

define the default set D, which we refer to as the algorithmic approach and the functional approach. In

Section 3.2 we will discuss the conditions under which these approaches are well-defined and ensure

existence of liquid asset vectors. Alternative definitions of a default set are also possible but we will not

investigate them further here.
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3. CLEARING AT THE FIRST MATURITY

3.1.1 Algorithmic approach

In the algorithmic approach we will start by providing an algorithm which outputs a vector and a set,

which we define as a liquid asset vector and a default set.

It is similar in spirit to the Fictitious Default Algorithm (FDA) developed by Eisenberg & Noe (2001),

but in contrast to the FDA we use it to define default and the liquid asset vector and do not just use it as

a convenient computational tool to calculate a predefined quantity of interest.

We consider a fixed financial system (a,L(s), L(l);γ) and make the crucial modelling assumption

that default is an absorbing state. In particular, we assume that once a bank enters the default set it will

stay there. Furthermore, a bank enters the default set if and only if it has less liquid assets than total

short-term liabilities. Algorithm 1 formalises this idea.

Algorithm 1: Algorithmic definition of the default set

1 Set D(0) = ∅, v(0) = a + Ā(s), n = 1.
2 Set

D
(n)

= D
(n−1)

∪D(v(n−1)
).

3 If D(n) = D(n−1) stop and return D∗ = D(n−1) and v∗ = v(n−1).
4 Else determine the greatest fixed point v(n) satisfying

v(n) = Ψ(v(n);D(n)), (3)

where Ψ is defined in Definition 2.3.
5 Set n=n+1 and go to 2.

Thus, for a given financial system (a,L(s), L(l);γ) Algorithm 1 computes a vector v∗ and a set D∗

which will correspond to a liquid asset vector with respect to the default set D∗.

Definition 3.1. Let D∗ and v∗ be the outputs of Algorithm 1. We refer to

• D∗ as the algorithmic default set; and

• v∗ as the algorithmic liquid asset vector with respect to D∗.

Proposition 3.2. Let (a,L(s), L(l);γ) be a financial system and let D∗ and v∗ be the outputs of Al-

gorithm 1. Then, the algorithmic liquid asset vector v∗ is a general liquid asset vector with respect to

D∗.

Since Proposition 3.2 follows directly from the definition, we omit the proof.

The algorithmic approach incorporates the intuition of default sets discussed in Section 2.3. Namely,

it ensures that default is an absorbing state and that the necessary criteria on the default set D∗ specified

in (2) are satisfied. To see that the latter claim is true, consider that F = D(a + Ā(s)) = D(v(0)) =
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3. CLEARING AT THE FIRST MATURITY

D(1) ⊆ D∗. Furthermore, if F = ∅ = D(0) then Algorithm 1 terminates with D∗ = ∅ and v∗ = a+ Ā(s) =

Ψ(v∗;∅).

The other key intuition behind the algorithmic approach is that it views the clearing process as a

dynamic process that proceeds in several rounds. It starts with the assumption that initially the default

set is empty and then it computes in every round the best possible outcome for the financial system based

on the given (absorbing) default set by finding the greatest fixed point.

The algorithmic approach therefore introduces an ordering of financial institution, depending on the

round in which they default. This ordering depends on the initial default set (in our case the empty

set which corresponds to no defaults). One could consider modifications of the algorithm with different

(initial) default sets, but it would be less clear what the output of the algorithm represents. Intuitively, we

think of the solution returned by the algorithmic approach as a best case outcome similar to the greatest

clearing vector in Eisenberg & Noe (2001), since we start with no defaults and in every round compute

the greatest fixed point rather than just any fixed points to keep the number of additional defaults minimal

in every step of the algorithm.

3.1.2 Functional approach

We will argue in the following sections that the algorithmic approach is a more general approach that

works for any financial system with multiple maturities. However, it is instructive to consider why

the more conventional route along the lines of Eisenberg & Noe (2001) is problematic in the multiple

maturity setting. To this end we consider an alternative approach where the default set is characterised

as a closed-form function D(v) of the liquid asset vector.

Definition 3.3. Let (a,L(s), L(l);γ) be a financial system. Define Ψ̃ ∶ [0, a + Ā]→ [0, a + Ā] where

Ψ̃i(v) ∶= ai + ∑
j∈N∖D(v)

L
(s)
ji + γ ∑

j∈D(v)

Πjivj . (4)

We refer to any vector v ∈ [0, a + Ā] satisfying v = Ψ̃(v) as a functional liquid asset vector and the set

D(v) as a functional default set.

Proposition 3.4. Let (a,L(s), L(l);γ) be a financial system. Then Ψ̃(v) = Ψ(v;D(v)) for all v ∈

[0, a + Ā].

The following proposition is a direct corollary to the definitions and Proposition 3.4 and provides

the link between functional and general liquid asset vectors.

Proposition 3.5. Let (a,L(s), L(l);γ) be a financial system and let v be a functional liquid asset vector.

Then v is a general liquid asset vector with respect to D(v).

We will show that in contrast to the algorithmic liquid asset vector, which exists for all financial

systems, a functional liquid asset vector need not exist in a multiple maturity setting.

11



3. CLEARING AT THE FIRST MATURITY

3.2 Existence of liquid asset vectors

To see that the algorithmic liquid asset vector and the algorithmic default set are well-defined and exist

for any financial system, consider the following theorem:

Theorem 3.6. Let (a,L(s), L(l);γ) be a financial system. Then, the greatest solution to the fixed-point

problem (3) exists and lies in [0, a + Ā]. Furthermore, Algorithm 1 terminates after a finite number of

steps.

The proof of Theorem 3.6 and all subsequent results can be found in Appendix, unless indicated

otherwise. We will discuss the construction of the algorithmic liquid asset vector in Section 3.4.

The functional liquid asset vector does not exist for all financial systems. There is a sufficient (but

not necessary) monotonicity condition, however, that guarantees existence of a functional liquid asset

vector:

Definition 3.7 (Monotonicity Condition). Let (a,L(s), L(l);γ) be a financial system, with short term

and overall relative liability matrix Π(s) and Π, respectively. We refer to a financial system as satisfying

the Monotonicity Condition 3.7 if and only if

Π
(s)
ij ≥ γΠij ∀i, j ∈ N .

From a financial point of view Monotonicity Condition 3.7 just asserts that for any bank i in the

system it is guaranteed that if it defaults it does not pay a larger proportion of its liquid assets to any

bank j in the system than its original proportion of short-term liabilities to this particular bank j. In this

sense no bank benefits from the default of another bank in the system.

From a mathematical point of view, Monotonicity Condition 3.7 is a sufficient condition for the

function Ψ̃ being non-decreasing. Furthermore, it highlights the fact that the distinction between Π(s)

and Π in our model is a crucial element that is missing in single maturity models.

Remark 3.8. Note, that networks in which L
(s)
ij = 0 and L

(l)
ij > 0 for some i, j will never satisfy

Monotonicity Condition 3.7. Furthermore, if γ = 1, Monotonicity Condition 3.7 implies Π(s) = Π.

Remark 3.9. Suppose L(l) = Z where Z is a zero matrix. Then the short-term and overall nominal

liabilities vectors L̄(s) and L̄ are equal and hence so are the short-term and overall relative liability

matrices Π(s) and Π. Thus Monotonicity Condition 3.7 is always satisfied if L(l) = Z.

Theorem 3.10 (Sufficient conditions for the existence of a functional liquid asset vector). Let (a,L(s), L(l);γ)

be a financial system.

1. If Ψ̃ is non-decreasing, then there exist functional liquid asset vectors v− (the least functional

liquid asset vector) and v+ (the greatest functional liquid asset vector) such that for any functional

liquid asset vector v we have that v− ≤ v ≤ v+.

12



3. CLEARING AT THE FIRST MATURITY

2. If the Monotonicity Condition 3.7 is satisfied, then the function Ψ̃ is non-decreasing. In particular,

the greatest and least functional liquid assets vectors exist.

In practice, checking whether Ψ̃ is non-decreasing can be quite cumbersome, whereas checking

whether the Monotonicity Condition 3.7 is satisfied is straightforward.

The following proposition demonstrates that the Monotonicity Condition 3.7 is not a necessary con-

dition but nor is it a redundant condition.

Proposition 3.11.

1. There exists a financial system that does not satisfy the Monotonicity Condition 3.7 for which a

functional liquid asset vector exists.

2. There also exists a financial system that does not satisfy the Monotonicity Condition 3.7 for which

no functional liquid asset vector exists.

3.3 Relationship between clearing models

In this section we look at the relationship between several clearing models. In particular, we show that

the algorithmic approach is indeed a proper generalisation of the functional approach, which in turn

generalises the models of Eisenberg & Noe (2001) and Rogers & Veraart (2013).

We introduce a new Algorithm 2 which can be used to construct a functional liquid asset vector under

the Monotonicity Condition 3.7. We then show that under the Monotonicity Condition 3.7 Algorithm

1 is reduced to Algorithm 2. Therefore the algorithmic liquid asset vector and the algorithmic default

set coincide with the functional liquid asset vector and the functional default set under the Monotonicity

Condition 3.7.

The only difference between Algorithm 1 and Algorithm 2 is in step 2 when the new default set is

defined. Algorithm 2 only considers banks in default which in the current round have fewer liquid assets

than nominal short term liabilities. Algorithm 1 makes the absorbing property of default explicit in the

definition, by additionally always keeping those banks in the default set that have defaulted in one of the

previous rounds of the algorithm.

From the definition of Algorithm 2 and Proposition 3.4 we immediately get the following result:

Proposition 3.12. Let D̃∗ and ṽ∗ be the output of Algorithm 2. Then, D̃∗ = D(ṽ∗) and hence D̃∗ is a

functional default set and ṽ∗ is a functional liquid asset vector.

Theorem 3.13. Let (a,L(s), L(l);γ) be a financial system satisfying Monotonicity Condition 3.7. Then

(i) Algorithm 2 produces a monotone sequence of vectors (v(n))n≥0 such that v(n) ≤ v(n−1) ≤ a+Ā(s)

∀n ≥ 1 and a monotone sequence of sets (D(n))n≥0 such thatD(n−1) ⊆ D(n) ∀n ≥ 1. In particular

D(n) =D(v(n−1)) ∀n ≥ 1.
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3. CLEARING AT THE FIRST MATURITY

Algorithm 2: Functional approach to define the default set and the liquid asset vector under the
Monotonicity Condition 3.7

1 Set D(0) = ∅, v(0) = a + Ā(s), n = 1.
2 Set

D
(n)

=D(v(n−1)
) = {i ∈ N ∣ v

(n−1)
i < L̄

(s)
i }.

3 If D(n) = D(n−1) stop and return D̃∗ = D(n−1) and ṽ∗ = v(n−1).
4 Else determine the greatest fixed point v(n) satisfying

v(n) = Ψ(v(n);D(n)), (5)

where Ψ is defined in Definition 2.3.
5 Set n=n+1 and go to 2.

(ii) Algorithms 1 and 2 coincide.

(iii) The output of Algorithm 2 satisfies ṽ∗ = v+.

The assumption of Monotonicity Condition 3.7 is crucial. Without it Algorithm 2 can fail to termi-

nate.

Proposition 3.14. There exists a financial system not satisfying the Monotonicity Condition 3.7 such

that the sequence of vectors (v(n))
n≥0

constructed in Algorithm 2 is not monotone and Algorithm 2

does not terminate.

By Remark 3.9, a functional liquid asset vector exists for any financial system (a,L(s),Z;γ) where

Z is a zero matrix. In fact, the system then reduces to a special case of the model by Rogers & Veraart

(2013) where the parameters modelling the default costs in Rogers & Veraart (2013) denoted by α,β are

all the same and equal to γ, i.e γ = α = β. Proposition 3.15 formalises this relationship.

Proposition 3.15. Let (a,L(s),Z;γ) be a financial system where Z is a zero matrix.

1. Let v be a functional liquid asset vector. Let q be a vector defined by,

qi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

L̄
(s)
i , if i ∈ N ∖D(v),

γvi, if i ∈D(v),

for each i ∈ N . Then q is a clearing vector in the sense of Rogers & Veraart (2013), i.e., q solves

the fixed-point problem:

qi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

L̄i, if ai +∑j∈N Πjiqj ≥ L̄j ,

γai + γ∑j∈N Πjiqj , if ai +∑j∈N Πjiqj < L̄j .
(6)
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3. CLEARING AT THE FIRST MATURITY

2. Let q be a clearing vector in the sense of Rogers & Veraart (2013), i.e., a solution of (6). Then

v = a +Π⊺q is a functional liquid asset vector.

If γ = 1, then (a,L(s),Z; 1) is effectively a (single maturity) financial system as defined in Eisenberg

& Noe (2001) as the following proposition demonstrates.

Proposition 3.16. Let (a,L(s),Z; 1) be a financial system where Z is a zero matrix.

1. Let v a functional liquid asset vector. Let p ∶= L̄(s) ∧ v. Then p is a clearing vector in the sense of

Eisenberg & Noe (2001), i.e., p solves the fixed-point problem

p = L̄(s) ∧ (a +Π⊺p). (7)

2. Let p be a clearing vector in the sense of Eisenberg & Noe (2001), i.e., a solution of (7). Then

v = a +Π⊺p is a functional liquid asset vector.

3.4 Construction of liquid asset vectors

One of the questions we postponed answering was how to construct the liquid asset vectors (and hence

default sets) using Algorithms 1 and 2 given that it requires us to compute a solution to the fixed-point

problems (3) and (5), respectively.

In the statements and proofs of the results in this section we use the following notation for (sub-

)vectors and (sub-) matrices. For a vector v ∈ R∣N ∣+ and some non-empty index set A ⊆ N , vA ∈ R∣A∣+

denotes the vector given component-wise by (vA)i = vi for all i ∈ A. Similarly, for another non-empty

index set B ⊆ N and a matrix M ∈ R∣N ∣×∣N ∣+ , MAB ∈ R
∣A∣×∣B∣
+ denotes the matrix given component-wise

by (MAB)ij = Mij for all i ∈ A and j ∈ B. Furthermore, for n ∈ N we denote by I the n × n identity

matrices, and by 1 the n-dimensional vector of ones.

In both fixed-point problems, for each n, the relevant set D(n) is fixed. This leads to the following

general lemma, which we will use to construct the solutions to these fixed-point problems.

Lemma 3.17. Let (a,L(s), L(l);γ) be a financial system, D ⊆ N some fixed set of m ∶= ∣D∣ banks and

b ∈ Rm+ some vector. Suppose that

1. γ < 1; or

2. bi > 0 for all i ∈ D.

Then the system of m linear equations xi = bi + γ∑j∈DΠjixj ∀i ∈ D has a unique non-negative

solution.

We can now state the result on how to construct the functional liquid asset vector.
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3. CLEARING AT THE FIRST MATURITY

Proposition 3.18. Let (a,L(s), L(l);γ) be a financial system satisfying the Monotonicity Condition 3.7

such that ai > 0 for all i ∈ N . Then, for each n, the fixed-point problem (5) in Algorithm 2 has a unique

non-negative solution given by

v
(n)
i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xi, if i ∈ D(n),

ai +∑j∈N∖D(n) L
(s)
ji + γ∑j∈D(n) Πjixj , if i ∈ N ∖D(n),

where x = (I − γ (ΠD(n)D(n))
⊺
)
−1

(aD(n) + (L
(s)

L(n)D(n)
)
⊺

1L(n)) and L(n) ∶= N ∖D(n).

We now turn to the algorithmic approach. First, note that for γ = 0 the fixed-point problem (3) in

Algorithm 1 is trivial since, for each n in Algorithm 1, we have v(n) = a + (L
(s)

L(n)N
)
⊺

1L(n) . Thus v(n)

is explicitly fixed and no fixed point needs to be found. For γ > 0, the key observation is that, for each n

in Algorithm 1, the banks in the set D(n) can be treated as a financial system in its own right. Moreover,

such a financial system satisfies the Monotonicity Condition 3.7 and hence we can apply Proposition

3.18 to construct the fixed point satisfying fixed-point problem (3) in Algorithm 1.

Proposition 3.19. Let (a,L(s), L(l);γ) be a financial system such that ai > 0 for all i ∈ N and γ > 0.

For each n in Algorithm 1 with D(n) ≠ ∅ we can construct a financial system Sn of ∣D(n)∣ + 1 banks

such that Sn satisfies the Monotonicity Condition 3.7 and v(n), the solution to the fixed-point problem

(3), is given by

v
(n)
i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xi, if i ∈ D(n),

ai +∑j∈N∖D(n) L
(s)
ji +∑j∈D(n) Πji(L̄j ∧ γxj), if i ∈ N ∖D(n),

where x is the greatest functional liquid asset vector of Sn.

The precise form of the system Sn is given in the proof of Proposition 3.19 in the Appendix.

Remark 3.20. We showed in Proposition 3.15 that clearing in the Rogers & Veraart (2013) model can

be formulated in terms of the functional liquid asset vector. In that paper it was observed that, unlike in

Eisenberg & Noe (2001), even when a > 0 the clearing vectors are not necessarily unique and therefore

the same observation must hold of functional liquid asset vectors.

One interesting consequence of Lemma 3.17 is that it implies that there are at most a finite number

of functional liquid asset vectors for any given financial system with a > 0. This follows from the fact

that there are only a finite number of possible default sets and for each such possible default set there is

at most one v satisfying Definition 3.3.
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3.5 Uncertainty of the maturity profile

The ability to construct algorithmic liquid asset vectors and default sets for any financial system allows

us to demonstrate that the maturity profile of a financial system has a substantial impact on which banks

can default.

Proposition 3.21. There exists a financial system S1 = (a,L(s), L(l);γ) with the algorithmic default

set D∗1 such that the financial system S2 ∶= (a,L(s) + L(l),Z;γ), where Z is a zero matrix, has the

algorithmic default set D∗2 that satisfies D∗2 ⊊ D∗1

In Proposition 3.21 the system S2 has the same overall interbank liabilities as S1 but all the interbank

liabilities are now short-term liabilities. The proposition shows that if we treat all maturities to be the

same then we could end up with the financial system S2 in which fewer banks default than if we account

for the different maturity dates as in S1. Therefore, this shows that approximating multiple maturity

systems by single maturity systems can underestimate the severity of the risk of default. More generally,

any uncertainty about the maturity profile in a financial system is itself a potential source of systemic

risk.

This observation is particularly pertinent because in practice regulators do not have precise infor-

mation about the banks’ maturity profiles. Typically regulatory reports group liabilities into broad cat-

egories without recording the exact maturity dates. According to Langfield et al. (2014), in the UK,

“banks report exposures with breakdown by the maturity of the instrument” and “Categories of maturi-

ties are: open; less than 3 months; between 3 months and 1 year; between 1 year and 5 years; and more

than 5 years. Derivatives are not reported with a maturity breakdown.” It is therefore an open question

whether these five categories are a sufficient representation of the maturity profile in the UK financial

system for the purposes of assessing systemic risk.

4 Financial system after the first clearing

4.1 Stylised balance sheet after clearing at the first maturity date

Let us denote the financial system (a,L(s), L(l);γ) that we have been considering so far by S(0) to

indicate that it represents the system at time t = 0, prior to clearing at t = T1. Following clearing at

t = T1 using the algorithmic approach described above, we obtain the algorithmic liquid asset vector and

the algorithmic default set, which we now denote by v∗(T1) and D∗(T1). This allows us to formulate

a new financial system S(T1) ∶= (a(T1), L
(s)(T1), L

(l)(T1);γ) of banks in some set N (T1) ⊆ N after

clearing at t = T1. The banks that defaulted as part of the clearing at t = T1 are no longer a part of the

financial system and so

N (T1) = N ∖D
∗
(T1). (8)
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4. FINANCIAL SYSTEM AFTER FIRST CLEARING

Note that the sink nodeN ∈ N does not default as it has no liabilities and henceN ∈ N (T1). We assume

that the only changes between t = 0 and t = T1 are attributable exclusively to the clearing process itself.

Thus the new cash assets a(T1) are just the liquid assets of banks in N (T1) less their payments at T1.

Since the banks that do not make their full payments at T1 default and are not in N (T1) it follows that

for all i ∈ N (T1),

a(T1)i = v
∗
(T1)i − L̄

(s)
i . (9)

At maturity date T1, a typical surviving bank in N (T1) may have had outstanding long-term liabilities

both to banks in D∗(T1) that defaulted at T1 and to banks in N (T1) that did not. As between the

surviving banks inN (T1), the new short-term liabilities at T1 are just the remaining liabilities that were

not due at T1. Thus for all i, j ∈ N (T1) such that i, j ≠ N

L(s)(T1)ij = L
(l)
ij . (10)

The outstanding liabilities of surviving banks inN (T1) to the defaulting banks inD∗(T1) may comprise,

for example, long-term interbank assets that the defaulting banks were not able to liquidate in time to

avert the default. The surviving banks do not escape those liabilities by virtue of the defaults. There

is, however, the question of who now owns these liabilities and thus to whom are they owed. In reality,

such liabilities are assets of the banks in D∗(T1) and these assets typically would be re-distributed

by liquidation administrators, likely through an auction. Such an auction would then determine who

becomes their new owner. However, as discussed earlier in the paper, modelling such auctions is outside

the scope of this paper and we refer to Capponi et al. (2015) for a model of an auction in this context.

We address the problem of who acquires the long-term assets of defaulting institutions by just assum-

ing that all defaulting banks sell their long-term interbank assets to the sink node N . This assumptions

keeps the model clear and does not require arbitrary choices of who else in the network would be willing

to acquire these assets.

The important consequence of this transaction is that, coupled with (10) above, we can now complete

the characterisation of the new short-term liability matrix L(s)(T1). As before, we continue with the

assumption that the sink node has no liabilities. Hence for all i, j ∈ N (T1)

L(s)(T1)iN = L
(l)
iN + ∑

k∈D∗(T1)

L
(l)
ik , (11)

L(s)(T1)Nj = L
(l)

(T1)Nj = 0. (12)

In particular, it follows that L̄(s)(T1)i = ∑j∈N (T1)∪D∗(T1)L
(l)
ij = L̄

(l)
i for all i ∈ N (T1).

Furthermore, since these are the only liabilities of banks N (T1) at t = T1, we also have that for all
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i, j ∈ N (T1) there are no new long-term liabilities:

L(l)(T1)ij = 0. (13)

The following proposition confirms that we have indeed constructed a new financial system.

Proposition 4.1. Let N (T1) be a set given in (8). The tuple S(T1) ∶= (a(T1), L
(s)(T1), L

(l)(T1);γ)

satisfying (9) — (13) is a financial system.

The stylised balance sheet of each bank except the sink node in this new financial system is given

by Table 2. The sink node in the new financial system has no cash assets or short-term interbank li-

abilities and hence E(T1)N = Ā(s)(T1)N . Its short-term interbank loans are given by Ā(s)(T1)N =

∑j∈N (T1)L
(l)
jN +∑j∈N (T1)∑k∈D∗(T1)L

(l)
jk .

Assets Liabilities

● Cash assets: a(T1)i = v
∗(T1)i − L̄

(s)
i

● Short-term interbank liabilities:

● Short-term interbank loans: Ā(s)(T1)i = ∑j∈N (T1)L
(l)
ji

L̄(s)(T1)i = ∑j∈N L
(l)
ij

● Equity:

E(T1)i = a(T1)i + Ā
(s)(T1)i − L̄

(s)(T1)i

Table 2: Stylised balance sheet at t = T1 of bank i ∈ N (T1) ∖ {N} after clearing.

4.2 Clearing at the second maturity date

The financial system S(T1), described in Section 4.1, can be cleared again by the application of Algo-

rithm 1. In fact, by Remark 3.9, S(T1) satisfies the Monotonicity Condition 3.7 and so can be cleared

by the application of the simpler Algorithm 2. Moreover, by Propositions 3.16 and 3.15, we can see that

at the last maturity the financial system is reducible to the familiar models of Eisenberg & Noe (2001)

or Rogers & Veraart (2013).

Let ṽ∗(T2) and D̃∗(T2) be the output of Algorithm 2 applied to the financial system S(T1). Then,

after clearing at t = T2, we obtain a new financial system S(T2) consisting of banks in the setN (T2) ∶=

N (T1)∖D̃
∗(T2). Since the banks inN (T2) have only cash assets and no liabilities, this system is given

by S(T2) ∶= (a(T2),Z,Z;γ). Thus S2 is characterised by the cash assets given by

a(T2)i = ṽ
∗
(T2)i − L̄

(s)
(T1) ∀i ∈ N (T2).

We also have that Ā(s)(T2) = L̄
(s)(T2) = 0 and hence a(T2)i = E(T2)i for all i ∈ N (T2). Moreover no

further clearing of S(T2) is necessary.
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4.3 Extension to more than two maturity dates

So far we have focused on financial systems with at most two maturities. However, provided we track

the precise maturity profile of all the liabilities amalgamated in the long-term liability matrix L(l), we

can readily extend our modelling framework to n > 2 maturity dates 0 < T1 < T2 < . . . < Tn.

We write L(Ti) ∈ RN×N+ for the matrix containing all interbank liabilities maturing at Ti, i ∈

{1, . . . , n}. We then consider an n-maturity financial system as a tuple S = (a,L(T1), L(T2), . . . , L(Tn);γ).

At t = 0 we can define a 2-maturity financial system S(0) ∶= (a,L(s), L(l);γ) given by L(s) ∶= L(T1)

and L(l)ij ∶= ∑
n
τ=2L

(Tτ )
ij for all i, j ∈ N . Then clearing the n-maturity financial system S at time t = T1

reduces to clearing the 2-maturity financial system S(0) at time t = T1 using Algorithm 1 and, using

the methodology similar to the one described in Section 4.1, produces a new 2-maturity financial system

S(T1) ∶= (a(T1), L
(s)(T1), L

(l)(T1);γ).

The new liquid assets vector a(T1) is as in (9) and only the definition of the new short-term and

new long-term interbank liability matrices change so that the liabilities maturing at t = T2 become the

new short-term liabilities and all liabilities maturing at t ≥ T3 are aggregated into the new long-term

liabilities. Thus we obtain, for all i, j ∈ N (T1) with i, j ≠ N , that

L(s)(T1)ij = L
(T2)
ij ,

L(s)(T1)iN = L
(T2)
iN + ∑

k∈D∗(T1)

L
(T2)
ik ,

L(l)(T1)ij =
n

∑
τ=3

L
(Tτ )
ij ,

L(l)(T1)iN =
n

∑
τ=3

L
(Tτ )
iN + ∑

k∈D∗(T1)

n

∑
τ=3

L
(Tτ )
ik ,

L(s)(T1)Nj = L
(l)

(T1)Nj = 0

Similarly, we can clear S(T2) using our methodology for two maturities and then repeat this ap-

proach until we reach the point t = Tn−1 where, for all i, j ∈ N (T1) with i, j ≠ N ,

L(s)(Tn−1)iN = L
(Tn)
ij ,

L(s)(Tn−1)Nj = 0,

L(s)(Tn−1)iN = L
(Tn)
ij + ∑

k∈D∗(Tn−1)

L
(Tn)
ik ,

and L(l)(Tn−1) = Z.

This system can now be cleared using Algorithm 2, analogously to what we did in Section 4.2. In

the end we obtain the last financial system S(Tn) ∶= (a(Tn),Z,Z;γ) such that a(Tn) = E(Tn) and no
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further clearing is necessary.

5 Conclusion

This paper has developed a rigorous clearing framework for interbank networks with multiple maturities.

We have shown that a vector of clearing cash flows (a vector of liquid assets, in our case) on its own is

not sufficient to fully describe the clearing framework. A suitable definition of the set of banks in default

is needed. This does not arise naturally from the description of the stylised balance sheets and must be

specified as part of the model. We discussed the necessary conditions on such a default set. These

conditions are not sufficient and we considered the algorithmic approach and the functional approach as

two possible approaches to specifying default.

The functional default set corresponds to the definitions that have been used in previous literature and

has a simple functional representation. It does not have an absorbing property and, as a consequence, a

liquid asset vector using the functional default set may not exist for every financial system. On the other

hand, the algorithmic default set has a more complex algorithmic definition that guarantees that default is

an absorbing state. Therefore the algorithmic liquid asset vector can be found for any financial system.

We proposed Algorithm 1, which produces a sequence of vectors that converges to the algorithmic

liquid asset vector. This sequence of vectors is not in general monotone but the absorption property of

the default sets ensures the algorithm converges in a finite number of steps.

The functional approach has a number of uses despite restrictions on the existence of functional

liquid asset vectors. We have shown that for certain types of financial systems the algorithmic approach

reduces to the functional approach. Furthermore, we have shown that the functional approach reduces to

the models by Eisenberg & Noe (2001) and Rogers & Veraart (2013) if only one maturity is considered.

In addition, we have shown that functional liquid asset vectors can be used in the construction of clearing

solutions under the algorithmic approach. For these reasons the properties of functional liquid asset

vectors are important. We have shown that under a regularity condition functional liquid asset vectors

can be characterised as fixed points and a greatest and a least functional liquid asset vectors exist. We

have also shown that functional liquid asset vectors are in general not unique but under a mild condition

we could show that there can be at most one such vector corresponding to any given default set.

We have illustrated two key applications of Algorithm 1. We demonstrated that the default risk of

a bank depends in a non-trivial manner on the precise maturity profile of its liabilities. Relying on the

assumption that all interbank liabilities have the same maturity can lead to an inaccurate assessment of

risks. Our clearing approach provides a rigorous tool to incorporate different maturities in the clearing

process. We also showed how to extend the model to a multi-period one by describing a settlement

mechanism, which characterises the stylised balance sheets of the surviving banks after clearing.

There are many directions in which one could extend this line of research. The most ambitious ex-
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tension of the multiple maturity model would be to develop a full dynamic model of interbank networks.

The multi-period approach in Section 4.3 provides a solid basis for this. The next steps would involve

developing a control theory by deciding on a set of actions that financial institutions can choose from as

they move forward in time. Examples of such actions could, for example, be new borrowing or lending

activities. For such dynamic models one could then also include stochastic dynamics for some of the

quantities of interest.

A Appendix

Proof of Proposition 3.4. Let v ∈ RN+ , then for all j ∈ D(v) = {i ∈ N ∣ vi < L̄
(s)
i } it holds that

γvj < L̄
(s)
j ≤ L̄j and hence L̄j ∧ γvj = γvj . Hence for all i ∈ N

Ψ(v,D(v))i = ai + ∑
j∈N∖D(v)

L
(s)
ji + ∑

j∈D(x)

Πji(L̄j ∧ γvj)

= ai + ∑
j∈N∖D(v)

L
(s)
ji + ∑

j∈D(x)

Πjiγvj

= Ψ̃i(v).

In order to prove Theorem 3.6 and Theorem 3.10 we need the following Lemma.

Lemma A.1. Let S = (a,L(s), L(l);γ) be a financial system and d ∶ RN+ → P(N ) some function, where

P denotes the power set. Let Ψd ∶ [0, a + Ā] → [0, a + Ā] be the function given by x ↦ Ψ(x;d(x)) for

all x ∈ [0, a + Ā].

1. Suppose d ≡ D, i.e. d(x) = D for all x ∈ [0, a + Ā] and some fixed D ⊆ N . Then Ψd = Ψ(⋅;D)

and Ψd is non-decreasing; i.e. for all x′, x ∈ [0, a+ Ā] with x′ ≤ x we have that Ψd(x′) ≤ Ψd(x).

2. Suppose d = D, i.e. d(x) = D(x) = {i ∈ N ∣ xi < L̄
(s)
i } for all x ∈ [0, a + Ā] and suppose

that S satisfies Monotonicity Condition 3.7. Then Ψd = Ψ̃ and Ψd is non-decreasing; i.e. for all

x′, x ∈ [0, a + Ā] with x′ ≤ x we have that Ψd(x′) ≤ Ψd(x).

Proof of Lemma A.1. 1. Suppose d ≡ D for some fixed D ⊆ N . Then, for each x ∈ [0, a + Ā],

Ψd(x) = Ψ(x;d(x)) = Ψ(x;D) and hence Ψd = Ψ(⋅;D).

Let x′, x ∈ R+ with x′ ≤ x. Define E(x′) ∶= {i ∈ D ∣ γx′i < L̄i} and, similarly, E(x). Since
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γx′i ≤ γxi for all i ∈ N , we see that E(x) ⊆ E(x′) ⊆ N . Then, for each i ∈ N , we have

Ψd
i (x

′
) = Ψi(x

′;D) = ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D

Πji(L̄j ∧ γx
′
j)

= ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D∖E(x′)

ΠjiL̄j + γ ∑
j∈E(x′)

Πjix
′
j

= ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D∖E(x′)

Lji + γ ∑
j∈E(x′)

Πjix
′
j

= ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D∖E(x)

Lji + γ ∑
j∈E(x)

Πjix
′
j + ∑

j∈E(x′)∖E(x)

(Πjiγx
′
j −Lji)

≤ ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D∖E(x)

Lji + γ ∑
j∈E(x)

Πjix
′
j

≤ ai + ∑
j∈N∖D

L
(s)
ji + ∑

j∈D∖E(x)

Lji + γ ∑
j∈E(x)

Πjixj

= Ψi(x;D) = Ψd
i (x).

The first inequality (on the fifth line) follows since γx′j < L̄j for j ∈ E(x′) and hence Πjiγx
′
j −

Lji ≤ ΠjiL̄j − Lji = 0. The second inequality (on the sixth line) follows since x′ ≤ x by assump-

tion. Therefore Ψd is non-decreasing.

2. Suppose d =D. Then, for each x ∈ [0, a + Ā], Ψd(x) = Ψ(x;d(x)) = Ψ(x;D(x)) and hence, by

Proposition 3.4, Ψd = Ψ̃.

Again, let x′, x ∈ R+ with x′ ≤ x. Note that D(x) ⊆D(x′) ⊆ N . Then, for each i ∈ N , we have

Ψd
i (x

′
) = Ψ̃i(x

′
) = ai + ∑

j∈N∖D(x′)

L
(s)
ji + γ ∑

j∈D(x′)

Πjix
′
j

= ai + ∑
j∈N∖D(x′)

L
(s)
ji + γ ∑

j∈D(x′)∖D(x)

Πjix
′
j + γ ∑

j∈D(x)

Πjix
′
j

≤ ai + ∑
j∈N∖D(x′)

L
(s)
ji + ∑

j∈D(x′)∖D(x)

Π
(s)
ji x

′
j + γ ∑

j∈D(x)

Πjix
′
j

≤ ai + ∑
j∈N∖D(x′)

L
(s)
ji + ∑

j∈D(x′)∖D(x)

Π
(s)
ji L̄

(s)
j + γ ∑

j∈D(x)

Πjixj

= ai + ∑
j∈N∖D(x′)

L
(s)
ji + ∑

j∈D(x′)∖D(x)

L
(s)
ji + γ ∑

j∈D(x)

Πjixj

= ai + ∑
j∈N∖D(x)

L
(s)
ji + γ ∑

j∈D(x)

Πjixj

= Ψ̃i(x) = Ψd
i (x).

The first inequality (on the third line) follows due to the Monotonicity Condition 3.7 and the fact

that γ ≤ 1. The second inequality (on the fourth line) follows because x′ ≤ x by assumption and
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x′j < L̄
(s)
j for all j ∈D(x′). Therefore Ψd is non-decreasing.

Proof of Theorem 3.6. For each n, D(n) depends on v(n−1) but not on v(n). Therefore by Lemma A.1,

Ψ(⋅;D(n)) is non-decreasing and by Remark 2.4 is a mapping from a complete lattice to itself. Hence,

by the Tarski-Knaster Theorem, Ψ(⋅;D(n)) has the greatest fixed point, which lies within the image of

Ψ(⋅;D(n)), i.e. in [0, a + Ā]. In Algorithm 1 this fixed point is denoted v(n). Hence whenever D(n) is

well-defined, D(n+1) is also well-defined until the algorithm terminates.

In particular, (D(n))n≥0 is a well-defined and, by construction, increasing sequence of subsets of the

finite set N . Hence there exists the least n such that D(n) = D(n−1) and so Algorithm 1 terminates after

n iterations.

Proof of Theorem 3.10. 1. The result follows directly by the application of the Tarski-Knaster Theo-

rem since Ψ̃ is non-decreasing by assumption and it is a mapping from a complete lattice to itself

by Remark 2.4.

2. Since Ψ̃ is non-decreasing by Lemma A.1, the result follows directly from part 1. of this theorem.

Proof of Proposition 3.11. 1. We first provide one example of a financial system in which the func-

tional liquid asset vector exists even though the Monotonicity Condition 3.7 is not satisfied.

Let (a,L(s), L(l); 1) be a financial system of three banks where

a =

⎛
⎜
⎜
⎜
⎜
⎝

1

98

10

⎞
⎟
⎟
⎟
⎟
⎠

, L(s) =

⎛
⎜
⎜
⎜
⎜
⎝

0 2 2

2 0 98

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, L(l) =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0

1 0 1

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, L =

⎛
⎜
⎜
⎜
⎜
⎝

0 2 2

3 0 99

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

Then,

L̄(s) =

⎛
⎜
⎜
⎜
⎜
⎝

4

100

0

⎞
⎟
⎟
⎟
⎟
⎠

, L̄ =

⎛
⎜
⎜
⎜
⎜
⎝

4

102

0

⎞
⎟
⎟
⎟
⎟
⎠

, Π(s) =

⎛
⎜
⎜
⎜
⎜
⎝

0 1
2

1
2

1
50 0 49

50

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, Π =

⎛
⎜
⎜
⎜
⎜
⎝

0 1
2

1
2

1
34 0 33

34

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

In particular, we see that Monotonicity Condition 3.7 is not satisfied because Π
(s)
21 = 1

50 < 3
102 =

Π21. Nevertheless, it can be verified that (v1, v2, v3)
⊺ = (363

67 ,99130
134 ,1091

2)
⊺ ≈ (3.94,99.97,109.5)⊺

is a functional liquid asset vector.

One can check that in this example the function Ψ̃ is non-decreasing even though the Monotonicity

Condition 3.7 is not satisfied.

2. Next, we provide an example of a financial system in which the Monotonicity Condition 3.7 is not

satisfied and a functional liquid asset vector does not exist.

We construct an example with three banks in which only bank 1 is in fundamental default. We

set up the network such that this leads to a contagious default of bank 2 which is asset rich. We
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introduce long-term liabilities in such a way that once bank 2 defaults it repays a much larger

proportion of its debt to bank 1 than if it were not in default. This leads to bank 1 being able to

pay more than L̄(s)1 .

Let (a,L(s), L(l); 1) be a financial system of three banks where

a =

⎛
⎜
⎜
⎜
⎜
⎝

1

98

10

⎞
⎟
⎟
⎟
⎟
⎠

, L(s) =

⎛
⎜
⎜
⎜
⎜
⎝

0 2 2

2 0 98

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, L(l) =

⎛
⎜
⎜
⎜
⎜
⎝

0 2 2

100 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, L =

⎛
⎜
⎜
⎜
⎜
⎝

0 4 4

102 0 98

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

Then,

L̄(s) =

⎛
⎜
⎜
⎜
⎜
⎝

4

100

0

⎞
⎟
⎟
⎟
⎟
⎠

, L̄ =

⎛
⎜
⎜
⎜
⎜
⎝

8

200

0

⎞
⎟
⎟
⎟
⎟
⎠

, Π(s) =

⎛
⎜
⎜
⎜
⎜
⎝

0 1
2

1
2

1
50 0 49

50

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, Π =

⎛
⎜
⎜
⎜
⎜
⎝

0 1
2

1
2

51
100 0 49

100

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

Note that Monotonicity Condition 3.7 is not satisfied, since for example Π
(s)
21 = 1

50 < 51
100 = Π21.

Hence, if bank 2 defaults it repays a larger proportion to bank 1 than if it survives. We show in the

following that no functional liquid asset vector exists.

According to Definition 3.3, bank 3 can never default since it does not have any short-term (or

indeed any) liabilities. In particular, since Ψ̃ is non-negative, we have that {i ∈ N ∣ Ψ̃(v)i < 0} = ∅

for any v. Hence we need to consider four cases:

All banks survive. Suppose there exists a functional liquid asset vector v, such that D(v) = ∅.

Hence, vi ≥ L̄
(s)
i for all i. Then, for all i ∈ N ,

vi = ai + ∑
j∈N

L
(s)
ji .

Consider i = 1. Then v1 = 1 + 2 = 3 < 4 = L̄
(s)
1 , implying that 1 ∈ D(v) and therefore

contradicting the assumption that D(v) = ∅.

Only bank 1 defaults. Suppose there exists a functional liquid asset vector v, such that D(v) =

{i ∶ vi < L̄
(s)
i } = {1}. Then,

v1 = a1 + ∑
j∈{2,3}

L
(s)
ji = 1 + 2 + 0 = 3 < 4 = L̄

(s)
1 ,

v2 = a2 +L
(s)
32 +Π12v1 = 98 + 0 +

1

2
3 = 99

1

2
< 100 = L̄

(s)
2 .

Hence 2 ∈D(v) contradicting the assumption that D(v) = {i ∈ D ∶ vi < L̄
(s)
i } = {1}.

Only bank 2 defaults. Suppose there exists a functional liquid asset vector v, such that D(v) =
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{i ∈ D ∶ vi < L̄
(s)
i } = {2}. Then,

v2 = a2 + ∑
j∈{1,3}

L
(s)
ji = 98 + 2 + 0 = 100 = L̄

(s)
2 .

Hence 2 ∉D(v), contradicting our assumption.

Both bank 1 and bank 2 default. Suppose there exists a functional liquid asset vector v, such

that D(v) = {i ∶ vi < L̄
(s)
i } = {1,2}. Then,

v1 = a1 +L
(s)
31 +Π21v2 = 1 + 0 +

51

100
⋅ v2,

v2 = a2 +L
(s)
32 +Π12v1 = 98 +

1

2
⋅ v1.

We then obtain that (1 − 1⋅51
2⋅100)v1 = 1 + 98 51

100 and hence v1 ≈ 68.43 > 4 = L̄
(s)
1 . Therefore

1 ∉D(v), contradicting our assumption.

Hence, in all cases we get a contradiction and therefore no functional liquid asset vector exists.

Proof of Theorem 3.13. The proof uses similar arguments as in Rogers & Veraart (2013, Proof of The-

orem 3.7).

(i) We prove that v(n) ≤ v(n−1) ≤ a + Ā(s) ∀n ≥ 1 and D(n) =D(v(n−1)) ∀n ≥ 1 by induction.

Note that for all n and j ∈ N we have L̄j ∧ γv
(n)
j ≤ γv

(n)
j ≤ v

(n)
j . Furthermore, for all n and

j ∈ D(v(n)) we also have v(n)j < L̄
(s)
j . Therefore, by the Monotonicity Condition 3.7, for all n,

i ∈ N and j ∈D(v(n)) we have that

Πji(L̄j ∧ γv
(n)

)j ≤ Π
(s)
ji L̄

(s)
j = L

(s)
ji . (14)

Now let n = 1. Then by the definition of the algorithm D(1) = D(0) ∪D(v(0)) = ∅ ∪D(v(0)) =

D(v(0)). Next we show that v(1) ≤ v(0) = a + Ā(s).

By (14), for all i ∈ N , we have

Ψi(v
(0);D(1)) = ai + ∑

j∈N∖D(1)

L
(s)
ji + ∑

j∈D(1)

Πji(L̄j ∧ γv
(0)
j )

≤ ai + ∑
j∈N∖D(1)

L
(s)
ji + ∑

j∈D(1)

L
(s)
ji

= ai + ∑
j∈N

L
(s)
ji = ai + Ā

(s)
i = v

(0)
i .
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By Lemma A.1 (part 1.), Ψ(⋅;D(1)) is non-decreasing and so

0 ≤ Ψk+1
(v(0);D(1)) ≤ Ψk

(v(0);D(1)) ≤ v(0) = a + Ā(s)

for all k where Ψk is a k-fold composition of Ψ. Since this sequence is bounded from below by

zero, the limit v(1) ∶= limk→∞ Ψk(v(0);D(1)) exists and solves v(1) = Ψ(v(1);D(1)).

Induction hypothesis: Suppose for an n ∈ N it holds that

D
(n)

=D(v(n−1)
),

v(n) ≤ v(n−1)
≤ v(0) = a + Ā(s).

We show that

D
(n+1)

=D(v(n)),

v(n+1)
≤ v(n) ≤ v(0) = a + Ā(s).

We start with the default sets:

D
(n+1)

= D
(n)

∪D(v(n))
ind. hyp. part 1

= D(v(n−1)
) ∪D(v(n))

ind. hyp. part 2
= D(v(n)).

Next we consider the vector

v(n+1)
= Ψ(v(n+1);D(n+1)

) = Ψ(v(n+1);D(v(n))).

Then by (14), for all i ∈ N , we have

Ψi(v
(n);D(n+1)

) =

= ai + ∑

j∈N∖D(n+1)

´ ¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
D(v(n))

L
(s)
ji + ∑

j∈D(n+1)

Πji(L̄j ∧ γv
(n)
j )

= ai + ∑
j∈N∖D(v(n))

L
(s)
ji + ∑

j∈D(v(n−1))

Πji(L̄j ∧ γv
(n)
j ) + ∑

j∈D(v(n))∖D(v(n−1))

Πji(L̄j ∧ γv
(n)
j )

≤ ai + ∑
j∈N∖D(v(n))

L
(s)
ji + ∑

j∈D(v(n−1))

Πji(L̄j ∧ γv
(n)
j ) + ∑

j∈D(v(n))∖D(v(n−1))

L
(s)
ji

= ai + ∑

j∈N∖D(v(n−1))

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D
(n)

L
(s)
ji + ∑

j∈D(v(n−1))

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D
(n)

Πji(L̄j ∧ γv
(n)
j )

= Ψi(v
(n);D(n)) = v

(n)
i ≤ ai + Ā

(s)
i .
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Again, as before one can show by Lemma A.1 that

0 ≤ Ψk+1
(v(n);D(n+1)

) ≤ Ψk
(v(n);D(n+1)

) ≤ v(n)
ind. hyp. part 2

≤ a + Ā(s)

for all k. Therefore the sequence (Ψk(v(n);D(n+1)))
k≥0

decreases monotonically to the limit

limk→∞ Ψk(v(n) ≥ 0, which we denote by v(n+1). In particular, this limit satisfies v(n+1) =

Ψ(v(n+1);D(n)) and v(n+1) ≤ v(n) ≤ v(0).

(ii) Since the only difference between the two algorithms is the definition of the default sets in Step 2

and we have just proved in (i) that the default sets coincide, both algorithms are indeed identical

under the Monotonicity Condition 3.7.

(iii) By Proposition 3.12 and maximality of v+, we have that ṽ∗ ≤ v+ and so the result follows as soon

as we show that ṽ∗ ≥ v+. Since ṽ∗ = v(n) for some n, we proceed by induction to show that

v(n) ≥ v+ for all n.

First, observe that by the Monotonicity Condition 3.7 we have for each i ∈ N

v+i = Ψ̃i(v
+
) = ai + ∑

j∈N∖D(v+)

L
(s)
ji + ∑

j∈D(v+)

γΠji
±
≤Π
(s)
ji

v+j
¯
<L̄
(s)
j

≤ ai + ∑
j∈N∖D(v+)

L
(s)
ji + ∑

j∈D(v+)

Π
(s)
ji L̄

(s)
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=L
(s)
ji

= ai + ∑
j∈N

L
(s)
ji = ai + Ā

(s)
i = v

(0)
i .

Hence v(0) ≥ v+. Now suppose that v(n) ≥ v+ for some n. We then show that v(n+1) ≥ v+.

By the induction hypothesis and Lemma A.1 it follows that Ψ(v(n);D(n+1)) ≥ Ψ(v+;D(n+1)).

We will also show that Ψ(v+;D(n+1)) ≥ v+. Therefore by Lemma A.1, Ψk(v(n);D(n+1)) ≥ v+ for

all k ≥ 0. But we showed in the proof of Theorem 3.13.(i) that the sequence (Ψk(v(n);D(n+1)))
k≥0

decreases monotonically to its limit v(n+1). Therefore v(n+1) ≥ v+, which completes the induc-

tion.

It remains to show that, indeed, Ψ(v+;D(n+1)) ≥ v+ given the induction hypothesis above. This

follows by the Monotonicity Condition 3.7 as follows. Note that D(n+1) = D(v(n)) ⊆ D(v+)

since v(n) ≥ v+ by the induction hypothesis. Moreover, for j ∈ D(v(n)) we also have that γv+j ≤
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v
(n)
j < L̄

(s)
j ≤ L̄j and so Πji(L̄j ∧ γv

+
j ) = γΠjiv

+
j . Then, for any i ∈ N we have that

Ψi(v
+;D(n+1)

) = ai + ∑
j∈N∖D(v(n))

L
(s)
ji + ∑

j∈D(v(n))

γΠjiv
+
j

= ai + ∑
j∈N∖D(v+)

L
(s)
ji + ∑

j∈D(v+)

γΠjiv
+
j + ∑

j∈D(v+)∖D(v(n))

⎛
⎜
⎜
⎜
⎜
⎜
⎝

L
(s)
ji − γΠji

±
≤Π
(s)
ji

v+j
¯
<L̄
(s)
j

⎞
⎟
⎟
⎟
⎟
⎟
⎠

≥ ai + ∑
j∈N∖D(v+)

L
(s)
ji + ∑

j∈D(v+)

γΠjiv
+
j

= Ψ̃i(v
+
) = v+i .

Proof of Proposition 3.14. Let (a,L(s), L(l); 1) be as in the proof of Proposition 3.11.2 where, as men-

tioned above, Monotonicity Condition 3.7 fails. Algorithm 2 would fail to terminate since the sequences

v(n) and D(v(n)) would evolve as follows

v(0) = (3,100,110) D(v(0)) = {1}

v(1) = (3,99.5,109.5) D(v(1)) = {1,2}

v(2) ≈ (68.43,132.21,93.43) D(v(2)) = ∅

v(3) = (3,100,110) D(v(3)) = {1}

. . .

and it is clear that this sequence would not terminate.

Proof of Proposition 3.15. Since L(l) = Z, we have that L̄ = L̄(s) and Π = Π(s).

1. For i ∈ N we have

vi = ai + ∑
j∈N∖D(v)

L
(s)
ji

±
=Πji L̄

(s)
j

±
=qj

+ ∑
j∈D(v)

Πji γvj
°
=qj

= ai + ∑
j∈N

Πjiqj .

Hence, D(v) = {i ∈ N ∣ ai +∑j∈N Πjiqj < L̄i}. Hence, for all i ∈D(v)

qi = γvi = γai + γ ∑
j∈N

Πjiqj ,
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and for all i ∈ N ∖D(v) we have that qi = L̄
(s)
i = Li. Hence, q satisfies the fixed point equation

(6).

2. Let q be a solution to (6). We show that v = a + Π⊺q is a functional liquid asset vector, i.e.,

Ψ̃(v) = v. Note that D(v) = {i ∈ N ∣ ai +∑j∈N Πjiqj < L̄i}. Therefore, for all i ∈ N

Ψ̃i(v) = ai + ∑
j∈N∖D(v)

L
(s)
ji

±
=Πji L̄

(s)
j

±
=qj

+ ∑
j∈D(v)

Πji γvj
°
=qj

= ai + ∑
j∈N

Πjiqj = vi.

Proof of Proposition 3.16. Since L(l) = Z, we have that L = L(s), L̄ = L̄(s) and Π = Π(s). The result

follows directly from Proposition 3.15 with γ = 1.

1. Let v be a functional liquid asset vector and D(v) = {i ∈ N ∣ vi < L̄
(s)
i }. Hence, with γ = 1

in Proposition 3.15, q = L̄(s) ∧ v. Furthermore, the fixed point equation (6) simplifies to q =

L̄(s) ∧ a +Π⊺q which is exactly (7) and hence the result follows.

2. Similarly, since the fixed point equations (6) and (7) coincide for γ = 1 the result follows directly

from Proposition 3.15.

The following Lemma is used in the proof of Lemma 3.17 below.

Lemma A.2. Suppose Π ∈ RN×N+ is a row-substochastic matrix, 0 ≤ ρ ≤ 1 its spectral radius and

0 ≤ γ ≤ 1 a constant.

(i) If γ < 1 or ρ < 1 then the matrix (I − γΠ⊺) is invertible and (I − γΠ⊺)−1 is non-negative.

(ii) If γ = 1 and ρ = 1 then there exists a set C ⊆ N such that for all i ∈ C we have that ∑j∈C Πij = 1.

Proof. (i) If γ = 0 then (I − γΠ⊺) = I, which is clearly invertible with a non-negative inverse. So we

assume that 0 < γ.

Since ρ is the spectral radius of Π, it is also the spectral radius of Π⊺. Since Π is a row sub-

stochastic matrix, we have that ρ ≤ 1. As Π⊺ is non-negative, standard results for M-matrices (see,

for example, Theorem 2.5.3.2 and 2.5.3.17 in Horn & Johnson (1991)) imply that (αI − Π⊺) is

invertible with a non-negative inverse if and only if α > ρ. Set α = γ−1 > 0. If γ < 1 then α > 1 ≥ ρ

and if γ = 1 but ρ < 1 then α = 1 > ρ. Hence (I − γΠ⊺) = α−1 (αI −Π⊺) is invertible with a

non-negative inverse.
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(ii) As a standard result in the theory of finite-state Markov chains (see, for example, Theorem 2.1

in Karlin & Taylor (1981)), the number of sets C ⊆ N satisfying the property that for all i ∈ C

∑j∈C Πij = 1 is equal to the multiplicity of the eigenvalue 1 of Π. Since ρ = 1 by assumption, the

multiplicity must be at least 1 and hence at least one such set C must exist.

Proof of Lemma 3.17. The system of m linear equations has a unique solution, x ∈ Rm+ , if it can be

expressed as

x = (I − γ (ΠDD)
⊺
)
−1
b,

where (I − γ (ΠDD)
⊺
) is invertible.

We note that ΠDD is a row-substochastic matrix. By Lemma A.2.(i) we only need to consider the

case where γ = 1 and the spectral radius of ΠDD is exactly 1. In this case, by Lemma A.2.(ii), there is a

set C ⊆ D such that ∑j∈C Πij = 1 for each i ∈ C. By assumption, if γ = 1 then b > 0 and so

xi = bi + ∑
j∈D

Πjixj

≥ bi +∑
j∈C

Πjixj >∑
j∈C

Πjixj .

By summing xi for all i ∈ C, we arrive at the contradiction

∑
i∈C

xi >∑
j∈C

xj
⎛

⎝
∑
j∈C

Πji
⎞

⎠
=∑
j∈C

xj .

Thus γ < 1 or ρ < 1 and so (I − γ (ΠD(n)D(n))
⊺
) is invertible and x is the well-defined and unique

solution to the system of linear equations.

Non-negativity of x follows by Lemma A.2.(i).

Proof of Proposition 3.18. By Theorem 3.13, D(n) ⊆ D(n+1) = D(v(n)) and, under the Monotonicity

Condition 3.7, v(n) is a fixed point of Ψ(⋅;D(n)). Then for all j ∈ D(n) we have that L̄j ∧γv
(n)
j = γv

(n)
j .

Therefore the fixed-point problem (5) in Algorithm 2 is in a fact a system of linear equations:

v
(n)
i = Ψi(v

(n);D(n)) = ai + ∑
j∈N∖D(n)

L
(s)
ji + γ ∑

j∈D(n)

Πjiv
(n)
j , (15)

for i ∈ N . Moreover, it is sufficient to consider (15) only for i ∈ D(n). Indeed, if x ∈ Rm+ , where

m ∶= ∣D(n)∣, is some such solution then we can simply set v(n)i ∶= xi for i ∈ D(n) and v(n)i ∶= ai +

∑j∈N∖D(n) L
(s)
ji + γ∑j∈D(n) Πjixj for i ∈ N ∖D(n).

Setting bi ∶= ai + ∑j∈N∖D(n) L
(s)
ji for each i ∈ D(n), we note that bi ≥ ai > 0 for all i ∈ D(n).
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Therefore, by Lemma 3.17, x is a unique solution to the system of linear equations (15) for i ∈ D(n). In

particular, letting L(n) ∶= N ∖D(n), we can write

x = (I − γ (ΠD(n)D(n))
⊺
)
−1
b,

where (I − γ (ΠD(n)D(n))
⊺
) is invertible and b = aD(n) + (L

(s)

L(n)D(n)
)
⊺

1L(n) .

Non-negativity of v(n) then follows by Lemma 3.17 and the fact that Ψ is non-decreasing (Lemma

A.1).

Proof of Proposition 3.19. To simplify the notation we set m ∶= ∣D(n)∣ and in this proof assume that

whenever, for some i, we let 1 ≤ i ≤ m that means that i ∈ D(n). In this context, if i = m + 1 then

i ∉ D(n). Moreover, we set L(n) ∶= N ∖D(n) and let b ∈ Rm+1
+ , Λ(s) ∈ R(m+1)×(m+1)

+ be given by

b =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 +∑j∈L(n) L
(s)
j1

⋮

am +∑j∈L(n) L
(s)
jm

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Λ(s) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L11 ⋯ L1m
L̄1

γ −∑
m
k=1L1k

⋮ ⋮

Lm1 ⋯ Lmm
L̄m
γ −∑

m
k=1Lmk

0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

It is clear that Z, the (m + 1) × (m + 1) zero matrix, is a liability matrices. To see that Λ(s) is a liability

matrix, we need to check that the last column is nonnegative and all other properties follow immediately

from the definition. For all i ∈ {1, . . . ,m} we have γ∑mk=1Lik ≤ ∑
m
k=1Lik ≤ ∑

N
k=1Lik = L̄i. Since

L̄i ≥ γ∑
m
k=1Lik⇔

L̄i
γ −∑

m
k=1Lik ≥ 0 the last column is indeed nonnegative.

So we define a financial system Sn ∶= (b,Λ(s),Z; 1) on the set of m + 1 banks containing D(n).

Since Sn has no long-term liabilities, we denote both the short-term and overall total nominal liabil-

ities vector of Sn by Λ̄ and we immediately see that Λ̄i =
1
γ L̄i for 1 ≤ i ≤ m and Λ̄m+1 = 0. Moreover,

the short-term and overall relative liability matrices of Sn are also the same. Denoting them by Θ(s) and

Θ, respectively, we have that Θ(s) = Θ ≥ 1 ⋅Θ and so the Monotonicity Condition 3.7 is satisfied. Note

that for 1 ≤ i, j ≤m we have

Θij =
Λij

Λ̄i
=
γLij

L̄i
= γΠij .

Suppose that x ∈ Rm+1
+ is some functional liquid asset vector of Sn with respect to

D(x) = {i ∈ {1, . . . ,m,m + 1} ∣ xi < Λ̄i} = {i ∈ D(n) ∣ γxi < L̄i},

where we used the convention that them elements ofD(n) are labelled by 1, . . . ,m, and the last equality

holds because Λ̄m+1 = 0 and hence the index m + 1 will never be in the default set.

Since x is a functional liquid asset vector we have that xi ≤ Λ̄i =
1
γ L̄i and hence Θjixj ≤ Lji for
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i, j ∈ D(n). Moreover, Λ
(s)
m+1i = 0 for all i ∈ D(n) and hence we have for each i ∈ D(n)

xi = Ψ̃i(x) = bi + ∑
j∈D(n)∖D(x)

Λ
(s)
ji + 1 ⋅ ∑

j∈D(x)

Θjixj

= ai + ∑
j∈N∖D(n)

L
(s)
ji + ∑

j∈D(n)∖D(x)

Lji + ∑
j∈D(x)

γΠjixj

= ai + ∑
j∈N∖D(n)

L
(s)
ji + ∑

j∈D(n)∖D(x)

ΠjiL̄j + γ ∑
j∈D(x)

Πjixj

= ai + ∑
j∈N∖D(n)

L
(s)
ji + ∑

j∈D(n)

Πji(L̄j ∧ γxj)

= Ψi(x;D(n)).

(16)

Then, we set

v
(n)
i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xi for i ∈ D(n),

ai +∑j∈N∖D(n) L
(s)
ji +∑j∈D(n) Πji(L̄j ∧ γxj) for i ∈ N ∖D(n).

(17)

Note that Ψ(v(n);D(n)) does not depend on v(n)i for i ∈ N ∖D(n). Hence, from (16) we immediately

see that v(n)i = Ψi(v
(n);D(n)) for all i ∈ D(n).

Furthermore, for all i ∈ N ∖D(n) we have by (17) that v(n)i = Ψi(v
(n);D(n)).

Hence we have shown that Ψ((v(n));D(n)) = v(n).

Proof of Proposition 3.21. Let S1 = (a,L(s), L(l); 1) denote the financial system introduced in the proof

of Proposition 3.11.2 and also used in the proof of Proposition 3.14 above. In Algorithm 1, using the

construction in Proposition 3.19, the sequences v(n) and D(v(n)) would evolve as follows

v(0) = (3,100,110) D(v(0)) = {1}

v(1) = (3,99
1

2
,109

1

2
) D(v(1)) = {1,2}

v(2) = (53
1

50
,102,65

1

25
) D(v(2)) = {2}

Thus we conclude that v∗ = v(2) and D∗1 = {1,2}.

Now let S2 = (a,L(s)+L(l),Z; 1). Then we can verify that the vector v∗, obtained above, is also the

unique functional liquid asset vector of S2 with the functional default set D(v∗) = {2}. By Remark 3.9,

S2 satisfies the Monotonicity Condition 3.7 and hence by Theorem 3.13 D∗2 ∶= {2} is the algorithmic

default set of S2.

Proposition of 4.1. We need to show that a(T1) is non-negative and L(s)(T1) and L(l)(T1) are liability

matrices.

By construction of Algorithm 1 v∗(T1) = Ψ(v∗(T1);D
∗(T1)) such that D(v∗(T1)) ⊆ D∗(T1).
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Suppose there is some i ∈ N (T1) such that v∗(T1)i < L̄
(s)
i . Then i ∈ D(v∗(T1)) and so i ∉ N (T1).

Hence, for all i ∈ N (T1), a(T1)i = v
∗(T1)i − L̄

(s)
i ≥ 0.

The fact that L(s)(T1) and L(l)(T1) are liability matrices follows from the definitions since it is

immediately clear they are non-negative matrices with zero diagonals.
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