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ODNI as an analytic ombudsman: Is Intelligence 

Community Directive 203 up to the task? 

 

Alexandru Marcoci, Ans Vercammen and Mark Burgman 

 

Forthcoming in Intelligence and National Security 

 

Abstract. In the wake of 9/11 and the assessment of Iraq's WMD, several inquiries 

placed the blame primarily on the Intelligence Community. Part of the reform that 

followed was a codification of analytic tradecraft standards into Intelligence 

Community Directive (ICD) 203 and the appointment of an analytic ombudsman in 

the newly created Office of the Director of National Intelligence charged with 

monitoring the quality of analytic products from across the intelligence community. 

In this paper we identify three assumptions behind ICD203: (1) tradecraft standards 

can be employed consistently; (2) tradecraft standards sufficiently capture the key 

elements of good reasoning; (3) good reasoning leads to more accurate judgments. 

We then report on two controlled experiments that uncover operational constraints in 

the reliable application of the ICD203 criteria for the assessment of intelligence 

products. Despite criticisms of the post-9/11 and post-Iraq reform, our results 

highlight that ICD203, properly applied, holds potential to improve precision and 

accountability of intelligence processes and products.  
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1. Introduction 

In his Preface to Roberta Wohlstetter’s Pearl Harbor: Warning and Decision, 

Thomas Schelling writes:  

Surprise, when it happens to a government, is likely to be a complicated, 

diffuse, bureaucratic thing. It includes neglect of responsibility, but also 

responsibility so poorly defined or so ambiguously delegated that action gets 

lost. It includes gaps in intelligence, but also intelligence that, like a string of 

pearls too precious to wear, is too sensitive to give to those who need it. It 

includes the alarm that fails to work, but also the alarm that has gone off so 

often it has been disconnected … finally, as at Pearl Harbor surprise may 

include some measure of genuine novelty introduced by the enemy, and 

possibly some sheer bad luck.” 1 

Despite Schelling’s analysis of strategic surprise as a state failure, in the wake of 9/11 

and the October 2002 National Intelligence Estimate (NIE) on Iraq’s Continuing 

Programs for Weapons of Mass Destruction,2 several inquiries have placed the blame 

primarily on the Intelligence Community (IC) and called for fundamental reform. Part 

of the analytic transformation that followed was a codification of the analytic 

standards into a policy document – Intelligence Community Directive (ICD) 203 – 

and the appointment of an analytic ombudsman in the newly created Office of the 

Director of National Intelligence (ODNI) charged with ensuring that intelligence 

reports from across the IC comply with these standards. ICD203 (in its second, 

January 2, 2015 iteration) contains four analytic standards: objectivity, political 

independence, timeliness and good tradecraft. The last is broken down into nine 

analytic tradecraft standards: (1) Properly describes quality and credibility of 

underlying sources, data, and methodologies; (2) Properly expresses and explains 
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uncertainties associated with major analytic judgments; (3) Properly distinguishes 

between underlying intelligence information and analysts' assumptions and 

judgments; (4) Incorporates analysis of alternatives; (5) Demonstrates customer 

relevance and addresses implications; (6) Uses clear and logical argumentation; (7) 

Explains change to or consistency of analytic judgments; (8) Makes accurate 

judgments and assessments; and (9) Incorporates effective visual information where 

appropriate. 

Commenting on the reforms, Robert Cardillo, who served in ODNI as Deputy 

Director of National Intelligence for Intelligence Integration, wrote that ICD203 

“injects rigor into our processes and products and holds analysts and managers 

accountable for results”. 3  However, this position hinges on whether the analytic 

tradecraft standards can be operationalised effectively. Yet, to date and as far as we 

are aware, no empirical investigation of these standards has been conducted. Thus, 

despite the optimism shown by Cardillo and others, without explicit testing, the 

effectiveness of ICD203 in the promotion of analytic excellence remains a potentially 

perilous assumption. This paper represents the first empirical investigation into the 

ICD203 criteria, providing insight into the assumptions that underlie their effective 

operationalisation, and the conditions under which these assumptions may not hold. 

In this study we draw on a set of hypothetical reasoning problems that emulate many 

of the challenges that arise in real intelligence problems. These problems have been 

developed by the Intelligence Advanced Research Programs Activity (IARPA) as part 

of a multi-year program on improving the reasoning of teams of intelligence analysts. 

The first stage of this program involves experimental assessments of teams’ abilities 

to solve constrained reasoning problems – that is, problems whose descriptions 
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contain all the information required to solve them. The problems have a normative 

standard against which the quality of the solution can be evaluated. This paper 

comprises a first fundamental step towards establishing whether ICD203 can be an 

effective instrument in the assessment of the quality of reasoning of analytic reports, 

initially focusing on constrained problems which enable a stricter level of 

experimental control.   

Our focus is exclusively on the evaluation of intelligence products, rather than on 

their production. As such, the purpose of the paper is to evaluate how ICD203 

supports ODNI in its mandated role of analytic ombudsman. As we reveal in our 

discussion, the results have relevance for the wider application of ICD203.    

We begin with a theoretical investigation of ICD203 and its aims. We identify three 

assumptions behind the optimistic discourse surrounding ICD203: (1) that the 

standards can be used consistently by different users (i.e. evaluators of analytic 

reports); (2) that scoring highly on the analytic tradecraft standards correlates with 

good reasoning; and (3) that good reasoning correlates with accurate judgment. We 

begin by asking whether the analytic tradecraft standards can be followed in a 

consistent (i.e. reliable) manner by different evaluators and whether training enhances 

reliability. We consider the experts involved in the development and testing of the 

problems used in the IARPA study to provide an external benchmark of good 

reasoning with respect to the problems they developed. Then, by comparing 

evaluations made using ICD203 with their evaluations, we establish whether the 

application of the tradecraft standards conforms to an external, independent reference 

point for good reasoning. Our study thus aims to explore the first two assumptions, 

leaving the third assumption for a future study.  
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In this paper we argue that: 

i. Both inter-rater agreement and correlation with expert judgments are sensitive 

to and may be substantially improved by training.  

ii. Evaluations based on application of ICD203 are at least fairly reliable and that 

even novice evaluators’ judgments guided by the analytic tradecraft standards 

are at least moderately correlated with expert judgments of the same 

analytical reports (the italicized terms are technical and they will be explained 

in more detail in Section 6). 

iii. The scoring system used to aggregate the evaluators’ judgments on the 

individual tradecraft standards also contributes importantly to measures of 

validity and consistency. This points to an often-overlooked issue: that 

determining whether tradecraft standards engender good reasoning is partly a 

function of how well-calibrated evaluators are and what weight one assigns to 

the different standards. 

The three points above are substantive and novel in the literature on analytic standards 

that we review in this paper.  

First, the analytic standards contained in ICD203 are framed in natural language and 

are deployed in the assessment of intelligence products in the form of an assessment 

rubric. The large literature on the use of assessment rubrics in (higher) education 

conclusively shows the benefits of evaluator training and calibration.4 Nevertheless, 

to date, no study has shown the impact of training on application of intelligence 

analytic standards. We compare expert evaluations with the results of a baseline 

experiment (without evaluator training) and an intervention (with basic evaluator 

training) in terms of reliability and correlation. This accomplishes two important 
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goals: it establishes that findings from the educational assessment literature carry over 

to the use of assessment rubrics in intelligence analysis, and it provides a baseline for 

the expected effect training can have on these kinds of rubrics. In other words, future 

studies might examine alternative, more comprehensive training methods to assess 

whether this training pays off in comparison to the basic training we provided our 

evaluators in this study.  

Second, we show that with minimal training (to be defined more precisely, below) 

assumptions (1) and (2) are warranted: evaluators become more reliable in using the 

rubric and their judgments correlate more closely to the judgments of experts. This 

suggests that it may be the right kind of instrument for evaluating the quality of 

intelligence reports in the IC.  

We stop short of saying that ICD203 actually is the right instrument for two reasons: 

as we discuss below, the results show that there may still be some need for revision in 

the way the standards are defined. Moreover, this study does not address accuracy 

(assumption (3)), and accuracy is essential for determining whether ICD203 can aid 

ODNI in performing its role as analytic ombudsman. Nevertheless, the results of this 

study offer a second benefit: they provide a benchmark in terms of reliability and 

correlation with good reasoning. In other words, we now know what a revised list of 

analytic standards has to outperform.5 

Third, this study draws attention to an oft-overlooked problem. Any research on an 

assessment rubric will be sensitive to the scoring method used for that rubric and we 

can only talk about reliability, correlations to expert judgments and accuracy with 

specific reference to that method. We have not found any discussion of this important 

point in the literature. To illustrate its importance, we investigate two different 
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scoring methods in this paper. The significant divergence of the results we obtain 

should be enough to convince the IC that this is an important, open question that 

warrants immediate additional research.     

 

This paper is organised as follows. In section 2 we introduce the controversies 

surrounding ICD203 and explain why its contribution to the quality of reasoning in 

intelligence analysis is treated by some scholars with skepticism. In section 3 we 

unpack the three assumptions outlined above that underpin ICD203 and we explore 

the issues they engender. In section 4 we introduce the operationalisation of ICD203 

used by ODNI. In section 5 we present the IARPA project from which this study 

draws its analytic reports. Section 6 presents the materials, methods and results of the 

two experiments we conducted on ICD203. We conclude with a general discussion in 

section 7.  

 

 

2. Background 

Vital government actions hinge on intelligence analyses. In the wake of the failure to 

foresee the 9/11 terrorist attacks on the US and the misreading of Iraq’s capability to 

deploy weapons of mass destruction, several inquiries have requested a reform of the 

standards of analysis and a strengthening of quality control processes employed by 

the intelligence community. 6  In consequence, the 2004 Intelligence Reform and 

Terrorism Prevention Act7 (IRTPA) identified the need for the creation and adoption 

of a list of analytic tradecraft standards focused on: 

whether the product or products concerned were based on all sources of available 

intelligence, properly describe the quality and reliability of underlying sources, 



 8 

properly caveat and express uncertainties or confidence in analytic judgments, 

properly distinguish between underlying intelligence and the assumptions and 

judgments of analysts, and incorporate, where appropriate, alternative analyses. 8 

(Section 1019.b.2.A) 

Furthermore, IRTPA called for the creation of an ombudsman for analytic integrity 

whose mandate was to ensure that “finished intelligence products produced […] are 

timely, objective, independent of political considerations, based upon all sources of 

available intelligence, and employ the standards of proper analytic tradecraft” 

(Section 1019.a, our emphasis). The Office of the Director of National Intelligence 

(ODNI) was created and within it an Office for Analytic Integrity and Standards 

(AIS) run by a Deputy Director of National Intelligence for Analysis (DDNI/A).9 

Under the supervision of the first DDNI/A, Thomas Fingar, the standards listed in 

Section 1019.b.2.A were developed and published as Intelligence Community 

Directive (ICD) 203, which in turn formed part of the foundation of what Fingar 

called an “Analytic Transformation”. 10  The term has been used to cover several 

transformations under the guidance of ODNI including increased collaboration 

between the different agencies comprising the intelligence community (IC), rotations 

among agencies, the introduction of a basic course for all analysts (Analysis 101), the 

evaluation of personnel, the monitoring of the analytic standards of ICD203 

throughout the IC, and annual reviews of analytic products against the standards laid 

out in ICD203. In this paper we primarily focus on this last aspect of the analytic 

transformation.   

The analytic tradecraft standards enshrined in ICD203 are prima facie 

uncontroversial.11 Take the idea that analytic products should “properly caveat and 

express uncertainties or confidence in analytic judgments.”12 According to a well-
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known mantra,13 the role intelligence is to eliminate (or at least reduce) uncertainty14 

and the discussion of how uncertainties should be caveated, expressed and 

distinguished from confidence judgments goes back to at least Sherman Kent15. Yet, 

several authors have claimed that ICD203 genuinely transformed analytical practice. 

For instance, Immerman claims that “[i]n a remarkably brief time … intelligence 

analysis has experienced genuine reform, some of which is radical and even 

revolutionary.” 16  Cardillo believes one of the main pillars of this reform is the 

promulgation of ICD203, which "codified good analytic tradecraft — much discussed 

but seldom formally documented in the 50-year history of the IC"17 and is confident 

"[g]reat progress has been achieved".18 Gentry also reports a generally positive view 

of ICD203 and the work of AIS among intelligence officials he interviewed19 but 

notes that younger analysts seem to be more enthusiastic about the reforms.      

Despite these affirmations, critics take their cue from Betts’s classic analysis of 

intelligence failures:  

[i]n the best-known cases of intelligence failure, the most crucial mistakes 

have seldom been made by collectors of raw information, occasionally by 

professionals who produce finished analyses, but most often by the decision 

makers who consume the products of intelligence services. Policy premises 

constrict perception, and administrative workloads constrain reflection. 

Intelligence failure is political and psychological more often than 

organizational… [o]bservers who see notorious intelligence failures as 

egregious often infer that disasters can be avoided by perfecting norms and 

procedures for analysis and argumentation. This belief is illusory. Intelligence 

can be improved marginally, but not radically, by altering the analytic system. 
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The illusion is also dangerous if it abets overconfidence that systemic reforms 

will increase the predictability of threats.20  

Their main claim is that the failures of 9/11 and the October 2002 NIE were due to 

policy makers rather than analysts. For instance, Gentry unpacks the many ways in 

which a state can fail to produce and utilize intelligence to defend itself against 

strategic surprises. Out of the six categories of intelligence-related state failures, only 

two are related to analysis. Gentry argues that none of them apply to Pearl Harbour or 

9/11. Instead he focuses on organizational and managerial reform, suggesting 

incentives for increased collaboration between agencies, and better communication to 

policy makers and the public of the possibilities and limitations of intelligence 

analysis.21  

Immerman22 and Phythian23 delve deeper into the history of the October 2002 NIE 

and suggest that the politics of intelligence agencies played a more substantial role 

than analysts’ tradecraft errors. One of the most striking examples Phythian gives 

relates to Curve Ball, arguably the most important source for the case that Iraq had a 

mobile biological weapons production program. According to the US Senate 

Intelligence Committee report, the only US intelligence official to personally make 

contact with Curve Ball contacted the CIA and raised concerns regarding his 

credibility.24 In reply, the deputy chief of the CIA’s Iraqi Task Force wrote: “[L]et’s 

keep in mind the fact that this war’s going to happen regardless of what Curve Ball 

said or didn’t say, and that the Powers That Be probably aren’t terribly interested in 

whether Curve Ball knows what he’s talking about. However, in the interest of Truth, 

we owe somebody a sentence or two of warning, if you honestly have reservations.”25 
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Amy Zegart also places the blame primarily on policy-makers. She argues that the 

failure of the IC to adapt to the new threats emerging after the end of the Cold War is 

primarily due to “the nature of bureaucratic organizations, … the self-interest of 

presidents, legislators, and government bureaucrats, … and the fragmented structure 

of the federal government”.26 In a different paper, Zegart surveyed all intelligence 

reform committees before 9/11 and found that many of the recommendations they 

made had not been acted on prior to 9/11 due to politics. For instance, 28% of all 

recommendations for reform pre-9/11 focused on the need for more collaboration 

between the different elements of the IC and the Government. The biggest challenge 

in putting this recommendation into practice, according to Zegart, has been the fact 

that the official responsible for setting “broad strategies” and coordinating “efforts 

across [the IC]” - the Director of the Central Intelligence Agency - “held direct 

control over only 15 percent of the intelligence budget (the Secretary of Defense 

controlled the rest) and had weak management authority for allocating money, people, 

and programs to every agency outside the CIA”.27 The main message from Zegart’s 

analysis is that the IC recognized the relevant threats and warned decision-makers of 

them but that decision-makers failed to act accordingly.    

This is not to say that the failure to predict the 9/11 attacks and to correctly assess 

Iraq’s WMD capabilities weren’t, in part, due also to “intelligence failures”. 

However, in the literature on ICD203 we surveyed for the purposes of this paper, the 

overall consensus seemed to be that the two failures that lead to the adoption of the 

new standards can primarily be explained away as state failures (see Schelling above). 

What is more, some authors even worry the new standards may produce perverse 

outcomes, reflected in Betts’s remark that “perceived intelligence failures often 

generate ‘reforms’ that produce other pathologies”.28 
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To sum up, one strand of criticism against ICD203 is that analytic reform was not 

necessary given the failures of anticipating 9/11 and the October 2002 NIE and that 

without more emphasis on how intelligence is managed and consumed it will not be 

sufficient either.  

A second strand of criticism against ICD203 is that the standards contained within it 

are not appropriate. This argument takes many forms. First, anecdotal evidence 

suggests the elements of analytic standards in ICD203 have been largely in use long 

before 200429  and that their emphasis in IRTPA reflects the lack of intelligence 

knowledge of the drafters of the act.30 Second, the standards are accused of being too 

broad, to the point that they are commonsensical and uninformative.31 The implication 

is that complicated procedures were added to analysts’ workflows to ensure they 

follow principles that they were already following (either because they were standard 

practice or because they are too commonsensical). Third, some critics emphasise that 

the goal of analysis is wisdom, insight and knowledge, rather than process, data and 

clarity of expression. In consequence, good analysis cannot be operationalised and it 

cannot “be tightened or tweaked to improve the outcome”.32   

In this paper we do not take a position on whether 9/11 and the October 2002 NIE 

were due primarily to analytic or policy failure. Instead we remark that even the 

staunchest opponents of ICD203 and the Analytic Transformation championed by 

ODNI such as Gentry agree that “[t]he room for analytical error is large for cognitive, 

psychological, and institutional reasons that the intelligence literature discusses at 

length, and that most analysts understand in principle even if they sometimes err in 

practice”.33 In a similar vein, Betts believed that “minor improvements are possible by 

reorganizing to correct pathologies”.34 Hence, the question we are interested in is 
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whether ICD203 can overcome at least some of the cognitive reasons for analytical 

error and correct at least some of the pathologies present in the analytic cycle. It is 

unlikely that ICD203 is a panacea for all analytic pathologies and that by itself could 

prevent major future strategic surprises. In this sense we agree with its critics. On the 

other hand, it is possible that it makes incremental improvements to the production 

and evaluation of analytical reports. In this sense we side with its supporters. 

Importantly, the latter’s claims are empirical and are yet to be tested.  

 

3. Unpacking Intelligence Community Directive 203 

The idea that ICD203 would improve analysis relies on three assumptions: (1) that the 

tools to assist analysts with the application of the tradecraft standards are reliable; (2) 

that analytic tradecraft standards sufficiently capture the key elements of good 

reasoning; and (3) that good reasoning leads analysts to perform better, which in turn 

will reduce intelligence failure rates.  

The first assumption has received very little attention so far. The crux of it is: do 

different people apply the guidelines in ICD203 consistently? One could examine this 

question from the perspective of the production of reports (can analysts following the 

tradecraft standards in ICD203 apply them consistently?) and the perspective of their 

evaluation (can evaluators apply the tradecraft standards consistently?). In this paper, 

we focus on the latter perspective.   

The second assumption can be framed as an issue of criterion validity of the tradecraft 

standards, that is, the degree to which the ICD203 criteria and their application 

conform to an “established” reference point of reasoning quality. In particular, we are 
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interested in concurrent validity, where the performance of ICD203 is compared 

against a second, concurrently, but independently obtained metric of quality of 

reasoning. One can investigate the concurrent validity of ICD203 from the 

perspective of the production of reports as well as from their evaluation by AIS. The 

former would correspond to an answer to the question: Do reports following the 

guidelines in ICD203 exhibit better reasoning? The latter would answer the question: 

Is there a strong correlation between evaluations of reports based on ICD203 and 

based on a different (well-established) method for assessing quality of reasoning? In 

this paper we focus on the latter perspective.  

There are reasons to be pessimistic that a strong correlation exists. Take for instance 

ICD203’s insistence on Structured Analytical Techniques (SATs): "Analysts must 

perform their functions with objectivity and with awareness of their own assumptions 

and reasoning. They must employ reasoning techniques and practical mechanisms that 

reveal and mitigate bias." (ICD203.6.a) SATs have become ubiquitous 

recommendations for improving analytic tradecraft. 35   SATs are defined as 

“mechanism[s] by which internal thought processes are externalized in a systematic 

and transparent manner so that they can be shared, built on, and easily critiqued by 

others.”36 But do they deliver on this promise of mitigating bias? A recent meta-

analyis by Coulthart37 suggests that the best answer we can give is ‘maybe, in some 

cases’. Coulhart finds that out of the 12 SATs mentioned in the Analytic Tradecraft 

Primer, only 6 have been studied (45 studies available), but that only 3 of them had 

“credible research studies”.38 Out of the three, only one had consistently proven its 

efficiency in experiments.  
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Chang et al. note that although the declared purpose of SATs is to reduce “systematic 

biases and random noise … no one knows how close the current generation of SATs 

comes to achieving either of them”.39 They believe that despite the lack of evidence, 

we should question the theory behind them. First, there isn’t enough evidence to show 

that even SATs successful at mitigating one type of cognition bias (say 

overconfidence) won’t generate its opposite (e.g. underconfidence). Second, SATs 

that focus on decomposing complex judgments into simpler ones may create more 

opportunities for making errors and the “cumulative nature of error in multi-stage 

assessments will make those judgments less, not more, consistent”.40  

Finally, commenting on ODNI’s function as an analytic ombudsman, Fingar claims 

that “it’s clear, because we’ve now got data on thousands of products that in 

aggregate, we’re getting better.”41 But better in what sense? Marrin42 distinguishes 

between three aims of the intelligence community; (predictive) accuracy, reduction of 

strategic surprise and significance for policy-making, and argues that currently there 

is no consensus on what analysts should strive for.   

For instance, some authors, such as Marchio43 and Friedman and Zeckhauser44 seem 

to assume that the goal is estimative accuracy.45 But is this right? Tetlock and Mellers 

purport the intelligence community has “tacitly placed a massive institutional bet on 

the validity of its home-grown theory of good judgment: namely, that accuracy should 

be a positive function of how well analysts conform to the process standards 

embodied in its performance management guidelines.”46 Similar concerns have been 

raised by Lowenthal and Gentry in their critiques of the presumed analytic 

transformation engendered by IRTPA, ODNI and ICD203.47 Even authors such as 

Fingar and Friedman and Zeckhauser are aware of this concern.48   
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Nevertheless, there is little evidence in the scholarly literature relevant to the issue of 

accuracy,49 perhaps because the task of determining when an analytic judgment is 

accurate may be ambiguous and there is a longstanding view that it is intractable. 

Indeed Sherman Kent believed it was “almost impossible to answer…”.50 Several 

standard reasons are usually invoked to support Kent’s view: “since estimates are 

probabilistic, we can never really say whether they are ‘right’ or ‘wrong’”,51 “every 

intelligence question is unique. Therefore, even if we wanted to evaluate accuracy 

across estimates, broad patterns are not meaningful”,52 “even if we wanted to measure 

estimative accuracy, there is no rigorous way to keep score”53 and “these methods all 

require analysts to state probabilities quantitatively” 54  and “evaluating estimative 

accuracy would be too expensive”.55 Friedman and Zeckhauser argue convincingly 

that these challenges can be overcome (at least partially). Marrin56 and Marrin and 

Clemente57 point out similar hurdles in medicine and that there may be useful cross-

fertilization between fields on how to measure accuracy and quality of judgments. 

Nevertheless, investigating whether tradecraft correlates with accuracy can only come 

after the community settles the meaning of the latter. We leave this for a future paper.  

None of these assumptions have been properly, empirically tested. In this paper we 

offer the first empirical investigation of assumptions (1) and (2) under controlled 

conditions. We focus our attention on an operationalisation of the tradecraft standards 

currently employed by AIS (see Section 4) and draw on a set of constrained reasoning 

problems developed by the CREATE research program and on analytic reports 

developed in response to those problems (see Section 5).  

 

4. ICD203 and the Rating Scale for Evaluating Analytic Tradecraft Standards 
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ICD203 outlines the standards for good reasoning in intelligence but does not provide 

specific guidelines for how to apply them. For the purposes of testing reliability and 

accuracy, the analytic tradecraft standards need to be operationalised. We use a 

modified version of the Rating Scale for Evaluating Analytic Tradecraft Standards 

(Rating Scale from now on), the rubric used by experts from AIS to evaluate analytic 

products. Our simplified Rating Scale comprises 8 criteria that capture the tradecraft 

standards outlined in ICD203, each with detailed interpretation and examples: 

 

Table 1: The Rating Scale criteria 

Criterion Description 

1 Properly describes quality and credibility of underlying 

sources, data, and methodologies 

2 Properly expresses and explains uncertainties associated 

with major analytic judgments 

3 Properly distinguishes between underlying intelligence 

information and authors’ assumptions and judgments 

4 Incorporates analysis of alternatives 

5 Demonstrates relevance and addresses implications 

6 Uses clear and logical argumentation 

7 Makes accurate judgments and assessments 

8 Incorporates effective visual information where appropriate 

  

The criterion “Explains change to or consistency of analytical judgements” was 

omitted because it requires the report writer to have an understanding of previous 
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analyses, which is irrelevant for the kind of problems we used in this experiment (see 

below). Furthermore, we made a small number of minor textual changes to the Rating 

Scale motivated by participants’ unfamiliarity with the jargon used in the original 

document, and to match the specific nature of the more constrained problems we used 

in this experiment. For instance, the word “product”, typically referring to an analysis 

of intelligence information was changed to the more general “report”. This study 

reports on two experiments conducted during the first beta test of the SWARM 

platform (July-August 2017),58 one of the products of the CREATE program (see 

below). 

 

5. CREATE and SWARM 

As part of the effort to improve the quality of intelligence analysis, the US 

intelligence community’s research arm, the Intelligence Advanced Research Projects 

Activity (IARPA) funded the CREATE program (Crowdsourcing Evidence, 

Argumentation, Thinking and Evaluation). Under the umbrella of CREATE, research 

teams are investigating how group reasoning can be harnessed to improve intelligence 

analysis. The Smartly-assembled Wiki-style Argument Marshalling (SWARM) 

project, 59  based the University of Melbourne, Australia, is developing an online 

platform where analysts collaborate to generate solutions to reasoning problems. The 

platform aims to (a) use the power of distributed processing within a network of 

individual thinkers, and (b) improve reasoning quality and the aggregation of 

solutions into a final, agreed solution. Users write individual analytical reports that 

outline the outcome (the solution to the problem) and the process (the underlying 

reasoning). Users then comment and/or make edits to one another’s contributions, to 
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improve individual solutions. The platform encourages users to rate others’ solutions 

and the aggregate (average) quality rating (on a scale 0-100) determines the rank of 

each solution. The top-rated solution becomes the template for a final, collectively 

drafted report.  

 

The system is under development and is designed initially to assist groups of users to 

solve constrained reasoning problems, those that “can be solved using provided 

materials supplemented only with unproblematic, well-known background facts and 

reasonable assumptions. In addressing constrained problems, subjects use only 

common knowledge and provided problem-specific information” (CREATE BAA: 8). 

These reasoning problems were developed by the performer teams in CREATE and 

problem developers at Good Judgment Inc.60  

 

This study draws on reports submitted by users of the SWARM platform during beta 

testing. Beta testers were members of the SWARM research team with extensive 

experience in critical thinking and argumentation, structured analytical techniques and 

the systematic evaluation of written reports such as peer-review and university 

coursework assessments. For the purposes of this study, the beta-testers were assumed 

to be highly-experienced evaluators. The average quality score (on a scale from 0-

100) submitted by these evaluators for each report was therefore taken to be a close 

approximation of the true value of the quality of reasoning of that report. There are 

two reasons why this cohort was treated as highly-experienced. First, they had 

intimate knowledge of the problems and they had spent an extensive amount of time 

reading and discussing those problems and the submitted analytic reports. Second, 

they collectively had considerable professional experience in the assessment of 
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written reports on the basis of analytic rigor, logic, argument structure and general 

clarity of presentation. Their evaluations of the reports were found to be reliable, 

suggesting at least internal consistency of these “expert judgements” (Appendix C).       

 

6. Evaluating the reliability and concurrent validity of ICD203 

In the course of two experiments, we investigated whether novice evaluators (those 

with substantial backgrounds in the practical assessment of reasoning, but with no 

prior knowledge of AIS’s Rating Scale) could apply it reliably. We also assessed 

whether their ratings matched the expert evaluations of the same analytic products. 

The first is a matter of inter-rater reliability and gives us an insight into assumption 1. 

The second offers an insight into whether assumption 2 holds.  

Our expectation was that in Experiment 1, without evaluator training, both inter-rater 

reliability and correlation with expert judgements would be low. This will  provide a 

benchmark against which the effect of evaluator training could be evaluated.  

The following two subsections detail the results and the methodology behind the two 

experiments. We note that despite having access to some of the practices in place in 

AIS for the evaluation of intelligence reports, we are not privy to the full protocols 

currently in use. Therefore, our study cannot perfectly replicate professional practice. 

Moreover, there may be other agencies in the US and elsewhere that are performing 

similar quality control exercises using similar instruments. For these agencies and 

others interested in this topic to benefit from our results, they need to be able to 

compare their internal procedures to the procedures we followed and hence need full 

access to our entire experimental protocol.  
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6.1 Experiment 1 

Participants. We recruited 41 postgraduate (masters and doctoral) students from 

Imperial College London and the London School of Economics and Political Science 

to form our population of ‘novice’ evaluators. The only requirement was that they 

were experienced / familiar with assessment rubrics in education (but not 

intelligence). We chose to enlist naive evaluators from outside the IC in order to 

measure the effect calibration training may have on inter-rater reliability. Any specific 

intelligence analysis training would confound the attribution of experimental effects 

between the baseline (experiment 1) and the intervention (experiment 2). Moreover, 

any application of the rubric might likewise have been tainted by analysts’  

preconceptions of the “gold standards” of intelligence analysis.  

 

The sample consisted of 20 men and 21 women, with an average age of 25.9 years 

(SD=5.2 years). Most had a social science background (63%), with a minority having 

a natural science (20%) or an arts & humanities (17%) background. Participants were 

informed of the aims and procedures and gave written consent to participate. All data 

were collected anonymously. 

  

Materials and Procedure. We obtained 27 reports generated by beta-testers on the 

SWARM platform in response to 6 constrained reasoning problems. These included 

reports generated by individuals and final collaborative reports submitted by teams. 

They varied in quality of reasoning based on the collective assessment of SWARM 

users (range=13-94, M=68.33, SD=17.58). Reports were allocated to individual 

evaluators on a constrained-random basis, with the constraint that each product was 

evaluated by three evaluators. Before performing the evaluations, participants were 
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given the opportunity to familiarise themselves with the Rating Scale, take notes and 

ask general questions about terminology (approx. 30 min.). No further instructions 

were given for the application of the Rating Scale to specific reports. Participants 

were given two products each (except for one participant who only received one 

product) and instructed to use a scoring sheet to assess each product (Appendix A). 

Evaluators had to indicate for every criterion in the Rating Scale whether the product 

was of Poor, Fair, Good or Excellent quality. 

  

Analysis. To compute reliability and validity measures, the qualitative assessments on 

the individual criteria were aggregated into an overall assessment of quality of 

reasoning for each product. We investigated two aggregation methods.61  In the first, 

each assessment level was assigned a value (from 0=poor to 3=excellent), and values 

were summed across criteria (Appendix B: Table 1). The second involved assigning 

weights to the different criteria depending on the particular feature they were probing: 

Use of Evidence and Reasoning were weighted more heavily than Communication in 

determining the overall quality of reasoning score (Appendix B: Table 2). We call the 

former the Equal Weights Scoring System, and the latter the Weighted Scoring 

System. To assess reliability of the rubric, we calculated the intraclass correlation 

(ICC), commonly used to indicate the consistency or reproducibility of quantitative 

measurements made by different observers rating the same object(s), in this case, the 

analytical reports. It generates a measure between 0-1, with higher values indicating 

greater consistency (see appendix C for more information). 

 

Results. In the absence of training, the inter-rater reliability of the Rating Scale 

according to both the Equal Weights and the Weighted Scoring Systems in 
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Experiment 1 was low: ICC=0.294 (95% CI [-0.330,0.654]) and ICC 0 (95% CI [-

1.607,0.322]), respectively. The individual report scores generated by novice 

evaluators using the Rating Scale correlated positively with SWARM-generated 

quality ratings. Nevertheless, the correlation was low-moderate for both the Equal 

Weights and the Weighted Scoring Systems: r=.293 and r=.262, respectively.  

 

Discussion. The Rating Scale appears to have low inter-rater reliability and offers 

little help to novice users in matching the judgments of expert evaluators. The results 

of Experiment 1 are somewhat surprising, seeming to validate concerns regarding the 

ambiguity of language in ICD203 and refuting the argument claiming ICD203 is too 

commonsensical.62  However, the Rating Scale was unfamiliar to participants before 

the experiment and the short familiarisation exercise at the beginning may have been 

insufficient. Evaluators working for AIS have extensive experience both in 

intelligence analysis and in evaluating analytic reports. In addition, inter-rater 

agreement often is improved by training and calibration exercises.63 Therefore, to 

more closely reflect professional circumstances, we tested the impact of calibration 

training on the inter-rater agreement and validity of the Rating Scale. 

 

6.2 Experiment 2 

Participants. We recruited 36 postgraduate (masters) students from Imperial College 

London and the London School of Economics with appropriate backgrounds in 

reasoning evaluation but who had not participated in Experiment 1. The sample 

consisted of 21 men and 15 women, with an average age of 25.03 years (min=22, 

max=41, SD=3.86). Most had a social science background (80%), with a minority 
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having an arts & humanities (13.3%) or a natural science (6.7%) background. 

Participants were informed of the aims and procedures and gave written consent to 

participate. All data were collected anonymously. 

 

Materials and Procedures. For the purposes of the second experiment, we selected a 

subset of 13 reports in response to 3 of the 6 constrained reasoning problems. These 

reports were chosen because they generated the lowest inter-rater reliability in 

Experiment 1. First, participants were given the opportunity to individually 

familiarise themselves with the Rating Scale, take notes and ask general questions 

about terminology, as in Experiment 1. Then, in contrast to Experiment 1, they were 

allocated to groups of 2-3 participants and were asked to read a constrained 

intelligence problem and its report (these had not been used in Experiment 1 but were 

generated for additional testing on the SWARM platform). Within these groups, 

evaluators were then asked to reach a consensus on the evaluation of the report given 

the Rating Scale, using the same scoring sheet as in Experiment 1 (45 min. in total). 

Following this calibration activity, evaluators individually completed evaluation of 

one of the 13 experimental reports. Members of the same calibration group rated the 

same report. The intention was to have 3 evaluators for each report, but due to no-

shows, 3 out of the 13 groups consisted of just 2 evaluators. The analyses proceeded 

identically to those in Experiment 1.  

 

Results. For the 10 reports that had three evaluators,64 inter-rater reliability of the 

Rating Scale was good for the Equal Weights and fair for the Weighted Scoring 

Systems, ICC= 0.612 (95% CI [-0.101,0.894]) and ICC=0.491 (95% CI [-

0.444,0.861]), respectively. Two-rater agreement assessed across all 13 reports was 
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fair for both the Equal Weights Scoring System: ICC=0.473 (95% CI [-0.661,0.837]), 

and the Weighted Scoring System: ICC=0.514 (95% CI [-0.532,0.850]).65  

 

To examine the effect of the calibration exercise on agreement between evaluators in 

the Equal Weights Scoring System, we calculated the difference in report scores given 

by pairs of evaluators assessing the same report (e.g. for reports rated by 3 evaluators, 

there were 3 possible pairwise comparisons). In Experiment 1, average difference 

between pairs of evaluators was 5.4 points (SD=3.8) (M=5.6, SD = 4.2 for the subset 

of 13 reports also included in experiment 2). For Experiment 2, the average difference 

was reduced slightly to 4.1 points (SD=3.2). The distribution of pairwise differences 

shows that 90% of evaluator pairs in Experiment 1 were within 10 points of one 

another, and 90% of evaluator pairs in Experiment 2 were within 7 points of one 

another (Figure 2).  
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Figure 2. Distribution of score differences between pairs of evaluators assessing the 

same report using the Equal Weights Scoring System in Experiment 1 (without 

training/calibration) and in Experiment 2 (with training/calibration).  

 

A similar conclusion could be drawn from examining the Weighted Scoring System, 

which generates a 5-level categorical assessment (from Poor to Excellent). We 

evaluated the number of category shifts between two evaluators assessing the same 

report. The majority (89%) of evaluator pairs were within 2 categories for Experiment 

1. This increased to 100% in Experiment 2 (Figure 3).  
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Figure 3. Distribution of category shifts between pairs of evaluators assessing the 

same report using the Weighted Scoring System in Experiment 1 (without calibration) 

and in Experiment 2 (with calibration).  

 

To further examine whether specific criteria gave rise to more disagreement than 

others, we calculated the average difference between evaluator pairs in their 

assessment of individual criteria on a given report (Figure 4). Each criterion was rated 

on a 4-point nominal scale (from 0=poor to 3=excellent), so the maximum difference 

between evaluators was 3 points. The improvement in agreement between evaluators 

in experiment 2 compared to experiment 1 appears to be due to greater consistency in 

the proper expression and explanation of uncertainties (criterion 2), the incorporation 
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of alternatives (criterion 4), assessment of implications (criterion 5) and the 

appropriate incorporation of visual materials (criterion 8). 

 

Figure 4. Average difference in assessment of the 8 criteria for evaluator pairs rating 

the same report.  

 

The Rating Scale report scores generated by the novice evaluators correlated 

positively with the SWARM-generated quality ratings, and the association was 

stronger in Experiment 2 than in Experiment 1, reaching r=.614 and r=.512 for the 

Equal Weights and the Weighted scoring system respectively (Figure 5). 
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Figure 5. Correlations between expert-generated ratings on the SWARM platform and 

evaluations made by novice evaluators using the Rating Scale. Correlations are shown 

for the Equal Weight Scores (A) and the Weighted Scores (B). 

 

Discussion. In these experiments, calibration-training substantially improved both the 

inter-rater reliability of the Rating Scale and the correlation between novice and 

expert evaluations. Novice evaluators who calibrated their evaluations on a training 

report were subsequently more likely to agree in their assessments of other reports. 

This suggests that the low values for both ICC and for the correlations with expert 

judgments obtained in Experiment 1 were due to the lack of familiarity of our 

evaluators with the criteria. Even the modest 45 minute calibration round applied in 

these trials helped novice evaluators to reach a fair to good (depending on the scoring 

method) inter-rater correlation and a strong correlation with expert judgments.  

 

These results should be interpreted as good news for the champions of the analytic 

transformation for two reasons. First, part of the ODNI reforms was to require all 

analysts to go through a basic course, Analysis 101,66  which is built around the 
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tradecraft standards. All analysts have extensive training in the tradecraft standards 

and therefore, the production and evaluation of products should be more reliable than 

can be seen in the present study. Furthermore, the practice of AIS is to have each 

product reviewed by two independent evaluators who then discuss each evaluation, 

which are further checked by a third evaluator (Guidelines to the Rating Scale). 

Consequently, there are ample opportunities for evaluators within AIS to calibrate 

their reasoning and interpretation of the language of the standards.  

 

Nevertheless, agreement between evaluators did not increase for all criteria, 

suggesting that there is some reason for concern with respect to the language used in 

ICD203. Notably, there was substantial disagreement on arguably critical aspects 

including the description of sources, the accuracy of judgments and the use of clear 

logic and argumentation. Calibration appeared to reduce some ambiguity in the 

assessment of report writers’ expressions of uncertainty associated with analytical 

judgment, how well alternative hypotheses were incorporated, and the use of 

supporting visual information where appropriate. This suggests that more specific 

training and/or more precise guidelines may be resolve differing interpretations of 

some of the more critical elements of quality of reasoning. Whether the training and 

opportunities to calibrate available to analysts are enough to overcome these 

challenges remains an open question.  

 

7. General discussion and conclusions 

Validating standards intended to capture quality of reasoning in intelligence reports is 

complicated by the absence of external standards. However, CREATE and SWARM 
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offer an opportunity for such validation. The constrained reasoning problems 

developed for Phase 1 of CREATE and used in this study have normative standards 

according to which solutions can be objectively assessed. Experts who are familiar 

with the problem and its solution can reliably and accurately judge whether the 

reasoning in a report matches to a sufficient degree the ‘gold standard’ for that 

particular problem.  

 

While the constrained nature of the problems affords unprecedented opportunity for 

external validation of their analytical solutions, it also imposes limits on 

generalisability of the findings beyond such a highly controlled setting. Further study 

of the application of ICD203 in more realistic settings is therefore advised. If these 

results generalize,  then groups of evaluators, trained in the same way and using the 

same ICD203-based rubric, would produce fairly consistent ratings on unconstrained, 

forecasting problems. Such an outcome would imply that the results of this study are 

likely to carry over to real-world applications of the Rating Scale. 

 

On balance, our findings present a cautiously optimistic picture. We find that novice 

evaluators can assess the quality of reasoning in intelligence reports with acceptable 

levels of consistency. We stop short of claiming that therefore, ODNI can 

successfully perform its role as an analytic ombudsman as we do not yet have 

empirical confirmation that the third assumption (that reports that satisfy the ICD203 

criteria consistently produce accurate predictions of outcomes) behind ICD203 holds.  

The bad news is that when focusing on the reliability of individual users who have to 

use the Rating Scale on their own, the effect of the training on reliability is negligible.  

Worse, the absolute reliability values tend to be quite low. This suggests that if the 
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standards in ICD203 are essential for good tradecraft, then analysis of reports has to 

be done in teams and no assessment should be produced by a lone analyst.  

 

The results reported in this study suggest that the standard of good reasoning that the 

intelligence community has adopted as a consequence of their analytic transformation 

and deployed in their quality control program are more reliable and valid than implied 

by its critics. At the same time our results also highlight potential areas of 

improvement. We find that reliable and accurate identification of good reasoning 

relies not only on the standards in ICD203 but also on the way the evaluators are 

trained and calibrated, and the scoring method used to aggregate their judgments on 

individual criteria into an overall score for a report. Consequently, more attention 

should be given to these issues. 

 

Critics of ICD203 accuse reformers, policy makers and the public of imposing too 

high a standard on intelligence analysts. But they themselves impose too high a 

standard on reforms. Betts believed improvements can only come at the margins. Our 

studies indicate that ICD203 has delivered at least that. 
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Appendix A: The scoring sheet 

 

REPORT 1 

Report number: … 

CRITERION RATING 

1 Poor Fair Good Excellent 

2 Poor Fair Good Excellent 

3 Poor Fair Good Excellent 

4 Poor Fair Good Excellent 

5 Poor Fair Good Excellent 

6 Poor Fair Good Excellent 

7 Unclear Conditioned Unconditioned 

8 Poor Fair Good Excellent 
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Appendix B: The scoring systems 

  

  Score 

0 1 2 3 

Criterion 1 Poor Fair Good Excellent 

Criterion 2 Poor Fair Good Excellent 

Criterion 3 Poor Fair Good Excellent 

Criterion 4 Poor Fair Good Excellent 

Criterion 5 Poor Fair Good Excellent 

Criterion 6 Poor Fair Good Excellent 

Criterion 7 Unclear   Conditioned Unconditioned 

Criterion 8 Poor Fair Good Excellent 

Table 1: The equal weights scoring system 
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  A report is [row] if it              

is at least [cell] on 

[column] 

Evidence Reasoning Communication 

 

Criterion 1 

 

Criterion 2 

 

Criterion 4 

 

Criterion 5 

 

Criterion 6 

 

Criterion 3 

 

Criterion 7 

 

Criterion 8 

4 Excellent Excellent Excellent Good Good Excellent Excellent Good 

3 Good Excellent Good Fair Good Excellent Excellent Fair 

2 Fair Good Good Fair Fair Good Good Fair 

1 Fair Good Good Poor Fair Fair Fair Fair 

0         

Table 2: The weighted scoring system. 
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Appendix C: Details of the ICC method 

ICC calculations 

There are many metrics and little agreement about the best method to test the strength 

of the association between assessments made by (groups of) independent evaluators. 

The intuitively appealing correlation coefficient is insensitive to mean differences, i.e. 

bias. Simple measures of percentage agreement do not account for random (i.e. 

chance) agreement between evaluators.  

 

The intraclass correlation coefficient (ICC), as used here, assesses reliability by 

comparing the variability of different ratings of the same item (here: reports) to the 

total variation across all ratings and all items. ICC values lie between 0.0 and 1.0, 

with higher values corresponding to greater consistency between evaluators. The ICC 

is responsive to both lower correlation between evaluators and larger mean 

differences, meaning it is sensitive to bias. It accounts for chance-level agreement 

between evaluators. It should be noted that some statistical programs produce 

negative values, which are reported as ~ 0, i.e. indicating very low reliability. We 

used the IRR package in R to calculate ICC values, with a One-Way Random-Effects 

Model in which each object is rated by a different set of evaluators who were 

randomly chosen from a larger population of possible evaluators. There are different 

sub-types of ICC, and here we report the ICC value that represents the degree of 

consistency between evaluators, as opposed to absolute numerical agreement. ICC 

values <.40 indicate poor inter-rater agreement, between .40-.59 fair agreement, and 

>.60 good agreement.  Concurrent validity was assessed with Spearman rank order 

correlations between the average quality ratings given by experts on the SWARM 

platform and the Rating Scale assessments made by the novice evaluators.  

 

ICC values for the “expert assessments” 

The expert assessments of quality of reasoning were generally consistent. Examining 

the inter-rater reliability across the set of reports that had been rated by at least three 

experts during SWARM beta-testing, we found ICC=0.794, indicating very good 

agreement on quality of reasoning between expert assessors. The majority of reports 

were rated by more than 3 experts on the SWARM platform. To enable a direct 
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comparison with the ICC obtained in the samples of novice evaluators, we randomly 

selected 3 expert assessors per report. We repeated this process 1000 times, obtaining 

different permutations of 3 evaluators, with an average ICC=0.794 (SD=0.039). 
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