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Forecasts of completed fertility predict how many children will be
born on average by women over their entire reproductive life-
time. These forecasts are important in informing public policy and
influencing additional research in the social sciences. However,
nothing is known about how to choose a forecasting method
from a large basket of variants. We identified 20 major methods,
with 162 variants altogether. The approaches range from naive
freezing of current age-specific fertility rates to methods that use
statistically sophisticated techniques or are grounded in demo-
graphic theory. We assess each method by evaluating the overall
accuracy and if provided, uncertainty estimates using fertility
data of all available birth cohorts and countries of the Human
Fertility Database, which covers 1,096 birth cohorts from 29 coun-
tries. Across multiple measures of forecast accuracy, we find only
four methods that consistently outperform the naive freeze rates
method, and only two methods produce uncertainty estimates
that are not severely downward biased. Among the top four,
there are two simple extrapolation methods and two Bayesian
methods. The latter are demanding in terms of input data, statisti-
cal techniques, and computational power but do not consistently
complete cohort fertility more accurately at all truncation ages
than simple extrapolation. This broad picture is unchanged if we
base the validation on 201 United Nations countries and six world
regions, including Africa, Asia, Europe, Latin America and the
Caribbean, northern America, and Oceania.

fertility forecast methods | validation | forecast errors

Forecasts of completed fertility (CF) predict how many chil-
dren will be born on average by women over their entire

reproductive lifetime. They are a key element in research on
population dynamics and forecasting (1), and they are used by
decision makers throughout the society: from social security
planning to marketing. Cohort fertility complements the repro-
duction picture given by period fertility: the former is informative
about the experience of real cohorts of women and immune
to timing effects of fertility, and the latter can vary substan-
tially as a result of fertility timing but is useful for summarizing
fertility within a period. This paper provides a systematic evalu-
ation of the accuracy of existing methods for completing cohort
fertility.

Over the last century, demographers have introduced dozens
of methods to forecast cohort fertility—with continuously ris-
ing requirements for input data, advanced statistical techniques,
and computing power—to pursue two primary objectives: (i) to
increase forecast accuracy and recently, (ii) to provide reliable
uncertainty estimates. However, new methodological innova-
tions are often introduced without careful comparison of how the
new approach performs with respect to existing alternatives. In
fact, nothing is known about how to choose a forecasting method
from a large basket of variants.

In the presence of this enormous methodological variety, a
key question that forecasters face today is as follows: which
method should they use to produce accurate cohort fertility
forecasts with reliable uncertainty information? Furthermore, if
forecast performance increased over time, what were the main

methodological breakthroughs? Finally. what are the unresolved
issues that can show us in what directions we should put our
efforts to further improve the forecast methodology?

In this paper, we provide an assessment of all cohort fertility
forecast methods. Our comprehensive survey identified 20 major
methods, with 162 variants arising from different parameteriza-
tions. Each of these methods aims at completing lifetime fertility
of women who have not yet reached their last reproductive age
at the time that a forecast is made.

The existing approaches for cohort fertility forecasting range
from naive freezing of current age-specific fertility rates to
methods that use statistically sophisticated techniques or are
grounded in demographic theory. We distinguish the baseline
method freeze rates (also referred to as constant rates method),
which holds fertility rates constant at their latest observed level,
and four broader types of method, which are (i) parametric curve
fitting methods (PARs) (SI Appendix, Table S46 provides a list of
abbreviations), (ii) extrapolation methods (EMs), (iii) Bayesian
approaches (BAs), and (iv) fertility context-specific methods
(CONs). Some methods combine elements across many of these
typologies (hybrid models), and therefore, the classification is
unavoidably subjective.

The objective of PARs is to detect a universal pattern of fer-
tility by age—which often resembles a bell shape, with fertility
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levels being high at middle reproductive ages and low at very
young and old reproductive ages—and to express it with a
mathematical function. The number and the interpretation of
parameters are the distinctive features of models within this
group. Simple PARs model one hump (2–4) and complex PARs
model a second hump for young mothers (4, 5) in the age distri-
bution of fertility. Relational PARs (6–8) forecast fertility using
deviations between current and standard fertility age schedules;
10 of our 20 methods are classified as PARs.

EMs are based on the assumption that past trends are helpful
in predicting the future. EMs fit a model to observed fertil-
ity trends and extrapolate the trajectory based on the model.
Complex EMs (9, 10) consider fertility dynamics in all three
dimensions (age, calendar year, and birth cohort), whereas sim-
ple EMs (11–16) reduce complexity and reflect fertility trends in
less detail. EMs often use time series models (17) to extrapolate
trajectories (9–16) and to provide uncertainty estimates (10–15).
We classify 6 of 20 methods as EMs.

The characteristic feature of hierarchical BAs (18–20) is to
augment information about fertility in a country of interest
with information about typical levels and trends of fertility in
other countries. Borrowing strength from a large data pool can
be advantageous for countries that have data of poor quality,
exhibit unsteady fertility developments, or have incomplete fer-
tility age schedules. The forecast performance of hierarchical
BAs depends on the spatiotemporal composition of the data
pool; 2 of 20 methods are hierarchical BAs.

CONs (21, 22) are designed to model particular fertility devel-
opments, such as a decline in CF and a delay of childbearing
to higher maternal ages (23–25), which reduces their overall
applicability. We identified only 1 CON method in 20 methods.

We further identify three hybrid models (8, 26, 27) that com-
bine elements of PARs and EMs or BAs. They extrapolate key
parameters of the fertility age schedule (26, 27) or make use of
information from other countries (8). To keep the classification
of methods manageable, we have assigned each of them to one
of four method types: PARs, EMs, BAs, or CONs.

We describe the major methods and their variants in more
detail in SI Appendix, section 1. We excluded four additional
methods (11, 18, 21, 28) and their 14 variants from the main anal-
ysis, because their data requirements are so demanding that they
can be implemented in only a handful of countries. SI Appendix,
Table S31 provides information about which methods eventually
entered the main analysis.

Our main comparison of the 20 methods is based on testing
their forecasting performance in the largest high-quality dataset
of fertility: the Human Fertility Database (HFD) (29). The
version of the data that we use covers 29 countries, years 1891–
2013, and 1,096 birth cohorts altogether. This massive database
includes a large variety of levels, shapes, and trends of fertility in
mostly developed countries (see SI Appendix, section 2 for more
details on the HFD).

We complement the HFD-based validation with a comparison
based on fertility data from the United Nations (UN) (30), which
include six world regions: Africa, Asia, Europe, Latin America
and the Caribbean, northern America, and Oceania. The UN
dataset covers 201 countries, years 1950–2015, and 8,241 (i.e.,
201 × 41) birth cohorts altogether. Combining the high-quality
HFD data with the broad geographic and contextual variation
available in the UN data increases the external validity and
robustness of our findings. Results of the UN-based analysis are
in SI Appendix, section 4. We put special emphasis on Africa in
SI Appendix, section 5, which exhibits, on average, the highest
fertility levels worldwide (31).

In our validation, we forecast CF for each birth cohort using
data only up to a certain truncation age, which ranges from 20
to 39 yr old, forecast fertility up to age 40 yr old, and calculate
the error that is the difference between the forecasted and true

CF at age 40 yr old. With this procedure, we obtain 8,652 errors
in the HFD-based comparison for 29 countries and 62,310 errors
in the UN-based comparison for 201 countries. The errors are
indexed by truncation age, country, and birth cohort for each of
the 20 major methods. Details of how we obtain forecast errors
are given in SI Appendix, section 2.

We include in the final comparison only the best-performing
variant of each method; SI Appendix, section 2, provides details
on this selection procedure. For methods that include uncer-
tainty bounds, we test the coverage of these bounds using a
similar protocol.

Results
Accuracy of CF Forecasts.
Stochastic dominance. Fig. 1 ranks the methods based on abso-
lute percentage errors (APEs) and Kolmogorov–Smirnov (KS)
test of stochastic dominance. For a total of 380 pairwise method
comparisons (excluding the comparison with self), the test deter-
mines if the cumulative density of the APEs of method A (row)
is greater than that of method B (column) (P = 0.05). The meth-
ods are ordered top down with a decreasing number of significant
results of stochastic dominance.

In our full set of errors based on the HFD, the simple EM of
Myrskylä et al. (16) performs best and has, on average, strictly
smaller APEs than 17 other methods. This method is closely
followed by the BA of Schmertmann et al. (20) and the sim-
ple EM of de Beer (12), which both produce CF forecasts
that are, on average, strictly more accurate than those of 16
other methods. We cannot infer which of these two methods
performs best in this setting because of a cross-over of the cumu-
lative densities of their APEs. The BA of Ševćıková et al. (19)
is on rank 4. Freeze rates is the fifth most accurate method,
stochastically dominating 11 of the other 19 methods in this
setting.

Fig. 1. Two-sample, one-sided KS test statistic for stochastic dominance:
KS (method A, method B). Blue indicates that the cumulative density of
the APEs of method A (row) is significantly greater than that of method
B (column), and gray indicates nonsignificant results for the same test.
Crosses indicate inconclusive test results caused by cross-overs of cumula-
tive densities. Testing data are from the HFD (details are in SI Appendix,
section 2).
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Regarding the method types, it is striking that the forecasts of
simple EMs (12, 14–16) and BAs (19, 20) are, on average, more
accurate than those of more complex EMs (9, 10), CONs (22),
and most PARs (2–7). In addition, the forecasts of hybrid meth-
ods that combine properties of PARs and EMs (26, 27) or BAs
(8) are, on average, more accurate than the pure PARs. Fore-
casts of simple PARs (2–4, 6, 7) are, on average, less accurate
than those of more complex PARs (4, 5).
Thresholds for APE. Fig. 2 shows thresholds, below which 50,
80, 90, and 95% of the APEs are for each method. The meth-
ods are ordered first by method type and then by publication
date. This order reveals that forecast accuracy did not con-
sistently improve over time, although increasingly more high-
quality data and statistical methods have become available
for developing approaches. Specifically, the hybrid methods of
Evans (26) and Brass (8) and the EM of de Beer (12) dis-
rupt this continuous line of improvement with their outstanding
performance.

The threshold analysis is in line with the findings of the tests
of stochastic dominance: the thresholds below which a specific
percentage of errors falls are relatively small for the simple EMs
(12, 14–16), BAs (19, 20), and freeze rates in comparison with
those of more complex EMs (9, 10), hybrid methods (8, 26, 27),
and PARs (2–7).
Ranking. Table 1 ranks the 20 methods according to seven met-
rics: KS test; 50, 80, 90, and 95% APE thresholds; mean APE;
and root mean square error (RMSE). The overall ranking is
based on the KS test; ties are solved with mean APE. For exam-
ple, the BA of Schmertmann et al. (20) and the simple EM of de
Beer (12) have the same rank (rank 2) according to the KS test
statistic; adding information of the overall mean breaks the tie in
favor of the method of Schmertmann et al. (20).

The overall ranking has the simple EMs of Myrskylä et al. (16)
and de Beer (12) in the first and third positions, respectively;
the BAs of Schmertmann et al. (20) and Ševćıková et al. (19) in
the second and fourth positions, respectively; and freeze rates in
the fifth position. The simple EM of Lee (14) is in the sixth
position.

Fig. 2. Thresholds below which 50% (�), 80% (N), 90% (•), and 95% (�)
of APEs are for each method. Testing data are from the HFD (details are in
SI Appendix, section 2).

Table 1 also provides useful information on the magnitude of
the errors. The threshold below which one-half of the errors are
is 1.6% or less for the five best-performing methods. For the 90%
threshold, the corresponding line is 8.7%. Whether these errors
are considered large or small depends on the application.

Alternative rankings than the one shown in Table 1 would be
possible. For example, the method by Ševč́ıková et al. (19) ranks
on top in terms of RMSE, suggesting that it has fewer very large
errors than other best-performing methods. In fact, three of the
top five methods rank as number one in at least one of seven
metrics. However, none of the methods outside the top five rank
as number one on any of the metrics considered.
Truncation age. Fig. 3 displays the accuracy of the best five
methods compared with freeze rates by truncation age based on
absolute errors (AEs) on the relative and absolute scales. We
spot three patterns. First, forecasts of simple EMs (12, 14, 16) are
up to 40% more accurate than those of freeze rates for truncation
ages above 30 yr old. For truncation ages below 25 yr old, EMs
have mostly no advantage and often have a disadvantage com-
pared with freeze rates. Second, the BA of Ševč́ıková et al. (19)
shows an opposite pattern: its forecasts are particularly accurate
for truncation ages below 25 yr old, but for truncation ages above
35 yr old, the advantage over freeze rates is small or turns to a
disadvantage. Third, forecasts of the BA of Schmertmann et al.
(20) have a pattern over truncation age that is between those of
simple EMs and the BA of Ševč́ıková et al. (19). This method
performs well for truncation ages 25–35 yr old; for younger and
older truncation ages, the advantage over freeze rates is small.
Furthermore, only the forecasts of the BA of Schmertmann et
al. (20) and of the simple EM of de Beer (12) are, on average,
almost consistently more accurate than those of freeze rates.

Uncertainty Quantification. Only 8 of 20 methods (8, 14–16, 19, 20,
26, 27) provide prediction intervals to quantify forecast uncer-
tainty. To assess the calibration of the prediction intervals, we
analyze how well their empirical coverage matches with the
nominal coverage of the prediction intervals. Fig. 4 shows the
empirical coverage of the nominal 80% (N) and 95% (�) pre-
diction intervals. The empirical coverage varies strongly across
methods. Except for the EM of Hyndman and Ullah (15) and the
BA of Schmertmann et al. (20), the methods substantially under-
estimate uncertainty, and of these two, the method of Hyndman
and Ullah (15) substantially overestimates the uncertainty.

Discussion
Only a few studies have dealt extensively with the verification of
forecast methods (reviews of, for example, refs. 32–34). Although
they focus on different quantities and are from other fields, their
conclusions are consistent with our broad findings: more complex
methods do not necessarily outperform simpler methods.

We assess, compare, and rank the overall performance of 20
major methods that complete cohort fertility on exactly the same
testing dataset of the high-quality HFD, and therefore, any dif-
ferences in terms of forecast accuracy and uncertainty estimates
can be traced back to methodological differences. We find that
the baseline freeze rates method is consistently outperformed
by only four methods: the simple EMs of Myrskylä et al. (16)
and de Beer (12) and the BAs of Schmertmann et al. (20) and
Ševćıková et al. (19). Comparing their performances among each
other, we find that any one of the top four methods could be
in the lead depending on the applied metric. While some of
the best-performing methods produce large gains with respect
to freeze rates for some truncation ages, only two of them con-
sistently outperform freeze rates across (almost) all truncation
ages. Moreover, all but two probabilistic methods [i.e., the meth-
ods of Hyndman and Ullah (15) and of Schmertmann et al. (20)]
underestimate forecast uncertainty.
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Table 1. Rank methods based on different measures of forecast accuracy

Threshold APE, %

Overall ranking KS 50 80 90 95 Mean RMSE

1. Myrskylä et al. (16) 17 (1) 0.8 (1) 4.5 (3) 8.3 (4) 12.5 (5) 2.9 (4) 5.9 (5)
2. Schmertmann et al. (20) 16 (2) 0.9 (2) 3.9 (1) 7.1 (2) 11.5 (3) 2.7 (2) 5.4 (3)
3. de Beer (12, 13) 16 (2) 1.0 (3) 5.0 (4) 8.3 (3) 11.4 (2) 2.9 (3) 5.3 (2)
4. Ševcı́ková et al. (19) 15 (4) 1.1 (5) 4.0 (2) 6.6 (1) 9.5 (1) 2.4 (1) 4.2 (1)
5. Freeze rates 11 (5) 1.6 (9) 5.8 (7) 8.7 (5) 11.5 (4) 3.3 (5) 5.5 (4)
6. Lee (14) 11 (5) 1.2 (7) 6.1 (8) 10.8 (7) 15.1 (7) 3.6 (6) 6.9 (6)
7. Evans (26) 11 (5) 1.2 (6) 5.6 (5) 10.7 (6) 16.0 (8) 3.8 (7) 7.7 (8)
8. Hyndman and Ullah (15) 11 (5) 1.1 (4) 6.3 (9) 11.8 (9) 17.5 (9) 3.9 (8) 7.8 (9)
9. Brass (8) 8 (9) 2.4 (11) 7.8 (10) 11.7 (8) 14.7 (6) 4.5 (9) 7.1 (7)
10. Cheng and Lin (10) 8 (9) 1.3 (8) 5.8 (6) 14.0 (10) 23.5 (12) 4.9 (10) 11.2 (12)
11. Li and Wu (22) 8 (9) 2.5 (12) 8.9 (11) 14.1 (11) 21.8 (11) 5.7 (11) 10.7 (11)
12. Myrskylä and Goldstein (27) 5 (12) 2.0 (10) 14.4 (15) 28.2 (15) 38.8 (13) 8.5 (13) 16.2 (13)
13. Willekens and Baydar (9) 4 (13) 2.7 (14) 14.9 (16) 28.2 (16) 41.9 (15) 9.5 (14) 19.6 (15)
14. Chandola et al. (5) 4 (13) 2.7 (15) 13.0 (14) 26.5 (14) 41.6 (14) 9.6 (15) 24.4 (18)
15. Peristera and Kostaki (4) 4 (13) 2.5 (13) 11.9 (12) 24.0 (13) 42.3 (16) 10.3 (16) 29.8 (19)
16. Schmertmann (3) 0 (16) 6.8 (19) 12.3 (13) 16.2 (12) 21.6 (10) 8.2 (12) 10.6 (10)
17. Coale and McNeil (6) 0 (16) 4.9 (17) 16.4 (17) 30.9 (17) 43.7 (17) 10.8 (17) 18.4 (14)
18. Hadwiger (2) 0 (16) 3.9 (16) 18.0 (18) 39.6 (19) 57.6 (20) 12.0 (18) 21.9 (16)
19. Peristera and Kostaki (4) 0 (16) 6.2 (18) 19.9 (19) 34.1 (18) 55.8 (19) 15.0 (19) 33.0 (20)
20. Coale and Trussell (7) 0 (16) 7.2 (20) 29.7 (20) 42.8 (20) 52.9 (18) 15.1 (20) 23.1 (17)
No. of inversions 0 17 17 17 21 9 24

The overall ranking of methods in column 1 is based on the KS test statistic of stochastic dominance (column 2)
and the overall mean (column 7). Testing data are from the HFD (details are in SI Appendix, section 2).

We examine how consistent these findings are for (i) older
truncation ages 30–39 yr old and all years, (ii) truncation ages
20–39 yr old and years 1990 and later, and (iii) older truncation
ages 30–39 yr old and years 1990 and later in SI Appendix, sec-
tion 3. We find that four of the top five methods that did well in
the full error set are also at the top in the three error subsets,
indicating robust performance. Freeze rates moves slightly down
to rank eight, and the simple EM of Hyndman and Ullah (15)
moves to the top five.

Our analysis relied on the high-quality HFD that covers mostly
developed countries with comparatively low-fertility settings and
delay of childbearing since 1990. Such stable trends may explain
the high performance of freeze rates when completing cohort fer-
tility, which is immune to fertility timing. To analyze whether
our key findings are strongly context specific, perhaps varying
by region or fertility level, we replicated our validation exercise
using data from the UN (30). The data quality may be less con-
sistent than in the HFD, but the reconstructed UN data cover
effectively the whole globe. We analyzed the performance of the
20 methods in 201 UN countries and six world regions: Africa,
Asia, Europe, Latin America and the Caribbean, Oceania, and
northern America; data availability allows us to forecast only
from year 1990.

Fig. 5 shows that the broad picture of the HFD-based val-
idation holds across the globe—method complexity does not
necessarily increase forecast accuracy. The group of the top-
performing methods (red in Fig. 5) stays rather stable across
regions as does the group of the lower-ranked methods (blue in
Fig. 5). Although the UN-based rankings differ slightly across
regions, we find that the simple EMs of de Beer (12) and
Myrskylä et al. (16) and the BAs of Schmertmann et al. (20)
and Ševćıková et al. (19) are at the top complemented by
the simple EMs of Hyndman and Ullah (15) and Lee (14).
There is no evidence in any region that the complex paramet-
ric, complex extrapolation, or Bayesian methods would con-
sistently perform better than simple extrapolation. A detailed
analysis of the 201 UN countries and Africa is in SI Appendix,
sections 4 and 5.

We also show in SI Appendix, sections 3–5, that bias in CF is
overall small for top methods and that it varies by truncation age
and region. Absolute bias peaks at young truncation ages and
does not exceed 0.10 in the HFD data. In UN and Africa, the
bias is, unlike in HFD countries, consistently positive at all trun-
cation ages and also larger, ranging from 0.1 to 0.3 at age 20 yr
old across top methods. This positive and higher bias may be
due to overall levels of fertility being higher in Africa and the

Fig. 3. Mean AE of the top five methods compared with freeze rates (FRs)
by truncation age. Relative difference in percentage. (Inset) Difference on
an absolute scale. Testing data are from the HFD (SI Appendix, section 2).
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Fig. 4. Empirical coverage of nominal 80 and 95% prediction intervals (PIs)
of probabilistic methods. Testing data are from the HFD (details are in SI
Appendix, section 2).

inability of some methods, particularly freeze rates, to capture
strong declines in fertility.

Although freeze rates performs less accurately in some UN
world regions than in HFD countries compared with top meth-
ods, it is remarkable that it consistently outperforms most of the
sophisticated and less sophisticated forecast methods, and was
in top 5 of all 20 methods in the core evaluation using the high-
quality HFD data. Moreover, throughout our analysis and across
the globe, we found no evidence that the simple EMs would
be consistently outperformed by more complex approaches in
terms of forecast accuracy. This finding not only raises the ques-
tion of how much the extra effort of more complex methods
is worth, but it also suggests that it should be established as a
standard procedure to assess whether proposed new methods
outperform at least the naive method freeze rates and the simple
EMs of de Beer (12) and Myrskylä et al. (16). To facilitate such
benchmarking, we provide an implementation of the forecasting
methods evaluated in this study at https://github.com/fertility-
forecasting/validate-forecast-methods.

Since increasingly available resources in terms of high-quality
data, statistical methods, and computing power did not necessar-
ily lead to a continuous improvement of forecast performance
over time (Fig. 2), we ask the following question: what are the
key methodological breakthroughs of the top methods compared
with the lower ranked methods? Superior performance seems
to be linked to feeding forecasts with temporal fertility trends
in a country of interest and experiences of many other coun-
tries. Pure parametric curve fitting models (2–7) are less accurate
than extrapolation (9, 10, 12, 14–16) and BAs (19, 20), because
they do not rely on temporal fertility trends and borrow strength
from other countries. However, the hybrid parametric methods
of Evans (26) and Brass (8) adopt features of simple extrapola-
tion or BAs, respectively, and consequently, they have relatively
high forecast accuracy. Moreover, complex extrapolation (9, 10)
underperforms against simple extrapolation (12, 14–16), perhaps
because it may overfit observed trends by age, period, or birth
cohort.

Complementing the analysis of methodological breakthroughs
with forecast errors by country (SI Appendix, section 6) uncov-
ers what forecast situations are challenging, even for the top
methods. Not surprisingly, major challenges across regions are
fertility declines that deviate from continuous trends or the expe-

rience of other countries. The top methods produce relatively
large forecast errors for eastern Germany when fertility fell to
unprecedentedly low levels after German reunification (35) and
for Algeria when fertility sharply declined from over eight to only
two children per woman between the 1970s and the 2000s (36).
No method has found an effective remedy against such unstable
fertility developments so far.

Our analyses have consistently shown that more complex
methods do not necessarily outperform simpler methods when
completing cohort fertility. The scope of our findings does not
extend to long-term forecasts of cohort or period fertility due
to lack of sufficiently long data time series and restricted appli-
cability of methods. However, they do show that a thorough
evaluation of forecast performance is crucial to identify the best
methods, to retroactively grade methodological breakthroughs,
and to proactively uncover unresolved issues. Establishing exten-
sive validation as a standard evaluation benchmark for new
fertility forecast approaches would help to better focus efforts
aimed at methodological development.

Materials and Methods
Readers have access to R code on GitHub: https://github.com/fertility-
forecasting/validate-forecast-methods. SI Appendix describes forecast meth-
ods in section 1; validation procedure to select the best variant per method
in section 2; results of HFD-based error subsets in section 3; results of UN-
and Africa-based validation in sections 4 and 5, respectively; and errors by
country in section 6.

Forecast CF. CF is the sum of fertility rates over ages 15–40 yr old for women
of the same birth cohort; it gives the average number of children for women
born in the same calendar year. CF forecasts complete lifetime fertility for
women who have not yet reached the last reproductive age. For example, to
complete fertility for women whose truncation age is 30 yr old, we forecast
their remaining fertility for ages 31–40 yr old; their CF contains fertility that
is observed until age 30 yr old and forecasted above age 30 yr old.

Forecast Error. The AE measures accuracy as the absolute difference
between forecasted and observed CF, and the APE relates this AE to
observed CF. If observed CF is 2, an APE of 10% indicates that the absolute
deviation between forecasted and observed CF (i.e., AE) was 0.2 and that
the forecasted CF was either 1.8 or 2.2.

KS Test Statistic of Stochastic Dominance. The KS test statistic is widely
applied to test for equality and stochastic dominance of two distributions
(37–39); it is a nonparametric and distribution-free test statistic that requires
large but not equal sample sizes (40–42). We use the two-sample, one-sided
KS test statistic (42) to determine for each pair of methods, A and B, if

Africa Asia Europe LAC Oceania NAHFD29 UN201

Fig. 5. Ranking of the methods based on 29 HFD countries, 201 UN
countries, and world regions: Africa, Asia, Europe, Latin America and the
Caribbean (LAC), Oceania, and northern America (NA). Truncation ages are
20–39 yr old, and years are 1990+. Testing data are from the HFD and UN
data (details are in SI Appendix, sections 2, 4 and 5).
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method A stochastically dominates method B: KS(A, B) with a significance
level of 0.05. To identify a possible cross-over, we conduct the statistical test
from both sides: KS(A, B) and KS(B, A).

Number of Inversions. To quantify the dissimilarity between rankings, we
compare their number of inversions. Each pair of ranks i < j that is out of
sort ri > rj is an inversion (43). The overall method ranking is in ascend-
ing order r1, r2, . . . , r20 and has zero inversions. The greater the number of
inversions is for any other ranking, the greater is its dissimilarity with the
overall ranking.

Relative Performance Based on AEs. We quantify how much more accurate
forecasts of a method are compared with freeze rates with the simple

difference of AEs between freeze rates and another method on the abso-
lute scale and with the relative difference of AEs, which relates the simple
difference of AEs to the AEs of freeze rates. Positive values indicate that a
method is more accurate than freeze rates and vice versa.
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19. Ševčı́ková H, Li N, Kantorová V, Gerland P, Raftery AE (2016) Age-specific mortal-

ity and fertility rates for probabilistic population projections. Dynamic Demographic
Analysis, ed Schoen R (Springer International Publishing, Cham, Switzerland), pp
285–310.

20. Schmertmann C, Zagheni E, Goldstein JR, Myrskylä M (2014) Bayesian forecasting of
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