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1 Introduction

The idea that changes in agents’ beliefs about the future may be an important driver of

economic fluctuations has fascinated many scholars over the years. While the applica-

tion to technology news is relatively recent, and has been revived following the seminal

contributions of Beaudry and Portier (2004, 2006), the insight that changes in agents’

expectations about future fundamentals could be a dominant source of economic fluctua-

tions is a long-standing one in Economics (see e.g. Pigou, 1927). The news-driven business

cycle hypothesis posits that business cycle fluctuations can arise because of changes in

agents’ expectations about future economic fundamentals, and absent any actual change

in the fundamental themselves. If the arrival of favorable news about future productivity

can originate an economic boom, lower than expected realized productivity can set off

a bust without any need for a change in productivity having effectively occurred. The

plausibility of belief-driven business cycles is however still a hotly debated issue in the

literature (see e.g. the extensive review in Ramey, 2016).1

In this paper, we set to answer a slightly different, but related question: ‘How does the

aggregate economy react to a shock that raises expectations about future productivity

growth?’ We provide an empirical answer to this question in a rich-information quarterly

VAR that incorporates many of the relevant aggregates, such as output, consumption,

investment and labor inputs, as well as forward looking variables such as asset prices,

interest rates, and consumer expectations. The novelty in our approach resides in the

identification of technology news shocks: we construct an external instrument for identi-

fication by using the unforecastable component of all monthly utility patent applications

1The empirical literature on technology news shocks is vast, and we review it when discussing our
results in Sections 4 and 5. At the poles of the debate are the advocates of the news-driven business cycle
hypothesis such as e.g. Beaudry and Portier (2006, 2014); Beaudry and Lucke (2010), and its opponents,
such as e.g. Barsky and Sims (2011, 2009); Kurmann and Otrok (2013); Barsky et al. (2015); Kurmann
and Sims (2017). In Beaudry and Portier (2006) news shocks are orthogonal to current productivity,
but are the sole driver of TFP in the long run (e.g. Gaĺı, 1999; Francis and Ramey, 2005). Other works
have identified technology shocks as those maximizing the forecast error variance of productivity at some
long finite horizon (e.g. Francis et al., 2014), or over a number of different horizons (see e.g. Barsky and
Sims, 2011). Other contributions have highlighted the differences arising from e.g. modeling variables in
levels rather than in first differences, allowing for cointegrating relationship among variables (together
with their number and their specification), accounting for low frequency structural breaks, accounting
for other policy-related concomitant factors, and enriching the information set in the VAR. Examples
include Christiano et al. (2003); Fernald (2007); Francis and Ramey (2009); Mertens and Ravn (2011);
Forni et al. (2014).
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filed at the U.S. Patents and Trademark Office (USPTO) over the past thirty years. The

starting point for the construction of our external instrument are the “USPTO Historical

Patent Data Files” (Marco et al., 2015) that provide a comprehensive record of all pub-

licly available applications and granted patents registered at the USPTO from January

1981 to December 2014. To the best of our knowledge, the properties of monthly patent

applications have not been previously explored in empirical macroeconomics, or in the

context of identifying technology news shocks.2 The protection granted to new inventions

through the patenting system constitutes a powerful incentive to file appropriate appli-

cations before they are diffused and commercialized. Hence, patents applications at any

point in time embed a signal about potential future technological changes. At the same

time, however, the decision of filing a patent is a fundamentally endogenous one. On the

one hand, R&D expenditures may be systematically more generous in times of economic

boom, endogenously leading to a higher number of patents applications. On the other,

individuals and businesses may strategically time application filings depending on their

expectations about future economic developments, to the extent that these may influence

their future profit margins. We move from this intuition to construct our instrument for

identification of technology news shocks.

Specifically, we recover the external instrument as the component of patent applica-

tions that is orthogonal to (i) its own lags; (ii) a selection of forecasts at different horizons

intended to capture current or expected macroeconomic developments that may influence

the decision of filing a patent in the time unit, and which we take from the Survey of

Professional Forecasters; and (iii) other contemporaneous unanticipated monetary and

fiscal policy changes. Contrary to virtually all the existing literature, our identification

strategy allows to dispense from potentially strong a priori assumptions related to the

duration of the effects of news shocks, the long-run drivers of technology, or the length

of time that is required to the news to affect the current level of technology. More-

over, it is robust to mismeasurements in commonly used empirical measures of aggregate

2Earlier studies that have similarly employed patents applications to measure the effects of technology
shocks (reviewed below) have typically relied on annual data. The use of patent data to measure tech-
nological advancements at industry level dates back at least to Lach (1995). Griliches (1990) provides
a review of the uses of patent data in economic analysis, and in particular as indicators for technolog-
ical change. Hall and Trajtenberg (2004) use the annual NBER patent citations data file described in
Hall et al. (2001) to show that granted patents, and their citations, can be used to measure evidence of
General Purpose Technologies (GPT).
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technology (see e.g. discussions in Fernald, 2014; Kurmann and Sims, 2017). The iden-

tifying assumptions in our SVAR-IV (Mertens and Ravn, 2013; Stock and Watson, 2012,

2018) are that the instrument is informative about technology news, and that this is

the only channel through which the instrument and the VAR innovations are related

(Miranda-Agrippino and Ricco, 2018). Importantly, because innovations can in principle

be released to the public under a ‘patent-pending’ status, our identification scheme does

not warrant imposing orthogonality with respect to the current level of technology, which

is instead a standard assumption in the news literature (see e.g. Beaudry and Portier,

2006; Barsky and Sims, 2011, among many others). In this respect, our identification is

akin to Barsky et al. (2015); Kurmann and Sims (2017). These papers relax the assump-

tion that technology news should have a zero impact effect on current TFP levels on the

basis that news about future productivity can arrive along with innovations in current

technology, that innovations to current technology may signal significant improvements

in the following years, and that technology slowly diffuses across sectors. We subscribe

to this interpretation.

While such orthogonality condition is not imposed a priori, our external instrument

recovers a news shock that has essentially no effect on TFP either on impact, or in the

two years immediately afterwards. TFP then rises robustly following a persistent hump

that reaches a peak 6 to 7 years after the shock hits. The time that it takes for news

to translate into meaningful changes in future TFP is sensibly longer than the two-year

anticipation lag that is typically assumed in the literature (see e.g. Schmitt-Grohé and

Uribe, 2012; Beaudry and Portier, 2014; Faccini and Melosi, 2018). Instead, both the

shape and timing of the TFP response are consistent with the S-shaped pattern that

is typical of the slow diffusion of new technologies documented, among many others, in

Griliches (1957); Rogers (1962) and Gort and Klepper (1982).

Conversely, by the time TFP materially departs from its initial level, the dynamics of

all other variables in our VAR are largely exhausted, and virtually all have comfortably

returned back to trend. The arrival of news about future technological improvements trig-

gers a sustained, albeit delayed, economic expansion: output, consumption, investment,

hours worked and capacity utilization all rise to peak at the two-year horizon.3 Hence,

3Initial responses, while numerically negative, are not significant at conventional levels, with the
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the pattern of dynamic responses that we recover does lend credit to a ‘news-view’ in the

spirit of what described in e.g. Beaudry and Portier (2006). In recent influential work,

Chahrour and Jurado (2018b) have proven that any model with news has an observation-

ally equivalent noise representation. In other words, a framework in which agents receive

some advance information about the realization of future fundamentals can be recast in

an observationally equivalent representation in which agents receive a noise-ridden signal

about future fundamentals, and form their expectations by solving a signal extraction

problem. Seen through these lenses, news – that are realized on average –, confound the

effects of ‘pure beliefs’ with those associated with changes in future fundamentals. Con-

versely, noise, orthogonal to fundamentals at all leads and lags, captures the essence of

‘pure beliefs’. The large asynchronicity in the timing of the estimated dynamic responses

seems to suggest that the aggregate effects of technology news that we unveil may be

predominantly (if not entirely) driven by beliefs.4 The shock that we recover, however, is

not the main driver of economic fluctuations. At business cycle frequencies, only about a

tenth (on average) of aggregate fluctuations is accounted for by the estimated news shock;

importantly, we also find that it only accounts for at most 40% of the variation of TFP

in the very long run. This finding may potentially have implications for identification

schemes that rely on ‘max-share’ of explained TFP variation (e.g. Barsky and Sims, 2011;

Kurmann and Otrok, 2013, among many others).

The pattern of dynamic responses that we recover is consistent with the predictions

of New Keynesian models with nominal rigidities, particularly those where such frictions

arise due to imperfect common knowledge (e.g. Mankiw and Reis, 2002; Woodford, 2003).

After an inertial initial reaction, prices eventually decline. Conversely, real wages rise

at medium horizons, but contract on impact. The monetary authority endogenously

responds to the fall in (expected) inflation by lowering nominal rates on impact, and more

exception of hours worked, that suffer a moderate and very brief contraction, and consumption, that
instead rises already upon realization of the shock. Similar types of impact responses are documented in
Francis and Ramey (2005); Basu et al. (2006) and Barsky and Sims (2011).

4Comparing findings in Schmitt-Grohé and Uribe (2012); Barsky and Sims (2012) and Blanchard et al.
(2013), Chahrour and Jurado (2018b) note that these models all concur that future fundamentals play
a negligible role in driving aggregate fluctuations. In fact, for future fundamentals to play a significant
role, it must be the case that both agents’ actions depend on their expectations about the future, and
that they have access to accurate information about the future that is not revealed by either current or
past fundamentals.

5



than proportionally. Hence, real short-term rates decline at a time when the natural

rate of interest, proportional to the expected growth rate of technology, is rising (see

e.g. Christiano et al., 2010). This suboptimal response of the central bank can also be

rationalized in terms of information rigidity: the central bank responds to its best forecast

of current and future fundamentals, that may diverge from actual realizations (see e.g.

discussion in Lorenzoni, 2011; Sims, 2012a). A noisy signal about future technological

changes can also be responsible for agents overweighting current conditions when forming

expectations about the future (see e.g. Coibion and Gorodnichenko, 2015). In this sense,

the initial rise in consumers’ expectations about future unemployment that we document

is consistent with the initial deterioration in labor market conditions, reflected in the fall of

both hours worked, and wages. In turn, this can help explain the initial downward revision

in consumers’ expectations about current conditions, and expected business outlook five

years hence. In this respect, our results suggest caution in interpreting innovations in

consumer confidence indicators as a ‘pure’ measure of news (e.g. Cochrane, 1994; Barsky

and Sims, 2012). Finally, we find evidence of a potential amplification channel for news

shocks that works through the compression of risk (term) premia, in turn consistent with

the decoupling of asset prices and interest rates on the one hand, and consumption growth

and inflation on the other (see also Crump et al., 2016).

Our work is closely related to a stream of studies that has relied on empirical mea-

sures of technological changes in order to identify the effects of technology shocks. The

first such study is Shea (1999). Here annual patent applications and R&D expenditures

are used to estimate the effects of technology shocks on industry aggregates. Identifica-

tion is achieved by ordering either measure last in a battery of small-scale VARs that

also contain labor inputs and productivity. Christiansen (2008) extends on the previous

study by using over a century of annual patent application data. The benchmark specifi-

cation is a bivariate VAR with labor productivity and patents ordered first. Alexopoulos

(2011) uses the number of book titles published in the field of technology to construct a

measure for technological changes intended to capture the time in which the novelty is

effectively commercialized. Responses of aggregate variables are estimated in a set of bi-

variate VARs with the publication index ordered last. More recently, Baron and Schmidt

(2014) have used technology standards and a Cholesky factorization with the standard
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variable ordered last to infer on the aggregate implications of anticipated technology

shocks, and also report evidence of a slow diffusion of technology over time. For what

concerns the chronological placement in terms of anticipation lag, for each technological

improvement, industry standardizations sit somewhere in between patent applications

and the publication of the relevant title.5 Our paper differs from these contributions in

several ways. First, these studies address the fundamental endogeneity of empirical mea-

sures of technological changes only to the extent that this is captured in the reminder

of variables included in the bi/tri-variate VARs. Other than relying on a richer VAR

specification, in the construction of our instrument we recognize that the cyclical nature

of patents applications may be influenced also by expected future realizations, which we

capture using an array of survey forecasts at different horizons, and by other concomitant

policy changes. Second, and related, these studies have all implicitly assumed the em-

pirical measure of technology being a near perfect measure of news shocks. In fact, their

identifying assumptions amount to effectively retrieving the transmission coefficients by

running a distributed lag regression (with some controls) of the variables on the patents

data. In contrast, our identifying assumptions explicitly account for the possible pres-

ence of measurement error in the constructed instrument. Finally, these studies have all

relied on annual data potentially overlooking important higher frequency variation which

instead we exploit for the identification.

The structure of the paper is as follows. Section 2 introduces the external instrument

that we design for the identification of technology news shocks, and describes the monthly

patent data that we use for its construction. Section 3 discusses common challenges to the

empirical identification of technology news shocks in VARs and lays out the identification

assumptions in our SVAR-IV. Section 4 collects the results, which we discuss in detail in

Section 5 against the main transmission mechanisms proposed in the literature. Finally,

Section 6 concludes.

5In an international context, Arezki et al. (2017) use giant oil discoveries as a directly observable
measure of technology news shocks and estimate their effects in a dynamic panel distributed lag model.
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2 A Patents-Based Instrument for News about Fu-

ture Technological Changes

In the vast majority of industries, and particularly since the 20th century, the introduction

of technological innovations follows a relatively standardized process. Typically, before

an invention – intended as either a brand new product or production process, as well as an

amelioration to existing ones – is disclosed, the owner proceeds to file a patent application

in order to protect her creation. The legal protection that is granted to patent holders

ensures that an individual or business has a set number of years in which to capitalize

on their invention. Hence, the incentive to protect new inventions through appropriate

patent registrations is high. The length of time that elapses from the time in which a

patent application is filed to when it is then granted, and the invention eventually diffuses

within the economy, can be in the order of several years, depending on the type of patent

and the characteristics of the industry sector. Hence, patents applications at any given

time contain information about technological changes that will occur at some point in the

future (see e.g. Lach, 1995; Hall and Trajtenberg, 2004). At the same time, although the

bulk of informativeness of patents applications lies in the future, and patented products

cannot be copied by others during the protected period, some inventions are often released

to the public under a ‘patent-pending’ status. This initial diaspora of the invention

spreads new knowledge to the public, some of whom may be able to improve upon that

invention themselves. Hence, it is conceivable that patents applications may potentially

also embed a signal for current technological changes. We move from this intuition to

construct an external instrument for identification of technology news shocks.

The decision to file a patent application at any given time is, however, a fundamen-

tally endogenous one. On the one hand, R&D expenditures may be systematically more

generous in times of economic boom, endogenously leading to a higher number of patents

applications. On the other, individuals and businesses may strategically time applica-

tion filings depending on their expectations about future economic developments, to the

extent that this may influence their future profit margins. Separately, not all patent

applications result in a grant, and hence the signal about future productivity changes is

necessarily only a partial one. This can raise concerns relative to the relevance of the
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instrument. We address these issues in more detail in the next subsection, where we also

describe the patent dataset. We then go on to detail the construction of the external

instrument at the end of the section.

2.1 Information in Patent Data

We use the “US Patents and Trademark Office (USPTO) Historical Patent Data Files”

compiled by Marco et al. (2015) as a follow up and extension of Hall et al. (2001).

The dataset records the monthly stocks and flows of all publicly available applications,

published and unpublished, and granted patents registered at the USPTO from January

1981 to December 2014. The stocks include pending applications and patents-in-force;

flows include new applications, patent grants and abandonments.6

Our starting point for the analysis is the monthly flow of all new utility patent ap-

plications.7 We then construct quarterly variables by summing up the monthly flows

within each quarter. Figure I plots (the cumulated sum of) quarterly patent applications

from 1981 to 2014, for each of the NBER categories defined in Marco et al. (2015), and

reported in Table C.II in Appendix C. In the figure, shaded areas denote NBER recession

episodes, and we normalize 1981-I to be equal to 0 to highlight the different trends across

different categories. The number of new patents applications has increased substantially

over the past 30 years and, as visible from the chart, patents classified under ‘comput-

ers and communications’ (orange line) have enjoyed a faster trend. Patent applications

across all categories tend to slide after recessionary episodes, providing some evidence on

their cyclical nature.

There have been three important regulatory changes in patenting in 1982, 1995, and

2013. All these regulations affected the number of applications when they came into

effect, as shown by the spikes in Figure I. In 1982, the old Court for Customs and Patent

6See also Hall et al. (2001). The dataset is available for download at http://www.ustpo.gov/

economics.
7We discard information relative to both abandonments and patents granted. While granted patents

can potentially provide a stronger signal about future technological changes, they tend to be significantly
more cyclical than patents applications. Also, the production of the invention may already have started
while the application was pending. Hence, most of the ‘news content’ in patent applications may be
exhausted by the time it is granted. And this is particularly true after the regulatory changes which
made patent applications public after 2000. Moreover, as Christiansen (2008) discusses, the issuance
depends highly on the intensity of labor and administrative cycles in the USPTO in any given time
period.
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Figure I: Patent Applications across NBER Classifications
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Note: Patents applications across all NBER categories. Quarterly figures obtained as sum of monthly
readings, 1981-Q1=0. Shaded areas denote NBER recession episodes.

Appeals was abolished and a new Court of Appeals for the Federal Circuit was established;

the new court provided more protection to the owners of patents against infringement.

In 1995, the U.S. implemented the changes agreed upon in the Agreement on Trade-

Related Aspects of Intellectual Property Rights (TRIPS) as part of the Uruguay Round

Agreements Act. The TRIPS agreement’s main purpose was to harmonize patenting

rules among all members of the World Intellectual Property Organization (WIPO). The

large impact on the number of patent filings was due to a change in patent terms; as of

June 1995, patent terms were set to 20 years from filing, and away from the previous

practice of 17 years after issuance. Finally, in March 2013, the U.S. implemented the

rules under the America Invents Acts (AIA). These sets of rules were designed to address

the right to file a patent application, and implied that applications filed on or after March

2013 were to be governed under the new priority rule ‘first-inventor-to-file’, rather than

the pre-existing ‘first-to-invent’.8 All these three regulatory changes led to an increase

in applications prior to their implementation. However, to the extent that they are

not driven by considerations related to current or anticipated economic conditions, they

8For a detailed description of the Leahy-Smith America Invents Act the reader is referred to https:

//www.uspto.gov/sites/default/files/aia_implementation/20110916-pub-l112-29.pdf
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provide us with important sample variation which we exploit for the identification.

The proportion of patent applications that eventually results in a grant being issued

can vary substantially, both over time, and across categories.9 To give a sense of the time

evolution and the success (allowance) rates, in Appendix C we report a set of summary

statistics which we take from both Carley et al. (2015) and Marco et al. (2015). Allowance

rates vary whether one considers ‘first-action’, ‘progenitor’, or ‘family’ allowance rates.10

Family allowance rates tend to be the highest by their nature, with success rates peaking

at over 80%. At the other end of the spectrum, first-action allowance rates, allowed

without the need for further amendments, are the least successful with average allowance

rates of about 10%. Progenitor allowance rates sit somewhere in the middle, with a lowest

reading of about 43% (Figure C.I). Hence, while not all applications result in granted

patents, the share of successful applications is substantial. This supports the intuition

that patents applications give a strong signal about future technological changes. A

further piece of evidence is in Figure C.II, taken from Marco et al. (2015). The chart

considers the cohort of applications filed in 2002, across all the NBER categories. Success

rates range from 57% in ‘drugs & medical’, to 81% in ‘electrical & electronics’.

We explore the properties of quarterly patents applications in Table I. Here we regress

the quarterly growth rate of all utility patents applications (excluding ‘non-classified’ and

‘missing’) on its first four lags, and on a collection of expectations about the economy sam-

pled at different forecast horizons, and taken from the Survey of Professional Forecasters

(SPF). The vector of forecasts Et[wt+h] includes real output growth, the unemployment

rate, inflation (GDP deflator), real federal government spending, real non-residential in-

vestments, and real corporate profits net of taxes.11 The forecast horizon is expressed

in quarters, such that Et[wt] denotes SPF forecasts for the current quarter.12 Regres-

9From filing to issuance, the process takes on average 2 years as documented by Marco et al. (2015).
10The first-action allowance rate is the proportion of progenitor applications that are allowed without

further examination. The progenitor allowance rate (or simply, allowance rate) is the proportion of
progenitor applications allowed without any continuation procedure. The family allowance rate is the
proportion of applications that produce at least one patent, including the outcomes of continuation
applications that emerge from progenitor applications (see Carley et al., 2015).

11SPF respondents forecast nominal corporate profits net of taxes. We construct a series for real
corporate profits forecasts by deflating with the forecasts for the GDP deflator (our measure of inflation,
see Section 4) at the relevant forecast horizons.

12SPF forecasts are published in the middle of the second month of each quarter. The information set
of the respondents at the time of compiling the survey includes the advance report on the national income
and product accounts of the Bureau of Economic Analysis, which is published at the end of the first month
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Table I: Endogeneity of Patents Applications

(1) (2) (3) (4)
pat−1 -0.850*** -0.943*** -0.932*** -0.894***

(-8.93) (-10.18) (-9.81) (-10.20)
pat−2 -0.481*** -0.640*** -0.640*** -0.592***

(-4.61) (-6.36) (-6.35) (-6.00)
pat−3 -0.275*** -0.441*** -0.428*** -0.389***

(-3.20) (-5.41) (-5.54) (-5.74)
pat−4 0.001 -0.077 -0.078 -0.067

(0.01) (-1.00) (-1.03) (-0.90)

Et[wt] 5.575***
0.000

Et[wt+1] 7.955***
0.000

Et[wt+4] 4.158***
0.001

regulation
dummy

✓ ✓ ✓

constant ✓ ✓ ✓ ✓
Adj-R2 0.448 0.794 0.791 0.767
N 131 131 131 131

Notes: Granger Causality. Dependent variable: pat = 100 × (lnPAt − lnPAt−1), quarterly growth rate
of utility patents applications registered at the USTPO. Et[wt+h] denotes SPF forecast published in
quarter t. The forecast horizon is expressed in quarters. wt contains forecasts for real output growth,
the unemployment rate, inflation (GDP deflator), real federal government spending, real non-residential
investments, and real corporate profits net of taxes. The regulation dummy captures the legal changes
in the patents application process implemented in September 1982, June 1995, and March 2013. Top
panel: t statistics in parentheses, robust standard errors. Middle panel: Wald test statistics for joint
significance of SPF forecasts. *, **, *** denote statistical significance at 10, 5, and 1% respectively.

sions include a constant and a regulatory dummy intended to capture the legal changes

discussed above. We report t-statistics for the autoregressive coefficients, and Wald test

statistics for the joint significance of SPF forecasts at each horizon. Standard errors are

HAC-corrected.

Patent applications exhibit a strong autocorrelation pattern. Moreover, as antici-

pated, there is evidence that current and expected economic conditions can influence the

decision of filing patent applications in any given quarter. Patents applications also corre-

late with the first (lagged) factor extracted from the large collection of US macroeconomic

and financial data assembled in McCracken and Ng (2015). Results are reported in Table

C.I. Typically, the first such factor is interpreted as a measure of economic activity. This

in each quarter. For further information see https://www.philadelphiafed.org/research-and-data/
real-time-center/survey-of-professional-forecasters.
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Figure II: Instrument for News Shocks
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too reinforces the fundamentally cyclical nature of patents applications.

In the next subsection, we construct an instrument for identification of technology

news shocks by removing the forecastable variation in patents applications.

2.2 Instrument Construction

We recover an external instrument for the identification of technology news shocks as the

component of quarterly utility patents applications that is orthogonal to agents’ forecasts

for the state of the economy, and is unpredictable given its own history. Intuitively, we

seek to remove endogenous variation in applications filings that results from current or

foreseen economic conditions.

Specifically, we recover an instrument for identification of news shocks using the resid-

uals of the following regression, estimated at quarterly frequency

pat = c + γ(L)pat + ∑
h=1,4

βhEt[xt+h] + zt. (1)

pat is the quarterly growth rate of all utility patent applications in a given quarter t,
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Table II: Dependence of Instrument on Economic Forecasts

Et[wt] Et[wt+1] Et[wt+4]

Wald Test 0.270 0.850 0.290

p-value 0.949 0.531 0.882

Adj R2 0.582 0.587 0.583

N 127 127 127

Notes: Dependent variable is the residual of Eq. (1). Et[wt+h] denotes SPF forecast published in quarter
t. The forecast horizon is expressed in quarters. wt contains forecasts for real output growth, the
unemployment rate, inflation (GDP deflator), real federal government spending, real non-residential
investments, and real corporate profits net of taxes. Numbers reported are Wald test statistics for joint
significance of the SPF forecasts at each horizon. All the regressions include own 4 lags, regulation
dummy and constant. *, **, *** denote statistical significance at 10, 5, and 1% respectively.

Table III: Dependence of Instrument on Lagged States

F1 F2 F3 F4 F5 F6 F7

Wald Test 0.880 1.160 0.290 0.810 1.040 0.190 0.290

p-value 0.481 0.330 0.882 0.521 0.389 0.945 0.885

Adj R2 0.583 0.584 0.583 0.587 0.596 0.580 0.582

N 127 127 127 127 127 127 127

Notes: Dependent variable is the residual of Eq. (1). Ft are factors extracted from the quarterly dataset
of McCracken and Ng (2015). Numbers reported are Wald test statistics for the joint significance of the
first 4 lags of each factor. All the regressions include own 4 lags, regulation dummy and constant. *, **,
*** denote statistical significance at 10, 5, and 1% respectively.

i.e. pat = 100× (lnPAt − lnPAt−1). We exclude both ‘missing’ and ‘not classified’ patents

applications from the count. γ(L) = ∑4
j=1 γjLj, and Et[xt+h] is an m×1 vector of forecasts

compiled at t for the vector of economic variables xt+h, where h is equal to one and four

quarters. We use median forecasts from the SPF to capture expectations about the state

of the economy that may influence the decision of filing a patent application in a specific

quarter t. The vector xt contains the unemployment rate (ut), inflation (πt), and the

growth rates of real non-residential fixed investments (It), and of real corporate profits

after tax (Πt). ∀t xt ⊂ wt used in Table I.

The procedure in Eq. (1) removes by construction both the autocorrelation in patent

data, and the dependence on macroeconomic conditions as captured by the survey fore-

casts. In Tables III and II we check for correlation of the recovered instrument both with
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other forecasts at different horizons (i.e. Et[wt+h]), and with the same factors of Table

C.I. In both cases, we do not find evidence against the null of no correlation (i.e. the null

that the instrument is Granger caused by the variables in the tables).

A final concern may relate to the potential correlation of patent application filings

with other shocks occurring in the current quarter. In order to account for this, we

augment Eq. (1) with a set of further controls intended to capture policy changes in the

current quarter as follows

pat = c + γ(L)pat + ∑
h=1,4

βhEt[xt+h] + δst + zt. (1’)

st in Eq. (1’) includes the current value and first two lags of unexpected and anticipated

exogenous tax changes occurring at quarter t, as classified by Romer and Romer (2010)

and Mertens and Ravn (2012), and the series of unanticipated changes to the intended

Fed funds rate target of Romer and Romer (2004).13

The variables pat and zt are plotted in Figure II. The grey dash-dotted line is the

quarterly growth rate of patents applications pat. The green dash-dotted line are the

residuals of Eq. (1) where there is no control for current and lagged policy changes. The

solid blue line are the residuals of Eq. (1’). Due to the availability of the narrative tax

series, the latter is available only up to 2006-IV. We use this as our preferred instrument.

However, we also evaluate results obtained using the series which does not control for

contemporaneous policy changes (green) as a potential instrument. Results are largely

equivalent and discussed in Section 4.

13We use the series of narrative changes in monetary policy extended to 2007 in Miranda-Agrippino
and Rey (2015). Controlling for the changes in tax policy follows from the intuition in Uhlig (2004) who
noted that changes in capital income taxes would lead to permanent effects on labor productivity and
hence be a confounding factor in the analysis of technology shocks. This intuition was further developed
in Mertens and Ravn (2011).

15



3 Identification of Technology News Shocks: Assump-

tions and Challenges

In the news literature, it is common to think of the process for technology as a random

walk with drift subject to two stochastic disturbances

lnAt = ∆lnA + lnAt−1 + eA1,t + eA2,t−k, (2)

where ∆lnA is the steady state growth rate of technology, and eA1,t and eA2,t−k are zero-

mean normally distributed i.i.d. processes with variance equal to σ2
A1 and σ2

A2 respectively.

At is typically understood as a shifter to the aggregate production function of the econ-

omy, and intended to capture a concept of technology related to the efficiency with which

the factors of production are utilized.14 In the reminder of the paper, we use a broader

definition of technology that may refer to both the efficiency of inputs utilization, and

the introduction of new processes altogether.

eA2,t is the news shock.15,16 The standard identifying assumption in the news literature

is that agents learn about eA2,t−k before it hits the technology process, i.e. k > 0 (see e.g.

Beaudry and Portier, 2006; Barsky and Sims, 2011, among many others). However, a

14The aggregate production function can be though of as having the general form

Yt = f(EtLt, UtKt,At), (3)

where Yt is output, Et and Lt denote labor effort and labor input respectively, Ut is capital utilization,
Kt is the stock of installed capital, and At is technology.

15An alternative equivalent formalization assumes technology to be the sum of a stationary and a
permanent component, with news shocks affecting the latter (see e.g. Blanchard et al., 2013; Kurmann
and Sims, 2017).

16Chahrour and Jurado (2018b) show that any model with news such as that in Eq. (2) admits an
observationally equivalent noise representation where the fundamental variable (lnAt) is i.i.d. and agents
receive a noisy signal about it k periods into the future. In its simplest form, and with k = 1, Eq. (2)
reduces to

lnAt = eA1,t + eA2,t−1, ( eA1,t

eA2,t
) ∼ i.i.d. N (0,( σ2

A1 0
0 σ2

A2

)) . (4)

The associated noise representation is

st = lnAt+1 + νt, ( lnAt+1
νt

) ∼ i.i.d. N (0,( σ2
A 0

0 σ2
ν

)) . (5)

With full history of both fundamentals and beliefs about them being observable to the econometrician, the
news and noise representations are observationally equivalent iff (i) σ2

A = σ2
A1+σ2

A2; and (ii) σ2
ν/σ2

A = σ2
A1/σ2

A2

(see Chahrour and Jurado, 2018b).
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number of more recent papers have argued that a news shock is also in principle compati-

ble with k = 0, which would affect technology also on impact (see e.g. Barsky et al., 2015;

Kurmann and Sims, 2017). This may happen because news about future productivity

arrives along with an innovation in current technology, because innovations to current

technology may signal significant improvements in the following years, or because technol-

ogy slowly diffuses across sectors. We subscribe to this interpretation, hence, empirically,

we do not constrain news shocks to be orthogonal to the current level of technology.

Allowing for k = 0 naturally makes the task of telling apart a news shock with effects

on current technology from an innovation in current technology a daunting one. In this

respect, we rely on the information content of the instrument constructed in Section 2. As

discussed, while patent applications are most informative for future technological changes

(k > 0), the fact that innovations can be distributed under a patent-pending status does

not rule out the k = 0 case a priori. Hence, the use of the patent-based external instrument

does not warrant imposing orthogonality with respect to the current level of technology.

However, as we shall see in Section 4, while no assumption on the impact responses is

made, the instrument recovers a shock which leads to an effectively muted response of

total factor productivity (TFP) upon realization, while eliciting a strong and sustained

response at further ahead horizons.This gives us some confidence that the recovered shock

has a large element of news embedded in it.

We use our patent-based external instrument to back out the dynamic causal effects

of a technology news shock on a collection of macroeconomic and financial variables in a

structural Vector Autoregression (SVAR-IV, Mertens and Ravn, 2013; Stock and Watson,

2012, 2018). In what follows, we discuss the common challenges to the identification of

news shocks in Structural VARs, and the assumptions we make to achieve identification

in our SVAR-IV.

Let yt denote the n-dimensional vector of economic variables of interest, whose dy-

namics follows a VAR(p)

Φ(L)yt = ut, ut ∼ WN(0,Σ), (6)

where Φ(L) ≡ In−∑pj=1 ΦjLj, L is the lag operator, Φj j = 1, . . . , p are conformable matrices
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of autoregressive coefficients, and ut is a vector of zero-mean innovations, or one-step-

ahead forecast errors, i.e. ut ≡ yt −Proj(yt∣yt−1, yt−2, . . .). We abstract from deterministic

terms for notational brevity. Suppose we can write for yt the following structural VAR

B(L)yt = B0et, et ∼ WN(0, In), (7)

where B(L) ≡ In−∑pj=1BjLj, et is a vector of n structural shocks with economic interpre-

tation, and B0 contains the contemporaneous transmission coefficients that characterize

the effects of et on yt. Under full invertibility,

ut = B0Qet, (8)

where Q is an orthogonal matrix. Hence, provided a set of suitable identifying restrictions

(i.e. a choice for the rotation matrix Q), it is possible to recover the structural shocks

from the VAR innovations ut by noting that Σ = E[utu′t] = B0QE[ete′t]Q′B′
0 = B0B′

0.

Full invertibility requires that in the structural MA representation of yt (i.e. its data

generating process)

yt = C(L)et, (9)

the polynomial C(L) is invertible in non-negative powers of L, for which a necessary

condition is that the roots of det (C(ζ)) all lie outside the unit circle, i.e. det (C(ζ)) ≠

0 ∀ζ = ςi ∶ ∣ςi∣ < 1. If this condition is satisfied, then et can be recovered from current and

past observations of yt, yt admits the representation in Eq. (7), and et are yt–fundamental.

If at least one root is inside the unit circle, then the process is not invertible, or invertible

in the future. Because in this case the polynomial is invertible in negative powers of L,

recoverability of et requires knowledge of future yt, et are said to be yt–non-fundamental,

and cannot be recovered from a VAR.17,18

Non-fundamentalness is likely to arise when, as in the case of technology news shocks,

17Early treatments of non-fundamentalness are in e.g. Hansen and Sargent (1980, 1991); Lippi and
Reichlin (1993, 1994). Fernández-Villaverde et al. (2007) provide the ‘Poor Man’s Invertibility Condition’
for the mapping between the state space representations of DSGEs and VARs.

18Here we intend that the shocks cannot be recovered from knowledge of yt and its lags only. For a
broader discussion on shocks recoverability, and how it relates to the invertibility concept reviewed here
see Chahrour and Jurado (2018a).
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agents anticipate future changes (see e.g. Leeper et al., 2013). If news shocks only affect

current TFP with delay (i.e. k > 0), then current TFP only conveys information about

past news shocks. Using forward looking variables, such as e.g. the stock market index,

can help, but is not guaranteed to resolve the issue. This is the case, for example, in

the bivariate VAR of Beaudry and Portier (2006), as discussed in Kurmann and Mertens

(2014) and Forni et al. (2014).

While the issue of non-fundamentalness is a theoretically binding constraint for the

usefulness of empirical VARs, Sims (2012b) shows that, empirically, it should not be

thought of as an ‘either/or’ problem. Even with non-invertibility, the ‘wedge’ between the

shocks estimated in a structural VAR and the theoretical ones may be small enough that

VAR-based inference may still deliver accurate results, in the form of impulse response

functions (IRFs) to the identified shocks.19 In the context of technology news shocks,

the issue arises because, due to anticipation, news shocks also become state variables

that agents need to keep track of when solving their equilibrium problem. However,

these being unobservable, they cannot be conditioned upon, and the problem essentially

becomes one of missing information: the observables are insufficient to reveal the true

states. Furthermore, the longer the anticipation lag (k), the larger is the number of

additional unobserved states, the more severe the information insufficiency is likely to be,

and the higher the risk that VARs will lead to misleading inference (see Sims, 2012b).

Hence, in this context, a natural route towards the problem solution is to add information

to the VAR, through variables that help forecasting the states. This is the role of e.g. the

stock price index in Beaudry and Portier (2006), or measures of consumers or business

confidence as in Barsky and Sims (2012). In a similar vein, factors estimated from large

cross-sections can be added to the VAR specification as in e.g. Giannone and Reichlin

(2006); Forni and Gambetti (2011).

In our framework, we focus only on a subset of the structural shocks, in particular,

on the sub-vector eA,t of et containing the shocks specific to the technology process At.

Hence, for our purpose, we require that the information in the VAR be sufficient for

the identification of eA,t only, which is a less stringent assumption than full invertibility.

19This point is further discussed in Beaudry and Portier (2014); Beaudry et al. (2015, 2016).
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Specifically, we assume that there exists a 1 × n vector λ such that

eA,t = λut, (10)

or, in other words, that there exists a suitable rotation of the VAR innovations that

reveals the shock of interest eA,t. Forni et al. (2018) and Miranda-Agrippino and Ricco

(2018) show that in cases in which full invertibility is not attained, and conditional on

a correct identification scheme, the estimated IRFs to the shock of interest converge

to the ‘true’ ones, provided that Eq. (10) holds. Miranda-Agrippino and Ricco (2018)

discuss in particular the conditions required for identification with external instruments

in SVAR-IVs under partial invertibility. Let zt denote the external instrument used for

the identification of eA,t. The required conditions are:

E[eA,tz
′
t] = ρ, ρ ≠ 0 (Relevance) (11)

E[ei,tz′t] = 0, ∀i ≠ A (Contemporaneous Exogeneity) (12)

E[ei,t+τz′t] = 0, ∀i ≠ A, τ ≠ 0 ∶ E[ei,t+τu′t] ≠ 0. (Limited Lag Exogeneity) (13)

Under these conditions, the impact responses to eA,t of all variables in yt are consistently

estimated (up to scale and sign) from the projection of the VAR innovations ût onto the

instrument zt (Mertens and Ravn, 2013; Stock and Watson, 2012, 2018).20 The first two

conditions are the standard conditions for instruments validity in IV identification. The

third condition arises because of the dynamics, and essentially requires that the instru-

ment and the VAR innovations are only related via the shock of interest, hence allowing

the instrument to be potentially contaminated by leads or lags of other shocks, so long

as these are ‘filtered out’ by the VAR. Hence, with a potentially imperfect instrument,

these conditions call for the use of rich-information VARs which make Condition (13) a

20The procedure boils down to the following steps. 1. Estimate ût from a VAR(p) in yt; 2. Estimate
the coefficients of interest (i.e. the relevant column b0 of B0) from a regression of ût on zt by noting

that ρb0 = E[utz′t]; 3. Normalize entries in b̂0 (see Mertens and Ravn, 2013). It is worth highlighting
that the samples of Step 1 and 2 do not need to coincide. In Section 4 we refer to the sample used for
Step 1 as the estimation sample, and the one used for Step 2 as the identification sample respectively.
Stock and Watson (2018) suggest an alternative procedure to address the issue of ût being a generated
regressor in Step 2 above. In our case, the two procedures are equivalent since zt is uncorrelated with
lagged state variables (see Table III) and hence with lagged yt.
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more plausible one. Furthermore, Forni et al. (2018) show that if the VAR is informa-

tionally sufficient for eA,t but not for the other shocks, then the forecast error variance

contribution of eA,t is underestimated.

Given these considerations, and because both the dynamic responses and the relative

contribution of news shocks to economic fluctuations are of interest, we base our discussion

on a rich-information VAR whose heterogeneous entries are intended to both cover the

relevant variables that are of interest, and capture possible anticipation of future events

that is at the core of the transmission mechanism of news shocks.

4 Results: News Shocks and Business Cycle

In this section, we describe our empirical results in the form of impulse response functions

to the news shock identified using the instrument of Section 2. A broader discussion

against the different transmission mechanisms and models that have been proposed in

the literature is reported in Section 5.

We study the transmission and importance of technology news shocks in a 16-variable

quarterly VAR that includes a rich and heterogeneous set of variables. These are all listed

in Table A.I in the appendix, and include TFP, output and its components, labour market

data, prices and wages, as well as asset prices and measures of consumers’ expectations.

Appendix A also provides a detailed description of our dataset and of the construction of

the variables used. Variables enter the VAR in log levels, with the exception of interest

rates and corporate spreads, and are deflated and expressed in per-capita terms where

appropriate (see Table A.I). We use the GDP deflator to measure inflation. The VAR

is estimated with 4 lags and standard Normal-Inverse Wishart priors (Doan et al., 1983;

Litterman, 1986; Kadiyala and Karlsson, 1997). The optimal priors’ tightness is estimated

as in Giannone et al. (2015). Minor perturbations to the number of lags included do not

change the results.21 The VAR(4) is informationally sufficient (Forni and Gambetti,

2011).22

21We address concerns in e.g. Canova et al. (2009) and Fève et al. (2009) by re-estimating our baseline
VAR with 12 lags. The richer parametrization substantially increases the computational burden but
does not materially change our results. IRFs are not reported but available upon request.

22We use the multivariate test for informational sufficiency of Forni and Gambetti (2011) and do not
find evidence of any of the lagged state variables Granger causing the VAR residuals. Quarterly factors
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Figure III: The Slow Diffusion of Technology
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Note: Modal response of Utilization-Adjusted TFP to a technology news shock identified with patents-
based external instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I :
2006-IV. Shaded areas denote 68% and 90% posterior coverage bands.

Our benchmark estimation sample is 1971-I:2016-IV, where the starting date is con-

strained by the availability of the Nasdaq Composite stock market index, and of a quar-

terly series for capacity utilization.23 Our preferred specification uses the patent-based

external instrument that also controls for contemporaneous policy changes, which gives us

an identification sample running from 1982:I to 2006-IV.24 Robustness tests are discussed

below and reported in Appendix D.

The impulse response functions (IRF) to a positive technology news shock are reported

in Figures III to VII. These are IRFs at the mode of the posterior distribution of the

parameters.25 We discuss each in turn. The responses are scaled such that the peak

response of TFP equals 1%.

are extracted from the McCracken and Ng (2015) quarterly FRED dataset. The test statistic for the
joint significance of the lagged state variables is equal to 198.9 against a critical value of 0.99.

23We prefer to work with the Nasdaq index since this is more directly linked to developments in
the industrial sector than the S&P 500. In fact, the latter also includes financial institutions including
investment banks, and other entities such as insurance companies which can act as confounding elements,
particularly in light of the financial crisis of late 2007-2008. We discuss results relative to the response
of the S&P 500 below.

24Figure D.IV in the Appendix compares it with responses obtained without directly controlling for
contemporaneous policy changes (i.e. the green line in Figure II). Results are qualitatively the same,
but estimated with a slightly larger degree of uncertainty. Error bands for both specifications are not
reported for ease of readability, but available upon request.

25Median responses across the draws are virtually the same.
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Figure III plots the response of TFP to the identified technology news shock over a

period of 60 quarters. We use the quarterly series of total factor productivity corrected for

input utilization of Fernald (2014). TFP rises mildly on impact, then contracts slightly,

and finally returns to trend following a persistent hump that reaches a peak between 6 and

7 years after the shock. The response is not significant for the first two years. The shape

of the TFP response resembles the S-shaped pattern that is typical of the slow diffusion

of new technologies documented, among others, in Griliches (1957); Mansfield (1961);

Rogers (1962) and Gort and Klepper (1982). Technology diffuses slowly at first. This

initial phase is then followed by a fast diffusion period that ends once the new technology

has been fully absorbed, and diffusion reaches its maximum. A similarly shaped response

is reported in Barsky et al. (2015) and Kurmann and Sims (2017). Both these papers

identify technology news shocks based on the forecast error variance of TFP, and do not

restrict the impact response of TFP to be zero.26

The responses of the variables related to economic activity are reported in Figure IV.

Consumption rises immediately following the shock, and remains elevated throughout, to

return to trend only after about 5 years. Output, investment, and capacity utilization

stay mostly put on impact, and then rise persistently to reach a peak after about two years

after the shock hits. Impact modal responses are negative, but only marginally significant

at conventional levels, and fully reabsorbed in the span of two to three quarters. The

magnitude of the responses is economically important. Output reaches half a percentage

point at peak, while investment increases by 1.5%. The labor market witnesses similarly

significant improvements at the two year horizon. Here, however, we note that the initial

decline in labor inputs, albeit short-lived, is strongly significant, and more robust to

changes to either the sample size or the VAR specification than the other negative impact

responses of Figure IV. R&D expenditures (as a component of output) do not seem to

respond to the shock in significant ways. While modal reactions suggest R&D to be

somewhat higher following the shock, the response is only significant at the two-year

horizon. This could be entirely driven by the rise in output.

26Kurmann and Sims (2017) consider the case in which TFP measures true technology with an error
that correlates with economic conditions. Assuming that the measurement error albeit systematic is
nevertheless transient, identification based on the long-run forecast error variance of TFP avoids reliance
on its short term fluctuations, and is thus robust to such mis-measurements.
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Figure IV: Quantities

Real GDP

 0  4  8 12 16 20 24

%
 
p
o
i
n
t
s

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Real Consumption

 0  4  8 12 16 20 24

0

0.1

0.2

0.3

0.4

0.5

0.6

Real Investment

 0  4  8 12 16 20 24

-0.5

0

0.5

1

1.5

2

R&D Expenditures (Y)

horizon
 0  4  8 12 16 20 24

%
 
p
o
i
n
t
s

-0.2

0

0.2

0.4

0.6

Hours

horizon
 0  4  8 12 16 20 24

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Capacity Utilization

horizon
 0  4  8 12 16 20 24

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Note: Modal response of quantities to a technology news shock identified with patents-based external
instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I : 2006-IV. Shaded
areas denote 68% and 90% posterior coverage bands.

Hence, the identified technology news shock can induce comovements among variables

that are typical of business cycle fluctuations over medium horizons, but does not seem

to do so on impact. In this respect, our findings align with some of the results in e.g.

Francis and Ramey (2005); Basu et al. (2006) and Barsky and Sims (2011), although the

responses in Figure IV (and with the exception of hours worked) point towards a muted

initial response of real activity, rather than a fully recessionary episode. The timing of

the responses in Figures III and IV does lend credit to a ‘news view’ in the spirit of what

described in e.g. Beaudry and Portier (2006); Beaudry and Lucke (2010), to the extent

that the movements in the quantity variables substantially anticipate the actual increase

in TFP. Hence, there seems to be evidence in favor of news triggering business cycle-type

fluctuations before any significant change in technology is effectively realized.

The shock, however, is not the main driver of fluctuations in economic variables at
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Figure V: Shares of Explained Variance
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Note: Share of error variance accounted for by technology news shock identified with patents-based
external instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I : 2006-
IV. Shaded areas delimits business cycle frequencies (between 8 and 32 quarters). Frequencies on the x
axis cover a period from 1 (highest) to 100 (lowest) years.

business cycle frequencies. Figure V plots the share of variance of TFP, consumption,

and hours that is accounted for by the identified technology news shock at all frequencies

between 1 (highest frequency) and 100 (lowest frequency) years.27 The algorithm used

for the decomposition builds on Altig et al. (2011), and is described in detail in Appendix

B.28 The identified shock explains at most 40% of the variation of TFP in the very long

run (100 years). Table IV reports the shares of explained variation at selected frequency

intervals for all variables. The recovered news shock is responsible for virtually none

of the variation in TFP either in the short-run (i.e. area under the curve in rightmost

section of the left panel of Figure V, corresponding to a period of 1 to 2 years), or at

business cycle frequencies (2 to 8 years), and accounts for about 10% of its variation in

the long-run (8 to 25 years, see Table IV). At the same time, it is responsible for about

16% of the fluctuations in both consumption and hours at business cycle frequencies, and

accounts for over a quarter of the variation in consumption, and about a fifth of that in

labor inputs in the long-run. These shares are sizeable and economically relevant, but far

from capturing the bulk of variation in these variables.

27Recall ω = 2π/t, where t denotes time and ω denotes the frequency. A period of 1 year (4 quarters)
corresponds to ω ≃ 1.57, while 100 years yield ω ≃ 0.02. Business cycle frequencies, typically set between
8 and 32 quarters, correspond to frequencies between [0.2 0.8].

28We discuss the contribution of the news shock to fluctuations in the remaining variables in our VAR
at the end of this section (see Table IV). Variance decompositions for all variables at all frequencies
between 1 and 100 years are in Figure B.I in the Appendix.
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Figure VI: Prices & Wages
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Note: Modal response of price variables to a technology news shock identified with patents-based external
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areas denote 68% and 90% posterior coverage bands.

The responses of prices are reported in Figure VI. Similarly to what is found in Barsky

and Sims (2011); Kurmann and Otrok (2013) and Barsky et al. (2015), we find that

technology news shocks are disinflationary. Importantly, however, while these authors

document a sudden and persistent drop, we unveil a rather inertial response of prices

upon realization of the shock. The GDP deflator contracts only marginally on impact, but

keeps sliding over the subsequent quarters, reaching a peak response of about -0.3% at the

two year horizon, consistent with a sluggish adjustment of prices over time. A similarly

sluggish adjustment is characteristic of the relative price of investment goods. While

the response is estimated with a substantial degree of uncertainty, it seems to suggest

that the identified news shock makes investment goods cheaper relative to consumption

goods. Hence, the shock has some of the flavor of the investment-specific technology

improvements of e.g. Fisher (2006), Justiniano et al. (2010, 2011), Ben Zeev and Khan

(2015) and Ben Zeev (2018). Figure VI also reports the response of real wages. We find

that wages significantly contract on impact, to increase at longer horizons. We discuss

the response of wages in greater detail in the next section.

Lastly, we collect responses of asset prices and measures of consumers’ expectations in

Figure VII. The stock market prices the news shock strongly and significantly on impact

– the Nasdaq index jumps up by 6% upon realization of the shock. The strong response

of the stock market is more notable when the Nasdaq is used, due to the index com-
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Figure VII: Expectations & Financial Markets
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position being heavily weighted towards information-technology companies. These are

presumably those mostly affected by these types of shocks over the identification sample

considered (1982-I:2006-IV). Figure D.II in the appendix compares IRFs in our bench-

mark sample with those obtained when estimating the VAR from 1962-I, and substituting

the Nasdaq Composite with the S&P 500 (same identification sample). While the S&P

response is still positive on impact, the magnitude is about a third of that of the Nas-

daq.29 Consistent with a world in which companies only slowly adjust to the introduction

of new technologies, the BAA-AAA corporate bond spread slightly increases on impact,

to improve at medium horizons. This response is however not strongly significant.

The significant disinflationary characteristic of the identified news shock induces an

29In this case we drop the capacity utilization variable which is unavailable prior to the 1970s, and
substitute the Nasdaq with the S&P 500. The start date coincides with the availability of daily data for
interest rates (DGS1 and DGS10) that enter the VAR in quarterly averages.
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Table IV: Error Variance Decomposition

short run business cycle long run

[ 4 - 8 quarters ] [ 8 - 32 quarters ] [ 32 - 100 quarters ]

TFPL Utilization-Adj TFP 1.39 1.17 10.20

RGDP Real GDP 10.17 13.77 19.32

RCONS Real Consumption 7.47 15.79 26.48

RINV Real Investment 8.00 14.02 13.10

RDGDP R&D Expenditures (Y) 0.45 5.50 8.86

HOURS Hours 12.07 16.36 17.83

CAPUTIL Capacity Utilization 7.90 12.31 15.82

GDPDEF GDP Deflator 2.28 9.81 14.44

RPINV Price of Investment 3.27 2.19 7.64

RWAGE Real Wages 8.29 4.29 12.91

SHORTR Short Rate 15.90 10.28 2.20

YCSLOPE Term Spread 13.57 12.09 6.20

EQY2 Nasdaq 25.60 24.46 23.04

CCONF Consumer Confidence 9.01 14.52 16.03

BCE5Y Business Conditions E5Y 9.39 9.77 10.59

CBSPREAD Corporate Bond Spread 2.95 5.16 2.64

Notes: Share of error variance accounted for by the identified technology news shock over different
frequency intervals. Numbers are percentage points. The algorithm used builds on Altig et al. (2011)
and is detailed in Appendix B.

endogenous strong response of the monetary authority, that responds more than propor-

tionally to the decline in inflation. Due to the sample considered including the zero-lower-

bound (ZLB) period, we use the one year nominal interest rate as our measure for the

short term policy rate. In Figure D.I we verify that neither the global financial crisis nor

the ZLB sample drive or affect our results. The one year rate falls by 30 basis points on

impact, which is roughly the same magnitude as the peak decline of prices (see Figure

VI). This implies that shorter maturity interest rates are likely to fall by more, and hence

that short-term real interest rates fall following the shock. The slope of the yield curve,

here measured as the spread between the 10-year and the 1-year Treasury rates, rises by

about 15 basis points on impact, mainly driven by changes at the short end, and imply-

ing a 15 bps fall in long term yields. Similar types of impact responses are reported in

Kurmann and Otrok (2013), where the identified news shock is also responsible for most

of the unexplained variation in the slope of the term structure of interest rate. We do
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not find this to be the case. Table IV shows that the shock is most explanatory over the

short-run, where it can account for about 15% of movements in the term structure, but

it captures virtually none of the variation in interest rates in the long run. The impact

response of the short term rate also contrasts with findings in Kurmann and Sims (2017),

where the response of the monetary authority is mildly contractionary.30

Finally, Figure VII reports responses of a consumer confidence indicator and a business

confidence indicator reflecting expectations about economic conditions over a horizon of

5 years, both taken from the Michigan Survey of Consumers. Interestingly, we find that

while both measures of confidence robustly rise at medium horizons, they do not do so

on impact. In fact, the responses tend to be negative upon realization of the shock.

This finding is consistent with agents overweighting the responses of current economic

conditions discussed in Figure IV when forming their expectations about the future, and

echoes the implications of models in which agents are subject to informational rigidities.

We return to this issue in greater detail in the next section.

5 Discussion of the Results: the Transmission of News

about Future Technology

Equipped with the empirical results reported in Section 4, in this section we try to shed

some light on the likely transmission mechanisms by evaluating our findings against the

different models proposed in the literature.

Total Factor Productivity As noted, the impulse response function of TFP to the

identified news shock supports the hypothesis of slow diffusion of technology over time

(see e.g. Rotemberg, 2003, and references therein).31 While there is evidence of some

30For a broader discussion on the role played by different vintages of TFP data on the response of the
term structure slope to technology news shocks see Cascaldi-Garcia (2017); Kurmann and Otrok (2017).

31Among others, Rogers (1962); David (1990), and Hall (2006), have rejected the Real Business Cy-
cle view according to which productivity jumps up immediately to its new (higher) steady state level
following a technological shock, and have instead produced evidence that suggests a slow diffusion of
technology. In particular, the diffusion process is well approximated by an S-shaped curve. While the
slow diffusion of technology and its implications for the modeling of productivity is discussed extensively
in e.g. Rotemberg (2003); Comin and Gertler (2006); Lindé (2009), much of the business cycle literature
has modeled productivity as a jump process where innovations lead to an immediate change of produc-
tivity to a new level that is either permanent or highly persistent. Other papers that build models of
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(non-significant) positive spillover to current TFP, productivity does not materially move

away from zero before the first 4 years after the shock hits. Hence, the effect of a news

shock on current TFP is estimated to be effectively zero, even if we have not imposed

such restriction ex ante. Moreover, by the time the TFP response becomes positive, and

perhaps with the exception of real wages, the dynamics of all the other variables in the

VAR are mostly exhausted, and all have comfortably returned back to trend. This large

asynchronicity in the timing of the responses favors the hypothesis that macro aggregates

can in fact move as a result of a change in expectations about future productivity growth,

and before the change in aggregate technology materializes. The ensuing business cycle

expansion is not estimated to be immediate, and we return to this point below. Hence,

while it appears that business-cycle types of comovements can in fact be triggered, here

we note that the relatively small share of explained variance that is accounted for by the

identified news shock at business cycle frequencies casts substantial doubts on it being

a main driver of economic fluctuations.32 Importantly, this also holds true for the TFP

process itself. Our estimates suggest that technology news account at best for 40% of

the variance of TFP at very low frequencies (see Figure V), which may potentially put

into question identification schemes that rely on ‘max share’ of explained TFP variation

at one or some long horizons (e.g. Barsky and Sims, 2011; Kurmann and Otrok, 2013;

Francis et al., 2014; Forni et al., 2014; Barsky et al., 2015, among others).

Quantities: Output, Consumption, Investment, and Hours In our VAR output,

investment, consumption and hours worked are all significantly higher a few quarters after

the shock hits, with peak effects realized in the span of two years. On impact, consump-

tion rises strongly, hours decline, and although modal responses are negative, investment

and output do not meaningfully move away from zero before they start increasing. Ca-

pacity utilization also rises after staying still on impact. These types of responses are

hard if not impossible to rationalize under the standard neoclassical real business cycle

costly adoption of new technologies that are consistent with a slow diffusion pattern are e.g. Comin et al.
(2009) and Comin and Hobijn (2010).

32Similar conclusions have been reached in a DSGE framework in e.g. Fujiwara et al. (2011); Schmitt-
Grohé and Uribe (2012) and Khan and Tsoukalas (2012). Sims (2016) argues that empirical works may
be confounding current and past news shocks, hence implying a potentially systematic overstatement of
the relative importance of news shocks in earlier studies.
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(RBC) paradigm. The rise in consumption is understood to be the result of a wealth

effect: expectations of future higher productivity raise expectations about future income,

which in turn induce households to smooth consumption towards higher current levels.

The same wealth effect also increases the desire for leisure, while higher expected future

productivity redirects the capital stock away from investment and towards consumption

until the higher productivity level is realized. Hence, consumption, labor effort and in-

vestment must in this case move in opposite directions (Barro and King, 1984; Cochrane,

1994). Moreover, in the classical RBC setting, a fixed labor demand implies that the

fall in hours worked must come from a shift in the labor supply curve, which in turn re-

quires an increase in wages. This too contrasts with our findings: real wages significantly

contract upon realization of the shock, and only slowly increase over time.

We interpret the delayed business cycle expansion that is triggered by the news shock

as indicative of the presence of potentially different sources of inertia that delay the

adjustments. In fact, the responses of quantities documented here is consistent with New

Keynesian models with nominal rigidities that influence the setting of prices, wages, or

both (e.g. Barsky and Sims, 2009; Christiano et al., 2010; Barsky et al., 2015), and with

RBC models augmented with real rigidities such as e.g. habit formation in consumption,

and adjustment costs associated with changes in either the stock of capital or the rate

of investment, and equipped with a system of preferences that allows to fine-tune the

wealth elasticity of labor supply (e.g. Jaimovich and Rebelo, 2009; Schmitt-Grohé and

Uribe, 2012). A weakened short-run wealth effect can in fact induce a right shift in the

labor supply. At the same time, the presence of adjustment costs and variable capital

utilization can induce positive shifts in labor demand if the price of capital decreases as a

consequence of the shock. However, while these types of mechanisms can account for the

positive comovements, they cannot reproduce other important effects, such as e.g. the

increase in asset prices. In fact, these models predict that asset prices will move with the

cost of capital, and will hence decrease (see e.g. Christiano et al., 2010).33

Prices: Inflation and Wages New Keynesian models with nominal rigidities, includ-

ing those where such frictions arise endogenously due to imperfect common knowledge

33Business cycle comovements are also reproduced in standard RBC frameworks augmented with
dispersed information (see e.g. Angeletos and La’O, 2010).
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(e.g. Mankiw and Reis, 2002; Woodford, 2003) seem to offer a more varied array of mech-

anisms through which our findings can be rationalized. This is because they allow the

dynamics to be dominated by the demand side, at least in the short-run (see discussion

in e.g. Lorenzoni, 2009, 2011). In the VAR, the shock triggers a sudden and marked con-

traction of real wages followed by a slow, but significant deflationary episode. Prices drop

mildly on impact, and continue to slide over time to reach a peak contraction two years

after the shock. Real wages eventually increase; the time taken for the wage inflationary

pressure to materialize goes from 8 to 16 quarters depending on the chosen significance

level. The deflationary effect of news shocks is a robust finding, and has been documented

in Christiano et al. (2010); Jinnai (2013); Kurmann and Otrok (2014) and Barsky et al.

(2015) among others. However, contrary to findings in e.g. Barsky and Sims (2009,

2012) and Kurmann and Otrok (2014), we find that the bulk of the drop in inflation

is not realized on impact. Rather, and consistent with nominal rigidities preventing an

immediate impact adjustment, the response of prices is subdued initially, and only slowly

builds up over time. Christiano et al. (2010) and Barsky and Sims (2011) interpret the

fall in prices as a manifestation of the forward-looking nature of inflation in the New Key-

nesian model, where current inflation is a function of both current and future expected

marginal costs. As also discussed in Barsky et al. (2015), expected future productivity

improvements lower expected real marginal costs. If real wages do not rise too sharply,

the expectation that marginal costs will be lower in the future creates downward pressure

on current inflation. Whether this happens in practice depends on the persistence of the

news process, the monetary policy rule, and the potency of nominal rigidities. For a given

news process, and leaving temporarily aside the role of the monetary authority, the fall

in inflation following the news shocks can be obtained under two different specifications

of nominal frictions: a case of pure sticky prices as in e.g. Calvo (1983), and one in which

prices are flexible, but wages are staggered like in e.g. Erceg et al. (2000). Christiano

et al. (2010) show that while both scenarios give rise to a deflation, the range of parame-

ters across which this happens in a sticky wage environment is larger. Consider first the

case of price stickiness. Positive news about future productivity set out the expectation

that prices will be lower also for those on the demand side of the labor market. Most

of this effect, however, is expected to be realized in the future, due to the presence of
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Figure VIII: Long Rate Response

horizon
 0  4  8 12 16 20 24

b
a
s
i
s
 
p
o
i
n
t
s

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Expected Short Rate
Term Premium
Long Rate

Note: Implied modal responses of the 10-year Treasury yield and VAR-based expectation and term
premium components. VAR(4). Estimation sample 1971-I:2016-IV; Identification sample 1981-1:2006-
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frictions in the setting of prices. If capital is not fixed, lower expected future prices may

lead to delayed purchases, and thus to a reduction in labor demand that could offset the

wealth effect, and lead to a decline in real wages. This mechanism adds to the left shift

in labor supply; hence, ultimately, the effect of a news shock on wages will depend on the

relative strength of these two mechanisms, which in turn depends on labor elasticity and

the strength of policy accommodation. For example, a low Frisch elasticity parameter

combined with a relatively weak policy accommodation to technology shocks would in-

duce a drop in real wages such as that the one we document. Real wage inertia, by acting

directly on the upward wage pressure that follows the reduced supply of labor, introduces

another channel through which the low inflation environment can be reproduced (Barsky

and Sims, 2009; Jinnai, 2013).34

Monetary Policy, the Natural Rate of Interest, and the Term Premium Ex-

pectations that productivity will be higher in the future, but that do not change the level

of current technology, give rise to an inefficient rise in current spending, primarily driven

by the desire to increase current consumption. In order to keep spending anchored to

the current (unchanged) level of technology, the natural rate of interest, proportional to

34Den Haan and Kaltenbrunner (2009) and Den Haan and Lozej (2011) discuss alternative channels
through which the presence of wage rigidities affects the propagation of news shocks in search and
matching models for the labor market.
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the expected growth rate of technology, rises sharply. Consider now a central bank that

sets the nominal interest rate as a function of expected inflation. This is the situation

analyzed in detail in Christiano et al. (2010). Expectations that inflation will be lower

in the future lead the central bank to lower the nominal interest rate precisely when the

natural rate is increasing, thus creating an amplification mechanism for the propagation

of the news shock.35 The dynamic responses from our VAR abide by this narrative. As

discussed, the one year rate moves by roughly the same amount as the deflator at peak,

implying an even larger drop of shorter maturity interest rates. Hence, in our empiri-

cal setting the monetary authority responds to the news shock by aggressively reacting

to the fall in (expected) inflation. The suboptimal response of the central bank can be

rationalized in terms of information rigidities: the monetary authority may have to cali-

brate its response based on its best forecasts for (current and future) technology, which

may diverge from the realized values (see e.g. Lorenzoni, 2011).36 Finally, comparing

the responses of the short and long term rates, we note that the 1-year rate returns to

trend relatively quickly, and is hence likely not to fully account for the impact fall in the

10-year Treasury yield. This implies that following the news shock term premia decline.

We confirm this intuition in Figure VIII. Here we plot the responses of the long term

rate implied by Figure VII, and use the VAR to decompose it into its expectation and

term premium components.37 About 3/5 of the impact decline in the long term interest

rate is estimated to be due to a fall in term premia; and the response dies out relatively

slowly. The fall in term premia is consistent with consumption and inflation moving in

opposite directions, thus breaking the correlation between bonds and stocks which also

diverge after the shock (see e.g. Piazzesi and Schneider, 2007; Campbell et al., 2009).

35See also discussion in Sims (2012a). Gambetti et al. (2017) explore the interaction between news
shocks and monetary policy regimes and document time-variation in responses computed prior to and
after the Fed’s reserve targeting period (1979-1982).

36As a partial solution to this issue, Christiano et al. (2010) suggest introducing variables that help to
proxy for the natural rate, such as e.g. credit growth, in the reaction function.

37The 10-year yield can be decomposed into the expected 1-year rate over 10 years, plus a term
premium ζt. If t denotes quarters,

y
(10)
t = Et [

1

10

10

∑
τ=1

y
(1)

t+4×(τ−1)
] + ζ(10)t . (14)

Net of risk considerations, holding a 10-year bond should be equivalent to rolling 1-year bonds over 10
years. We calculate horizon h term premium responses as the difference between the horizon h response
of the 10-year rate, and the average expected response of the 1-year rate at horizons h,h + 4, . . . , h + 36.
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These findings align with those in Crump et al. (2016).

Financial Amplification Channels The combination of low nominal interest rates

and high asset prices in response to a positive news shock may be responsible of a further

amplification mechanisms that works through the relaxation of borrowing constraints

– particularly collateral constraints – (see e.g. Kobayashi et al., 2012; Walentin, 2014;

Görtz et al., 2016; Görtz and Tsoukalas, 2017). On one hand, loser borrowing/leverage

constraints can increase the demand for investment goods. On the other, they may affect

the ability of the firm to vary the inputs and increase its demand of labor. Finally,

they could lead to more efficient capital allocation towards more productive firms. This

is another channel through which news may spill over to current TFP (see Jermann

and Quadrini, 2007). In our VAR, we find that corporate spreads eventually compress,

but the effect is not estimated to be particularly strong. Rather, we find that financial

amplification may work through the compression of term premia.

Consumer Expectations We lastly turn to analyze the response of consumer expec-

tations. As discussed, upon realization of the shock both the index of consumer confi-

dence and the component of the Michigan Survey of Consumers that relates to business

conditions expected 5 years hence decline sharply. The decline is short-lived, and both

indicators robustly rise above trend within a year after the shock hits. While the sharp

negative responses are only marginally significant, they are nevertheless somewhat puz-

zling. We offer an interpretation for this finding that builds on the presence of information

rigidities. In fact, a potential explanation for this result is that agents only imperfectly

observe future fundamentals, and overweigh current economic conditions when forming

their expectations about the future when the signal-to-noise ratio is low.

In a comprehensive study, Coibion and Gorodnichenko (2012, 2015) analyze survey

forecasts of consumers, firms, professional forecasters and central banks, and find that

economic agents face strong information rigidities, irrespective of their type. The empiri-

cal regularities unveiled in these studies describe frictions to information processing that

seem to be more coherent with frameworks in which agents continuously update their

information set, but only receive noisy signals about the state of the economy (noisy

35



Figure IX: Role of Unemployment Expectations
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information, Woodford, 2003; Sims, 2003; Mackowiak and Wiederholt, 2009), as opposed

to alternatives in which the update itself is inertial (sticky information, Mankiw and Reis,

2002). In the noisy information environment, agents never fully observe the true states,

and form expectations about fundamentals via a signal extraction problem. Hence, at

any given time agents’ forecasts are a combination of existing beliefs and new informa-

tion received, with relative weights determined by the degree of information rigidity (i.e.

noise in the signal). Coibion and Gorodnichenko (2015) estimate that new information

receives less than half the weight it would otherwise have under full-information. News

about future technological changes can be thought of as a quintessential signal extraction

problem (see also Chahrour and Jurado, 2018b). Blanchard et al. (2013) consider the case

in which technology is driven by both temporary and permanent shocks (i.e. shocks that

have long-lasting effects on the level of technology), and agents observe a noisy signal of

the permanent component of technology. Agents are not able to disentangle news from

noise; moreover, the noisier the signal, the slower the consumption adjustment, the more

likely that shocks to the permanent component result in an initial fall in employment.

To offer some additional insights, in Figure IX we report the response of consumers’

expectations about year ahead unemployment, again extracted from the Michigan Sur-

vey of Consumers.38 Following the positive news shock expected unemployment rises,

38We augment the VAR of Section 4 with the series of unemployment forecasts. All other details of
the VAR specification stay the same. Full IRFs are in Figure D.III.
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and does so very significantly. The peak is realized well within the first year, and the

shock explains a non trivial fraction of variation of unemployment forecasts at business

cycle frequencies (see also Faccini and Melosi, 2018, for the role played by technology

news on employment and its forecasts). We think of the rise in expected unemployment

as compatible with such noise-ridden environment, and with agents overweighting the

negative impact response of labor market variables to the shock. In turn, this can help

explain the initial fall in consumer confidence about both current and expected economic

conditions.39 Barsky and Sims (2009, 2012) use innovations in consumer confidence to

infer on the effect of news shocks, arguing that measures of confidence aggregate infor-

mation about future income that is otherwise unavailable in current consumption data,

an intuition first offered in Cochrane (1994).40 The responses in Figure VII suggest that

confidence ‘innovations’ may in fact be anticipated.

Contemporaneous TFP Innovations A last observation on our identification strat-

egy is in order. We have identified shocks to future technology using an external instru-

ment that is constructed as the unforecastable component of utility patent applications

that are filed each quarter at the USPTO (see Section 2). Differently from virtually all the

existing empirical literature, the use of an external instrument has allowed us to dispense

from a priori assumptions related to the duration of the effects, the long-run drivers of

technology, or the length of time that is required to the news to affect the current level of

technology. Using patents applications as the starting point for the construction of our in-

strument ensures that it embeds an element of news. However, because new technologies

can be potentially distributed under a patent-pending status, our identification strategy

does not rule out ex ante that the effect of the news shock on current technology must be

zero on impact, which is the standard assumption in the news literature. While we have

discussed theoretical grounds that justify the absence of this orthogonality constraint in

our identification scheme, and documented the effective zero impact response of TFP

estimated in the data, a doubt may still remain that our estimated dynamic responses

39The fall in the forward looking component of the Michigan Survey of Consumers is a particularly
relevant piece of evidence in favor of the slow adjustment of expectations over time.

40In Barsky and Sims (2012) positive confidence innovations are associated with little immediate
response of real activity, prolonged and sustained increases in consumption and income, a fall in inflation,
and a marked increase in the real interest rate.
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Figure X: Impact Responses to a Contemporaneous TFP Innovation
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TFP by 1%. VAR(4). Estimation sample 1971-I:2016-IV. Grey bars delimit 68% and 90% posterior
coverage bands.

may be confounding the effects of news shocks with those of an unanticipated innovation

in the technology process. To provide some evidence that in fact this does not seem to

be a cause of concern, Figure X reports impact responses of a selection of variables to a

contemporaneous TFP innovation estimated using the same VAR of Section 4.41 These

are impact responses at the mode of the posterior distribution of the parameters obtained

with a standard Cholesky factorization with TFP ordered first, and scaled such that the

impact response of TFP is 1%.42

The pattern of impact responses in Figure X is fundamentally different from those

elicited by the news shock. A positive contemporaneous TFP innovation significantly

moves up output, consumption and investment on impact, while the response of hours

is muted. Real wages increase robustly, and so do consumer expectations. Finally, there

seems to be no appreciable impact reaction of the price level.

41Full IRFs are not reported for space considerations, but available upon request.
42This identification scheme assumes that the technology process is exogenous and only driven by

technology shocks, and that the quarterly series of Fernald (2014) measures true technology without
systematic error. Both these assumptions have been questioned in the literature (e.g. in Kurmann and
Sims, 2017; Bouakez and Kemoe, 2017). This is however inconsequential, since the focus of our paper is
rather on the effects of anticipated news to technology, and our identification scheme to news shocks is
robust to mismeasurements. Here we rely on standard Cholesky ordering only to highlight the differences
between the impact effects of the two types of shocks.
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6 Conclusions

‘How does the aggregate economy react to a shock that raises expectations about future

productivity growth?’. In this paper we have provided an answer to this question by

introducing a novel identification of technology news shocks in a rich-information VAR.

We have constructed an external instrument for identification of technology news shocks

by exploiting a largely unexplored dataset of all monthly utility patent applications filed

at the USPTO over the past 30 years.

We estimate a pattern of dynamic responses that is consistent with the predictions of

New-Keynesian models featuring nominal rigidities, particularly those that arise endoge-

nously because of the presence of noisy-information environments.

Our main conclusions are as follows. i) The identified technology news shock affects

total factor productivity only after 4 years, by which time the dynamics of all other

variables in our VAR are exhausted. Hence, there is evidence of news about future fun-

damentals triggering business cycle type fluctuations. ii) The shock explains about a

10th of fluctuations in aggregate economic variables at business cycle frequencies, and

only 40% of the variation of TFP at very low frequencies. On the one hand, these results

suggest that news, while being relevant, are not the main drivers of business cycle dynam-

ics. On the other hand, they render previously adopted ‘max-share’ type identifications

potentially problematic. iii) The shock is disinflationary. While this conclusion is not

per se surprising, we find that prices only slowly contract over time. Conversely, nominal

wages take the worse hit, and strongly contract on impact to increase at longer horizons.

iv) The monetary authority responds to the positive technology news shock by lowering

nominal interest rates, at a time when the natural rate of interest, proportional to the

expected growth rate of future technology, is increasing. This suboptimal reaction of

the central bank helps fostering the ensuing economic expansion, also through the effect

of compressed term premia. v) While the stock market prices-in the technology news

shock on impact, consumers expectations take sensibly longer to adjust. In particular,

consumers seem to overweigh the initial contraction in both hours worked and real wages

when forming expectations about future unemployment. In turn, this leads to an initial

downward revision of expected economic conditions five years hence.
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The reactions of consumers, market participants and the central bank to the identified

technology news shock seem to point towards a substantial degree of heterogeneity in their

expectation formation process. All concur to highlight the role that dispersed information

about changes in future fundamentals may have influence in shaping the response of

different types of agents to such types of disturbances. We leave further investigation of

these relevant issues to future research.
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A Data Appendix

Table A.I lists the variables included in the VAR. The construction of real consumption

(RCONS), real investment (RINV), the relative price of investment (RPINV), and hours

worked (HOURS) follows Justiniano et al. (2010, 2011); specifically,

RCON = 100 × ln( PCND + PCESV
CNP16OV ×GDPDEF

)

RINV = 100 × ln( GPDI + PCDG
CNP16OV ×GDPDEF

)

RPINV = 100 × ln( DDURRD3Q086SBEA +A006RD3Q086SBEA

DNDGRD3Q086SBEA +DSERRD3Q086SBEA
)

HOURS = 100 × ln(HOANBS
2080

) ,

where 2080 is the average numbers of hours worked in a year (i.e. 40 hours a week times 52

weeks). Consumption includes personal consumption expenditures in non-durable goods

(PCND) and services (PCESV), whereas investment is constructed as the sum of private

gross domestic investment (GPDI) and personal consumption expenditures in durable

goods (PCDG). The relative price of investment goods is constructed as the ratio of the

deflators of investment and consumption. Consistent with the definition above, these are

constructed as the implicit price deflator for durable and investment, and the implicit

price deflators for non-durable and services consumption respectively.

The level of Utilization-Adjusted TFP is obtained by cumulating the series in Fernald

(2014). The short term rate and the yield curve slope, are expressed in annualized terms.

The yield curve slope (YCSLOPE) is constructed as the difference between the 10-year

(DGS10) and 1-year (DGS1) Treasury constant-maturity rates. Variables are deflated

using the GDP deflator, and transformed in per-capita terms by dividing for the trend

in population (population variable: CNP16OV).
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Table A.I: Variables Used

treatment

Label Variable Name Source FRED Codes log pc

TFPL Utilization-Adj TFP Fernald (2014)† – ● ●
RGDP Real GDP FRED GDPC1 ● ●
RCONS Real Consumption FRED PCND; PCESV ● ●
RINV Real Investment FRED GPDI; PCDG ● ●
RDGDP R&D Expenditures (Y) FRED Y694RC1Q027SBEA ● ●
HOURS Hours FRED HOANBS ● ●
CAPUTIL Capacity Utilization FRED TCU ●
GDPDEF GDP Deflator FRED GDPDEF ●
RPINV Price of Investment FRED DDURRD3Q086SBEA;

DNDGRD3Q086SBEA;
DSERRD3Q086SBEA;
A006RD3Q086SBEA

●

RWAGE Real Wages FRED COMPRNFB ●
SHORTR Short Rate FRED DGS1

YCSLOPE Term Spread FRED DGS1; DGS10

EQY Equity Index FRED∗ SP500 ●
EQY2 Nasdaq FRED NASDAQCOM ●
CCONF Consumer Confidence UMICH – ●
BCE5Y Business Conditions E5Y UMICH – ●
CBSPREAD Corporate Bond Spread FRED AAA; BAA

Notes: Sources are: St Louis FRED Database (FRED); University of Michigan (UMICH)
Survey of Consumers https://data.sca.isr.umich.edu/charts.php; † Latest vintage of
Fernald (2014) TFP series https://www.frbsf.org/economic-research/indicators-data/

total-factor-productivity-tfp/; ∗ Older data are retrieved from WRDS. pc = per-capita.
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B Error Variance Decomposition

The content of this appendix extends on Altig et al. (2005). Recall Eq. (7), reported

below for convenience

B(L)yt = B0et, et ∼ WN(0, In). (7)

B(L) ≡ In−∑pj=1BjLj, et are the structural shocks, and B0 contains the contemporaneous

transmission coefficients. Recall also that under invertibility

Σ = E[utu′t] = B0Q[ete′t]Q′B′
0 (B.1)

for any orthogonal matrix Q. ut are the reduced-form VAR innovations. The external

instrument of Section 3 allows identification of only one column b0 of B0, which contains

the impact effects of the identified technology news shock eA,t on yt.

The spectral density of yt is

Sy(e−iω) = [B(e−iω)]−1Σ [B(e−iω)⊺]−1, (B.2)

where i ≡
√
−1, we use ω to denote the frequency, and B(e−iω)⊺ is the conjugate transpose

of B(e−iω). Let SA
y(e−iω) denote the spectral density of yt when only the technology news

shock eA,t is activated. This is equal to

SA
y(e−iω) = [B(e−iω)]−1b0σAb′0 [B(e−iω)⊺]−1. (B.3)

σA is the variance of eA,t for which an estimator is given by σA = (b′0Σ−1b0)−1
(see Stock and

Watson, 2018). Hence, the share of variance due to eA,t at frequency ω can be calculated

as

γA(ω) =
diag (SA

y(e−iω))
diag (Sy(e−iω))

, (B.4)

where the ratio between the two vectors is calculated as the element-by-element division.

The share of variance due to eA,t over a range of frequencies is calculated using the
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following formula for the variance

1

2π ∫
π

−π
Sy(e−iω)dω = lim

N→∞
1

N

N/2
∑

k=−N/2+1

Sy(e−iωk), (B.5)

where ωk = 2πk/N, k = −N/2, . . . ,N/2.

Recall that the spectrum is symmetric around zero. Let the object of interest be

the share of variance explained by eA,t at business cycle frequencies. These are typically

between 2 and 8 years which, with quarterly data, correspond to a period between 8

and 32 quarters. Recall the mapping between frequency and period ω = 2π/t. Business

cycle frequencies are then in the range [2πk/N 2πk̄/N], where k = N/32 and k̄ = N/8. It

follows that the share of fluctuations in yt that is accounted for by eA,t at business cycle

frequencies is equal to

∑k̄k=k diag (SA
y(e−iω))

∑k̄k=k diag (Sy(e−iω))
. (B.6)

Figure B.I plots the share of variance that is due to eA,t for all the variables included

in our benchmark VAR at all frequencies between 1 (highest frequency) and 100 (lowest

frequency) years. Grey areas highlight business cycle frequencies. Table IV in Section 4

reports the share of variance due to eA,t over three different ranges of frequencies.
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Figure B.I: Error Variance Decomposition
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Note: Share of error variance accounted for by technology news shock identified with patents-based
external instrument. VAR(4) with standard macroeconomic priors. Estimation sample 1971-I : 2016-IV;
Identification sample 1982-I : 2006-IV. Shaded areas delimits business cycle frequencies (between 8 and
32 quarters).
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C Additional Details on the Patent Data

Figure C.I: Allowance Rates

Note: [left]: Allowance rates across the six NBER patent-technology fields for applications filed at the
USPTO for the first time between 1996 and 2005 and examined before mid2013. (i) first-action allowance
rate: proportion of progenitor applications allowed without further examination; (ii) progenitor allowance
rate (or simply, allowance rate): proportion of progenitor applications allowed without any continuation
procedure, and (iii) family allowance rate: proportion of progenitor applications that produce at least one
patent, including the outcomes of continuation applications that emerge from progenitor applications.
[right]: Trends in allowance rates from 1991 to 2010, all categories. Source: Carley et al. (2015).

Table C.I: Lagged Information in Patents Applications

F1 F2 F3 F4 F5 F6 F7

Wald Test 9.215*** 1.252 1.835 0.642 1.437 0.256 0.209

p-value 0.000 0.293 0.126 0.634 0.226 0.905 0.933

Adj R2 0.790 0.732 0.738 0.732 0.736 0.727 0.726

N 131 131 131 131 131 131 131

Notes: Numbers reported are Wald test statistics for joint significance of the first 4 lags of each factor
Ft. The factors are extracted from the quarterly dataset of McCracken and Ng (2015). The dependent
variable is the quarterly growth rate of utility patents applications: pat = 100(lnPAt − lnPAt−1). All the
regressions include own 4 lags, regulation dummy and constant. The regulation dummy captures the
legal changes in the patents application process implemented in September 1982, June 1995, and March
2013. *, **, *** denote statistical significance at 10, 5, and 1% respectively.

54



Figure C.II: Cumulative disposal proportion by NBER category

Source: Marco et al. (2015).

Figure C.III: Patent Applications, Abandonments and Issuance
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Note: Total number of applications (teal), abandonments (orange) and granted patents (yellow) across
all NBER categories. Quarterly figures obtained as sum of monthly readings, 1981-Q1=0. Shaded areas
denote NBER recession episodes.
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Table C.II: NBER Patents Classification

Category Category Name Sub-category Sub-category name

1 Chemical

11 Agriculture, food, textiles

12 Coating

13 Gas

14 Organic compounds

15 Resins

19 Misc. (chem)

2 Computers and Communications

21 Communications

22 Computer hardware and software

23 Computer peripherals

24 Information storage

25 Electronic business methods and software

3 Drugs and Medical

31 Drugs

32 Surgery, medical instruments

33 Biotechnology

39 Misc. (drugs and medical)

4 Electrical and Electronics

41 Electrical devices

42 Electrical lighting

43 Measuring, testing

44 Nuclear, X-rays

45 Power systems

46 Semiconductor devices

49 Misc. (elec)

5 Mechanical

51 Materials processing and handling

52 Metal working

53 Motors, engines, parts

54 Optics

55 Transportation

59 Misc. (tech)

6 Others

61 Agriculture, husbandry, food

62 Amusement devices

63 Aparel and textile

64 Earth working and wells

65 Furniture, house fixtures

66 Heating

67 Pipes and joints

68 Receptacles

69 Misc. (others)

7 Not Classified 70 Not classified

8 Missing 80 Missing

Notes: NBER classifications of patents and the sub-categories as in Marco et al. (2015). The clas-
sification used by USPTO, US Patent Classification (USPC), involves many classes. To address the
issues complications of USPC, Hall et al. (2001) developed a hierarchical classification. Their proposal
was to aggregate USPC classes into 37 (two-digit) sub-categories, which are further aggregated into
six main categories. They applied their classification strategy to the National Bureau of Economic
Research (NBER) Patent Citations Data File. However, the use of this data set has been limited due
to its coverage of only the patents granted. Marco et al. (2015) build upon Hall et al. (2001) and
merge NBER Patent Citations Data File with PTO data resources to classify NBER sub-categories
beyond only granted applications. We aggregate the utility patent counts for all sub-categories except
non-classified and missing patent counts.
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D Additional Material

The impulse response functions reported in this Appendix are all scaled such that the

peak response of utilization adjusted TFP equals to 1%.

Figure D.I: IRFs Full vs Pre-Crisis Sample
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Note: Response of all variables to a technology news shock identified with patents-based external instru-
ment. VAR(4) with standard macroeconomic priors. Estimation sample 1971-I : 2007-IV; Identification
sample 1982-I : 2006-IV. Solid Lines: Instrument also controls for contemporaneous policy changes,
benchmark. Dash-Dotted Lines: Instrument controls for SPF forecasts and lagged pat. Shaded areas
denote 68% and 90% posterior coverage bands.
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Figure D.II: IRFs Longer Sample
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Note: Response of all variables to a technology news shock identified with patents-based external instru-
ment. VAR(4) with standard macroeconomic priors. Solid Lines = Estimation sample 1971-I : 2016-IV;
Identification sample 1982-I : 2006-IV. Dash-dotted Lines: Estimation sample 1962-I : 2016-IV; Identi-
fication sample 1982-I : 2006-IV. The equity index on the longer sample is the S&P 500 shown in the
Nasdaq subplot as a dashed-dotted line. Shaded areas denote 68% and 90% posterior coverage bands.
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Figure D.III: IRFs with Unemployment Expectations
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Note: Response of all variables to a technology news shock identified with patents-based external instru-
ment. VAR(4) with standard macroeconomic priors. Instrument controls for contemporaneous policy
changes. Estimation sample 1971-I : 2016-IV; Identification sample 1982-I : 2006-IV. Shaded areas denote
68% and 90% posterior coverage bands.
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Figure D.IV: IRFs Pre-Crisis Sample: Instruments
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Note: Response of all variables to a technology news shock identified with patents-based external in-
strument. VAR(4) with standard macroeconomic priors. Solid Lines = Estimation sample 1971-I :
2007-IV; Identification sample 1982-I : 2006-IV. Dash-dotted Lines: Estimation sample 1971-I : 2007-IV;
Identification sample 1982-I : 2007-IV. Shaded areas denote 68% and 90% posterior coverage bands.
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