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Abstract

This paper documents state dependence in labor market fluctuations. Using a Threshold
Vector-Autoregression model, we establish that the unemployment rate, the job separation
rate and the job finding rate exhibit a larger response to productivity shocks during periods
with low aggregate productivity. A Diamond-Mortensen-Pissarides model with endogenous
job separation and on-the-job search replicates these empirical regularities well. The tran-
sition rates into and out of employment embed state dependence through the interaction of
reservation productivity levels and the distribution of match-specific idiosyncratic produc-
tivity. State dependence implies that the effect of labor market reforms is different across
phases of the business cycle. A permanent removal of layoff taxes is welfare enhancing in
the long run, but it involves distinct short-run costs depending on the initial state of the
economy. The welfare gain of a tax removal implemented in a low-productivity state is 4.9
percent larger than the same reform enacted in a state with high aggregate productivity.
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1 Introduction

Numerous studies, starting with Neftci (1984), show that macroeconomic fluctuations differ

across phases of the business cycle. This paper builds on this strand of research and identifies

systematic changes in the cyclical properties of labor market variables that are linked to the

state of aggregate productivity. Movements in the unemployment rate, job separation rate, and

job finding rate are considerably larger in periods of low aggregate productivity. A Threshold

Vector Autoregression (TVAR) model, which identifies the effect of productivity shocks and

allows for two distinct regimes of aggregate productivity, establishes that the shocks have a

significantly larger effect on the unemployment rate, the job separation rate, and the job finding

rate in periods of low aggregate productivity.

To explain these findings and assess the policy implications, we develop a Diamond-Mortensen-

Pissarides (DMP) search model with endogenous job separation and on-the-job search (OJS).

The primary driver of state dependence is the interaction between the threshold and distribution

of individual productivity. In a state with low aggregate productivity, the firm retains profits

by setting a high reservation threshold to yield a positive surplus in the match, dismissing jobs

with individual productivity below the reservation threshold. Under standard assumptions, the

high threshold lies in a region of the match-specific distribution with a high density of jobs.

An exogenous movement in aggregate productivity that changes the threshold generates large

shifts in the job separation rate and the unemployment rate. Conversely, in a state with high

aggregate productivity, the firm sets a low threshold for efficient matches that is associated

with a low density of jobs. An equivalent change in productivity produces limited movements

in job separation and unemployment rates. By the same mechanism, a state with low aggre-

gate productivity entails larger fluctuations in the share of new matches that fail to turn into

employment, increasing the volatility of the job finding rate.

Our baseline model replicates observed business cycle fluctuations and generates powerful

state dependence in the job separation rate and job finding rate, which exhibit larger response

to productivity shocks in periods of low aggregate productivity. Large movements in job transi-

tion probabilities in periods of low aggregate productivity jointly contribute to the state depen-
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dence of the unemployment rate, whose volatility is 18 percent larger in periods of aggregate

productivity below median. Robustness analysis, which considers alternative calibrations and

specifications of the baseline model excluding OJS and endogenous separations, shows that the

calibration of individual productivity is critical to generate state dependence in labor market

variables together with plausible aggregate fluctuations. OJS contributes to state dependence

by amplifying movements in the measure of job seekers.

To illustrate the mechanism underpinning state dependence and the importance for the

effect of labor market reforms, we enrich the baseline model with “wasteful” layoff taxes levied

on the firm for the termination of existing jobs but averted on new matches that fail to turn into

jobs.1 The tax increases the surplus of incumbent matches that continue into the next period

since they forego the tax payment, but it reduces the surplus of new matches in the prospect

of paying the layoff tax if the job terminates in the future. The tax raises the threshold of

individual productivity that makes new matches profitable, therefore discouraging OJS. The

pool of job seekers diminishes, and the firm’s recruiting costs for establishing a profitable match

rise, leading to a decrease in hiring. Overall, the layoff tax considerably reduces the job finding

rate and increases the pool of workers subject to job separation by discouraging OJS. These

complementary forces generate a rise in the unemployment rate.

We use the model with layoff taxes to assess whether an unexpected permanent removal of

the tax generates distinct transitional dynamics and welfare effects when implemented in states

with low and high aggregate productivity. In the long run, the elimination of the tax generates

a fall in the unemployment rate and a rise in output that is welfare-enhancing regardless of the

initial states of aggregate productivity. In the short run, however, the reform generates sharp

differences in the transitional dynamics of labor market variables across initial states. The

unemployment rate gradually declines in the state with high aggregate productivity whereas

in the low-productivity state, it suddenly contracts. These temporary differences disappear

after four quarters, but they produce significant welfare differences. The tax removal raises the

1We focus on layoff taxes since Cacciatore and Fiori (2016) show that they are effective policies in reducing
inefficiencies of unemployment fluctuations. In addition, an array of studies shows that they are powerful in
affecting labor market outcomes (see, for example, Campolmi and Faia (2011), Zanetti (2011a) and references
therein).
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surplus of establishing a job relation, inducing firms to post vacancies and workers to search

on the job. The considerable rise in search efforts by firms and workers generates temporary

welfare losses caused by the deadweight costs of matching frictions. Because the rise in vacancies

and OJS following the tax removal is larger in high-productivity states, the short-run costs of

the reform are greater in a high-productivity state than in a low-productivity state. The total

discounted welfare gain of a tax removal enacted in the state with low aggregate productivity

is 4.9 percent larger than the same reform in the state with high-aggregate productivity.

Our analysis relates to empirical and theoretical studies on the asymmetry of labor market

fluctuations over the business cycle. On the empirical side, the works by Neftci (1984), Altissimo

and Violante (2001), Panagiotidis and Pelloni (2007), Barnichon (2012), Abbritti and Fahr

(2013), Barattieri et al. (2014), Caggiano et al. (2014), and Benigno et al. (2015) show that

unemployment and wages fluctuate differently across phases of the business cycles. Compared

to these studies, we establish that state dependence in labor market fluctuations is linked to

the level of aggregate productivity, and we extend the analysis to job transition rates. On the

theoretical side, our work is related to studies that develop structural models to investigate

asymmetric dynamics of the labor market. Unlike Sedláček (2014) and Kohlbrecher and Merkl

(2016), who focus on job creation, we study nonlinearities allowing for interaction between the

job finding rate and the separation rate, a choice that is empirically supported by the findings

of the TVAR model. Ferraro (2016) shows that employment cycles are characterized by large

skewness and develops a search model with permanent worker heterogeneity in productivity to

explain the finding. Our version of the DMP model hinges on heterogeneity in match-specific

productivity, which allows for job-to-job transitions. We focus on OJS building on the work of

Fujita and Ramey (2012) that shows it is critical to deliver a realistic performance of the DMP

model. Our analysis also establishes the importance of OJS for timing in the implementation

of structural reforms. Petrosky-Nadeau and Zhang (2017) show that a standard DMP model

with exogenous job separation generates state dependence via the inherent nonlinearities of the

policy function for market tightness. We contribute to this strand of research by developing a

framework that embeds nonlinearities in both the job separation and job finding rates.

Finally, this paper is related to the growing body of literature that explores the state-
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dependent effect of labor market reforms on aggregate fluctuations. In the context of search and

matching models, Zanetti (2009), Poilly and Wesselbaum (2014), Cacciatore et al. (2015), Jung

and Kuester (2015) and Cacciatore and Fiori (2016) study the transition dynamics of loosening

employment protection and workers bargaining power without distinguishing between reforms

enacted during different phases of the business cycle. Eggertsson et al. (2014) and Cacciatore

et al. (2016) consider the impact of a reduction in employment protection enacted at the zero

lower bound of monetary policy or during a large recession. Differing from our analysis, they

find that implementing a reform during recessions exacerbates the economic downturn and

unemployment increases in the short run. In our model, the effect of labor market reforms

is primarily driven by the job finding rate and job-to-job transitions while the reaction of job

separation is muted due to the offsetting increases in OJS.2 Unlike these studies, our analysis

abstracts from changes in aggregate demand that may result from labor reforms and which

diminish the benefits of reforms during downturns.

The remainder of the paper is structured as follows. Section 2 presents the empirical find-

ings. Sections 3 and 4 outline the model and discuss the main mechanisms generating state

dependence in labor market fluctuations, respectively. Section 5 describes the calibration and

presents the main results. Section 6 performs a series of robustness checks on the calibration

and alternative specifications of the model. Section 7 assesses differences in the implementation

of labor market reforms. Section 8 concludes.

2 Empirical evidence

This section isolates systematic differences in fluctuations of labor market variables linked

to the state of aggregate productivity. Comovements of unemployment and job transition rates

with average labor productivity are stronger in periods of low aggregate productivity, resulting

in a larger volatility of labor market variables. We assess the evidence descriptively and formally

through a structural TVAR model. We use quarterly series for the (un)employment rate, the

job finding rate, the job separation rate, output, hours, and labor productivity over the period

2In particular, OJS substantially reduces the reaction of the job separation rate to the reform, avoiding a
spike in job destruction because the tax is removed.
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1950:I-2014:IV. To extract the cyclical component of variables, we use an HP filter with a

smoothing parameter equal to 1,600.3

2.1 Descriptive evidence

Figure 1 plots quarterly growth rates for the unemployment rate, job separation rate, and

job finding rate against the quarterly growth rate of labor productivity for periods in which

the level of productivity is above (left panels) and below (right panels) the median value.4 The

elasticity coefficients are larger in periods of low productivity, suggesting that the comovement

between changes in labor market variables and changes in productivity is stronger in periods of

low productivity. This first pass of the data outlines systematic differences in the variability of

the unemployment rate that are linked to the state of productivity. In the subsequent analysis,

we use a more formal statistical method to isolate significant changes in the cyclical properties

of labor market variables across distinct states of productivity.

Table 1 shows the standard deviation of the unemployment rate, the separation rate, the

job finding rate, the employment rate, output, and productivity, across periods in which the

initial level of productivity is below (Column 1) or above (Column 2) the median value of its

cyclical component and the ratio of the standard deviations of each variable in periods when

productivity is below and above the median value (Column 3).5 Column (4) reports the P -value

on the statistical significance of the differences in volatilities, as proposed by Levene (1960).6

The table reports the standard deviation of variables in levels (top panel), quarterly growth

rates (middle panel), and yearly growth rates (bottom panel).7 The standard deviations of most

of the variables in levels are 20 to 30 percent larger in periods of productivity below the median

3Appendix A.1 provides details on the data sources. Appendix B shows that results are robust to using a
smoothing parameter equal to 105.

4Specifically, the figure plots ∆xt = xt− xt−1 when productivity at time t− 1 is above or below the median.
The median value of the HP-filtered series is 0, which is very close to 0, suggesting that the two states can be
interpreted as periods in which productivity is below or above trend. The elasticity coefficients are computed
with a univariate regression.

5In the online appendix we show that, using the steady-state unemployment rate approximation proposed
by Shimer (2012), both the separation and job finding rates contribute to the larger volatility of unemployment
in times of low productivity.

6The null hypothesis of the test is that the variances of the two samples are the same. Therefore, lower
P-values provide stronger evidence for the rejection of the null.

7For the levels, we take the log of all variables before we apply the HP filter except for the separation and
job finding rates. Growth rates are approximated by log differences.
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Figure 1: Labor market fluctuations and labor productivity across phases of the business cycle.

Note. The figures plot quarterly growth rates of the unemployment rate, the separation rate, and the job
finding rate against quarterly growth rates of labor productivity. The left and right panels consider periods in
which the starting level of productivity is respectively above and below the historical median of its cyclical
component. The red solid line represents the best fit from a least squares regression, with the slope coefficient
reported in each plot.

value. The job finding rate exhibits a more limited difference across states of productivity

with a ratio across variances equal to 1.07. The P -value for all entries is below 0.1, suggesting

strong statistical significance in systematic differences in the variability of labor market variables

across states of aggregate productivity. Entries in growth rates show similar results, with

unemployment and employment rates showing particularly large differences between the two

states. Only the separation rate has a P -value above 0.1.8

To ensure results are robust, we undertake a series of robustness checks, reported in Ap-

8If we use first differences of the level, instead of the log, the difference in the separation rate volatility also
reaches statistical significance.
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Table 1: Standard deviation for different states of productivity

Standard deviation

σp<Median σp>Median
σp<50

σp>50
P-value

(1) (2) (3) (4)

Levels

Unemployment 0.1511 0.1197 1.26 0.029
Job Finding Rate 0.0397 0.0335 1.19 0.082

Separation Rate 0.0020 0.0013 1.53 0.000

Employment Rate 0.0095 0.0075 1.27 0.016
Output 0.0215 0.0167 1.29 0.005

Productivity 0.0092 0.0071 1.31 0.004

Quarterly Growth Rates

Unemployment 0.0829 0.0401 2.06 0.00
Job Finding Rate 0.0566 0.0444 1.27 0.03

Separation Rate 0.0576 0.0497 1.16 0.20
Employment Rate 0.0051 0.0023 2.15 0.00

Output 0.0153 0.0090 1.71 0.00

Productivity 0.0099 0.0074 1.34 0.00

Yearly Growth Rates
Unemployment 0.2302 0.1651 1.39 0.00

Job Finding Rate 0.1435 0.1023 1.40 0.00

Separation Rate 0.0912 0.0855 1.07 0.33
Employment Rate 0.0147 0.0091 1.62 0.00

Output 0.0361 0.0274 1.32 0.00

Productivity 0.0191 0.0168 1.14 0.04

Note. The data is quarterly over the period 1950:I-2014:IV. The series of the (un)employment rate, output, and
productivity are in logs. Series are HP-filtered with a smoothing parameter equal to 1,600. Growth rates are log
differences of quarterly averages. In columns (1)-(3), σp<Median (σp>Median) represents the standard deviation
of the variable for the productivity state below (above) the median, and its ratio. Column (4) reports the
P-value for the statistical test by Levene (1960) against the null hypothesis of the two variances being equal.

pendix B. In Table B.2, we show that results continue to hold if we use a smoothing parameter

for the HP filter equal to 105—as suggested by Shimer (2005)—or set the regimes based on the

productivity series by Fernald (2014). We show that state dependence is robust to two specific

sub-periods: the Great Moderation (1984-2007) and the full pre-Great Recession period (1950-

2007). Finally, we show that results hold if we consider more marked cases of low and high

productivity, using as thresholds the 25th and 75th percentiles of average labor productivity,

respectively, thus excluding observations in second and third quartiles. We further assess the

sensitivity of results to defining low- and high-productivity states using alternative variables:

yearly growth rates of productivity, NBER recession dates, quarterly growth rates of productiv-

ity (both a four quarter moving average and in its raw series), and output.9 Tables B.1 and B.3

in the Appendix show that alternative definitions for the thresholds produce classifications of

9For all of the series except the NBER recessions dates, the threshold is based on the median value of the
variable. For the recession dates, we base the low state as the quarters of economic recession.
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regimes that are similar to those in the benchmark analysis and that results continue to hold.10

These findings point to large and systematic differences in the variability of labor market

variables across states of aggregate productivity. Since labor productivity itself exhibits a

larger volatility in states with low aggregate productivity, in the next subsection we assess the

systematic differences in labor market fluctuations using a Threshold Vector-Autoregression

(TVAR) model that isolates the response of variables to shocks controlling for the state of

productivity.

2.2 The Threshold Vector Autoregression model

The TVAR model, based on the original study by Chen and Lee (1995), allows the VAR

parameters to vary across an aggregate state of the economy. The switching mechanism is

based on the value of one of the endogenous variables being above or below a threshold, and

unlike Markov-switching models, the parameter change is endogenous to the dynamics of the

VAR process. The reduced-form model can be expressed as follows:

Zt = ξt

{
c1 +

K∑
k=1

Bk,1Zt−k + Σ
1/2
1 vt

}
+ (1− ξt)

{
c2 +

K∑
k=1

Bk,2Zt−k + Σ
1/2
2 vt

}
, (1)

where Zt is the vector of N observed variables, c1 and c2 are constant coefficients, Bk,1 and

Bk,2 are coefficients of the VAR, Σk,1 and Σk,2 are covariance matrices, and vt is the error term.

Switches across regimes are governed by the indicator variable ξt ∈ {0, 1}, which is equal to 1 if

labor productivity in period t− 1, z̃t−1 is below the threshold z∗, otherwise it is equal to zero:

ξt = 1 if z̃t−1 < z∗, otherwise ξt = 0. (2)

Under conjugate priors for VAR parameters and conditional on the value of the threshold

z∗, the posterior distribution of the VAR coefficient vector is a conditional Normal-Wishart

10Table B.3 shows that the larger volatility of labor market variables holds for alternative definitions of the
threshold based on the level and growth rate of output, NBER recessions, and quarterly and yearly growth rates
of productivity. Results based on the series of productivity growth rates (yearly and quarterly) fail to generate
large state dependence in the unemployment rate and job finding rate. This is explained by the fact that growth
rates of productivity are not necessarily indicative of whether the aggregate level of productivity is high or low.
Table B.1 shows that there are several quarters in which the level of productivity is above median, but the growth
rate of productivity is below median.
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distribution, and we obtain draws with the Gibbs sampler. Since the posterior distribution of

z∗ conditional on the VAR parameters is unknown, we use a Metropolis-Hastings step to obtain

the posterior distribution (see Chen and Lee (1995); Chen (1998); Lopes and Salazar (2006)).

Appendix C.1 provides details on priors.

The variables of interest are labor productivity, unemployment rate, job separation rate,

and job finding rate. To be consistent with the related literature, particularly Balleer (2012)

and Canova et al. (2012), we include average hours worked and Fernald’s measure of labor

productivity.11 We use eight lags in the TVAR model (i.e., k = 8), and one-quarter lag of labor

productivity as the variable determining the state ξt.
12 All variables are in logs and HP-filtered

using a smoothing parameter equal to 1,600. The median of the posterior of the threshold z∗ is

equal to 0.12, and the mean is 0.11. These values are fairly close to 0, and hence to the median

of the unconditional distribution of productivity.13

To identify technology shocks, we follow the medium-run, maximum variance scheme pro-

posed by Uhlig (2004) and assume that the productivity shock explains the majority of the

forecast error variance of labor productivity at business cycle frequencies (i.e. over the horizon

of 0 to 40 quarters). Appendix C.2 provides details on the identification scheme.14 To assess

whether responses to technology shocks are significantly different across states, Figure 2 plots

the linear Impulse Response Functions (IRFs) produced for each regime separately. The iden-

tified productivity shock has a larger effect on the unemployment rate, job separation rate, and

job finding rate when labor productivity is below the threshold (second row) and differences

across states are statistically significant (third row). The estimated variance of the productivity

shock is similar across regimes, as shown in the entries in the first column of the figure, and

therefore, the variance of productivity explained by the identified productivity shock is sub-

11The results are robust to excluding hours. Robustness checks to the TVAR model are reported in the online
appendix.

12We set the number of lags in the benchmark model equal to eight to facilitate comparison of the benchmark
identification scheme with the identification that uses long-run restrictions as in Balleer (2012) and Canova et al.
(2012) (results are reported in the online appendix). As it is established in those studies and it is further discussed
in Erceg et al. (2005) and Ravenna (2007), a sufficiently large number of lags is needed to mitigate identification
bias that arises from the (lag) truncation of the VAR. The online appendix shows that results continue to hold
with fewer lags.

13Figure C.2 in the Appendix plots prior and posterior distributions for the threshold z∗.
14The online appendix shows that the results are robust when the productivity shock is identified using

long-run identification restrictions (see sections 3.2 and 3.3.4).
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stantially identical across states. This observation holds true despite the unconditional variance

of productivity in Table 1 being larger in periods of low productivity.15

Figure 2: Benchmark Model: Impulse Responses

Labour Productivity

2 4 6 8 10 12

-0.5

0

0.5

1

Lo
w

 P
ro

du
ct

iv
ity

 R
eg

im
e

2 4 6 8 10 12

0

0.5

1

H
ig

h 
P

ro
du

ct
iv

ity
 R

eg
im

e

2 4 6 8 10 12

-0.6

-0.4

-0.2

0

0.2

0.4

D
iff

er
en

ce
s

Hours

2 4 6 8 10 12

-0.5

0

0.5

1

2 4 6 8 10 12

-0.2

0

0.2

0.4

0.6

2 4 6 8 10 12

-0.5

0

0.5

Unemployment Rate

2 4 6 8 10 12

-10

-5

0

5

2 4 6 8 10 12

-6

-4

-2

0

2

2 4 6 8 10 12

-5

0

5

Seperation Rate

2 4 6 8 10 12

-3

-2

-1

0

1

2 4 6 8 10 12
-3

-2

-1

0

1

2 4 6 8 10 12

-2

0

2

Job Finding
Rate

2 4 6 8 10 12

-2

0

2

4

6

2 4 6 8 10 12

0

2

4

2 4 6 8 10 12

-4

-2

0

2

4

6

Note. The solid blue line represents the pointwise median IRF, and the shaded area is the corresponding 16th and

84th percentiles of the posterior distribution. Horizontal axes report quarters, vertical axes report percentage

deviations from the trend. The third row displays the posterior distribution of the difference between impulse

responses for low (first row) and high (second row) states of productivity. The red line in the second row is the

pointwise median from the Low Productivity Regime.

The analysis reveals strong and statistically significant state dependence in the response

of labor market variables to the productivity shock. The IRFs are obtained using regime-

specific coefficient matrices, which assume that the system remains in the current regime.

To ensure that results are robust to the possibility for the system to switch across regimes

of productivity, we compute simulation-based Generalized IRFs, as developed in Koop et al.

(1996).16 The approach computes IRFs at different points of the business cycle, accounting for

potential transitions across regimes that may influence the dynamic response of variables to the

15Figure C.3 in the Appendix reports the fraction of forecast error variance of each endogenous variable that
is explained by productivity shocks. Productivity shocks explain more than double of the forecast error variance
of all variables at horizons between one and 12 quarters in periods of low aggregate productivity.

16Appendix C.3 describes computation.
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technology shock.

Figure 3: Generalised Impulse Responses: Low- versus High-Productivity Starting Point
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Note. The solid line represents the pointwise median IRF, and the shaded area is the corresponding

16th and 84th percentiles of the posterior distribution. The horizontal axes are in quarters; the vertical

axes are in percentage deviations from the trend. The third row displays the posterior distribution

of the difference between Low- (first row) and High- (second row) Productivity Regime Impulse Re-

sponses. The red line in the second row is the pointwise median from the Low Productivity Regime.

The terms Low- and High-Productivity Regime refer now to the starting point of the economy (initial

conditions/histories) when the shock “hits” the economy.

Figure 3 compares generalized IRFs at a starting point of productivity below the estimated

threshold (Low Productivity Regime) against responses with a starting point of productivity

above the estimated threshold (High Productivity Regime). Different from responses in Figure

2, the reaction of variables to technology shocks in Figure 3 accounts for the possibility that

the current regime may change depending on the size and sign of the shock. At the peak of

response (roughly four to five quarters), the reaction of the unemployment rate is twice as

large as at the low productivity regime compared to the high productivity regime. Similarly,

responses of the job separation rate and job finding rate are three times and twice as large in

the state of low productivity, respectively. Overall, these findings establish that fluctuations in
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the unemployment rate, the job separation rate and the job finding rate exhibit statistically

different responses to technology shocks across states of aggregate productivity.17

3 The model

This section lays out a DMP search and matching model with endogenous job separation

and OJS. The main features of the model as similar to those in Mortensen and Pissarides

(1994), Merz (1999), Krause and Lubik (2007), Thomas and Zanetti (2009), Fujita and Ramey

(2012), and Mueller (2017). It differs from these studies in allowing for the separation of

newly-established jobs and, in the last section, by introducing layoff taxes on the termination

of existing jobs while workers can search on the job similar to Sedláček (2014).18

Economic environment and timing. A continuum of households of mass one and a con-

tinuum of firms operate in a discrete time environment. Households supply labor to firms

inelastically. Matching frictions in the labor market prevents full employment. Firms pay a

fixed cost for each vacancy posted to recruit new workers. However, in a given period, nei-

ther are all vacancies filled nor are all job-seekers hired. Employed workers produce a single

consumption good, whose price is normalized to one, and they may search for a new job while

employed. In every period t, production by a single worker depends on aggregate labor produc-

tivity, at, and individual, idiosyncratic productivity, x. For each at, there is a reservation level

of individual productivity xr(at), below which jobs are not mutually efficient and are dismissed.

Similarly, there is a level of individual productivity xs(at), below which employed workers find

it efficient to pay a fixed cost to search for other jobs.19

Within each period t, the timing of events is as follows. At the start of period, firms

post vacancies that are matched with job seekers by the end of the period. Employed workers

17The online appendix shows that the results are robust to the use of a shorter number of lags (Section 3.3.1),
looser priors (Section 3.3.2), different measures of labour productivity (Section 3.3.3), and different identification
schemes (Section 3.3.4).

18The baseline model described in this section abstracts from layoff taxes, which are introduced in the extended
version of the model in Section 7.

19Below, we use the following notation: when x has a time subscript, it refers to an aggregate variable (e.g.
xrt is the individual productivity threshold that applies to all firms given an aggregate productivity level at).
Without a subscript, it refers to any individual productivity level for a match independent of aggregate states.
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produce and may search for a new job within the period. At the end of the period, a fraction of

employed workers is exogenously separated, and another fraction of employed workers obtains

a new draw of individual productivity. At the beginning of the next period t + 1, aggregate

productivity at+1 and the individual productivity x of each worker are observed. Each firm

converts profitable matches into jobs, and each worker that searches on the job decides whether

to move to a new firm or remain in the current job.

The matching function. A matching function encapsulates search frictions in the labor mar-

ket. In each period t, the constant-returns-to-scale matching function establishes the number

of matches between job seekers and vacancies:

mt = m(ut + ψt, vt) = γ(ut + ψt)
1−ηvηt , (3)

where ut is unemployment, ψt is the mass of OJS workers, vt are vacancies, and 0 < η < 1.

The sum of employed OJS workers and unemployed workers forms the number of job searchers.

The probability for a job seeker to match a vacancy and for a vacancy to be filled can be

expressed in terms of the “labor market tightness,” defined as the ratio of vacancies to job

seekers, θt = vt/(ut + ψt). The probability of a job seeker to find a suitable vacancy is p(θt) =

m(ut + ψt, vt)/(ut + ψt) = m(1, vt/(ut + ψt)) and the probability for the firm to find a suitable

worker is q(θt) = m((ut + ψt), vt)/vt = m((ut + ψt)/vt, 1).20

Production and matched workers. Each firm manufactures a unique final good by hiring

labor. Each hired worker produces atx units of output. Aggregate productivity at follows the

auto regressive process:

ln at+1 = ρ ln at + εt+1, (4)

where ε ∼ N(0, σ2) and ‖ρ‖< 1. During each period t + 1, an existing worker maintains the

previous individual productivity level with probability (1 − λ), and with probability λ, the

20As we discuss below, due to individual productivity shocks, p(θt) and q(θt) cannot be interpreted as the
job finding and job filling probabilities, respectively. We therefore refer to them as the “contact” probabilities
for workers and firms, respectively. Also note that labor market tightness includes also OJS workers and hence
differs from the empirically observable vacancy/unemployment ratio.
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worker receives a new productivity drawn from the constant distribution F (x) over the domain

[xL, xH ]. Job seekers matched in period t also receive a productivity value from the same

distribution in the beginning of period t+ 1.

Job separation and job creation. During each period t, total job separations comprise

exogenous and endogenous terminations. Existing workers are separated from their jobs with

the exogenous probability of s < 1. Given aggregate productivity at, the firm establishes a

threshold of individual productivity xr(at), below which existing matches are mutually ineffi-

cient. All workers whose individual productivity satisfies x < xr(at) are dismissed whereas if

x ≥ xr(at), the job relation continues in the next period.

On-the-job search. A worker may search for a new job at the cost ks. An employed job

searcher is matched to a firm from the same pool as the unemployed job seekers and therefore

is subject to the same matching frictions. Once matched, the worker receives an idiosyncratic

x from the distribution F (x) as any other newly-matched job seeker. If the draw of individual

productivity is below the reservation threshold, the match is discontinued and the employed

job searcher stays in the original job. Also, as any existing worker, the job searcher who

remains with her current firm draws a new individual productivity with probability λ and faces

exogenous job separation. Each firm applies the same separation threshold to employed and

unemployed job seekers.21

Recursive formulation. Four value functions solve the model: the value of unemployment

(U), the value of a vacancy (V ), the joint value of a match (M), and the joint surplus of a match

(S). The joint surplus of a match is split in constant proportions through Nash bargaining for

wages, assigning the fraction φ of the joint match surplus to the worker and the fraction 1− φ
21This simplifying assumption abstracts from the fact that the actual outside option for employed job seek-

ers is their current employment contract rather than unemployment. This simplification avoids the issue of
heterogeneity in wage bargaining and hence the fact that new wages depend on the value of x for the current
contract and the value of x from the previous employer. These dynamics would substantially complicate the
aggregation for the solution of the model because the entire distribution of x over employed workers, which is
history-dependent, would become a relevant state variable for firms’ decisions. Within the microeconomic liter-
ature, the details of wage bargaining from on-the-job search have been considered by Postel-Vinay and Robin
(2004) and Shimer (2006), among others. See also Gottfries (2018) for a recent contribution.
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to the firm. The value of unemployment is:

U(at) = b+ βEt
[
U(at+1) + p(θt)φ

∫ xH

xL

S(at+1, x
′)dF (x′)

]
. (5)

Equation (5) shows that the value of unemployment is equal to the opportunity cost of

working (i.e., the flow value of unemployment b) and the expected benefits that finding a job

brings in the next period. In period t+ 1, the prospective worker encounters a suitable vacancy

with probability p(θt), and if the match is mutually profitable, the worker gains a fraction φ of

the total surplus on top of the value of staying unemployed. Otherwise the job seeker remains

unemployed, gaining the continuation value U(at+1).

The value of an open vacancy is:

V (at) = −k + βEt
[
V (at+1) + q(θt)(1− φ)

∫ xH

xL

S(at+1, x
′)dF (x′)

]
. (6)

Equation (6) shows that the present value of an open vacancy is equal to the fixed cost of

posting the vacancy k and the expected benefits that the vacancy brings in the next period.

In period t + 1, the firm finds a prospective worker with probability q(θt), and if the match is

profitable, the firm gains a fraction (1−φ) of the total surplus. Otherwise, the vacancy remains

open, giving the firm a continuation value V (at+1). In equilibrium, the free-entry condition

leads firms to post vacancies until their expected value is equal to zero in each period (i.e.

V (at) = 0, for all t). This equilibrium condition applied to equation (6) yields the job-creation

condition:

k

q(θt)
= (1− φ)βEt

[ ∫ xH

xL

S(at+1, x
′)dF (x′)

]
. (7)

Equation (7) shows that the expected cost of a match (left side of the equation) is equal to

the expected benefit that the match brings into the firm if the job is established (right side of

the equation). With this formulation, the problem can be recast in terms of choosing a given

market tightness θ(at) for a level of aggregate productivity.

For each given vector of (at, x), an employment relationship is established if the match is

mutually efficient, and therefore, the joint value of establishing a job relation is greater than
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the value of the outside options (i.e., the individual values from separation). Thus, the joint

value of a firm-worker match is:

M(at, x) = max
{
Mn,c(at, x),M s,c(at, x), U(at) + V (at)

}
, (8)

where Mn,c(at, x) is the joint value of a continued match without OJS, M s,c(at, x) is the joint

value of the continued match with OJS, and U(at) + V (at) is the joint value of the outside

option.

The joint value of a continued match without OJS is:

Mn,c(at, x) = atx+ βEt
{
U(at+1) + V (at+1)

+ (1− s)
[
(1− λ)S(at, x) + λ

∫ xH

xL

S(at+1, x
′)dF (x′)

]}
. (9)

Equation (9) shows that the joint value of a continued match is equal to production plus the

expected continuation value of the work relationship. Meanwhile the joint value of a continued

match while searching on the job is

M s,c(at, x) = atx− ks + βEt
{
U(at+1) + V (at+1)

+
[
1− p(θt)F (xrt+1)

]
(1− s)

[
(1− λ)S(at+1, x)

+ λ

∫ xH

xL

S(at+1, x
′)dF (x′)

]
+ p(θt)φ

∫ xH

xL

S(at+1, x
′)dF (x′)

}
. (10)

where F (xrt+1) = (1− F [xr(at+1)]).

The last term uses the fact that
∫ xH
xr(at+1) S(at+1, x

′)dF (x′) =
∫ xH
xL

S(at+1, x
′)dF (x′), which

represents the expected surplus that may accrue to the worker if she is matched with another

firm and the match is continued. This event materializes with probability p(θt)F (xrt+1), and

encompasses all of the values of x above the reservation threshold xrt+1.

The joint surplus of a match equals the value of a match, M , net the outside option for the

worker, U , and the firm, V (i.e. S=M −U − V ). Thus, the value function for the joint surplus
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of a continuing match is:

S(at, x) = max{Sn,c(at, x), Ss,c(at, x), 0}, (11)

where Sn,c(a, x) is surplus of the match when the job relation continues without OJS and

Sn,c(a, x) is the surplus of a continued match with OJS. The surpluses are defined as follows:

Sn,c(at, x) = atx− b+ βEt
{

(1− s)
[
(1− λ)S(at+1, x) + λ

∫ xH

xL

S(at+1, x
′)dF (x′)

]
− p(θt)φ

∫ xH

xL

S(at+1, x
′)dF (x′)

}
, (12)

Ss,c(at, x) = atx− ks − b+ βEt
{[

1− p(θt)F (xrt+1)
]
(1− s)

[
(1− λ)S(at+1, x)

+ λ

∫ xH

xL

S(at+1, x
′)dF (x′)

]}
. (13)

A worker searches while on the job if Ss,c(at, x) ≥ Sn,c(at, x). The presence of OJS intro-

duces a threshold xS(at), below which it is efficient to search on the job. For values of the thresh-

old xr(at) < xS(at) < xH , it is efficient to incur in the search costs for all x ∈ (xr(at), x
S(at)].

Substituting equations (12) and (13) into the condition Ss,c(at, x) ≥ Sn,c(at, x) yields

ks ≤ βEt
{
− p(θt)F (xrt+1)(1− s)

[
(1− λ)S(at+1, x) + λ

∫ xH

xL

S(at+1, x
′)dF (x′)

]
+ p(θt)φ

∫ xH

xL

S(at+1, x
′)dF (x′)

}
. (14)

With equality, equation (14) determines the efficient threshold under which workers engage

in OJS. Intuitively, the cost of searching has to be smaller than the increase in the continuation

value coming from the possibility of finding a new match.

Finally, for a given aggregate state at, the individual productivity threshold for exogenous

separations is the value of x, which makes the joint surplus of continuing a match equal to zero,
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such that:22

Ss,c(at, x
r(at)) = 0. (15)

Labor flows depend on the distribution of x across employed matches. The distribution of

individual productivity among employed workers is history dependent: Gt(x) = Pr(X < x
∣∣∣at),

where at represents the history of aggregate productivity shocks {a0, a1, ..., at} realized up to

time t. The conditional distribution is determined by the measure of employed workers over

individual productivity, et(x), which follows a law of motion determined by flows between

unemployment and employment and within employment. For those workers whose individual

productivity is in the OJS interval (xrt , x
s
t ]:

et+1(x) = p(θt)[1− et(xH)][F (x)− F (xrt+1)] + p(θt)[F (x)− F (xrt+1)]et(x
s
t )

+ (1− s)
{
λ[F (x)− F (xrt+1)]

[
et(xH)− p(θt)F (xrt+1)et(x

s
t )
]

+ (1− λ)
[
et(x)− et(xrt+1)

][
1− p(θt)F (xrt+1)

]}
. (16)

For the non-searching workers with x > xst :

et+1(x) = p(θt)[1− et(xH)][F (x)− F (xrt+1)] + p(θt)[F (x)− F (xrt+1)]et(x
s
t )

+ (1− s)
{
λ[F (x)− F (xrt+1)]

[
et(xH)− p(θt)F (xrt+1)et(x

s
t )
]

+ (1− λ)
[
et(x)− et(xst ) + (1− p(θt)F (xrt+1))[et(x

s
t )− et(xrt+1)]

]}
. (17)

Gross flows and transition rates. Gross flows from employment to unemployment repre-

sent the total mass of workers separated from a job between two periods:

EUt+1 = s
[
et(xH)− p(θt)F (xrt+1)et(x

s
t )
]

+ (1− s)
{
λF (xrt+1)

[
et(xH)− p(θt)F (xrt+1)et(x

s
t )
]

+ (1− λ)et(x
r
t+1)

[
1− p(θt)F (xrt+1)

]}
. (18)

22As S(at, x) is monotonically increasing in x, the individual productivity threshold xr(at) is unique, and
S(at, x) > 0 ∀ x > xr(at). Appendix D.1 provides a detailed discussion.
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The job separation rate is then defined as the probability that an employed worker in period

t is not employed in period t+ 1: SRt = EUt+1/[et(xH)]. Similarly, the gross unemployment to

employment (UE) flow is the total mass of workers who start a new job from unemployment:

UEt+1 = utp(θt)(1− F (xrt+1)),

and the job finding rate (JFR) is defined as the probability that an unemployed worker in

period t is not unemployed in period t+ 1:

JFRt = UEt+1/ut = p(θt)(1− F (xrt+1)). (19)

The job-to-job rate (JJR) is measured as the ratio of gross employment to new employment

(EE) flows over total employment:

JJRt+1 =
EEt+1

et(xH)
=
et(x

s
t )p(θt)F (xrt+1)

et(xH)
. (20)

4 Mechanisms for state-dependent fluctuations

The distinct responses of labor market variables over states of aggregate productivity is

generated by the effect of changes in the individual productivity threshold xr(a) on the distri-

butions of individual productivity for newly-established matches, F (x), and for continuing jobs,

G(x).23 Figure 4 shows an illustrative probability density function for the x of new matches (i.e.

F ′(x)) and incumbent ones (i.e. G′(x)) in red and blue, respectively. The difference between the

two distributions is that G(x) has zero mass below the individual productivity threshold xr(a)

since jobs with productivity lower than the threshold are terminated whereas F (x) is continu-

ous and twice differentiable since the productivity of new jobs is positively defined across the

whole domain of individual productivity.24 For both distributions, workers whose productivity

is below the searching threshold xs and above xr(a) search on the job.

23To simplify notation, we drop the time index from the distributions. Given the timing assumption in the
model G(x) refers to Gt−1(x) whereas F (x) does not vary with time.

24We make the standard assumption that F (x) is continuous, twice differentiable, and unimodal since it
proxies the wage distribution in the data, as examined in Moscarini (2005).
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Figure 4: Distribution for F ′(x) and G′(x)

G′(x)

F ′(x)

xr x

Note. The figure shows the p.d.f. for F (x) (labelled F ′(x), red line) and G(x) (labelled G′(x), blue line).

Figure 5: States of aggregate productivity and the job separation rate

A

→

Panel (a): State with high productivity

xr0x
r
1

x

G′(x)

B

→

Panel (b): State with low productivity

x̃r0 x̃
r
1

x

G′(x)

Note. An increase of the threshold of individual productivity from x̃r0 to x̃r1 generates a larger response in the
job separation rate in states with low aggregate productivity than an equivalent increase of the threshold of
individual productivity from xr0 to xr1 in states with high-aggregate productivity. The shaded area shows the
mass of jobs sensitive to job separation in response to the change in the threshold.

Movements in the individual productivity threshold generate distinct responses in the job

separation rate in relation to the state of aggregate productivity. Panel (a) in Figure 5 shows the

initial productivity threshold xr0 on the distribution for continuing jobs G′(x) that is associated

with a high level of aggregate productivity.25 In response to a fall in aggregate productivity,

the individual productivity threshold increases from xr0 to xr1, leading to a rise in the job

separation rate equal to shaded area A. Panel (b) shows the effect of an equivalent fall in

aggregate productivity from an initially low level of aggregate productivity. In this instance,

the individual productivity threshold is high and located in the domain of the distribution with

25Given that the surplus is increasing in both x and a, equation (15) implies that a high level of aggregate
productivity is associated with a low individual productivity threshold. Assuming that the threshold always lies
below the distribution mode, a lower threshold is located in a region of the distribution associated with lower
density.
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high density. The same fall in aggregate productivity increases the individual productivity

threshold from x̃r0 to x̃r1, leading to a rise in the job separation rate equal to shaded area B,

which is larger than area A. Thus, the effect of a shock on the mass of jobs exposed to movements

in the individual productivity threshold differs across levels of aggregate productivity, and the

response of the job separation rate to the aggregate productivity shock is larger when aggregate

productivity is low. By the same principle, the job finding rate may exhibit stronger responses

in states with low aggregate productivity.26

5 Model simulation and quantitative results

This section presents the calibration of the model and the quantitative results. It first

compares simulated moments in the model against those in the data. It then investigates the

extent to which the model replicates the observed changes in the magnitude of fluctuations at

distinct states of aggregate productivity. Finally, it presents generalized impulse response func-

tions to isolate the dynamic responses of labor market variables in different states of aggregate

productivity.

5.1 Calibration

To allow the theoretical framework to embed state-dependent dynamics, we solve the model

non-linearly iterating over the policy function on a discretized state space, following the ap-

proach in Tauchen (1986). Appendix D.3 outlines the solution procedure.

We calibrate the model at a monthly frequency. The discount factor β is set equal to

0.953(1/12), as in Shimer (2005). The cost of posting a vacancy κ is set equal to 0.17 to match

the derived calculations on costs of a job opening based on survey results cited in Barron

and Bishop (1985) and Barron et al. (1997).27 The flow value of unemployment b is set to

equal 0.71, as in Hall and Milgrom (2008), which is between the value of 0.4 in Shimer (2005)

and the value of 0.95 in Hagedorn and Manovskii (2008). The elasticity of the matching

26Appendix D.2 reports a similar graphical representation of the mechanism underpinning the distinct response
of the job finding rate at different levels of productivity.

27As in Fujita and Ramey (2012), the value is derived from a calculation of the costs based on survey results
cited in the above papers.
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Table 2: Parameter values for the baseline model.

Parameter Description Value

β Discount factor 0.953(1/12)

κ Vacancy cost 0.17

κs OJS cost 0.128
b Flow value of unemployment 0.71

η Elasticity of matching with respect to vacancies 0.5

γ Matching function efficiency parameter 0.47
φ Worker’s bargaining power 0.5

s Exogenous job separation rate 0.022

λ Arrival rate of individual productivity shocks 0.05
xL Lower bound of individual productivity shocks 0

xH Upper bound of individual productivity shocks 1.55

µx Mean of log individual productivity shocks -0.087
σx Standard deviation of individual productivity shocks 0.13

ρ Persistence parameter of aggregate productivity 0.973

σ Standard deviation of aggregate productivity shocks 0.0068

function with respect to vacancies η is set equal to 0.5 in the range of empirical estimates in

Petrongolo and Pissarides (2001). To satisfy the Hosios (1990) condition, which ensures that

the equilibrium of the decentralized economy is Pareto efficient, we assume that the elasticity

of labor market tightness with respect to vacancies is equal to the firm’s bargaining power,

(1 − φ) i.e., η = (1 − φ) = 0.5. The parameter of match efficiency γ is set equal to 0.47 to

match the empirical average job finding rate of 0.45, as in Hagedorn and Manovskii (2008). The

exogenous separation probability s is set equal to 0.022 to match the average job separation

rate of 0.03. The standard deviation of individual productivity σx is set to equal 0.13, to match

the empirical quarterly standard deviation of the HP-filtered log separation rate of 0.055. The

probability of receiving a new individual productivity shock λ is set to 0.05 to match a quarterly

autocorrelation of the separation rate of 0.63, as in Fujita and Ramey (2012). The distribution

of individual productivity shocks is a truncated log-normal density function with the lower

bound equal to zero (i.e. xL = 0) and the upper bound set to have less than one percent of the

mass of the distribution above it (i.e. xH = 1.55). The mean of the log distribution of individual

productivity µx is set to -0.087 to normalize the long-run average productivity in the economy to

one. The cost of searching on the job ks is set to equal 0.128 to match the mean monthly job-to-

job transition rate of 3.2, calculated from the CPS data by Moscarini and Thomsson (2007). The

autoregressive parameter ρ and the standard deviation σ of the aggregate productivity process

are set to equal to 0.973 and 0.0068, respectively, to match the autocorrelation and standard
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deviation of HP-filtered log labor productivity at quarterly frequency, as in Hagedorn and

Manovskii (2008). Table 2 summarizes the calibration of parameters. Table D.1 in Appendix

D.3 shows that the simulated target moments are close to the empirical counterparts in the

data.

5.2 Business cycle statistics and dynamic responses

Table 3 compares the standard deviation and the correlation coefficient with productivity for

selected variables in the data (top panel) against the corresponding statistics in the simulated

model (bottom panel). The moments are based on a set of 1,000 simulations of the same length

as the empirical data. The model accurately reproduces the standard deviation of output 0.021

in the data. The simulated standard deviation of unemployment and the job finding rate of 0.101

and 0.063 are approximately 70 percent of those in the data (0.137 and 0.089, respectively). The

simulated standard deviation of vacancies, equal to 0.040, is 30 percent of the value of 0.138 in

the data. Likewise, the simulated standard deviation of vacancy-to-unemployment ratio (v/u)

equal to 0.137 is approximately half the value in the data.28

Table 3: Labor market statistics in the data and the model

Data p U JFR SR E V V/U Y

σx 0.013 0.137 0.089 0.055 0.009 0.138 0.262 0.021

Corr(pt,xt) 1.000 -0.229 0.212 -0.556 0.232 0.394 0.316 0.661

Model p U JFR SR E V V/U Y

σx 0.013 0.101 0.063 0.055 0.008 0.040 0.137 0.021

Corr(pt,xt) 1.000 -0.970 0.978 -0.951 0.929 0.927 0.991 0.991

Note. The table reports cyclical statistics for average labor productivity (p), the unemployment rate (U), the
job finding rate (JFR), the job separation rate (SR), the employment rate (E), vacancies (V), the V/U ratio
(V/U), and output (Y). The simulated moments are computed as a mean of 1,000 simulations of 1,380 monthly
periods. After discarding the first 600 observations in each simulation, the remaining series are aggregated at
quarterly frequency with the same length of the observed series for the period 1950:I-2014:IV.

The model replicates accurately the sign of the correlation coefficient of the variables with

productivity. The unemployment rate and the job separation rate are negatively correlated

28The relatively larger fluctuations of the job finding rate compared to vacancies indicate that in the model,
the productivity threshold xrt rather than posting vacancies is the main channel through which firms adjust their
recruiting decisions. Firms adjust xrt to determine endogenous separation, which also affects the expected value
of new matches. The adjustment in reservation productivity mitigates the fluctuations in the expected surplus
of new matches and hence dampens the response of vacancies.
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with productivity whereas the rest of the variables are positively correlated with productivity.

The correlations in the model are larger than those in the data since productivity shocks are

the only exogenous source of aggregate fluctuations. It is worth noting that the negative

correlation between unemployment and vacancy fluctuations yields an empirically consistent,

negatively sloped Beveridge Curve.

Table 4 shows the standard deviations of simulated labor market variables in levels (columns

1-3), quarterly growth rates (columns 4-6) and yearly growth rates (columns 7-9) associated

with productivity below and above its median value. Columns (1) and (2) show that the

standard deviations of the simulated variables are larger in periods of productivity below the

median value. Column (3) reports the ratio of the standard deviations for the variables when

productivity is below and above the median value. All variables have larger fluctuations in

periods with low aggregate productivity, with the ratios in Column (3) ranging from 1.16 to

1.59.29 A similar result holds for the statistics relative to quarterly and yearly growth rates

(columns 4-6 and 7-9, respectively).

Table 4: Standard deviation of simulated variables for different states of productivity

Levels Quarterly Growth Rates Yearly Growth Rates

σp<Median σp>Median
σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Unemployment 0.0947 0.0812 1.18 0.0675 0.0601 1.13 0.1395 0.1201 1.17

Job Finding Rate 0.0291 0.0272 1.16 0.0476 0.0365 1.31 0.0884 0.0697 1.28
Separation Rate 0.0018 0.0014 1.34 0.0528 0.043 1.23 0.0789 0.0677 1.18

Employment Rate 0.0077 0.0049 1.59 0.0055 0.0034 1.62 0.0112 0.007 1.62

Output 0.0185 0.0161 1.16 0.0142 0.0125 1.14 0.0274 0.0238 1.16
Productivity 0.0111 0.0114 0.98 0.0091 0.0093 0.99 0.0166 0.017 0.98

Note. Entries are averages of 1,000 simulations over 1,380 monthly periods. After discarding the first 600
observations in each simulation, the remaining series are aggregated at quarterly frequency and have the same
length as the period 1950:I-2014:IV. σp<(>)Median represents the standard deviation of the variable for the
productivity state below (above) the median.

To investigate the extent to which the dynamic responses of labor market variables are

different across states with high and low aggregate productivity, Figure 6 plots generalized

Impulse Response Functions (IRFs) for the separation rate (top panels), the job finding rate

(middle panels), and the unemployment rate (bottom panels) to a positive productivity shock

equal to one quarterly standard deviation (solid line) together with the 5th-95th percentiles

29By construction, the volatility of productivity does not vary over the cycle.
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(shaded area).30 The left panels report the response of the variables in states in which produc-

tivity is above the 90th percentile of its distribution while the right panels consider an initial

productivity level below the 10th percentile.31

The top panel in Figure 6 shows that the response of the job separation rate is more than

twice as large in the state with low productivity compared to the state with high productivity.

As discussed in Section 4, the mechanism that generates these distinct dynamics is straightfor-

ward. The different responses with respect to the state with aggregate productivity originate

from the effect of shifts in the reservation threshold for individual productivity on the job sep-

aration rate. In the state with high aggregate productivity, the threshold is low and located in

a region of individual productivity distribution with low density. Aggregate shocks that move

the threshold displace a limited number of workers and therefore have a limited effect on the

job separation rate. By contrast, in the state with low aggregate productivity, the threshold

of individual productivity is high and located in a region of the distribution of individual pro-

ductivity with high density. Thus, an identical aggregate productivity shock that moves the

threshold similarly displaces a larger fraction of workers, thereby generating a large shift in the

job separation rate.

The middle panel in Figure 6 shows that the response of the job finding rate is 20 percent

larger in the state with low productivity compared to the state with high productivity. The

reservation productivity, xr, is the important driver of state dependence. For a given contact

probability, p(θt), the proportion of matches turning into jobs is (1−F (xrt+1)). For the mecha-

nism outlined in Section 4, a high value of xr in periods of low aggregate productivity generates

large fluctuations in (1 − F (xrt+1)) in reaction to productivity shocks, leading to overall more

volatility in the job finding rate.32

The bottom panel in Figure 6 shows that the response of the unemployment rate is almost

twice as large in the state with low productivity compared to the state with high productivity.

30Appendix D.4 describes the computational method to derive generalized IRFs.
31In the online appendix we analyze asymmetries in the variables’ responses with respect to the sign of the

shock.
32Figure D.2 in the Appendix shows that the response of the matching probability, p(θt), to the technology

shock is similar across states of the business cycle. Thus, the state dependence of the job finding probability is
produced by the probability of a contact turning into a formed match.
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Figure 6: Generalized IRFs: model with OJS and endogenous separations, alternative calibra-
tion 2.

Note. The solid line represents the mean IRF value in each period. The shaded area represents the 5th and 95th

percentiles of the IRF values. Responses of the variables in periods with high (low) aggregate productivity are
in left (right) panels. Units on the y-axis are percentage points.

In the model, the unemployment rate results from changes in the job separation rate and the

job finding rate. The analysis shows that the state dependence in the job transition rate jointly

generates the large response of the unemployment rate in periods of low aggregate productivity.

Overall, the model generates large state dependence in labor market fluctuations that ex-

plains the larger volatility of the unemployment rate in periods of low aggregate productivity.

The model attributes this reaction to the joint interaction of job creation and job separation.

6 Alternative calibrations and reduced models

In this section we investigate whether state dependence in the baseline model is robust to:

(i) different calibration choices and (ii) alternative structures of the model that exclude OJS

and assume exogenous separations, respectively. Each subsection briefly outlines the calibration
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and presents main results, leaving supplementary material to Appendix E. The exercise points

to the importance of the calibration of the individual productivity shock, σx, and the relevance

of OJS to generate state dependence.33

6.1 Alternative calibration of baseline model

The baseline calibration replicates the absolute volatility of the job separation rate, which

is a targeted moment, but it generates limited volatility in vacancies and the vacancy-to-

unemployment ratio (v/u), an important statistics for labor market fluctuations. As an al-

ternative calibration strategy, we follow the approach in Krause and Lubik (2007) and target

the volatility of job destruction relative to the volatility of employment (i.e., σSR/σe). Over the

sample period 1950-2014 used in the baseline calibration, the ratio is 6.5, which is close to the

value of 7 in Krause and Lubik (2007) for the shorter sample period 1964-2002.34 The value of

σx in the alternative calibration is equal to 0.105, which is approximately 20 percent smaller

than the baseline calibration. The resulting distribution of individual productivity is narrower

and steeper, and movements in the threshold of individual productivity generate strong state

dependence.

Table 5: State-dependent volatility for the model with OJS and endogenous separations, under
the alternative calibration.

Levels Quarterly Growth Rates Yearly Growth Rates

σp<Median σp>Median
σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Unemployment 0.0668 0.0486 1.39 0.0471 0.0341 1.39 0.0974 0.0707 1.39

Job Finding Rate 0.0226 0.0198 1.23 0.036 0.0263 1.37 0.0670 0.0502 1.35

Separation Rate 0.0011 0.0007 1.62 0.0326 0.0194 1.71 0.0490 0.0314 1.59
Employment Rate 0.0054 0.0032 1.70 0.0038 0.0021 1.78 0.0078 0.0045 1.74

Output 0.0167 0.0148 1.13 0.0128 0.0115 1.12 0.0246 0.0218 1.14
Productivity 0.0116 0.0119 0.99 0.0094 0.0096 0.98 0.0172 0.0175 0.99

Note. Entries are averages of 1,000 simulations over 1,380 monthly periods. After discarding the first 600
observations in each simulation, the remaining series are aggregated at quarterly frequency and have the same
length as the period 1950:I-2014:IV. σp<(>)Median represents the standard deviation of the variable for the
productivity state below (above) the median.

Table 5 shows the standard deviations of simulated labor market variables across distinct

33An additional set of robustness checks to the calibration of the model calibration is contained in the online
appendix.

34Tables E.1, E.2, E.3, in Appendix E report the parameters, the targets, the business cycle moments of this
calibration.
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states of aggregate productivity for the alternative calibration. Differences in the standard

deviations of labor market variables across productivity states are larger relative to the baseline

calibration. Figure 7 plots generalized IRFs for the model with the alternative calibration and

shows that both the job separation rate and job finding rate exhibit a large response to the

shock in low-productivity states relative to high-productivity states. These rates have an overall

smaller response of variables in both regimes compared to the baseline calibration. The same

result holds for simulated standard deviations of the unemployment rate and job transition

probabilities (see Table E.3), which are approximately 40 percent smaller relative to those in

the benchmark calibration (see Table 4). Overall, the exercise shows that alternative calibration

strategies involve a tradeoff between the degree of state dependence and the overall magnitude

of the volatility in labor market variables.

Figure 7: Generalized IRFs: model with OJS and endogenous separations, under the alternative
calibration.

Note. The solid line represents the mean IRF value in each period. The shaded area represents the 5th and 95th

percentiles of the IRF values. Responses of the variables in periods with high (low) aggregate productivity are
in left (right) panels.
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6.2 Model without OJS

Abstracting from OJS, we define the match surplus by equations (11) and (12). Targets for

the calibration remain those in the baseline model, described in section 5.1.35 Table 6 shows

standard deviations of simulated labor market variables, and Figure 8 shows generalized IRFs.

Exclusion of OJS decreases the degree of state dependence. The model then generates a low

overall volatility and an empirically implausible, upward-sloped Beveridge Curve (see last row

of Table E.6), consistent with the findings in Fujita and Ramey (2012).

Table 6: State-dependent volatility for the model with endogenous separations.

Levels Quarterly Growth Rates Yearly Growth Rates

σp<Median σp>Median
σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Unemployment 0.0651 0.0618 1.06 0.0464 0.0466 1.00 0.0957 0.0920 1.05

Job Finding Rate 0.0149 0.0146 1.03 0.0213 0.0191 1.12 0.0393 0.0356 1.11

Separation Rate 0.0019 0.0015 1.27 0.0466 0.0458 1.02 0.0712 0.0682 1.05
Employment Rate 0.0046 0.0035 1.32 0.0034 0.0027 1.28 0.0067 0.0052 1.31

Output 0.0150 0.0142 1.06 0.0119 0.0114 1.05 0.0222 0.0212 1.06

Productivity 0.0105 0.0109 0.98 0.0088 0.0090 0.98 0.0157 0.0161 0.98

Note. Entries are averages across 1,000 simulations over 1,380 monthly periods. After discarding the first 600
observations in each simulation, the remaining series are aggregated at quarterly frequency and have the same
length as the period 1950:I-2014:IV.

The pro-cyclicality of OJS is important to generate state dependence. In periods of low

aggregate productivity, a limited mass of workers search on the job, and fewer searching workers

find a new job while being employed. Because workers that search on the job are at the lower

end of the distribution of idiosyncratic productivity, the option of finding a new match serves as

a way to escape endogenous job separation. A fall in OJS activity implies that a larger fraction

of workers are at risk of job separation, which is critical to generate state dependence.

By abstracting from OJS, the calibration of the system requires the distribution of individual

productivity, x, to retain long tails to generate a plausible volatility in the job separation rate.

In such a case, the value for σx that matches the data is equal to 0.30, which is twice as large

as the value in the baseline calibration. The wider and flatter density function reduces the

state dependence generated by movements of the threshold, since the mechanism described in

Section 4 is quantitatively reduced.

35See Appendix E. Parameter values, calibration targets, and cyclical moments are in Tables E.4, E.5, and
E.6, respectively.
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Figure 8: Generalized IRFs for the model without OJS.

Note. The solid line represents the mean IRF value in each period. The shaded area represents the 5th and 95th

percentiles of the IRF values. Responses of the variables in periods with high (low) aggregate productivity are
in left (right) panels.

6.3 Model with exogenous separations

As a final robustness check, we assess the extent to which the DMP model with exogenous

separations generates state-dependent fluctuations. Appendix E presents the details of the

model. To abstract from endogenous job separation, we assume that workers have the same

level of match-specific productivity (i.e., x = 1) and that the unique source of state dependence

stems from the nonlinearity in the firm’s choice with respect to market tightness.

Shimer (2005) shows that the prototype DMP model with exogenous separations fails to

generate large and plausible fluctuations in labor-market variables. In the ensuing debate,

Hagedorn and Manovskii (2008) establish that the issue resolves by calibrating the outside

option of working, b, and the Nash bargaining parameter, φ, to generate a small surplus for the

firm, which produces volatile profits and a large elasticity of job creation.36 In line with these

36See Hornstein et al. (2011) for a critical discussion on the approach and Zanetti (2011b) for a general
extension of the issue in the presence of labor market institutions.
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Table 7: State-dependent volatility for the model with exogenous separations, under the Hage-
dorn and Manovskii (2008) calibration.

Levels Quarterly Growth Rates Yearly Growth Rates

σp<Median σp>Median
σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50
σp<Median σp>Median

σp<50

σp>50

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Unemployment 0.0882 0.0674 1.31 0.0616 0.0489 1.26 0.1316 0.0999 1.32
Job Finding Rate 0.0141 0.0129 1.10 0.0840 0.0604 1.39 0.1486 0.1135 1.32

Employment Rate 0.0074 0.0044 1.69 0.0051 0.0030 1.70 0.0109 0.0063 1.73

Output 0.0181 0.0153 1.18 0.0138 0.0122 1.14 0.0273 0.0231 1.18
Productivity 0.0113 0.0113 1.01 0.0096 0.0096 1.00 0.0173 0.0173 1.01

Note. Entries are averages of 1,000 simulations over 1,380 monthly periods. After discarding the first 600
observations in each simulation, the remaining series are aggregated at quarterly frequency and have the same
length as the period 1950:I-2014:IV.

Figure 9: Generalized IRFs: exogenous separation model with the Hagedorn and Manovskii
(2008) calibration.

Note. The solid line represents the mean IRF value in each period. The shaded area represents the 5th and 95th

percentiles of the IRF values. Responses of variables in periods with high (low) aggregate productivity are in
left (right) panels. For comparison with the other calibrations, the weekly job finding rate is converted into its
monthly equivalent before computing the IRF.

findings, we calibrate this version of the model using the approach in Hagedorn and Manovskii

(2008).37 Table 7 shows that the model replicates accurately state-dependent fluctuations in

the job finding rate and the unemployment rate. The IRFs in Figure 9 show that the 10th

percentile of productivity, the response of the job finding rate is 30 percent larger than at the

90th percentile. These results are in line with those in Petrosky-Nadeau and Zhang (2017), who

show that the calibration in Hagedorn and Manovskii (2008) generates strong nonlinearities,

37See Appendix E.3. Parameter values, calibration targets, and simulated cyclical moments are reported in
Tables E.7, E.8, and E.9, respectively. In the online appendix, we show the results of this model under the
baseline calibration.
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especially during large recessions.

7 State dependence and labor market reforms

This section enriches the model with labor market protection in the form of a layoff tax

levied on the dismissal of established jobs. The analysis investigates the effect of the tax on the

long-run equilibrium of the model and assesses whether a permanent tax removal in states with

low or high aggregate productivity generates substantial differences in transitional dynamics

and welfare.

7.1 Introducing layoff taxes

The model described in Section 3 is enriched with a “wasteful” layoff tax, τ , that the firm

must pay to cover administrative costs and layoff procedures whenever a worker is (endogenously

or exogenously) separated.38 Firms whose workers move to another job with OJS do not incur

the layoff tax. Layoff taxes are not levied on the separation of newly-established matches, and

therefore, the joint value of an employment relationship for new matches (indexed by N) and

continuing matches (indexed by O) is distinct. Appendix F reports the derivation of surplus

functions under the layoff tax.

The total surplus equals the value of establishing a match net of outside options to the

worker and the firm. Thus, the value functions for joint surpluses for new and continuing jobs

are:

SN (at, x) = max[SN,c(at, x), 0], (21)

SO(at, x) = max[SO,c(at, x), 0], (22)

where SN,c(a, x) and SO,c(a, x) represent the total surpluses in case the worker and the firm

establish a new match or continue an existing job relationship, respectively, accounting for the

38See Fella (2007), Ljungqvist (2002), Postel-Vinay and Turon (2014), and Cozzi and Fella (2016) for a
discussion on the role of employment protection measures in matching models.
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optimal choice of OJS. The total surpluses for new and old matches, without and with OJS are:

SN,n(at, x) = atx− b+ βEt
{

(1− s)
[
− τ + (1− λ)SO(at+1, x) + λ

∫ xH

xL

SO(at+1, x
′)dF (x′)

]
− p(θt)φ

∫ xH

xL

SN (at+1, x
′)dF (x′)

}
, (23)

SN,s(at, x) = atx− ks − b+ βEt
{[

1− p(θ)F (xrt+1)
]
(1− s)

[
− τ + (1− λ)SO(at+1, x)

+ λ

∫ xH

xL

SO(at+1, x
′)dF (x′)

]}
, (24)

SO,n(at, x) = SN,n(at, x) + τ, (25)

SO,s(at, x) = SN,c(at, x) + τ. (26)

Equations (23) and (24) show that the surpluses of newly-established job relations (with

or without OJS) are reduced by the expected layoff tax if the job is dismissed in the future.

Equations (25) and (26) show that the surpluses for existing job relations (with or without OJS)

entail an intertemporal tradeoff between the benefit of avoiding the tax if the job is not severed

in the present period t and the cost of having to pay the layoff tax if the worker is dismissed in the

future. Important for our analysis, the difference in the surpluses for newly-hired and existing

workers generates distinct thresholds of individual productivity. The reservation productivity

at which new matches become inefficient is higher than the reservation threshold for existing

workers because firms are not discouraged from discontinuing the newly-formed match at time

t as they would be for incumbent workers. Consequently, the firm retains existing workers with

individual productivity in the range of x ∈ (xr,O(a), xr,N (a)] but does not hire new matches

with individual productivity in the same interval. Within this range of individual productivity,

it is inefficient to pay layoff taxes to dismiss existing workers, but it is efficient to refuse new

matches to which layoff taxes do not apply.

A worker’s decision to search on the job is influenced by the prospects of obtaining a

successful match. The productivity threshold that applies to this expectation, and hence to

the decision to search on the job, is xr,N (a) since employed and unemployed job seekers are

identical to the hiring firm. Additionally, the cutoff level for OJS is the same across new and
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incumbent workers.39 Appendix F outlines the laws of motion of employment in the presence

of layoff taxes.

Figure 10: Thresholds for separation, job creation, and OJS, over match-specific productivity
and aggregate productivity in the baseline model and the model with layoff taxes

Note. The x-axis reports the level of aggregate productivity a. The y-axis reports the level of individual
productivity x. The red lines report the thresholds for the baseline case, where xs is the OJS threshold and xr

is the reservation productivity level for both job separations and formation of new matches. The blue lines
report the thresholds for the model with employment protection with τ = 0.15, where xsτ is the OJS threshold,
xr,Oτ is the reservation productivity level for incumbent workers, and xr,Nτ is the threshold for the formation of
new matches.

We set the value for the layoff tax equal to 15 percent of average monthly productivity

(τ = 0.15), which makes the tax approximately equivalent to 5 percent of average quarterly

wages, as in Llosa et al. (2014). Figure 10 shows how the layoff tax changes the relevant pro-

ductivity thresholds for incumbent workers, xr,Oτ , new jobs, xr,Nτ , and OJS, xS . The reservation

productivity for firing incumbent workers in the presence of the layoff tax (xr,Oτ ) is slightly

lower compared to the case of no layoff tax (xr): for an incumbent match, the tax creates a

small wedge between the surplus in the baseline model and the model with layoff cost. For new

matches, however, the layoff tax increases the reservation threshold xr,Nτ .40 At the same time,

39Given that the tax (and future taxes) enter linearly into both the surplus from searching and not searching,
as seen in equations (23)-(26), the threshold level for OJS xs that satisfies SN,n(at, x) = SN,s(at, x) is the same
as that which satisfies SO,n(at, x) = SO,s(at, x).

40An explanation for why the threshold for incumbent workers only decreases by a small amount, while that
of new workers rises by almost the entire value of the tax, can be given by a steady-state version of the model.
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the threshold for OJS (xst ) decreases. For a given level of market tightness, a firm’s stricter

productivity requirements induce the formation of fewer matches. As a result, the highest level

of match-specific productivity at which workers decide to search for another job also decreases.

For low levels of aggregate productivity, the OJS threshold is sufficiently low to be located

below the threshold for new matches, implying that no new match chooses OJS. Overall, the

levels and slope of the thresholds imply that the tax reduces the mass of OJS workers, and

especially during times of low productivity.

7.2 The long-run effect of layoff taxes

Table 8 compares the long-run values of labor market variables in the version of the model

without (Column 1) and with (Column 2) the layoff tax equivalent to 15 percent of average

monthly productivity (τ = 0.15). The tax increases the long-run unemployment rate by two

percentage points from 6.8 percent to 8.7 percent, as a result of the large drop in the job finding

rate and the broadly constant rate of job separation. The effect of the tax on the long-run value

of the job separation rate is limited. The reason is straightforward. While introducing the tax

slightly decreases the efficiency threshold for continuing jobs and therefore decreases endogenous

separation, it also increases the efficiency threshold for new jobs and therefore discourages OJS.

Overall, OJS decreases from 6.6 percent to 3.4 percent, leaving a greater fraction of workers

subject to job separation. These two opposing forces offset each other, and the job separation

rate effectively remains unchanged.

The tax lowers the job finding rate from 44.5 percent to 32.4 percent. The fall in the job

finding rate originates from the increase in the threshold of efficient matches for new hires,

xr,Nt (a), and the fall in vacancies. The higher productivity threshold for new matches discour-

ages on-the-job search and consequently reduces the total number of job seekers, increasing the

search costs per vacancy filled accrued to firms, which react by decreasing vacancy postings.

Thus, the reduction in OJS amplifies the contractionary effect of the layoff tax on the job

finding rate and generates a large rise in the unemployment rate.

There, the wedge between the surplus functions for new workers in the no-tax and the tax economies is close to
−s̄βτ/(1− (1− s̄)β) = −0.128, using a steady state separation rate, s̄ = 0.03. Meanwhile for incumbent workers,
the wedge is τ − s̄βτ/(1− (1− s̄)β) = 0.0215.

35



Table 8: The long-run effects of a layoff tax

Baseline Layoff tax

τ = 0 τ = 0.15

(1) (2)

Unemployment rate 0.068 0.087
Job finding rate 0.445 0.324

Separation Rate 0.030 0.030

Job-to-job rate 0.032 0.012
On-the-job search 0.066 0.034

Employment Rate 0.932 0.913
Vacancies 0.179 0.158

V/U 2.832 1.919

Productivity 1.000 1.004

Note. The table shows the long-run averages of labor market variables in the baseline model (τ = 0) and in the
alternative model with layoff taxes (τ = 0.15).

The model involves a positive relation between layoff taxes and the unemployment rate in

the long run. There is no established consensus on the effect of layoff taxes on the unemploy-

ment rate.41 While empirical evidence shows that employment protection legislation reduces job

separation and creation, the final effect on unemployment depends on which of the two effects

prevail.42 Similar results hold on the theoretical side where most recently, Baley et al. (2018)

show how even the same model results in different conclusions depending on the calibration of

parameters. Only a limited number of studies considers the impact of employment protection

legislation on OJS and job-to-job transitions. While Boeri (1999) finds descriptive evidence sug-

gesting lower job-to-job transitions for countries with larger employment protection legislation,

more recently Bassanini and Garnero (2013) show that higher employment protection legisla-

tion reduces job-to-job transitions within the same industry in OECD countries. Postel-Vinay

and Turon (2014) develop a model with on-the-job search, minimum wages, and severance pack-

ages that generates a negative relation between layoff taxes and the unemployment rate. The

result originates from the different setup of wage bargaining and the use of severance payments

by incumbent firms that induces workers to accept outside offers. Our version of the DMP

model uses a standard Nash sharing of surplus and layoff taxes that negatively affect job-to-job

transitions by discouraging both the formation of new matches and on-the-job search.

41See Nickell et al. (2005) and Boeri et al. (2015) for extensive reviews of both empirical and theoretical works.
42See studies by Messina and Vallanti (2007), Kugler and Pica (2008), Bassanini and Duval (2009), and

Haltiwanger et al. (2014) for a discussion of the issues.
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7.3 Short-run effects and welfare of layoff tax removal

This section investigates whether the timing of an unexpected, permanent removal of the

layoff tax enacted in alternative states of aggregate productivity is critical for transitional

dynamics and welfare. We assume that the removal of the tax only applies to newly formed

matches from both unemployment and employment so that incumbent workers are protected

from the reform.43 We compare the effect of the reform enacted at a level of labor productivity

below the 5th percentile and above the 95th. Appendix F.2 provides details on the simulation

procedure.

Figure 11 shows transitional paths for the unemployment rate (solid line) that result from

the removal of the layoff tax in the low productivity state (right panel) and the high productiv-

ity state (left panel), together with the 10th-90th interval of the differences across states (shaded

area).44 The dashed line shows the long-run difference between the unemployment rate in the

economy with the tax eliminated in the first period and the unemployment rate in the economy

with the tax always in place.45 In the long run, the tax removal leads to a similar fall in the

average unemployment rate of approximately 2.2 percentage points across states with initially

low and high aggregate productivity since both economies converge to the equilibrium over

the long run. In the first period of the reform, the unemployment rate falls by approximately

one percentage point in both initial states of aggregate productivity. However, in subsequent

periods, the transitional dynamics of the unemployment rate differ significantly. When pro-

ductivity is high, the reform causes the unemployment rate to gradually decrease towards its

long-run equilibrium whereas in the state with low productivity, the decline of unemployment

is sharp, and the change in the unemployment rate remains below its long-run equilibrium for

a protracted number of periods.

To interpret these marked differences, we consider the transitional dynamics of the job

43This assumption, however, is not crucial because, as we show below, the main channel of adjustment is job
creation. The results for the version in which all workers are affected by the reform are available upon request.

44The transition path of unemployment from the outset of the reform at time t is computed as
TP(ut|e0(x), {at}t0) = uRt −uτt , where the superscripts R and τ indicate the reform and tax scenario, respectively,
assuming an initial state e0(x) and a productivity sequence {at}t0.

45The reported long-run difference of -2.3 is slightly different from the value reported in Table 8 since the
value in the table is computed using a set of short simulations equivalent to the 1950-2014 period, as explained
in Appendix D.3. Meanwhile, the dotted line in the figures is the long-run mean difference between the two
economies taken as the average difference after 25 quarters.
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Figure 11: Transition path of the unemployment rate to a permanent elimination of the layoff
tax

Note. The solid blue lines represent the average difference in the unemployment rate (in percentage points) of
the economy where at time 0 the layoff tax was abolished from that of the same economy where the tax persists,
drawn from 2,000 simulations of the model. The shaded grey area represents the 5th-95th percentile interval of
the differences. The dashed red line represents the long-run average difference between the two economies.

finding rate, the job separation rate, the job-to-job transition rate, and vacancies after the tax

removal across states of aggregate productivity, which are reported in Appendix F.3. In both

high- and low-productivity states, the reform fails to provoke a spike in job separations. The

reason is straightforward. While removing the tax raises the individual productivity threshold

and therefore increases endogenous job separation, it also increases OJS, which enables workers

to avoid endogenous separation by moving to a new job. However, the rise in vacancies in

periods of the high-productivity state is more than twice as large, yielding a larger spike in the

job finding rate and job-to-job transitions. At peaks of the business cycle, firms receive greater

incentive to recruit from the reform. As shown in the diagram in Figure 10, the gap between

xr,Nτ and xr is larger for higher values of a. However, since the initial unemployment is higher

in the low-productivity state as a result of the high job separation rate, even a small rise in

the job finding rate yields a large fall in unemployment in the state with low productivity, as

shown in the right entry in Figure 11.

How do these sharp differences in the dynamic responses of labor-market variables influence

welfare across states of aggregate productivity? The tax removal unambiguously increases
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welfare in the long run since firms stop paying the wasteful tax. Resource allocation becomes

efficient because firms terminate the low-productive jobs they had retained to avoid the payment

of the layoff tax, and they recruit high-productivity workers whose hiring was prevented in

anticipation of payment of the tax in future periods.

In the short run, however, the timing of the reform is critical for welfare since the transitional

dynamics of labor market variables are notably different across distinct states of aggregate

productivity.46 To investigate the relevance in the timing of structural reforms, we proxy welfare

with the flow value of the economy that comprises output and the flow value of unemployment

net of hiring costs, OJS costs, and layoff taxes.47 It is straightforward to derive the welfare

gain of the tax removal by subtracting the flow value of the economy with the layoff tax from

the flow value of the economy without the tax in each period:

∆FVt =
(
at

∫ xH

xL

x deRt (x) + buRt − kvRt − ksφRt
)

−
(
at

∫ xH

xL

x deτt (x) + buτt − kvτt − ksφτt − ẼU
τ
t τ
)
, (27)

where the superscript R indicates variables in the economy with tax reform, the superscript

τ indicates variables in the economy with the layoff tax still in place, and ẼU indicates the

endogenous separations. Equation (27) tracks the welfare change of the tax removal during

each period t.

Figure 12 plots equation (27) for the initial 25 quarters across 2,000 simulations and shows

the net welfare gains from the removal of the layoff tax for the state with high- and low-

aggregate productivity (left and right panels, respectively). A tax removal generates a con-

temporaneous welfare loss approximately twice as large in the state with high productivity

compared to the state with low aggregate productivity. When the reform is enacted in the

state with high-aggregate productivity, the welfare loss is equal to a reduction of approximately

2.8 units in the flow value of the economy, compared to the reduction of approximately 1.2 units

46See Millard and Mortensen (1997), Cacciatore and Fiori (2016), Cacciatore et al. (2016), and Poilly and
Wesselbaum (2014) for a welfare analysis on the effect of layoff taxes in search and matching models.

47See Ljungqvist and Sargent (2012) for a similar approach to approximate welfare.
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Figure 12: Transition path of the aggregate flow value to a permanent elimination of the layoff
tax

Note. The solid blue lines represent the average difference in the aggregate flow value of the economy where at
time 0, the layoff tax was abolished from that of the same economy where the tax persists from 2,000
simulations of the model. The shaded grey area represents the 10th-90th percentile interval of the differences.
The dashed red line represents the long-run average difference between the two economies.

in the state with low-aggregate productivity.48 Welfare losses are short lived across different

states of aggregate productivity as they disappear after four quarters once the economy reaches

its long-run equilibrium. Over the long run, the welfare gain from the reform is equivalent to

approximately 0.3 welfare units, as indicated by the dashed red line. We use equation (27)

to compute an overall measure of welfare gain from the tax removal by deriving the present

discounted gain from the tax removal (i.e. the weighted discounted sum of future flow values,∑∞
0 βtE0{∆FVt}). We find that the flow value associated with the implementation of the tax

removal during periods with low productivity is 4.9 percent larger than the value associated

with the same reform enacted in states with high aggregate productivity.

The analysis reveals that state dependence in labor market fluctuations is critical for welfare

and that the tax removal involves sharp welfare losses in initial periods of the reform. Thereafter,

the benefits quickly outweigh the costs. To identify the sources of welfare losses in the initial

periods of the tax removal, Figure 13 documents for the first eight quarters of the transition

the difference in the flow values into its components, namely production plus the value of

48The flow value of welfare is implicitly normalized by marginal utility of consumption, which is equal to 1
since preferences are linear in consumption.
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Figure 13: Transition path of the components of aggregate flow value after a permanent elimi-
nation of the layoff tax

Note. Each line represents the average difference of the variable from the economy where at time 0 the layoff
tax was abolished from that of the same economy where the tax persists. The solid blue lines represent the
average difference in output plus unemployment value, the red dashed line represents the average difference in
total vacancy costs, the dash-dot yellow line represents the average difference in OJS costs, and the dotted
purple line represents the difference in firing cost (a positive value implying a fall in firing costs). All lines are
averages from 2,000 simulations of the model. For clarity, we focus on the first eight quarters of the transition.

unemployment, vacancy costs, OJS costs, and firing costs. Each line represents the average

difference across simulation between the economy where the layoff tax is removed and the

economy where the layoff tax is kept in place. The main difference across high- and low-

productivity initial states lies in the vacancy costs and the OJS costs, which are initially larger

for transitions that start in periods of high productivity. Intuitively, when productivity is high,

labor markets tighten and OJS rises sharply. As both firms’ recruiting efforts and voluntary

job search are costly, the short-run costs of the reform are high despite the immediate fall in

unemployment.

Overall, the analysis shows that tax removal involves important short-run tradeoffs mainly

related to the deadweight losses of search costs that are considerably larger in states with high-

aggregate productivity. The timing of labor market reforms is critical. The tax elimination

in states with low productivity involves lower short-run welfare losses than during states with

high-aggregate productivity. Over the long run, the labor market reform is welfare-enhancing

across states of aggregate productivity.
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8 Conclusion

This paper isolates important state dependence in labor market fluctuations over the busi-

ness cycle. The unemployment rate and its transition rates exhibit a stronger comovement with

labor productivity in periods of low-aggregate productivity. A DMP model with endogenous

job separation and on-the-job search captures this state dependence through the interaction be-

tween the distribution of match-specific productivity and the reservation threshold of firms for

efficient matches, replicating empirical regularities accurately. Our application to layoff costs

establishes critical differences of labor market reforms enacted in distinct states of the economy

for the transitional dynamics of labor market variables and welfare.

The analysis may be extended in several dimensions. In particular, since the DMP frame-

work is a key building block of richer models, it would be relevant to study the interaction of

the DMP asymmetries with frictions from other sides of the economy. To this end, the mecha-

nism generating state dependence may be recast in a comprehensive model that accounts for a

broader range of real and nominal rigidities needed to replicate several business cycle properties

in the data. The more general framework may unveil important interactions between state de-

pendence of labor market dynamics and a broad set of macroeconomic variables. This research

will prove challenging, however, because it requires a non-linear solution to a complex model.

It also would be interesting to use the framework to study the design of optimal labor market

reforms. Future work could extend the analysis to determine the optimal provision of labor

market reforms at different states of productivity. The analysis can be further extended to as-

sess a wide range of labor market institutions (e.g. unemployment benefits and hiring subsidies,

among others) to provide a comprehensive appraisal of the welfare implications of alternative

labor market reforms. These investigations remain outstanding tasks for future research.
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Appendix

A Data appendix

A.1 Data sources

The analysis uses the following time series: real Gross Domestic Product (GDP), average
labor productivity, the unemployment rate, vacancies, the job finding rate, and the separation
rate. Real GDP is the non-farm business output as provided by the Bureau of Labor Statistics
(BLS), while labor productivity is output per worker in the non-farm business sector. Both series
were downloaded from Federal Reserve Bank of St. Louis Database (FRED). Unemployment is
also provided by the BLS via FRED. The monthly job separation and job finding probabilities
are computed following the continuous-time adjustment proposed by Shimer (2012). While
we leave the details to the original paper, the essence of continuous time adjustment is to
estimate the transition probabilities between unemployment and employment as discrete time
probabilities derived from continuous-time hazard rates that are assumed to be constant within
each month. This method controls for the bias of simultaneously estimating two related discrete
probabilities. We used the original series provided on Rober Shimer’s web page from 1950 to
2007, and extend them using the BLS data until 2014. The monthly series are then averaged
over the respective quarters.
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B Robustness checks

Table B.1: Cross-tabulation of low and high states across alternative threshold definitions with
the baseline threshold.

Threshold State Average Labor Productivity

Below

Median

Above

Median

All

HP-Filter 105
Below Median 80% 20% 100%

Above Median 20% 80% 100%

Fernald Measure
Below Median 76% 24% 100%
Above Median 24% 76% 100%

NBER Recessions
Recession 93% 7% 100%

Recovery 41% 59% 100%

Yearly

Growth Rates

Below Median 70% 30% 100%
Above Median 30% 70% 100%

Output Quarterly
Growth Rates

Below Median 69% 31% 100%

Above Median 31% 69% 100%

Log Output
Below Median 67% 33% 100%
Above Median 33% 67% 100%

Quarterly Growth
Rates (4Q-MA)

Below Median 69% 31% 100%

Above Median 31% 69% 100%

Quarterly

Growth Rates

Below Median 60% 40% 100%
Above Median 40% 60% 100%

Note. For each alternative regime definition and for both the low- and high-productivity states, the table
reports the percent of quarters in which ALP (i.e. the baseline regime definition) indicates a low state (i.e.
productivity below median) or a high one (i.e. productivity above median). The alternative definitions are
presented in descending order based on their correlation with ALP, based on Table ??. The alternative
definitions are: ALP using an HP-filter weight of 105, ALP based on the factor-intensity adjusted measure of
Fernald (2014), NBER recession dates, yearly growth rates of productivity (computed as 4-quarter log
differences), quarterly growth rates (computed as log differences) both using a 4-quarter moving average and in
their raw values.
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Table B.2: Robustness of the variables’ standard deviation to different time samples, to an HP-weight of 105, and to using the labor
productivity series by Fernald (2014).

Baseline
Sampel:

Pre Great Recession
Sample:

Great Moderation

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

Levels
Unemployment 0.1511 0.1197 1.26 0.1526 0.1166 1.31 0.0977 0.1018 0.96
Job Finding Rate 0.0397 0.0335 1.19 0.0405 0.0332 1.22 0.0286 0.0308 0.93
Separation Rate 0.0020 0.0013 1.53 0.0020 0.0014 1.49 0.0013 0.0011 1.15
Employment Rate 0.0095 0.0075 1.27 0.0093 0.0069 1.35 0.0059 0.0065 0.91
Output 0.0215 0.0167 1.29 0.0215 0.0162 1.33 0.0144 0.0123 1.16
Productivity 0.0092 0.0071 1.31 0.0094 0.0072 1.30 0.0050 0.0048 1.05

Growth rate
Unemployment 0.0829 0.0401 2.06 0.0833 0.0415 2.01 0.0421 0.0283 1.49
Job Finding Rate 0.0566 0.0444 1.27 0.0537 0.0413 1.30 0.0380 0.0374 1.02
Separation Rate 0.0576 0.0497 1.16 0.0583 0.0511 1.14 0.0444 0.0383 1.16
Employment Rate 0.0051 0.0023 2.15 0.0049 0.0024 2.06 0.0024 0.0019 1.29
Output 0.0153 0.0090 1.71 0.0153 0.0091 1.69 0.0076 0.0055 1.37
Productivity 0.0099 0.0074 1.34 0.0100 0.0075 1.34 0.0063 0.0051 1.24

Filter:
HP weight 105

Threshold:
25th − 75th percentiles

Productivity series:
ALP series by Fernald (2014)

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

p< 25th

percentile
p> 75th

percentile
σ<25
σ>75

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

Level
Unemployment 0.1990 0.1966 1.01 0.1504 0.1118 1.35 0.1407 0.1133 1.24
Job Finding Rate 0.0454 0.0457 0.99 0.0397 0.0349 1.14 0.0375 0.0317 1.18
Separation Rate 0.0022 0.0014 1.51 0.0022 0.0013 1.72 0.0020 0.0013 1.49
Employment Rate 0.0130 0.0119 1.09 0.0099 0.0071 1.39 0.0091 0.0066 1.39
Output 0.0296 0.0266 1.11 0.0209 0.0176 1.19 0.0196 0.0144 1.36
Productivity 0.0134 0.0108 1.24 0.0086 0.0065 1.33 0.0114 0.0088 1.30

Growth rate
Unemployment 0.0849 0.0404 2.10 0.0904 0.0368 2.46 0.0793 0.0527 1.50
Job Finding Rate 0.0585 0.0435 1.35 0.0579 0.0428 1.35 0.0589 0.0445 1.32
Separation Rate 0.0580 0.0493 1.18 0.0605 0.0497 1.22 0.0529 0.0543 0.97
Employment Rate 0.0053 0.0022 2.41 0.0057 0.0024 2.35 0.0051 0.0027 1.85
Output 0.0153 0.0089 1.72 0.0172 0.0099 1.74 0.0142 0.0105 1.35
Productivity 0.0101 0.0078 1.30 0.0104 0.0081 1.28 0.0094 0.0082 1.14

Note. The table reports the standard deviation of labor market variables, both in levels and growth rates, across states of low and high labor productivity for
the baseline case and for a battery of robustness checks. The checks include: considering only the pre-Great Recession and the Great Moderation periods, using
an HP-filter weight of 105 for labor productivity and the other variables in levels, using the 25th and 75th percentiles of productivity as thresholds, and using the
factor-intensity adjusted measure of labor productivity by Fernald (2014). The ratios with a value above 1 are reported in bold font.
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Table B.3: Standard deviation of labor market variables using alternative definitions of low- and high- productivity regimes.

Threshold:
NBER Recessions

Threshold:
Log output

Threshold:
Output Quarterly Growth Rate

Recession Recovery
σRecession
σRecovery

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

Level
Unemployment 0.1733 0.1279 1.36 0.1144 0.0885 1.29 0.1412 0.1294 1.09
Job Finding Rate 0.0427 0.0355 1.20 0.0297 0.0253 1.17 0.0383 0.0350 1.10
Separation Rate 0.0026 0.0013 2.01 0.0019 0.0013 1.43 0.0021 0.0015 1.40
Employment Rate 0.0108 0.0080 1.35 0.0076 0.0048 1.60 0.0090 0.0079 1.13
Output 0.0269 0.0187 1.43 0.0158 0.0109 1.45 0.0230 0.0188 1.22
Productivity 0.0116 0.0097 1.19 0.0131 0.0097 1.36 0.0122 0.0102 1.20

Growth rate
Unemployment 0.0802 0.0428 1.87 0.077 0.059 1.30 0.0750 0.0473 1.59
Job Finding Rate 0.0546 0.0441 1.24 0.055 0.050 1.09 0.0534 0.0474 1.13
Separation Rate 0.0755 0.0470 1.61 0.051 0.055 0.93 0.0551 0.0518 1.06
Employment Rate 0.0048 0.0025 1.87 0.005 0.003 1.68 0.0046 0.0028 1.62
Output 0.0159 0.0101 1.58 0.013 0.011 1.22 0.0134 0.0109 1.23
Productivity 0.0124 0.0083 1.49 0.009 0.008 1.06 0.0096 0.0087 1.10

Threshold:
Yearly Growth Rate of Productivity

Threshold:
Quarterly Growth Rate of

Productivity (4Q-MA)

Threshold:
Quarterly Growth Rate of

Productivity

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

p< 50th

percentile
p> 50th

percentile
σ<50
σ>50

Level
Unemployment 0.1274 0.1428 0.89 0.1278 0.1422 0.90 0.1127 0.1485 0.76
Job Finding Rate 0.0340 0.0390 0.87 0.0339 0.0391 0.87 0.0327 0.0385 0.85
Separation Rate 0.0021 0.0015 1.38 0.0020 0.0015 1.37 0.0020 0.0017 1.21
Employment Rate 0.0084 0.0084 1.00 0.0085 0.0083 1.02 0.0067 0.0095 0.71
Output 0.0218 0.0204 1.07 0.0219 0.0203 1.08 0.0196 0.0225 0.87
Productivity 0.0121 0.0101 1.20 0.0121 0.0102 1.19 0.0129 0.0120 1.08

Growth rate
Unemployment 0.0718 0.0579 1.24 0.0713 0.0581 1.23 0.0796 0.0511 1.56
Job Finding Rate 0.0507 0.0518 0.98 0.0504 0.0522 0.97 0.0536 0.0506 1.06
Separation Rate 0.0485 0.0584 0.83 0.0481 0.0589 0.82 0.0540 0.0527 1.03
Employment Rate 0.0046 0.0031 1.47 0.0046 0.0031 1.46 0.0047 0.0033 1.42
Output 0.0130 0.0115 1.12 0.0130 0.0114 1.14 0.0132 0.0115 1.15
Productivity 0.0093 0.0090 1.03 0.0093 0.0090 1.03 0.0090 0.0093 0.97

Note. The table reports the standard deviations across low and high productivity states using different definitions of the two regimes. The alternative definitions
are: NBER recession dates, yearly growth rates of productivity (computed as 4-quarter log differences), quarterly growth rates (computed as log differences)
both using a 4-quarter moving average and in their raw values. The ratios with a value above 1 are reported in bold font.
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C TVAR: details and additional figures

C.1 Priors

The formulation of priors follows Banbura et al. (2010) and the same prior moments have
been used for the parameters in both regimes. To be precise, it is assumed that the prior
distribution of the VAR parameter vector has a Normal-Wishart conjugate form

b|Σ ∼ N(b0,Σ⊗ Ω0), Σ ∼ IW (v0, S0). (28)

where b is obtained by stacking the columns of the matrix of the autoregressive coefficients B.
The prior moments of b are given by

E[(Bk) i, j] =

{
δi i = j, k = 1
0 otherwise

, V ar[(Bk) i, j] = λσ2
i /σ

2
j ,

and as it is explained by Banbura et al. (2010) they can be constructed using the following
dummy observations

YD =



diag(δ1σ1...δNσN )
λ

0N×(K−1)N

..............
diag (σ1...σN )
..............

01×N

 and XD =


JK⊗diag(σ1...σN )

λ
0N×NK
..............
01×NK

 (29)

where JK = diag (1, 2, ...,K) and diag denotes the diagonal matrix. The prior moments of
(28) are just functions of YD and XD, B0 = YDX

′
D (XDX

′
D)−1, Ω0 = (XDX

′
D)−1, S0 =

(YD −B0XD) (YD −B0XD)′ and v0 = TD − NK. Finally, the hyper-parameter λ controls
the tightness of the prior.

The values of the persistence – δi – and the error standard deviation – σi – parameters of
the AR(1) model are obtained from its OLS estimation (as in Mumtaz and Zanetti (2012) and
Mumtaz and Zanetti (2015)). Sensitivity analysis reveals that the results are robust to different
selections of VAR lags. As we work with a five variables VAR and eight lags, we follow Canova
et al. (2012) and select a value for λ that implies fast lag decay towards zero (λ = 0.25). It is
shown in the next section that the results are robust when “looser” priors are used.

Finally, z∗ is assumed to be normally distributed with zero mean and standard deviation
σz∗ calibrated to deliver an MCMC acceptance rate between 20% and 40%.

C.2 Max Variance VAR Shock Identification Method

Following Uhlig (2004), the benchmark identification scheme employed in this study amounts
to finding the shock that explains most of the variation of the (adjusted for utilisation) labor
productivity (Fernald, 2014) series over the business cycle frequencies. The scheme consists
in finding an orthonormal rotation matrix Q of the orthogonalized shocks that maximizes the
sum of the forecast error variance of labor productivity from horizons 0 to h. The scheme is
applied separately for the observation in each regime. Therefore, for simplicity we drop the
regime specific notation i = 1, 2 in the following description. For a regime-specific VAR model,
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the conventional moving-average (MA) notation is

Zt =
∞∑
j=0

B̃jvt−j ,

where vt’s are reduced-form shocks, B̃0 = IN , and B̃j =
∑j

s=0
˜Bs−jBj (with Bj being the

reduced-form coefficients, such that Bj = 0 for j > K. Using the MA representation, the
forecast error variance at horizon h is

Σh =

h−1∑
j=0

B̃jAA
′B̃′j

where Σv = AA′ is the variance-covariance matrix of reduced form shocks, and A is a
lower-triangular matrix obtained through a Choleski decomposition. Assume (without loss of
generality) that labor productivity is the first series in the VAR and that the shock driving
labor productivity between 0 and 40 quarters is ordered first. In this case the identification
is achieved by finding the first column of matrix Q that solves the following maximisation
problem:

arg max
Q1

e′1

 H∑
h=0

h−1∑
j=0

B̃jA Q1 Q
′
1A
′B̃′j

 e1

such that Q1Q
′
1 = 1 and e1 is a N -by-1 vector with 1 in the first entry and 0 in all the others.

As shown by Uhlig (2004), identification of the productivity shock only requires finding the
first column of Q (i.e. Q1). Moreover, the maximization can be re-written as an eigenvalue
eigenvector problem and a solution can be easily obtained. The identification of the productivity
shock under this scheme requires no further restrictions.

C.3 Generalized Impulse Response Functions

The generalized impulse responses presented in below and in Section ?? are calculated using
parallel computing technology (MATLAB Distributed Computing Server/Parallel Computing
Toolbox on 32 cores). Similar to Koop et al. (1996), the exact simulation steps are as follows:

1. We draw 1 × 48 structural shocks ωt from the standard normal distribution (where t =
1, .., 40)

2. We simulate the model using the shocks from step 1, we denote the simulated data by yt

3. We simulate the model using again from step 1 but now we increase the value of the
structural shock of interest in period 1 by an amount x, namely

ω̃j,1 = ωj,1 + x (30)

where x = 1,−1, 2 and −2. We denote the data obtained from this simulation by ỹt

4. Steps 1 to 3 are repeated histories Th (all starting points in the data)
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5. The GIRF is calculated as follows

GIRF =
1

Th

Th∑
i=1

(
ỹit − yit

)
(31)

Steps 1-5 are implemented for all posterior draws.
In the regime-specific IRFs, the response of the economy does not take into account:

• the current state of the economy

• the probability that the economy might switch to a different regime

• the size and sign of the shock
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C.4 Additional figures from the TVAR

Figure C.1: Labor productivity and regimes based on the median of the posterior of the thresh-
old.

Note. The blue line plots the HP-filtered series of log labor productivity. The red line, switching from 0 to -1
represents the current regime as identified by the median of the threshold’s posterior distribution.

Figure C.2: Historical decomposition of fluctuations explained by productivity shocks from the
TVAR
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Figure C.3: Forecast Error Variance Decomposition from the TVAR

Note. The blue line reports the median fraction of the forecast error variance each variable that is explained by the identified productivity shocks. The shaded
area comprises the 16th-84th percentile range. In the second row, the red line reports the fraction from the low-productivity regime for comparison.
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D Model: additional information

D.1 Uniqueness of productivity threshold xr(at)

Assuimng the threshold for OJS xs(a) lies above the threshold xr(a), and setting Ss(a, z) =
0, we can rearrange (13) into

b+ ks = atx
r
t + βEt

{
(1− s)

(
1− p(θt)F (xrt+1)

)(
(1− λ)S(at+1, x)

+ λ

∫ xH

xL

S(at+1, x
′)dF (x′)

)}
The first term on the RHS is continuous, strictly increasing, and bounded below in x over

the support [xL, xH ]. For a given θt, the term
(

1−p(θt)(1−F (xrt+1))
)

is continuous and strictly

increasing in x. By the properties of S(a, x), the second term on the RHS is bounded below
by 0 and is continuous and weakly increasing in x. Therefore, the RHS is bounded below by
0, strictly increasing and continuous in x. These conditions are sufficient for the uniqueness of
the value xr(at). Furthermore, as the LHS of the equation is constant, and S(a, x) is increasing
in a, then xr(a) must be decreasing in a.

The proof easily extends to the two cutoffs in the model with layoff taxes, as the layoff tax
merely imply adding the tax terms to the LHS.

D.2 Job finding rate and asymmetry with respect to the state of the econ-
omy: a graphic example

Figure D.1: Illustrative diagram of the mechanism driving asymmetries with respect to state
of the economy in the job finding rate.

A B

→ →

xr0 x
r
1 x̃

r
0 x̃

r
1

x

F ′(x)

Figure D.1 shows the effect of a movement in the individual productivity threshold on the
p.d.f. for new workers F ′(x) at different levels of productivity. The figure shows that the
mass of jobs sensitive to movements in the individual productivity threshold depends on the
location in the support of the distribution of individual productivity shocks. The closer the
productivity threshold is to the mode of the density function, the larger the increase in the mass
of non-formed matches generated by a rise in the reservation threshold. For this reason, the
mass of new matches affected by movements in the reservation threshold are larger when the
threshold is already high (i.e. when productivity is low). The figure shows that for the same
increase in the reservation threshold from xr0 to xr1 and from x̃r0 to x̃r1, respectively, the increase
in the cumulative density function is lower when the threshold is low (shaded area A) compared
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to when it is high (shaded area B). Thus, the effect of a shock on the mass of new matches
exposed to movements in the threshold is different across different levels of productivity. Note
that this mechanism holds to the extent that xr(a) lies in the region of the domain of x where
F ′′(x) > 0. In such cases, changes in the individual productivity threshold affect a larger
proportion of workers when the equilibrium individual productivity threshold is higher.

D.3 Solution of the model and targeted moments

We solve the model nonlinearly using an iterative procedure. To generate an accurate
solution, we set the number of grid points of the state space to 45 for the discretized AR(1)
process at, following the approach described in Tauchen (1986), and 800 for the individual
productivity x. The iteration starts with a guess for the policy function of the market tightness
θ(0)(a). Using the guess, we compute the match surplus for all values of x and a and derive
the individual productivity threshold xr(a) and the OJS threshold xs(a). Using these results,
θ(1)(a) is computed through the free entry condition and used again to compute the surplus.
The process is repeated until the norm of ||θ(0)(x)− θ(1)(x)|| is below a chosen critical value.49

Using the result from Pissarides (2000), under a linear production function, hiring and layoff
decisions do not depend on the aggregate level of employment or on the distribution of individual
productivity. Hence, the only relevant state variable for the policy function is the aggregate
productivity factor.

To obtain business cycle statistics, we run 1,000 simulations of the model. Each simulation
comprises 1,380 monthly periods. After discarding the first 600 periods, we take quarterly
averages of all the simulated series to create a time series of the same length as the data. For
each simulation we compute the relevant business cycle moments after taking logs and HP-
filtering the series. The simulated business cycle statistics are the average of each moment
across the simulations.

Table D.1: Model targets

Target Model

Job finding rate - mean 0.45 0.442

Separation rate - mean 0.03 0.031
Separation rate - standard deviation 0.055 0.055

Separation rate autocorrelation 0.63 0.647

Job-to-job rate - mean 0.032 0.032
Productivity - mean 1 1.00
Productivity - standard deviation 0.013 0.013
Productivity - autocorrelation 0.757 0.769

Note. The moments are computed as the means of 1,000 simulations of 1380 monthly periods. After discarding
the first 600 observations in each simulation, the remaining series are aggregated at quarterly frequency and
have the same length as the period 1950:I-2014:IV.

D.4 Computation of Generalized IRFs for the model

We resort to numerical simulations of the model to produce the response of the variables
at different points in the state space. To implement the computation, it is critical to establish
the starting points for the IRFs, which we describe below together with the procedure used to
compute the IRFs.

49The value we use is 10−8.
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Figure D.2: Generalized IRFs for the job contact probability p(θ)

Note. The solid line represents the mean IRF value in each period. The shaded area represents the 5th and 95th

percentiles of the IRF values. Responses of the variables in periods with high (low) aggregate productivity are
in left (right) panels. Units on the y-axis are percentage points.

After obtaining the firm’s policy functions for job separation and job finding rates, we
simulate the model for 10,000 monthly periods by generating a random sequence of the Markov
process for productivity and then computing the relevant policy variables and state variables.50

We then obtain the stationary distribution of labor productivity and compute the 10th and 90th

percentiles. We split the simulated time series into two samples. The first sample includes all
of the periods in which productivity is equal to 10th percentile: this is the “bad-times” sample.
The second sample includes all period in which productivity is equal to the 90th percentile: this
is the “good-times” sample. For each observation in a given sample, we collect the following
variables: ut, at, et(x) and et−1(x). We compute four IRFs as combinations of the following
conditions: productivity is either “high” or “low”, and the economy is hit by either a positive
or a negative one-standard deviation productivity shock.

Each IRF is obtained through a series of 1,000 simulations. As a starting point for each
simulation, we draw a random observation from the relevant sample (either “bad” or “good
”) with replacement: {u0, a0, e0(x), e−1(x)} . We then simulate a continuous Markov path
of productivity from the preset starting value a0 to aT , where T = 90 months. We compute
corresponding values of {ut, et(x), srt, jfrt, jjrt}Tt=0, where srt is the separations rate, jfrt the
job finding rate, and jjrt is the job-to-job transition rate. We compute the “alternative” history
in which the path of productivity is initially hit by a further positive or negative shock in the
initial period: i.e. {ãt}Tt=0 such that ã0 = a0 + σ or ã0 = a0 − σ. The corresponding variables

under the alternative aggregate productivity path are {ũt, ˜et(x), s̃rt, ˜jfrt, ˜jjrt}Tt=0. Because the
value of ãt does not fall on one of the notes of the discretized grid, we compute the paths of all
variables using a linear interpolation of the polciy functions. After taking quarterly averages, the
IRF for a given variable is computed as the difference between the values under the alternative
and the baseline history: e.g. duq = ũq−uq for the unemployment response, where q represents
a one-quarter period. The 10th, 50th, and 90th percentile IRFs are calculated as the relevant
percentiles of dut (or any other variable) across all simulations at each t = 0, T .51
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D.5 Generalized IRFs for the job contact probability

E Details of alternative calibration and alternative models

E.1 Details and additional results of alternative calibration of baseline model

Table E.1: Parameters for the baseline model under the alternative calibration.

Parameter Description Value

κs OJS cost 0.113

γ Matching function efficiency paramete 0.415
s Exogenous job separation rate 0.028

λ Arrival rate of individual productivity shock 0.045

µx Mean of log individual productivity shock -0.055
σx Standard deviation of individual productivity shock 0.105

Table E.2: Targets for the model with OJS and endogenous separations, under the alternative
calibration.

Target Model

Job Finding Rate - mean 0.45 0.45

Separation Rate - mean 0.03 0.03

σSR/σE 6.5 6.34
Separation rate - autocorrelation 0.63 0.649

Job-to-Job Rate - mean 0.032 0.031

Productivity - mean 1 1

Table E.3: Long run means and standard deviations for the model with OJS and endogenous
separations, under the alternative calibration.

Data p U JFR SR V V/U Y E

mean Xt 0.9994 0.0651 0.4518 0.0301 0.1735 2.789 0.9347 0.9342

σX 0.014 0.0638 0.0444 0.0293 0.0468 0.1052 0.0183 0.0046
corr(pt,Xt) 1 -0.9469 0.968 -0.9153 0.9156 0.9804 0.9948 0.915

E.2 Details and additional results for the model without OJS

Table E.4: Parameters for the model with endogenous separation and no OJS.

Parameter Description Value

γ Matching function efficiency paramete 0.42
s Exogenous job separation rate 0

λ Arrival rate of individual productivity shock 0.36
xH Upper bound of individual productivity shocks 1.9
µx Mean of log individual productivity shock -0.08

σx Standard deviation of individual productivity shock 0.3

50We start with an initial 200 observations that are then discarded.
51It is important to note that the plotted IRFs therefore do not represent a specific and unique response, but

simply the percentiles of the distribution of responses in period t.
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Table E.5: Targets for the model with endogenous separations.

Target Model

Job Finding Rate - mean 0.45 0.47

Separation Rate - mean 0.03 0.03

Separation Rate - standard deviation 0.055 0.054
Separation Rate - autocorrelation 0.63 0.637

Productivity - mean 1 0.988

Table E.6: Long run means and standard deviations for the model with endogenous separations.

Data p U JFR SR V V/U Y E

mean Xt 1.001 0.062 0.471 0.030 0.091 1.496 0.939 0.937

σX 0.013 0.072 0.029 0.054 0.025 0.050 0.017 0.0047
corr(pt,Xt) 1 -0.9707 0.963 -0.9538 -0.791 0.997 0.9966 0.9539

E.3 Details and additional results for the model with exogenous separations

The DMP model with exogenous separations is defined by the surplus function, S(at) which
only has aggregate productivity as an argument:

S(at) = at − b+ βE
{

(1− s− p(θt))S(at+1)
}
.

The free entry condition becomes k = q(θt)β(1− φ)E
{
S(at+1)

}
.

Hagedorn and Manovskii (2008) calibrate the flow value of unemployment b and the worker’s
bargaining power φ (hence departing from the Hosios condition) to match the mean ratio
of wages to productivity and the elasticity of wages with respect to productivity. Based on
Hornstein et al. (2011), these values are 0.97 and 0.5, respectively. This strategy is meant to
solve the so called “Shimer puzzle” of low volatility in the job finding rate. A high value of
b, combined with a low bargaining power for workers, implies that firms derive very small but
highly volatile profits from the employment relationship and are therefore highly sensitive to
fluctuations in aggregate productivity.

Table E.7: Parameters for the model with exogenous separation, with the Hagedorn and
Manovskii (2008) calibration.

Parameter Description Value

β Discount factor 0.9991

κ Vacancy cost 0.17

b Flow value of unemployment 0.93
η Elasticity of matching with respect to vacancies 0.5

γ Matching function efficiency paramete 0.083

φ Worker’s bargaining power 0.062
s Exogenous job separation rate 0.0094

ρ Persistence parameter of aggregate productivity 0.9895

σ Standard deviation of aggregate productivity shock 0.0034
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Table E.8: Targets for the model with exogenous separations, with the Hagedorn and Manovskii
(2008) calibration.

Target Model

Job Finding Rate - mean 0.139 0.138
Separation Rate - mean 0.0094 0.0094

εw,p 0.5 0.5
Mean wage/productivity 0.97 0.968

Table E.9: Long run means and standard deviations for the model with exogenous separations,
with the Hagedorn and Manovskii (2008) calibration.

Data p U JFR SR E V V/U Y

mean Xt 0.9994 0.0671 0.1382 0.0094 0.1781 2.8666 0.9326 0.9328
σX 0.014 0.0936 0.1073 0 0.1318 0.2141 0.0205 0.0071

corr(pt,Xt) 1 -0.9217 0.9783 0 0.9397 0.9809 0.9868 0.883

F Model with layoff taxes: additional details

F.1 Derivations

The value of new and old matches are distinct and defined as

MN (at, x) = max[M c,s(at, x),M c,n(at, x), U(at) + V (at)], (32)

MO(at, x) = max[M c,s(at, x),M c,n(at, x), U(at) + V (at)− τ ], (33)

where MN (at, x) and MO(at, x) denote the joint value for new and existing workers, respec-
tively, which account for on-the-job searchers. M c,s(at, x) and M c,n(at, x) are the joint values
for continuing the job relationship with or without OJS, respectively, and are defined as:

M c,n(at, x) = atx+ βEt
{
U(at+1) + V (at+1)

+ (1− s)
[
− τ + (1− λ)SO(at, x) + λ

∫ xH

xL

SO(at+1, x
′)dF (x′)

]}
, (34)

M c,s(at, x) = atx− ks + βEt
{
U(at+1) + V (at+1)

+
(

1− p(θ)F (xrt+1)
)

(1− s)
[
− τ + (1− λ)S(at+1, x)

+ λ

∫ xH

xL

SO(at+1, x
′)dF (x′)

]
+ p(θ)φ

∫ xH

x(at+1)
SO(at+1, x

′)dF (x′)
}
. (35)

The surplus functions directly follow from the above equations as in the baseline model.
The measure of employed workers with individual productivity below x has the following
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law of motion. For those workers whose individual productivity is in the OJS interval (xr,Ot , xst ]:

et+1(x) = p(θt)(1− et(xH))(F (x)− F (xr,Nt+1)) + p(θt)(F (x)− F (xr,Nt+1))et(x
s
t )

+ (1− s)
[
λ(F (x)− F (xr,Ot+1))

(
et(xH)− p(θt)F (xr,Nt+1)et(x

s
t )
)

+ (1− λ)
(
et(x)− et(xr,Ot+1)

)(
1− p(θt)F (xr,Nt+1)

)]
,

where F (x) = 1− F (x). For the non-searching workers, with x > xst :

et+1(x) = p(θt)(1− et(xH))(F (x)− F (xr,Nt+1)) + p(θt)(F (x)− F (xr,Nt+1))et(x
s
t )

+ (1− s)
[
λ(F (x)− F (xr,Ot+1))

(
et(xH)− p(θt)F (xr,Nt+1)et(x

s
t )
)

+ (1− λ)
(
et(x)− et(xst ) + (1− p(θt)F (xr,Nt+1))(et(x

s
t )− et(x

r,O
t+1))

)]
.

F.2 Layoff tax removal: additional details

Incumbent workers remain covered by firing costs for endogenous separations. For simplic-
ity, we assume that incumbent workers who search on the job and are covered by the layoff tax
can only transition to new jobs that are not covered by the tax.52

As the tax does not apply to new workers, the previous distinction between new and old
workers turns into a distinction between workers hired pre- and post-reform. Once the reform
is implemented, let the superscript R denote workers hired in the post-reform period, who are
not covered by the tax, and the superscript τ indicate workers who are still covered by the tax.

Sτ,n(at, x) = atx− b+ βEt
{

(1− s)
[
− τ + (1− λ)Sτ (at+1, x) + λ

∫ xH

xL

Sτ (at+1, x
′)dF (x′)

]
− p(θt)φ

∫ xH

xL

SR(at+1, x
′)dF (x′)

}
, (36)

Sτ,s(at, x) = atx− ks − b+ βEt
{[

1− p(θ)(1− F (xR,rt+1))
]
(1− s)

[
− τ + (1− λ)Sτ (at+1, x)

+ λ

∫ xH

xL

Sτ (at+1, x
′)dF (x′)

]}
, (37)

SR,n(at, x) = atx− b+ βEt
{

(1− s)
[
(1− λ)SR(at+1, x) + λ

∫ xH

xL

SR(at+1, x
′)dF (x′)

]
− p(θt)φ

∫ xH

xL

SR(at+1, x
′)dF (x′)

}
, (38)

52The case in which “protected” OJS workers can search for “protected” jobs is complicated by the fact that
firms would have to take into account the share of searching workers who are “protected” and would have a
separate bargaining process, involving distinct reservation levels.
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SR,s(at, x) = atx− ks − b+ βEt
{[

1− p(θ)(1− F (xR,rt+1))
]
(1− s)

[
(1− λ)SR(at+1, x)

+ λ

∫ xH

xL

SR(at+1, x
′)dF (x′)

]}
, (39)

Note that OJS workers of both types only accept jobs that are above the reservation level of
non-protected matches xR,r. Also, Sτ,n involves a term with respect to SR,n within its continu-
ation value. Meanwhile, the post-reform surplus are essentially those of the baseline no-tax case.

The free-entry condition is based on the expected surplus of matches that are not covered
by employment protection.

We use a long simulation of the model economy with the tax in place to obtain a distribution
of state variables {et−1(x), at} when labor productivity is at the 10th and 90th percentiles,
representing the trough and peak of the productivity cycle. From these distributions we draw
(with replacement) a sample of 2,000 initial starting points. For each starting point we simulate
the ensuing path of aggregate productivity through a random sequence of exogenous innovations
for 25 quarters (75 months). For each sampled technology series we then compute the path of
the economy under two scenarios. In the first scenario there are no changes to the economy, and
the tax is expected to remain in place forever. In the second scenario there is an unannounced
permanent elimination of the tax in period 0. Specifically, in the first case the path of the
economy is computed using the firms’ policy function for the model with tax, while in the
second case the policy function used from period 0 onward is the solution for the baseline
model without the tax. This alternative scenario is interpreted as the “structural reform” case.
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F.3 Transition path of labor market variables

Figure F.1: Transition path of the separation rate, job finding rate, and job-to-job rate to a permanent elimination of the layoff tax.

(a) Separation rate (b) Job finding rate

(c) Job-to-job rate (d) Vacancies

Note. The solid blue lines represent the average difference in the respective variable for the economy where at time 0 the layoff tax was abolished from that of
the same economy where the tax persists from 2,000 simulations of the model. The shaded grey area represents the 10th-90th percentile interval of the
differences. The dashed red line represents the long-run average difference between the two economies.
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