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Abstract

The level of GDP, its sector composition and the carbon intensity of individual sectors to-
gether determine a country’s emissions. To evaluate the contribution of changes in each
determinant, I construct counterfactual emissions scenarios in a sample consisting of 34 sec-
tors in 37 countries over 1995-2009. I compare these scenarios quantitatively using a novel
metric, namely the relative cumulative emissions. I find that the composition of output and
the carbon intensity of sectors individually or jointly constrained emissions in a large majority
of countries. This motivates an analysis of high- and low-carbon intensity sectors, denoted
HCI and LCI, where emissions and value-added tend to be concentrated, respectively. I
document the cross-country variation in HCI sectors’ carbon intensity and show it declines
over time largely due to improvements in developing countries. HCI sectors tend to account
for a smaller share of employment; be more capital intensive; and employ a workforce with a
lower average skill level. Employment declined in HCI sectors and increased in LCI sectors
with its composition shifting towards high-skilled workers in both. Capital intensity growth
was faster but multifactor productivity growth was slower in HCI sectors.

Keywords: sector-level analysis; index decomposition of carbon emissions; carbon intensity and
primary inputs; carbon intensity and productivity; climate policy
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1 Introduction

Reductions in carbon emissions are essential to slow down climate change. In an economy consisting
of many sectors which differ in carbon intensity, i.e. the amount of carbon emitted per unit of
value generated, these reductions can come from improvements in sectors’ carbon intensity, the
intensity channel, from a reallocation of production away from relatively carbon-intensive sectors,
the structure channel, or from reductions in the level of GDP, the activity channel. The paper uses
data from 34 sectors in 37 countries over 1995-2009 to provide empirical evidence on the historical
importance of these channels and on the economic characteristics of the sectors which are at the
tails of the carbon intensity distribution. The results are summarised in four descriptive stylised
facts. Such facts are crucial for building a theory consistent with the real world which in turn
provides the basis for designing effective climate policies.

I find that the observed changes in carbon intensity and the shifting composition of economic
activity constrained emissions in 25 of the 37 countries in the sample. Conversely, in the absence
of the changes in GDP, emissions would have been lower in all countries (fact 1). A key contribution
is the systematic evaluation of the quantitative importance of intensity and structure channels using
a novel metric, namely the relative cumulative emissions associated with a given counterfactual
emissions scenario.

Using this metric the paper shows that in most countries, including the USA, both intensity
and structure channels contribute to constraining emissions. However, there are examples, most
prominently China and Russia, where they operate in opposite directions. In particular, emissions
in China would have been lower absent changes in the composition of GDP, but higher absent
changes in the carbon intensity of sectors. In the case of Russia, the opposite result obtains,
namely changes in the structure of the economy restrained emissions while changes in the carbon
intensity of sectors increased them.

The dataset also allows a closer look at those sectors in the tails of the carbon intensity distribution,
hereafter high-carbon intensity (HCI) and low-carbon intensity (LCI) sectors. I propose a rule to
construct country-specific as well as global HCI and LCI sets, and populate them. I document the
cross-country variation that exists in carbon intensity of important HCI sectors which typically
account for a large share of a country’s emissions. I show that carbon intensity declines over time
primarily due to improvements in developing countries (fact 2). I find that HCI sectors tend to
account for a smaller share of employment, be more capital intensive and employ workers with
lower average skill level than LCI sectors (fact 3).

Adopting a longer term perspective, I show that employment and hours worked declined in HCI
sectors and increased in LCI sectors with its composition shifting towards high-skilled workers in
both. Capital intensity growth was faster but multifactor productivity growth was slower in HCI
sectors (fact 4). Using the developing and advanced country subsamples, I find that the pace of
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change was typically greater in the former, especially in the LCI sectors. Put differently, the LCI
sectors, particularly in developing countries, are among the most dynamic sectors of the economy.

Voigt et al. (2014), Schymura & Voigt (2014) and Di Cosmo & Hyland (2015) are recent studies
which use the same dataset with a similar motivation.1 The focus of Voigt et al. (2014) is energy
intensity changes across countries and sectors using multiplicative index decomposition analysis
(IDA). The authors identify substantial heterogeneity across sectors within a country and across
countries within a sector, and show that the latter is greater. Using an approach that relies on
energy use, rather than cumulative emissions which is behind the current paper’s fact 1, Voigt
et al. (2014) also find that changes in the composition of GDP and the energy intensity of sectors
were important in driving aggregate intensity changes.2

Schymura & Voigt (2014) focus on carbon intensity and use a more detailed decomposition which
also accounts for changes in emissions factors and fuel mix. They confirm that the main conclusions
of Voigt et al. (2014) remain valid for carbon intensity. Di Cosmo & Hyland (2015) do not undertake
a decomposition analysis but compare the carbon intensity of sectors regulated under the European
Union’s Emissions Trading System (EU-ETS) to those sectors not covered by the EU-ETS both
in the EU and in China. Based on evidence from two years, i.e. 2005 and 2009, they argue the
EU-ETS may have played a role in reducing emissions intensity.

Combining sector-level data from different sources Mulder & de Groot (2012) study the evolution
of energy intensity in OECD countries using IDA and convergence analysis. The authors’ IDA
assigns an increasingly important role to the structure channel, while their convergence analysis
concludes that after 1995 the cross-country variation in energy intensity levels has declined.

Against this backdrop, the current paper takes advantage of the WIOD database to focus on
emissions intensity, much like Schymura & Voigt (2014). In addition, it proposes a new metric,
the relative cumulative emissions, to compare structure, intensity and activity channels over time,
extending the results in Voigt et al. (2014), Schymura & Voigt (2014) and Mulder & de Groot
(2012). Moreover, it provides a method to identify high and low carbon intensity sectors. Finally,
it makes an entirely new contribution to the literature by describing the economic characteristics
of these sectors as well as their evolution over time in advanced and developing countries.

The rest of the paper is organised as follows. I describe the dataset in more detail in the next
section. Section 3 presents the results of the IDA and introduces the metric for comparing them.
In section 4, I propose a rule for defining HCI and LCI sectors, and review their key economic
characteristics. Section 5 provides a brief discussion of the policy implications of these findings.
Section 6 concludes. All numbered tables and figures can be found at the end.

1For the diverse literature using this database, see http://www.wiod.org/published
2Earlier papers including Miketa (2001) and Miketa & Mulder (2005) focus on the energy intensities of man-

ufacturing sectors in advanced and developing countries using samples which just precede the current paper. See
Mulder & de Groot (2012) for a succinct overview.
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2 Data

The paper uses the Socioeconomic and Environmental Accounts of the World Input Output
database (release 2013) described in Timmer et al. (2015) and Genty et al. (2012) respectively.3

Data are available for the 35 sectors described in Table 1. The four columns in the table pro-
vide the intuitive sector code this paper uses, the code from the underlying WIOD database, the
description of sectors and their corresponding NACE codes. For example, the sector AGR+ cor-
responds to AtB in WIOD which combines data from sectors with NACE codes 01, 02 and 05,
namely Agriculture, Hunting, Forestry and Fishing. The sector TOT is the sum for all 35 sectors,
i.e. the entire economy. It includes the sector "Private Households with Employed Persons" but
this sector is excluded from the analysis below because it is available for only a few countries and,
where available, tiny compared to the rest of the economy.

Table 2 lists the data in the Socioeconomic Accounts. Gross output (GO) and all its components
(II, VA, COMP, etc.) are typically available for all sectors and cover 1995-2009. Labour input to
production is provided as number of workers as well as number of hours. Moreover, hours worked
are subdivided into hours worked by high-, medium- and low-skilled workers based on the education
level of workers as described in Erumban et al. (2012). Real fixed capital stock (K_GFCF) data
for 2008-9 are missing for several countries including the UK.

All values are expressed in nominal national currency units (ncu) in the underlying data. To allow
comparison over time, the analysis in section 3 uses sector-specific price indexes to convert data
expressed in nominal ncu to constant ncu. To allow comparison across countries, section 4 converts
all variables in constant ncu units to constant 1995 US dollars (us$ ). The exchange rates used are
those used in WIOD database in constructing its world input-output tables. The key data from
Environmental Accounts are the total carbon emissions (CO2) measured in kilotons.

There are 37 countries in the sample including most EU member states, several non-EU OECD
countries and key emerging markets as indicated in Table 3.4 The three smallest emitters of
carbon in the WIOD database, namely Luxembourg, Malta and Cyprus, are excluded because
their data are patchy, especially in sectors with high carbon intensity. Below I often distinguish
between advanced and developing countries which are sorted into these groups based on the World
Bank income group classification as it existed in 1995. This implies there are 20 advanced and 17
developing countries in the sample.

3The data can be downloaded from http://www.wiod.org/release13.
4Tables and Figures below identify countries by their ISO 3166-1 alpha-3 code.
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3 Sector-level carbon intensity and composition of GDP

Carbon intensity of production is defined as

cijit =
ejit
vajit

where ejit is carbon emissions measured in kilotons and vajit is value-added measured in constant
national currency units in country j, sector i and year t. Given this definition country j’s aggregate
emissions can be written as

Ejt =
∑
i

[
cijit ×

vajit
Yjt
× Yjt

]
=
∑
i

[cijit × sjit × Yjt]

where Yjt =
∑

i vajit is the sum of value-added across sectors (i.e. the country’s GDP) and sjit is
sector i’s share in Yjt. I use index decomposition analysis (IDA) to compute the contribution of
changes in each component to changes in observed aggregate emissions. IDA is a simple, flexible
and popular tool often used to describe the relative contribution of changes in the components of
an aggregate variable to that variable’s evolution over time.5

Dropping the country subscript for brevity and letting ∆Et = Et − Et−1, I have

∆Et = ∆Eint,t + ∆Estr,t + ∆Eact,t

where subscripts int, str and act identify the contribution of intensity, structure and activity
changes. I adopt the additive log-mean divisia index (LMDI) method to calculate each component.
The desirable properties of this decomposition method are well-established and described in Ang
(2004). Its implementation is straightforward so I omit the formulae here and refer the reader to
Ang (2005) for a clear exposition.

The output of the LMDI in the current sample is {∆Eint,t,∆Estr,t,∆Eact,t} for each country over
1996-2009 and can be used to construct counterfactual emissions scenarios using different assump-
tions about the evolution of the components. This section evaluates how different a country’s
emissions would look under these scenarios.

In particular, I close one of these channels at a time to isolate its effect. For example, in the no
intensity change (NIC) scenario, I set ∆Eint,t = 0 in each t but allow the changes in the structure
of the economy (i.e. structure channel) and in the level of economic activity (i.e. activity channel)

5In recent years, the aggregate variable of choice has often been greenhouse gas emissions. The surveys by
Schipper et al. (2001) and more recently Xu & Ang (2013) provides a rich overview of the studies using this method
which focus on carbon emissions. Hoekstra & van den Bergh (2003) compares the pros and cons of IDA relative to
its main alternative, namely structural decomposition analysis.
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to contribute to ENIC
t as observed in the data. The following table provides the formulas for

calculating aggregate emissions under alternative scenarios.

Counterfactual Scenario Formula for computing emissions

No Intensity Change (NIC) ENIC
t = E0 +

∑t
s=1 [∆Estr,s + ∆Eact,s]

No Structure Change (NSC) ENSC
t = E0 +

∑t
s=1 [∆Eint,s + ∆Eact,s]

No Activity Change (NAC) ENAC
t = E0 +

∑t
s=1 [∆Eint,s + ∆Estr,s]

Take the experiences of the top two emitters in the sample, USA and China, as examples. The
two panels of Figure 1 show the observed and counterfactual emissions profiles under the scenarios
described above. Also note that while observed emissions in the USA have been broadly constant
over this period, Chinese emissions more than doubled.

As a general rule, the further a given counterfactual emissions series is from observed emissions,
the more important is the channel which is closed by assumption in its construction. Focusing
on the USA first, the deviation of NAC from observed emissions is the largest. Moreover, NAC
emissions are everywhere below the observed emissions. This suggests absent changes in the level
of economic activity USA emissions would have been much lower. Conversely, NSC emissions are
greater than observed emissions implying that the structure channel worked to restrain emissions.

The multiple crossings between observed and NIC emissions in the first half of the sample preclude
similarly unambiguous statements regarding the contribution of the intensity channel. Over this
period the NIC series deviate relatively little from observed emissions. However, after the early
2000s NIC emissions are progressively greater than those observed so similar to the structure
channel, the intensity channel tended to restrain American emissions more recently.

For China, changes in the level of the economic activity also constituted the dominant channel
for the observed increase in emissions. However, the evolution of NIC and NSC series are quite
different from the USA. The structure of the economy unambiguously shifted towards relatively
carbon-intensive sectors. Without such changes emissions would have been lower as indicated by
the NSC series. Conversely, the intensity channel constrained emissions in China. In 2009 Chinese
emissions would have been about 30% higher if the intensity channel did not operate.

The USA and China are two important emitters so the detailed discussion of their individual ex-
periences is justified. Yet there are 35 other countries in the sample and developing a graphical
analysis country by country is cumbersome. Moreover, as the crossings between NIC and ob-
served series in the USA case illustrate, the net contribution of a given component may change
qualitatively from one year to another. Against this background, another metric for comparing
the contribution of intensity, structure and activity channels would be useful.
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In the climate change context such a metric, namely cumulative emissions, is readily available
because carbon is extremely persistent in the atmosphere. In other words, if a particular channel
adds a million tonne of carbon in a given year and reduces them by the same amount in the
following year, its climate change impact over the two years is negligible. Put differently, it is the
the cumulative emissions of carbon that determine the climate change impact (Allen, 2016).

In order to implement this idea in the current context, I define the relative cumulative emissions
in scenario S ∈ {NIC,NSC,NAC} as

rceS =

∑
tE

S
t∑

tEt

− 1.

When rceS > 0, the cumulative emissions under S are greater than those observed, implying
greater climate change impacts as well. Note also that it is possible to interpret the magnitude of
rceSj across scenarios.

Using USA as an example once again, I compute rceNAC
USA = −0.26, meaning cumulative emissions

would have been almost 26% lower under the NAC scenario. The shift towards less carbon-
intensive sectors implied that rceNSC

USA = 0.15, i.e. shutting down the structure channel would have
implied 15% higher cumulative emissions. Similarly, rceNIC

USA = 0.05 so that the intensity channel
also constrained cumulative emissions over the sample period.

For China, rceNAC
CHN = −0.53, rceNSC

CHN = −0.10 and rceNIC
CHN = 0.34 which can be compared to

the USA. Specifically, in China the activity channel was about twice as important in determining
cumulative emissions. In contrast to the USA, the composition of the Chinese economy’s output
shifted towards more carbon-intensive sectors. Finally, the contribution of the intensity channel
was much larger than in the USA. From a global perspective it is important to note that over the
sample period the cumulative American emissions were about 20% greater than in China so the
overall climate change impact of the various components need to be adjusted for this difference.

Table 3 provides the rceSj for all countries, with advanced countries in the left panel of the table.
The cross-country mean and standard deviation of rceSj are given at the bottom of the table for
subsamples by level of development. The table ranks countries in increasing order of rceNIC

j . There
are several noteworthy patterns.

To start, rceNAC
j is negative for every country in the sample. That is, if the activity channel were

closed emissions would have been lower. Moreover, the activity channel was quantitatively the
most important driver of carbon emissions in a large majority of countries with notable exceptions
in Taiwan and Germany as well as in Russia and a number of Eastern European countries which
experienced economic upheaval following the collapse of the Soviet Union. Comparing the sample
means for rceNAC

j by level of development, one can conclude that the activity channel increased
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the developing country emissions by more.6

For a large majority of countries – 25 out of 37 – both the intensity and structure channels
constrained the emissions increases implied by the activity channel. Moreover, in all advanced
countries except Portugal the structure channel contributed to decreasing cumulative emissions.
These patterns are apparent in Figure 2 which provides a visual summary of the information in
Table 3 by plotting rceNIC

j versus rceNSC
j . Not surprisingly, several Eastern European countries

feature the largest rceNIC
j > 0 and/or rceNSC

j > 0 due to the economic transition they experienced
over the sample period. The positive quadrant of Figure 2 also contains most of the advanced
countries in the sample.

Among these, Ireland, Finland and Sweden, are the only three advanced countries which simulta-
neously have rceNIC

j , rceNSC
j and |rceNAC

j | greater than the respective averages for these statistics
in the advanced country subsample. That is, the intensity and structure channels constrained
emissions in these economies more than the average advanced country. At the same time, these
countries experienced strong growth which pushed emissions up through the activity channel. It
is suggestive to note, but not read too much into, the fact that Finland and Sweden are among
the first countries to introduce an explicit carbon tax.

There are important exceptions to the broad pattern of positive rceNIC
j and rceNSC

j . For example
in Figure 2, the pattern rceNIC

j < 0 and rceNSC
j > 0 is observed (i.e. the bottom right quad-

rant) for seven countries including Russia, and the opposite pattern rceNIC
j > 0 and rceNSC

j < 0

prevailed in three countries, which includes, most prominently, China. Finally, both cumulative
emissions statistics are negative in Indonesia and Brazil themselves large emitting developing coun-
tries. In these two countries, changes in the carbon intensities of sectors and composition of GDP
complemented the activity channel in increasing cumulative emissions. The broad features of the
preceding observations are summarised in the first stylised fact of this paper.

Fact 1. Intensity and structure channels constrained emissions in 25 of the 37 countries in the
sample. In contrast, the activity channel increased emissions for all countries and by a greater
margin in developing countries.

In passing, note that the figure also highlights advanced (blue) and developing (red) countries in
the sample. The observation from Taiwan and Portugal notwithstanding, developing countries tend
to be over-represented in the tails of rceNIC

j and rceNSC
j distributions. This suggests structural

and technological channels had a more varied quantitative and qualitative impact in developing
countries relative to advanced countries, increasing emissions in some while constraining them in
others. The cross-country standard deviation statistics in Table 3 confirm this visual impression.7

6The p-value of the t-test for the equality of means in advanced and developing country samples assuming
unequal variances is 0.045 for rceNAC . The difference is not significant at 5% level for rceNIC and rceNSC .

7The p-values of the F-tests for the equality of variances against the alternative that the variances were greater
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Fact 1 uses rceS as a novel metric to compare the contribution of changes in intensity, structure
and activity channels. It identifies economically interesting regularities in the sign, magnitude and
distribution of the intensity and structure channels in the sample. Crucially, in a large majority
of countries both intensity and structure channels have helped constrain cumulative emissions.
This motivates a closer look at the HCI and LCI sectors of the economy where the emissions and
value-added tend to be concentrated, respectively. Analysing the patterns in these sectors in an era
predating stringent climate policies can be instrumental for insights regarding the data generating
process and for designing effective climate policies based on theories leveraging these insights.

4 Tales from the tails: High and low carbon intensity sectors

To that end, I start by describing the rule I use to identify the HCI and LCI sectors. For each
country and year in the sample

1. Order sectors in decreasing order of cijit, so the sector with the highest carbon intensity is
ranked first, the sector with second highest is ranked second etc.

2. Calculate the average rank of each sector over all years and order sectors in increasing order
of average rank for each country.

3. Define the set containing the highest (lowest) ranking five sectors as the HCIj (LCIj) set.

A number of points are worth highlighting. First, the sets HCIj and LCIj are country-specific but
always contain five sectors because the rule relies on within-country ordering of carbon intensity.
By implication, the remaining twenty-four sectors have intermediate carbon intensity. Second,
HCIj and LCIj are time-invariant themselves even though the rule uses information from all
years in populating them. Third, it is possible to create global HCIG and LCIG sets which include
sectors that are members of HCIj and LCIj in at least k countries.8

Table 4 lists the sectors in HCIj and LCIj for selected countries, i.e. two advanced European,
two advanced non-European and two large developing countries. The mean carbon intensity levels
and total share of emissions and value added for these sectors in 2009 are also provided. Finally,
the table lists the members of HCIG and LCIG sectors for k = 5. For each sector in the global
lists, the figures in the parenthesis indicate the number of countries in which the sector is in HCIj
and LCIj. For example, even though CHEM is not an HCI sector in any of the six countries in
the table, it is identified as an HCI sector in nine countries in the sample.

in developing country sample are 0.008 for rceNIC ; 0.000 for rceNSC ; and 0.054 for rceNAC . Excluding TWN as
an outlier does not alter these results.

8Observe that as k becomes larger, HCIG and LCIG shrink.
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HCI sectors are broadly similar across countries: utilities (PWR+), manufacture of non-metallic
minerals (MINnm), refined fuels (RFUEL) and metals (MINm) as well as domestic air (TRAair)
and water transport (TRAwat). This is true for those six countries considered in detail and more
generally for the 37 countries in the sample as demonstrated by the nine HCIG sectors. Financial
(FIN), real estate (REST), and telecommunications services (TCOM) sectors are most frequently
in the LCIG. However, their frequencies are lower than those for the HCIG sectors and there are
eleven sectors in LCIG. These suggest LCIG sectors are somewhat more diverse.

In the 2009 data the unweighted mean carbon intensity levels in HCIj and LCIj show much
variation across countries despite the fact that the members of these sets are very similar across
countries. For example, the HCI sectors of France emit less than 20% of what the HCI sectors
in China do to produce a unit of economic value. This is partly due to the composition of the
respective HCIj. RFUEL tops the French set while it is not even in the Chinese set. More im-
portantly, individual sectors are heterogeneous themselves. In France a large portion of electricity
is generated in nuclear power stations whose carbon emissions are negligible. In contrast, Chinese
power generation is extremely coal, and therefore carbon, intensive. The differences are reflected
in the total share of emissions from a country’s HCI sectors, which ranges from 39% in France to
78% in China. Observe that the contribution a country’s HCI sectors make to its GDP is about
an order magnitude smaller. The converse is true for LCI sectors. That is, their contribution to
GDP is about an order of magnitude greater than their contribution to emissions.

Table 4 is organised around the ranking of sectors by cijit. Accordingly, it does not provide
information on the magnitude of an individual sector’s carbon intensity on average or in a given
country, or how it is distributed across countries. From an emissions abatement perspective this
information is important for HCI sectors, particularly for those sectors which are in HCIG with a
high frequency. To explore this further, Table 5 and Figures 3-4 focus on PWR+, MINnm, RFUEL,
TRAair and TRAwat, the top five sectors inHCIG for a restricted sample which excludes a number
of outlying country-sector-year observations to improve clarity of exposition.9

Specifically, Table 5 uses summary statistics for cijit to show a snapshot in 2009 based on the
subsamples by level of development. The clear message is one of enormous heterogeneity in carbon
intensity within and across HCIG sectors as well as by level of development. For example, the most
carbon-intensive PWR+ sector is in Russia and the least intensive one in Brazil, both developing
countries. The ratio between the two is about 85. It is difficult to interpret the magnitude of this
figure. Russia is a large outlier since the carbon intensity level of PWR+ is almost twice as large
as the runner up country. It also relies heavily on natural gas and coal for generating a large share
of its power. Conversely in Brazil, which has substantial hydroelectric potential, only about 20%
of power is generated using fossil fuels with natural gas most significant in the mix (IEA, 2017).
Indeed, in Table 4 PWR+ is not even an HCI sector in Brazil.

9See the discussion in Appendix A for the exclusion criteria and results with the unrestricted sample.
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Putting these extremes aside there remains substantial variation in the carbon intensity of PWR+
sector even among seemingly similar countries like the UK and the USA where the carbon intensity
of the latter (approximately 12.4 ktCO2/million 1995 US$) is about three times greater than that
of the former. In 2009, these two advanced economies have broadly similar fossil fuel shares in
their power generation mix. Specifically, the UK’s fossil fuel share in power generation is 72% of
which 45% is natural gas, and in the USA the corresponding statistics are 66% and 23% (IEA,
2017). That is, the UK was more reliant on fossil fuels but used less of the more carbon-intensive
fossil fuel, coal. Even allowing for the fact that per unit of energy input carbon emissions from
coal are twice as much as those from natural gas, much difference remains to be explained in the
relative carbon intensities of PWR+.10

In addition to within-sector heterogeneity, there are also large differences across sectors and by
development level in Table 5. For example, the unweighted mean cijit of the HCI sectors falls in
the range 1-23 ktCO2/million 1995 US$ in developing countries and 0.2-12 ktCO2/million 1995
US$ in advanced countries.

The snapshot in Table 5 is useful but it only provides a static and partial picture in 2009. Figures
3 and 4 graph the evolution of the mean and the cross-country standard deviation of cijit over the
sample period. Two broad patterns can be observed regarding the mean carbon intensity of the
HCIG sectors in Figure 3. First, sector-level carbon intensities were typically higher in developing
countries over the sample period. Second, the sector-level carbon intensity in developing countries
declined substantially over the sample period. The domestic water transport sector TRAwat and
manufacture of refined fuels RFUEL are partial exceptions to these broad patterns. In the case of
the former the roles of advanced and developing countries are reversed. Note, however, the fact
that the difference between the groups is relatively small compared to the other sectors included
in the figure. Regarding RFUEL, there is a rapid increase in the mean carbon intensity of the
sector in developing countries during the early years of the sample. Moreover, this sector exhibits
cyclical fluctuations in intensity, likely driven by the fluctuations in the price of oil.

The evolution of the standard deviation of sector-level carbon intensity for the same sectors is
provided in Figure 4. The trend has been flat or downward over the sample period with the
exception of TRAair in the latter years of the sample. Combining this with evidence above,
the convergence in sector-level carbon intensity levels in key HCIG sectors have largely been
driven by carbon intensity improvements in developing countries. The paper’s second stylised fact
summarises these observations.

10There may be several reasons for these differences: technology differences induced in part by fuel input quality
and price differences, power price differences, exchange rate misalignment, phase of the economic cycle, policy
differences, market structure etc. Also note that the fracking revolution in the US has significantly altered the
coal-natural gas mix. In 2013, the fossil fuel share in US power generation is 68% of which 40% is natural gas.
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Fact 2. For global HCI sectors the sector-level carbon intensity exhibits substantial variation
across countries. The mean of carbon intensity in these sectors tended to be lower in advanced
countries and its standard deviation declined driven largely by changes in developing countries.

Against this backdrop, next I focus on the systematic differences that may exist in other important
economic characteristics of the sectors which differ in carbon intensity. In particular, I ask whether
there is a relationship between the share of a country’s productive inputs, namely its workers,
physical and human capital used in a given sector and the sector’s carbon intensity. If so, one is
most likely to find evidence of this in the HCI and LCI sectors.

To answer this question, Table 6 reports the correlation of the log of carbon intensity with a number
of key variables in 2007. The unit of observation is country-sector and the variables of interest
include the sector’s share in country’s aggregate employment and capital stock; capital per worker;
and share of hours provided by high-, medium- and low-skilled workers. The log transformation of
carbon intensity is to minimise the influence of the outliers and the results are similar, albeit more
noisy, without it. The data from 2007, rather than 2009, are used to maximise the geographic
coverage of the sample because capital stock data are missing for several countries in 2008-9. The
cross-section patterns below are not sensitive to the choice of the year.

The results are reported for three different samples. Column I uses a sample which includes all
sectors in HCIj and LCIj and reports results for advanced and developing countries separately.
In this sample real estate activities sector, REST, is included in LCIj for 29 countries. This
turns out to have important implications for the results for certain variables because a country’s
typically large stock of housing capital and imputed rental income from it is reported in REST
as an accounting convention.11 As a consequence, column II of the table drops REST from the
sample if it happens to be in LCIj in country j. Finally, the sample behind column III includes
all sectors of the economy except REST. That is, it also includes non-HCI and non-LCI sectors.

The table makes it clear that the negative relationship between a sector’s carbon intensity and
its share in aggregate employment is statistically significant regardless of the sample. Sectors
with high carbon intensity tend to account for a smaller share of employment in a country. The
exclusion of REST does have some quantitative but no qualitative implications for the correlation
coefficient between ln(ciji) and empji/

∑
i empji.

Whether or not one excludes REST from the sample has quantitative and qualitative implications
for the correlation statistics involving the capital stock. Once this sector is excluded, the negative
and significant correlation coefficient between sectors’ carbon intensities and their share of capital
stock weakens in advanced countries and becomes insignificant in developing countries. In other
words, a larger share of an advanced country’s non-housing capital stock tend to be in LCI than
HCI sectors, whereas a similar relationship is not observed in developing countries. At the same

11See Appendix B for a for a stark exposition of this using the USA as an example.
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time, the relationship between carbon intensity and capital intensity is positive and significant,
and much more so, when REST is excluded.12 This suggests that workers in HCI sectors have
more capital to work with relative to their counterparts in LCI sectors.

Finally, Table 6 shows that there is a negative correlation between carbon intensity and share of
hours provided by high-skilled workers. In other words, relatively more hours are provided by
high-skilled workers in the LCI sectors in both advanced and developing countries. Conversely, a
greater share of the hours are provided by low-skilled workers in HCI sectors. These patterns are
consistent with the average skill level of the workforce being greater in the LCI sectors. Fact 3
summarises the preceding discussion.

Fact 3. HCI sectors tend to (i) account for a smaller share of employment; (ii) be more capital
intensive; and (iii) employ a workforce with a lower average skill level.

Next I focus on the long run changes in HCI and LCI sectors. Specifically, I calculate growth
rates of employment, total number of hours supplied at each skill level for each sector, capital and
capital per worker. To capture long term productivity trends, I report average growth rates of
output per worker and multifactor productivity. The latter indicator, denoted mfpjit, is computed
based on gross value-added using to the procedure outlined in OECD (2001).

The growth rate of these variables are computed over several years using all available data. In a
majority of the countries and sectors this corresponds to 1995-2009. Specifically, for variable

x ∈
{
ci, emp, hrs, hrsHS, hrsMS, hrsLS, cap, cap/emp, va/emp,mfp

}
the following simple specification is estimated

log(xjit) = θji + g(xji)t+ εjit

where t = 1, 2, ..., t̄. The point estimate of g(xji) can be interpreted as the annual growth rate of
variable x in country j’s sector i over the sample period. Table 7 reports the unweighted mean of
g(xji) in HCI and LCI sectors for advanced and developing countries separately. It also provides
several t-test results of the null hypothesis that the mean growth rates in different samples are
equal against alternative that they are not. More specifically, the results reported in column I
indicate whether the difference between the growth rates of a given variable across HCI and LCI
sectors is significant in developing and advanced country subsamples. Column II, on the other
hand, tests if the difference between the growth rates of a variable across advanced and developing
countries in the HCI sector subsample is significant. Column III does the same for LCI sector
subsample. The alternative hypothesis in all cases is two sided, the test assumes unequal variances

12Cole & Elliott (2003) also document this relationship using country-level data for CO2 among other pollutants.
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and its significance level is 10%. Finally, the growth rate of each variable in the non-HCI sectors
of the economy is also provided for reference in the last column of the table.

To build intuition and set the stage, I discuss the top panel of the table for mean growth rate
of carbon intensity g(ci) in detail. The top row is the advanced country mean. Observe that
in advanced countries and on average, the carbon intensity of HCI sectors declined at a rate of
-0.50% per annum versus -4.36% in LCI sectors. Column I indicates that the difference between
the two means is statistically significant. In developing countries, the corresponding figures are
-1.82% and -3.01% however the difference is not statistically significant. Similarly, the t-test results
in columns II and III show that one cannot reject the hypothesis that the two rates are equal for
the HCI and LCI sectors, respectively, across country groups by development levels.

The next panel focuses on labor supply and its composition by skill level. It shows that on average
HCI sector employment and hours declined while LCI sector employment and hours increased.
Moreover, the share of high-skilled workers in both HCI and LCI sectors rose over time because
g(hrsHS) is greater than g(hrsMS) and g(hrsLS) in each case. This implies that the average skill
level of the workforce in HCI and LCI sectors increased over time.

The mean growth rates of capital and capital per worker are shown in the next panel of the table.
Both g(cap) and g(cap/emp) were positive in HCI and LCI sectors. Taken together with the
decline in the HCI sector employment, this implies g(cap/emp) > g(cap) with the opposite result
obtaining in LCI sectors. In other words the capital intensity grew faster in HCI sectors.13

One might expect the faster growth in capital intensity of HCI sectors to be reflected in higher
labour productivity growth in these sectors. There is little evidence for this in the sample. This is
shown in the final panel of the table where the differences between g(va/emp) in HCI and LCI
sectors is not statistically significant.

Technological advances driving higher multifactor productivity growth in LCI sectors could be one
reason for this. Indeed, the growth of multifactor productivity was significantly greater in LCI

sectors. In interpreting these g(mfp) figures, it is important to keep in mind that the multifactor
productivity measure employed here captures technological advances as well as all other changes
that are not captured by the observed changes in capital and labour inputs used in production.
These include the higher skill level of the average worker in both HCI and LCI workers already
discussed above and the changes in other distortions that may be important for the functioning of
markets. Fact 4 summarises these observations.

Fact 4. Labour supply declined in HCI sectors and increased in LCI sectors with its composition
shifting towards higher-skilled workers in both. Relative to LCI sectors capital intensity growth
was faster but multifactor productivity growth was slower in HCI sectors.

13The statement is true when both advanced and developing countries are included in the sample for the test.
That said, the difference between capital intensity growth rates of advanced country HCI and LCI sectors, 3.3%
and 2.6% respectively, is not significant with a two-sided test but significant with a one-sided test.
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5 Implications of the findings for policy

Emissions reductions to meet the Paris Agreement goals can be achieved through reductions in
economic activity, declines in its carbon intensity or changes in its composition. The former is
not viable in many developing countries since poverty reduction requires economic growth, making
favourable changes in carbon intensity and the composition of output all the more important.

Fact 1 shows that in a large majority of countries these two channels did indeed constrain emissions.
Notwithstanding a potential announcement effect due to the adoption of the Kyoto Protocol, it
is unlikely that climate policies, and any associated carbon leakage, were main drivers of these
facts. Only a few European countries implemented stringent policies before and during the sample
period. This suggests climate policy needs to enhance rather than reverse the underlying transfor-
mation induced by the powerful forces of globalisation and economic development. These forces
operate through access to more efficient technologies and superior inputs, and the rationalisation
of production structures they imply. While this is welcome, it also makes the ex post evaluation
of climate policy effectiveness difficult.

What policy instruments are available to target the intensity and structure channels? Take PWR+,
a prominent HCI sector, as an example. Government support to low-carbon electricity generation,
transmission and storage can help overcome the innovation and network externalities rampant in
this sector. In turn, this substitutes thermal generation reducing the carbon intensity of PWR+
(Doda & Fankhauser, 2017). Alternatively, the government can stop or reduce existing production
and consumption subsidies to fossil fuels (Coady et al., 2017). Doing so could have a negative
impact on the value-added share of prominent HCI sectors such as RFUEL+ and MINnm.

The government could go further and impose a carbon price, simultaneously impacting the intensity
and structure channels. This has indeed been a popular policy in recent years. It is implemented
through emissions trading in the EU, South Korea and more recently China, among others. Carbon
taxes have also been used, for example in Sweden, Finland and the province of British Columbia
in Canada. By making emissions costly, a carbon price compels emitters to find ways to substitute
carbon with other inputs in their production reducing carbon intensity. By raising the relative price
of goods and services produced by sectors with high carbon intensity, it can reduce the share of
these sectors in GDP.14 Ultimately, the right balance for the portfolio of policies is likely to depend
on a country’s specific circumstances including its level of development, resource endowments and
existing human and physical capital stock.

Facts 2-4 suggest that the costs of these policies can be limited if they are designed and targeted
well. The variation and trends in Fact 2 is a starting point for constructing detailed case studies

14In this context, the carbon prices introduced in Finland and Sweden before 1995 are suggestive and encouraging.
In Table 3 both countries’ rceNIC

j and rceNIC
j were positive and more so than the advanced country average.

Simultaneously, large and negative rceNAC
j indicates robust economic growth.

15



of country-sectors where carbon intensity declined rapidly. Facts 3 and 4 suggest, employment
share of HCI sectors is relatively small and declining. They also identify a concentration of low-
skilled workers in these sectors, which will bear the brunt of these costs (Walker, 2013). Targeted
compensation and retraining programs would therefore be important as these workers move to
more dynamic and less carbon-intensive sectors with higher multifactor productivity growth.

6 Conclusions

Applying index decomposition analysis to cross-country data covering 1995-2009 and using rela-
tive cumulative emissions as a metric, Fact 1 of this paper documents that changes in both the
sector-level carbon intensity and the composition of economic activity contributed to constrain
emissions in a large majority of countries. This motivates the need for a better understanding of
the characteristics of the sectors which are at the tails of the sector-level carbon intensity distri-
bution because these sectors are responsible for a large share of emissions or value added. Fact
2 demonstrates the enormous variation in the carbon intensity of HCI sectors and the tendency
that carbon intensities are higher but declining in developing countries. Adopting a factor input
perspective, Fact 3 highlights that HCI sectors tend to account for a relatively small share of
employment, and are capital intensive. The skill level of an average HCI worker is lower than
her/his LCI counterpart or in the rest of the economy. Fact 4 documents that employment in
HCI sectors declined and the skill level of the average worker employed in these sectors increased.
This contrasts with LCI sectors where both employment and the skill level of the average worker
have increased. In addition, LCI sectors, especially in developing countries, are the more dynamic
sectors of the economy exhibiting greater multifactor productivity growth than both the HCI
sectors and the aggregate economy.

To be cost-effective in reducing carbon emissions, the choice of climate policy instruments as well as
their design and stringency must be informed by evidence, most importantly on the characteristics
of, and the trends in, sectors from the tails of the carbon-intensity distribution. The current
paper’s value-added is the contribution it makes to this evidence base.
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Tables and Figures

Table 1: Sectors in WIOD database

This Paper WIOD Sectors NACE

AGR+ AtB Agriculture, Hunting, Forestry and Fishing 01, 02, 05
MIN+ C Mining and Quarrying 10-14
FD+ 15t16 Food, Beverages and Tobacco 15, 16
TEX 17t18 Textiles and Textile Products 17, 18
LEA 19 Leather, Leather and Footwear 19
WD+ 20 Wood and Products of Wood and Cork 20
PPR+ 21t22 Pulp, Paper, Paper , Printing and Publishing 21, 22
RFUEL 23 Coke, Refined Petroleum and Nuclear Fuel 23
CHEM 24 Chemicals and Chemical Products 24
PLAS 25 Rubber and Plastics 25
MINnm 26 Other Non-Metallic Mineral 26
MINm 27t28 Basic Metals and Fabricated Metal 27, 28
MCHnec 29 Machinery, Nec 29
EQPeo 30t33 Electrical and Optical Equipment 30-33
EQPtr 34t35 Transport Equipment 34, 35
MANnec 36t37 Manufacturing, Nec; Recyclin 36, 37
PWR+ E Electricity, Gas and Water Supply 40, 41
CNS F Construction 45
VEHser 50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 50
WHL 51 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 51
RET 52 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 52
HOSP H Hotels and Restaurants 55
TRAinl 60 Other Inland Transport 60
TRAwat 61 Other Water Transport 61
TRAair 62 Other Air Transport 62
TRAoth 63 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies 63
TCOM 64 Post and Telecommunications 64
FIN J Financial Intermediation 65-67
REST 70 Real Estate Activities 70
COMMser 71t74 Renting of Machinery and Equipment and Other Business Activities 71-74
PUB L Public Admin and Defence; Compulsory Social Security 75
EDU M Education 80
HLTH+ N Health and Social Work 85
OTHser O Other Community, Social and Personal Services 90,-93
HH P Private Households with Employed Persons 95

TOT TOT Total Industries
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Table 2: Variables in the WIOD database

Variable Description

GO Gross output by industry at current basic prices (in millions of national currency
II Intermediate inputs at current purchasers’ prices (in millions of national currency)
VA Gross value added at current basic prices (in millions of national currency)
COMP Compensation of employees (in millions of national currency)
LAB Labour compensation (in millions of national currency)
CAP Capital compensation (in millions of national currency)
GFCF Nominal gross fixed capital formation (in millions of national currency)
EMP Number of persons engaged (thousands)
EMPE Number of employees (thousands)
H_EMP Total hours worked by persons engaged (millions)
H_EMPE Total hours worked by employees (millions)

GO_P Price levels gross output, 1995=100
II_P Price levels of intermediate inputs, 1995=100
VA_P Price levels of gross value added, 1995=100
GFCF_P Price levels of gross fixed capital formation, 1995=100

GO_QI Gross output, volume indices, 1995 = 100
II_QI Intermediate inputs, volume indices, 1995 = 100
VA_QI Gross value added, volume indices, 1995 = 100
K_GFCF Real fixed capital stock, 1995 prices

LABHS High-skilled labour compensation (share in LAB)
LABMS Medium-skilled labour compensation (share inLAB)
LABLS Low-skilled labour compensation (share in LAB)
H_HS Hours worked by high-skilled persons (share in H_EMP)
H_MS Hours worked by medium-skilled persons (share in H_EMP)
H_LS Hours worked by low-skilled persons (share in H_EMP)

EM Emission relevant energy use in TJ (all fuels)
CO2 CO2 emissions in Gg (kt) (all fuels)
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Table 3: Scenario-specific relative cumulative emissions by country, rceSj

Advanced1 Developing1

rceNIC rceNSC rceNAC rceNIC rceNSC rceNAC

TWN -0.32 0.27 -0.24 IDN -0.10 -0.06 -0.16
DNK -0.06 0.05 -0.14 CZE -0.08 0.28 -0.19
AUS -0.06 0.12 -0.24 RUS -0.03 0.20 -0.17
ITA -0.02 0.08 -0.09 BRA -0.03 -0.01 -0.18
JPN 0.01 0.05 -0.08 HUN -0.02 0.34 -0.30
AUT 0.04 0.01 -0.17 TUR 0.03 0.02 -0.32
ESP 0.04 0.02 -0.22 MEX 0.03 0.04 -0.27
GRC 0.05 0.04 -0.23 EST 0.04 0.53 -0.47
USA 0.05 0.15 -0.26 IND 0.07 0.06 -0.41
NLD 0.07 0.07 -0.20 SVN 0.09 0.08 -0.27
CAN 0.09 0.04 -0.23 ROU 0.10 0.25 -0.10
FIN 0.10 0.07 -0.27 SVK 0.15 0.24 -0.31
FRA 0.11 0.05 -0.17 POL 0.29 0.11 -0.32
BEL 0.12 0.05 -0.15 LTU 0.32 0.10 -0.38
SWE 0.12 0.10 -0.26 CHN 0.34 -0.10 -0.53
GBR 0.15 0.05 -0.21 LVA 0.43 0.09 -0.38
PRT 0.15 -0.12 -0.18 BGR 0.65 -0.37 -0.11
DEU 0.15 0.00 -0.12
KOR 0.16 0.01 -0.34
IRL 0.20 0.09 -0.44

Mean 0.06 0.06 -0.21 Mean 0.13 0.11 -0.29
StdDev 0.11 0.07 0.09 StdDev 0.21 0.20 0.13

1 Countries are sorted into advanced and developing country groups based on
World Bank classification as it existed in 1995.
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Table 4: HCI and LCI sets in select countries and globally
GBR FRA USA JPN CHN BRA

HCIjHCIjHCIj Sectors1 TRAwat RFUEL PWR+ TRAwat PWR+ TRAwat
PWR+ TRAwat TRAwat MINnm MINnm MINnm
RFUEL MINnm MINnm PWR+ TRAair RFUEL
TRAair TRAair TRAair TRAair MINm TRAinl
MINnm PWR+ RFUEL MIN+ TRAwat MIN+

Mean cijitcijitcijit 4.25 2.59 4.64 2.69 13.73 3.29∑
HCIj

ejit/
∑

i ejit
∑

HCIj
ejit/

∑
i ejit

∑
HCIj

ejit/
∑

i ejit 0.62 0.39 0.61 0.53 0.78 0.40∑
HCIj

vajit/
∑

i vajit
∑

HCIj
vajit/

∑
i vajit

∑
HCIj

vajit/
∑

i vajit 0.04 0.03 0.04 0.04 0.11 0.07

LCILCILCI Sectors1 TRAoth COMMser VEHser VEHser EQPeo EDU
TCOM FIN FIN EQPeo WHL HLTH+
COMMser TRAoth EQPeo TCOM TCOM WHL
FIN TCOM WHL FIN REST FIN
REST REST REST REST FIN REST

Mean cijitcijitcijit 0.02 0.01 0.02 0.02 0.06 0.03∑
LCIj

ejit/
∑

i ejit
∑

LCIj
ejit/

∑
i ejit

∑
LCIj

ejit/
∑

i ejit 0.02 0.03 0.02 0.02 0.01 0.03∑
LCIj

vajit/
∑

i vajit
∑

LCIj
vajit/

∑
i vajit

∑
LCIj

vajit/
∑

i vajit 0.39 0.37 0.30 0.24 0.25 0.29

Global HCIHCIHCI and HCIHCIHCI sectors2

HCIGHCIGHCIG PWR+ (36), MINnm (35), RFUEL (28), TRAair (25), TRAwat (23),
MINm (11), TRAinl (9), CHEM (9), MIN+ (5)

LCIGLCIGLCIG FIN (30), REST (29), TCOM(21), EQPeo (15), WHL (13), COMMser(11),
EDU (11), RET (11), PUB (8) , HLTH+ (7), HOSP (5)

1 In increasing order of average rank within country.
2 For k = 5 and in decreasing order of frequency with which the sector is in HCIj or LCIj.

Table 5: Carbon intensity of top five sectors in HCIG (2009)
Advanced Developing

N Mean StdDev Min Max N Mean StdDev Min Max

PWR+ 20 7.07 7.44 1.02 32.54 16 22.64 15.13 0.64 54.93
MINnm 20 2.95 2.22 0.81 11.42 16 6.11 2.57 2.11 10.94
RFUEL 20 8.62 11.69 0.65 47.78 15 10.18 11.48 0.01 34.98
TRAair 20 5.15 2.33 0.17 8.69 16 5.58 5.87 0.04 17.18
TRAwat 20 0.35 0.17 0.15 0.72 17 1.32 0.78 0.25 2.94
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Table 6: Correlation between ln (ciji) and key variables (2007)

(I) (II) (III)

empji∑
i empji

adv −0.50∗∗∗ −0.57∗∗∗ −0.40∗∗∗

dev −0.39∗∗∗ −0.45∗∗∗ −0.16∗∗∗

capji∑
i capji

adv −0.36∗∗∗ −0.22∗∗∗ −0.12∗∗∗

dev −0.24∗∗∗ 0.11 0.05

ln
(

capji
empji

)
adv 0.18∗∗ 0.58∗∗∗ 0.42∗∗∗

dev 0.16∗∗ 0.40∗∗∗ 0.23∗∗∗

hrsHS
ji∑

i hrsji
adv −0.38∗∗∗ −0.33∗∗∗ −0.22∗∗∗

dev −0.41∗∗∗ −0.37∗∗∗ −0.24∗∗∗

hrsMS
ji∑

i hrsji
adv 0.13∗ 0.09 0.06

dev 0.09 0.06 −0.01

hrsLS
ji∑

i hrsji
adv 0.23∗∗∗ 0.21∗∗∗ 0.12∗∗∗

dev 0.16∗∗ 0.16∗∗ 0.13∗∗∗

Note: Column (I) reports results for all HCI and LCI sectors; column
(II) excludes REST if it happens to be an LCI sector; column (III) re-
ports results from all sectors except REST. *, ** and *** indicate signif-
icance at 10%, 5% and 1%, respectively.
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Table 7: Mean growth rates for select variables: HCI and LCI sectors
HCI Sectors LCI Sectors ∆ significant? Non-HCI Sectors

% % (I) (II) (III) %

g(ci) adv −0.50 −4.36 Y N N −2.29
dev −1.82 −3.01 N −3.47

g(emp) adv −0.51 1.37 Y N Y 0.25
dev −0.67 2.57 Y 1.34

g(hrs) adv −0.83 1.13 Y N Y −0.00
dev −0.75 2.50 Y 1.14

g(hrsHS) adv 2.69 4.30 Y N N 3.52
dev 3.07 5.04 Y 4.37

g(hrsMS) adv −0.24 0.80 Y N Y 0.51
dev 0.21 2.55 Y 1.94

g(hrsLS) adv −3.71 −2.03 Y N Y −2.94
dev −3.40 0.29 Y −1.20

g(cap) adv 2.83 4.26 Y Y N 3.55
dev 4.64 4.80 N 5.43

g( cap
emp

) adv 3.36 2.80 N Y N 3.21

dev 5.34 2.24 Y 4.11

g( va
emp

) adv 2.34 2.78 N N N 1.72

dev 3.35 3.00 N 3.43

g(mfp) adv 2.55 4.55 Y Y Y 2.64
dev 4.05 6.04 Y 5.47

Note: The t-test results reported are for the null hypothesis that the mean growth rates of a given variable are equal
across the specified groups against a two-sided alternative and assuming unequal variances. The significance level for the
test is 10%. In column (I), the difference between the mean growth rates of HCI and LCI sectors in advanced and devel-
oping countries is tested. In column (II), the difference between advanced and developing country mean growth rates in
HCI sectors is tested. Finally, in column (III) the same difference in LCI sectors is tested.
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Figure 1: Observed vs Counterfactual Emissions in the USA and China
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Figure 2: Relative cumulative emissions under NSC and NIC
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Figure 3: Mean carbon intensity of top five sectors in HCIG over time
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Figure 4: Standard deviation of carbon intensity of top five sectors in HCIG over time
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Appendix

A Fact 2 with full sample

This section describes the criterion used in restricting the sample behind Table 5 and Figures 3
and 4 in the main text and lists all the observations excluded. The figures based on the full sample
are provided at the end to emphasise that the restrictions adopted in the main text are for clarity
and does not affect Fact 2. Specifically, an observation is not in the restricted sample if cijit is
more than three standard deviations away from the cross-country mean for that sector-year, which
implies that following observations are excluded:

• PWR+: Estonia 1995-2009

• MINnm: Bulgaria 1995-2004

• RFUEL: Estonia 1995-2009; Czech Republic 2005-2008; Germany 2008; Portugal 1995

• TRAair: Hungary 2000,2002-2006,2008,2009; Latvia 1995-1998; Poland 2001

• TRAwat: Denmark 2008, 2009; Latvia 2002; Mexico 2000, 2001; Romania 1997-2000; Slo-
vakia 2007; Taiwan 2006, 2009

• Aggregate: none

Note that all observations from Estonia’s PWR+ and RFUEL sectors are excluded. For PWR+,
observations from Estonia are between 6.1-7.5 times greater than the year-specific 37-country
mean depending on the year. For RFUEL, they are 5.1-24.2 times greater. Similarly, observations
from Bulgaria’s MINnm sector between 1995-2004 sector are atypical in that they are 3.9-9.1
times greater than the full sample mean. The other excluded country-sector-year observations are
idiosyncratic and suggest measurement problems. In all cases, the differences are large enough to
influence the sample-mean for the year.

Figures A.1 and A.2 are analogous to Figures 3 and 4 but use the entire sample. I highlight
two main differences. First, the scales of the vertical axes are greater in Figures A.1 and A.2,
particularly in the panels for RFUEL, TRAair and TRAwat. Second, there is much more noise in
Figures A.1 and A.2 obscuring, but not altering, the patterns highlighted in Fact 2.
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Figure A.1: Mean carbon intensity of top five sectors in HCIG over time
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Figure A.2: Standard deviation of carbon intensity of top five sectors in HCIG over time
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B Carbon intensity and factor inputs in the USA

Tables B.1 and B.2 use the USA as an example to illustrate the sector level variables studied in
Table 6 for an individual country. In 2009, HCI sectors of the USA accounted for just over 1% of
aggregate employment, used almost 5% of the country’s capital stock. These figures mask much
heterogeneity across HCI sectors however. PWR+ is the most capital intensive, i.e. each worker
has much more capital to produce with.

The LCI sectors, on the other hand, employed more than 11% of the country’s workers and
used 53% of its capital stock. The latter figure is so high because the economy’s housing capital
is included in the REST sector by accounting convention. This is clearly visible in the value
of capital per worker being extremely high in REST. Indeed, the sector is such an outlier that
excluding REST from LCIj average renders the group much less capital intensive.15

Table B.1 shows that HCI sectors employ a smaller share of the US workers and use more capital
intensive technologies. Table B.2 provides more detail on the skill composition of the workforce
employed in these sectors. Specifically, it reports the share of hours supplied by high-, medium-
and low-skilled workers for each sector in HCIUSA and LCIUSA. The most striking feature of Table
B.2 is the relatively small share of high-skilled workers and the relatively high of share medium-
skilled workers in the HCI sectors. The observation is valid relative to the USA economy as a
whole, and relative to the LCI sectors regardless of whether REST is included in the averages.

15Italy has exceptionally high (low) share of the capital stock in COMMser (REST) relative to other countries in
the sample suggesting its housing stock is included in COMMser. A similar but less extreme case is South Korea.
Excluding these country-sectors does not alter the results in the main text.
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Table B.1: Carbon intensity and factor inputs in HCIUSA and LCIUSA (2009)

Sector (i) cijit
empi∑
i empi

capi∑
i capi

capi
empi

HCIHCIHCI

PWR+ 12.385 0.004 0.036 1993.729
TRAwat 2.790 0.000 0.001 619.690
MINnm 3.744 0.003 0.002 142.493
TRAair 2.576 0.003 0.005 350.421
RFUEL 1.719 0.001 0.003 880.336

HCIHCIHCI mean 4.643 0.002 0.009 797.334

LCILCILCI

VEHser 0.031 0.008 0.009 263.386
FIN 0.033 0.042 0.041 212.829
EQPeo 0.016 0.012 0.011 191.753
WHL 0.026 0.041 0.019 99.011
REST 0.008 0.012 0.450 7795.900

LCILCILCI mean 0.023 0.023 0.106 1712.576
(excl.REST) 0.026 0.026 0.020 191.745

USA mean 215.852

Table B.2: Carbon intensity and skill composition in HCIUSA and LCIUSA (2009)

Sector (i) cijit
hrsi∑
i hrsi

hrsHS
i

hrsi

hrsMS
i

hrsi

hrsLS
i

hrsi

HCIHCIHCI

PWR+ 12.385 0.005 0.285 0.679 0.036
TRAwat 2.790 0.001 0.152 0.747 0.101
MINnm 3.744 0.003 0.180 0.689 0.131
TRAair 2.576 0.003 0.152 0.747 0.101
RFUEL 1.719 0.001 0.329 0.609 0.062

HCIHCIHCI Average 4.643 0.003 0.220 0.694 0.086

LCILCILCI

VEHser 0.031 0.008 0.323 0.605 0.072
FIN 0.033 0.043 0.511 0.478 0.011
EQPeo 0.016 0.015 0.454 0.488 0.057
WHL 0.026 0.046 0.135 0.772 0.093
REST 0.008 0.012 0.412 0.534 0.054

LCILCILCI Average 0.023 0.025 0.367 0.575 0.057
(excl.REST) 0.026 0.028 0.356 0.586 0.058

USA Average 0.345 0.569 0.085
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