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Abstract

In this paper, we derive a variation of the Azéma martingale using two approaches - a direct

probabilistic method and another by projecting the Kennedy martingale onto the filtration gener-

ated by the drawdown duration. This martingale links the time elapsed since the last maximum

of the Brownian motion with the maximum process itself. We derive explicit formulas for the joint

densities of (τ, Wτ , Mτ), which are the first time the drawdown period hits a pre-specified dura-

tion, the value of the Brownian motion, and the maximum up to this time. We use the results to

price a new type of drawdown option, which takes into account both dimensions of drawdown

risk - the magnitude and the duration.

Keywords: Drawdown duration, Brownian excursions, Local time, Azéma martingale, Draw-

down options

1 Introduction

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let W be a standard Brownian motion

adapted to (Ft)t≥0 with W0 = 0. Set

gt := sup{s ≤ t |Ws = 0},

and we define the slow filtration G = (σ(sgn(Ws); s ≤ t)∨Fgt)t≥0. Also, we let Lt be the local time at 0

of the Brownian motion. We can obtain Gt-martingales by projecting Ft-martingales onto the filtration
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Gt. In particular, the most well known are Azéma’s first and second martingales,

ξ1
t :=

…
π

2
sgn(Wt)

»
t− gt (1.1)

ξ2
t :=

»
t− gt −

 
2
π

Lt, (1.2)

which are the projections of the martingales Wt and
»

2
π (|Wt| − Lt) respectively. They are closely

related to the excursions of Brownian motion away from 0. They first appeared in Azéma [1] and

possesses the chaos representation property (see Yor [26]). One of the first papers to introduce the use

of Azéma martingales in finance is Dritschel and Protter [11]. Further, the Azéma martingale is used

to construct solutions to the Skorokhod embedding problem for the length and height of excursions

(see Obloj and Yor [22]), and to model the default probability of a firm with only information on

whether the firm’s cash balances are negative or not (see Cetin et al [4]). Filtered Azéma martingales,

which are obtained by projecting the Brownian motion onto the signs of another observation process,

was studied in Cetin [3]. If we project the exponential martingale eλWt− λ2
2 t onto Gt, we obtain the

Gt-martingale,

ξ3
t := E(eλWt− λ2

2 | Gt) = Ψ(λ sgn(Wt)
»

t− gt)e−
λ2
2 t, (1.3)

where we have used the notation

Ψ(x) := 1 + x
√

2πe
x2
2 N (x).

This martingale was used in Chesney et al [5] to price Parisian barrier options.

We are interested in studying the maximum and drawdown processes, so we define the following

notations for the maximum process,

Mt := max
s≤t

Ws,

and the drawdown process

Yt := Mt −Wt.

We denote by Ut the time elapsed since the last time the maximum was achieved, or the drawdown

period,

Ut := t− sup{s ≤ t | Mt = Ws} = t− sup{s ≤ t | Yt = 0}.
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In this paper, we prove that the process νt defined by

νt := e−γMt e−βt

(
1 + γ

 
πUt

2
eβUt +

√
UtβeβUt

∫ Ut

0
e−βw 1√

w
dw

)
,

is an FU -martingale, where FU is the filtration generated by (Ut)t≥0. The filtration shrinkage intro-

duced here is along the same lines as Sezer [24] who considers it for more general diffusions and

multiple crossing points. The martingale νt is a function of (Mt, Ut), the running maximum and the

time elapsed since the last maximum. Furthermore, by the reflection principle of a standard Brownian

motion, M D
= Y D

= |W|. Hence, the excursions away from 0 are also the excursions of the Brownian

motion away from its maximum. Lévy’s identity also states that if Lt is the local time of the Brownian

motion Wt at 0, then

(|Wt|, Lt, t ≥ 0) law
= (Mt −Wt, Mt, t ≥ 0).

Hence this martingale can also be written in terms of the pair (Lt, t − gt). This martingale shares a

common construction with the Azéma martingales, as it is also a projection of the Kennedy martingale

(see Kennedy [17]) onto the filtration generated by (Ut)t≥0.

We will focus on the representation of the martingale νt as a process involving Mt and Ut. In

particular, we are interested in looking at the drawdown period Ut and the first time the drawdown

period hits a certain length D. Hence, we define the Parisian drawdown time τD as

τD := inf{t ≥ 0 | Ut = D}.

This is the first time the duration of drawdowns exceeds a certain threshold D > 0. Without loss

of generality, we let D = 1 and simplify the notation by setting τ := τ1. In Landriault et al [19],

the Laplace transform of the Parisian drawdown time for spectrally negative Lévy processes was

obtained using a perturbation approach. Furthermore, we note that for a standard Brownian motion,

due to Lévy’s identity and the symmetry of Brownian motion, its Parisian drawdown time is equal in

distribution to its two-sided Parisian stopping time, which is the first time the length of the excursions

around 0 for a standard Brownian motion exceed a certain threshold D. The Parisian stopping time of

Brownian motion has been well studied in the literature. For example, the joint Laplace transform of

the Parisian stopping time and the value of the Brownian motion at the time is derived in Dassios and

Wu [7], and the density of the Parisian stopping time is obtained in Dassios and Lim [8, 9]. Czarna and
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Palmowski [6] also studied the Parisian stopping time for a spectrally negative Lévy process. Here,

we derive a recursive formula for the joint density of the triplet (τ, Mτ, Wτ) for a standard Brownian

motion, and then use Girsanov’s theorem to derive a similar result for a drifted Brownian motion.

Drawdowns are a measure of an investment’s financial risk. Both the Calmar and Sterling ratios

use drawdown as a metric (see Eling [13] for a description of these drawdown measures). Large

market drawdowns lead to portfolio losses and liquidity shocks, and several studies have examined

the maximum drawdown MDDt = maxs≤t Ys. This is equivalent to the study of the stopping time

Ta := inf{t ≥ 0 | Yt > a},

which is the first time the magnitude of drawdowns exceeds a certain threshold a > 0. Taylor [25]

first derived the Laplace transform of Ta and MTa for Brownian motion processes. The distributional

properties of Ta and MTa are also studied in Douady et al [10] and Magdon-Ismail et al [20]. Further-

more, studies that involve both the drawdown and drawup processes have been done by Popisil et al

[23], Zhang and Hadjiliadis [27] and Gapeev and Rodosthenous [14]. This stopping time is commonly

referred to as drawdown time in the literature but we note the distinction between this and τD. The

magnitude of drawdowns is, however, insufficient as a measure of risk, as a prolonged drawdown

period can also lead to high sustained losses. In portfolio management, investors usually quit an

investment fund after either a single large drawdown or a small but prolonged drawdown. Thus it

is useful to also consider the duration of each drawdown. Landriault et al [18] recently studied the

frequency of drawdowns for a Brownian motion, and in [19], the duration of drawdowns for Lévy

models.

In this paper, we apply our results to the pricing of drawdown options. These are financial derivat-

ives based on the drawdown process, which have drawn much attention in recent years. Drawdown

insurance was first introduced in Carr et al [2]. They proposed in their paper two kinds of digital

drawdown insurance, the first one has payoff conditional on the maximum drawdown amount hit-

ting a strike K, and the second conditional on the drawdown amount hitting level K before the drawup

amount does. Zhang and Hadjiliadis [28] introduced a new variable called the speed of market crash,

which is UTa in our notation. It is the time elapsed between the last maximum of the process and

the first time the drawdown hits a certain level, and is a measure of how fast the crash has occurred.

4



They priced claims based on that payout only when the drawdown time Ta is reached, and the speed

of market crash is smaller than a certain strike. Zhang et al. [29] introduced a drawdown insurance

contract whereby the protection buyer pays a constant premium over time to insure against a draw-

down of a pre-specified amount, with features such as early cancellation and drawup contingencies.

Zhang [30] studied the law of the occupation times of the drawdown and drawup processes and used

the results to price cumulative Parisian options and α-quantile options on the drawdown process.

American options on maximum drawdown were also considered in the recent paper by Gapeev and

Rodosthenous [15].

Here, we propose three new variations of drawdown options. The first is a digital drawdown call

option which pays off a unit amount when the drawdown duration hits a prespecified qualifying

period of length D = 1, given that this happens before maturity time T, and that the drawdown

amount exceeds a prespecified strike K. The second is a drawdown barrier bond with qualifying

period, which pays off the value of the drawdown amount, when the drawdown duration hits a

prespecified length D = 1, if it occurs before maturity time T and given that the drawdown amount

exceeds a prespecified strike K. Finally, we describe the Parisian drawdown call option, which is

a Parisian option with the drawdown process as the underlying. In all of these options, the payoff

is made at time τD, the time when the Parisian drawdown time is first hit. These options provide

insurance against both the magnitude and the duration of the drawdown.

This paper will be organised as follows. Section 2 presents the proof of the extended Azéma mar-

tingale. We also demonstrate that it is the projection of the Kennedy martingale on the filtration FU .

Section 3 derives the joint density of the triplet (τ, Wτ, Mτ) for the standard and drifted Brownian

motion. In Section 4, we introduce new types of drawdown options, and show how the results can be

applied to price these options. Section 5 concludes the paper.

2 A variation of the Azéma martingale

In this section, we introduce the following martingale and demonstrate that it is also the projection of

the Kennedy martingale onto the filtration FU .
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Theorem 2.1 Let νt be the process defined by

νt := e−γMt e−βt

(
1 + γ

 
πUt

2
eβUt +

√
UtβeβUt

∫ Ut

0
e−βw 1√

w
dw

)
.

Then νt is an FU-martingale, where FU is the filtration generated by (Ut)t≥0.

Proof. We start by considering a martingale of the form

e−γMt e−βt f (Ut).

We need to find an integrable function f with f (0) = 1 (without loss of generality), such that

E
Ä
e−γMt+h e−β(t+h) f (Ut+h) | Ut, Mt

ä
= e−γMt−βt f (Ut), (2.1)

for all t ≥ 0 and h > 0. In particular, we need

E
Ä
e−γMt−βt f (Ut) | U0 = 0, M0 = 0

ä
= 1. (2.2)

Using the joint density of Mt and Ut (Karatzas and Shreve [16]), this is equivalent to finding f such

that ∫ t

0

∫ ∞

0
e−γy f (v)

y
π
√

v(t− v)3/2 e−
y2

2(t−v) dydv = eβt.

Now, set g(u) = f (u)√
u , so that we need to find g for which

∫ t

0

∫ ∞

0
e−γyg(v)

y
π(t− v)3/2 e−

y2

2(t−v) dydv = eβt.

Taking Laplace transforms over t, we have

ĝ(ε)
∫ ∞

0

 
2
π

e−γye−y
√

2εdy =
1

ε− β
,

for ε > β. Hence, we have

ĝ(ε)
1

γ +
√

2ε
=

1
ε− β

…
π

2
,

and thus

ĝ(ε) =
…

π

2
γ +
√

2ε

ε− β
=

…
π

2
γ

ε− β
+ ε

√
π√

ε(ε− β)
.
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Inverting the Laplace transforms, we have

g(u) = γ

…
π

2
eβu +

d
du

Ç∫ u

0

1√
w

eβ(u−w)dw
å

= γ

…
π

2
eβu +

1√
u
+ βeβu

∫ u

0
e−βw 1√

w
dw,

and thus

f (u) = 1 + γ

…
πu
2

eβu +
√

uβeβu
∫ u

0
e−βw 1√

w
dw (2.3)

would satisfy equation (2.2). We now have a candidate for f and it remains now to verify (2.1). We

need to prove

E
Ä
e−γMt+h e−β(t+h) f (Ut+h) | Ut = u, Mt = m

ä
= e−γme−βt f (u),

which is equivalent to

e−βh f (u + h)
√

u√
u + h

+
∫ h

0
e−βs

√
u

2(u + s)3/2 E
Ä
e−γMh−s e−β(h−s) f (Uh−s) | U0 = 0, M0 = 0

ä
ds = f (u).

Rearranging the left hand side, we have

f (u) = e−βh f (u + h)
√

u√
u + h

+
∫ h

0
e−βs

√
u

2(u + s)3/2 ds

= e−βh f (u + h)
√

u√
u + h

+ 1− e−βh
√

u√
u + h

− β

∫ h

0
e−βs

√
u√

u + s
ds

= e−βh f (u + h)
√

u√
u + h

+ 1− e−βh
√

u√
u + h

− βeβu
∫ u+h

u
e−βw

√
u√
w

dw

= e−βh f (u + h)
√

u√
u + h

+ 1− e−βh
√

u√
u + h

+ βeβu
∫ u

0
e−βw

√
u√
w

dw− βeβu
∫ u+h

0
e−βw

√
u√
w

dw.

Finally, this simplifies to

e−β(u+h) f (u + h)− 1√
u + h

− β

∫ u+h

0

e−βw
√

w
dw = e−βu f (u)− 1√

u
− β

∫ u

0

e−βw
√

w
dw,

which is true by (2.3). Finally, as FMt ⊆ FUt , νt is an FU-martingale.

Corollary 2.2 For β = 0, we have

ν1
t := e−γMt

(
γ

 
πUt

2
+ 1

)

is an FU-martingale.
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Corollary 2.3 For γ = 0, we obtain a martingale similar to ξ3
t in (1.1),

ν2
t := e−βt

Ç
1 +
√

UtβeβUt

∫ Ut

0
e−βw 1√

w
dw
å

.

Using the notation in (1.1) with λ =
√

2β, this martingale can be rewritten as

ν2
t =

Ψ
(√

2βUt
)
−Ψ

(
−
√

2βUt
)

2
e−βt.

It is thus the two-sided version of ξ3
t .

Remark 2.4 (A projection of the Kennedy martingale onto the filtration FU) The Kennedy martingale

was introduced by Kennedy [17] and more recently studied in Nguyen-Ngoc and Yor [21]. It is given by

ζt := e−γMt−βt
(»

2β cosh
(»

2β|Yt|
)
+ γ sinh

(»
2β|Yt|

))
. (2.4)

Projecting this martingale onto the filtration FUt , and using that Mt ∈ FUt , and that |Yt| given FUt , has the

law of a Brownian meander, we have

E
(

e−γMt−βt
(»

2β cosh
(»

2β|Yt|
)
+ γ sinh

(»
2β|Yt|

))
| FUt

)
(2.5)

= e−γMt−βt
∫ ∞

0

x
Ut

e−
x2

2Ut

(»
2β cosh

(»
2βx

)
+ γ sinh

(»
2βx

))
dx (2.6)

=
»

2βe−γMt−βt

Ñ
1 +
»

2β

∫ ∞

0
e−

x2
2Ut

Ñ
e
√

2βx − e−
√

2βx

2

é
dx + γ

∫ ∞

0
e−

x2
2Ut

Ñ
e
√

2βx + e−
√

2βx

2

é
dx

é
(2.7)

=
»

2βe−γMt−βt

(
1 + β

√
UteβUt

∫ Ut

0
e−βw 1√

w
dw + γ

 
πUt

2
eβUt

)
, (2.8)

where integration by parts was used from (2.6) to (2.7), and from (2.7) to (2.8) is a result of

∫ ∞

0
e−

x2
2Ut

e
√

2βx
dx = eβUt

∫ √2βUt

0
e−

(x−
√

2βUt)
2

2Ut dx + eβUt

∫ ∞

√
2βUt

e−
(x−
√

2βUt)
2

2Ut dx (2.9)

=

 
βUt

2
eβUt

∫ Ut

0
e−βw 1√

w
dw +

 
βUt

2
eβUt

∫ ∞

0
e−βw 1√

w
dw, (2.10)

and

∫ ∞

0
e−

x2
2Ut

e−
√

2βx
dx = eβUt

∫ ∞

0
e−

(x+
√

2βUt)
2

2Ut dx (2.11)
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=

 
βUt

2
eβUt

∫ ∞

Ut

e−βw 1√
w

dw, (2.12)

so that

∫ ∞

0
e−

x2
2Ut

Å
e
√

2βx − e−
√

2βx
ã

dx =
»

2βUteβUt

∫ Ut

0
e−βw 1√

w
dw, (2.13)∫ ∞

0
e−

x2
2Ut

Å
e
√

2βx + e−
√

2βx
ã

dx =
»

2βUteβUt

∫ ∞

0
e−βw 1√

w
dw =

√
2πUteβUt . (2.14)

Hence, the projection of the Kennedy martingale onto the filtration FU gives us exactly the martingale νt which

we defined in Theorem 2.1, up to a constant.

3 Joint density of τ, Wτ and Mτ

Now, applying the optional stopping theorem on this martingale, we obtain the joint Laplace trans-

form of the stopping time τ and the maximum of the Brownian up to this time, Mτ. Inverting the

Laplace transform gives us the following joint density.

Theorem 3.1 Let f (t, m) be the joint density of the stopping time τ, and the maximum up to this time, Mτ.

Then we have the following formula for the joint density

f (t, m) =

 
2
π

n−1∑
k=0

1
k!

(
−
 

2
π

m

)k

Lk(m, t− 1), for n < t ≤ n + 1, n = 1, 2, ...,

for m ≥ 0, where the functions Lk(m, t) are defined recursively below

L0(m, t) =
m√
2πt3

e−
m2
2t , for t > 0,

Lk(m, t) =
∫ t−k

1
Lk(m, t− s)

1
2s3/2 ds for t > k + 1.

Furthermore, the joint density of the stopping time τ, maximum Mτ, and Brownian motion Wτ is

P (τ ∈ dt, Wτ ∈ dx, Mτ ∈ dm) = (m− x)e−
(m−x)2

2 f (t, m)dtdm,

for t ≥ 1, x ≤ m.
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Proof. As Ut∧τ ≤ 1, |νt∧τ| ≤ K for some constant K a.s., for all t. Hence, the optional stopping theorem

applies. As Uτ = 1 (we have let D = 1), we have

E
Ä
e−βτe−γMτ

ä
=

1

1 + γ
»

π
2 eβ + βeβ

∫ 1
0 e−βw 1√

w dw
.

We use the same method of Laplace inversion which was used in Dassios and Lim [8, 9] to obtain the

densities of the one and two-sided Parisian stopping times. Rearranging the expression, we have

E
Ä
e−βτe−γMτ

ä
=

e−β

γ
»

π
2 + 2

√
πβ

∫√2β

0
1√
2π

e−
x2
2 dx + e−β

=
e−β

γ
»

π
2 +

√
πβ +

∫∞
1

e−βs

2s3/2 ds

=
e−βÄ√

πβ + γ
»

π
2

ä Å
1 + 1√

πβ+γ
√

π
2

∫∞
1

eβs

2s3/2 ds
ã

= e−β 1√
πβ + γ

»
π
2

∞∑
k=0

(−1)k

Ñ
1√

πβ + γ
»

π
2

∫ ∞

1

e−βs

2s3/2 ds

ék

= e−β
∞∑

k=0

(−1)k
Ç∫ ∞

1

e−βs

2s3/2 ds
åk (  2

π

)k+1Ç
1

γ +
√

2β

åk+1

,

where the infinite series expansion is valid for a sufficiently large β. Inverting the joint Laplace trans-

form with respect to γ, we have

E
Ä
e−βτ; Mτ ∈ dm

ä
= e−β

∞∑
k=0

(−1)k
Ç∫ ∞

1

e−βs

2s3/2

åk (  2
π

)k+1

e−
√

2βm mk

Γ(k + 1)
dm (3.1)

= e−β

 
2
π

e−
√

2βm
∞∑

k=0

1
k!

(
−
 

2
π

m

)k Ç∫ ∞

1

e−βs

2s3/2 ds
åk

dm. (3.2)

Now, it remains to invert the Laplace transform,

L̂k(m, β) = e−
√

2βm
Ç∫ ∞

1

e−βs

2s3/2 ds
åk

. (3.3)

We have the following Laplace inversions with respect to β,

L−1
Å

e−
√

2βm
ã

=
m√
2πt3

e−
m2
2t , (3.4)
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L−1
Ç∫ ∞

1

e−βs

2s3/2 ds
å

=
1

2t3/2 1{t>1}. (3.5)

Inverting (3.2) with respect to β, we have that the kth term in the summation, Lk(m, t), is the kth con-

volution of (3.4), and L0(m, t) is the RHS of (3.2). We also note that for n < t < n + 1, Lk(m, t) is zero

for k > n due to the indicator 1{t>1} in (3.4), so we only need a finite sum up to n. This gives us a

recursive formula for the joint density of τ and Mτ.

Finally, to obtain the trivariate density of τ, Mτ and Wτ, we observe that given Mτ = m is the max-

imum and is attained at time τ − 1, (W(τ−1)+t))0≤t≤1 is a Brownian motion starting at m, conditioned

to stay below m. Hence, given τ and Mτ, (Mτ −W(τ−1)+t)0≤τ≤1 is a Brownian motion starting at 0,

conditioned to stay positive and independent of τ. It has the same law as the Brownian meander (see

Durrett et al [12]),

P(Mτ −Wτ ∈ dy | Mτ = m, τ = t) = P(W1 ∈ dy |Ws ≥ 0 ∀ s ≤ 1)

= ye−
y2

2 dy, y ≥ 0.

Combining this with the joint density of τ and Mτ, we obtain the result.

Using Girsanov’s Theorem, we can also obtain a similar result for Brownian motion with drift,

which we denote by Wµ.

Theorem 3.2 We denote by τµ, Mµ
τµ the Parisian drawdown time and the running maximum for a Brownian

motion with drift. Then we have

P
Ä
τµ ∈ dt, Mµ

τµ ∈ dm
ä
= eµme−

1
2 µ2t f (t, m)

Å
1−
√

2πµe
µ2

2 N (−µ)
ã

dtdm.

Furthermore, the joint density of τµ, Mµ
τµ and Wµ

τµ is

P
Ä
τµ ∈ dt, Wµ

τµ ∈ dx, Mµ
τµ ∈ dm

ä
= eµme−

1
2 µ2(t−1) f (t, m)(m− x)e−

(m−x+µ)2

2 dtdm.

Proof. From Theorem 2.4, we have for dt and dm in some infinitesimal interval,

E
Ä
1{Mt∈dm;τ∈dt}

ä
= f (t, m)dtdm.

11



Applying Girsanov with a change of measure

dPµ

dP

∣∣∣∣∣
Ft

= eµWt− 1
2 µ2t

such that Wµ
t = Wt − µt is a Pµ-Brownian motion. We have

Pµ (Mt ∈ dm; τ ∈ dt) =
e−

1
2 µ2t f (t, m)dtdm

Eµ (e−µWt | Mt ∈ dm; τ ∈ dt)
,

where Eµ(·) denotes the expectation under the measure Pµ. Now, under Pµ, given τ and Mτ, Wt

depends on a Brownian meander with drift µ, so that

Pµ (Wt ∈ dx |Ws ≥ 0 ∀ s ≤ 1) =
x√
2π

e−
(x+µ)2

2 dx

1√
2π

e−
µ2
2 − µN (−µ)

. (3.6)

Hence, we have

Eµ
Ä
e−µWt | τ = t; Mt = m

ä
=

1√
2π

e−µme−
µ2

2

1√
2π

e−
µ2
2 − µN (−µ)

, (3.7)

and

Pµ (τ ∈ dt; Mt ∈ dm) = eµme−
1
2 µ2t f (t, m)

Å
1−
√

2πe
µ2

2 µN (−µ)
ã

dtdm.

Multiplying this by the density of the Brownian meander with drift gives us the trivariate density of

τµ, Wµ
τ , and Mµ

τ , for a Brownian motion with drift µ.

4 Applications: Pricing of drawdown options

In this section, we give some examples of how the above results can be used to price new types of

drawdown options designed to hedge against large drawdowns over a prolonged period. Expres-

sions of the option prices in terms of a single integral are obtained. We assume the underlying asset

S follows a geometric brownian motion. Let Q denote the risk neutral probability measure. The

dynamics of S under Q is

dSt = St(rdt + σdWt), S0 = x,

so that

St = S0eσWµ
t ,

12



where

Wµ
t := µt + Wt,

µ :=
1
σ
(r− σ2

2
).

We also define

Mµ
t := max

0≤s≤t
Wµ

s ,

St := max
0≤s≤t

Ss = S0eσMµ
t ,

US
t := t− sup{0 ≤ s ≤ t | St = Ss} = Ut,

τS := inf{t ≥ 0 | US
t = 1}.

We note that US
t = Ut a.s., and hence the first time the drawdown period of S reaches length 1 is also

equal to τµ.

4.1 Digital drawdown call option with qualifying period

The digital drawdown call option with qualifying period is an option which pays off a unit amount

when the drawdown period reaches the qualifying period 1, if this happens before fixed maturity T,

but only if the size of drawdown at this stopping time is larger than a prespecified K. The payout

of the option is made at τµ, immediately after the qualifying period is reached. This provides an

insurance against a prolonged drawdown, if the drawdown amount is large. Specifically, under the

risk neutral measure Q, and denoting by C1(K, T) the no-arbitrage price of this option, we have

C1(K, T) = EQ
(

e−rτµ
1{τµ≤T}1{Sτµ−Sτµ≥K}

)
= EQ

Å
e−rτµ

1{τµ≤T}1{S0(eσMµ
τ−eσWµ

τ )≥K}

ã
= EQ

Ç
e−rτµ

1{τµ≤T}1{Wµ
τ≤ 1

σ ln(eσMµ
τ− K

S0
)}

å
,

where EQ(·) denotes the expectation under the risk-neutral measure Q. Using the explicit expression

for the joint density from Theorem 2.5, we obtain

C1(K, T) =
∫ T

0

∫ ∞

m=0

∫ 1
σ ln(eσm− K

S0
)

x=−∞
e−rteµme−

1
2 µ2(t−1) f (t, m)(m− x)e−

(m−x+µ)2

2 dxdmdt

13



=
∫ T

0

∫ ∞

m=0
e−rteµme−

1
2 µ2(t−1) f (t, m)

Ç
e−

k2
m
2 − µ

√
2πN (−km)

å
dmdt,

where to simplify notations, we have

km := m + µ− 1
σ

ln
Å

eσm − K
S0

ã
.

Once the density is computed using the recursion in Theorem 3.1, simple numerical integration will

then give us the price of the option. In the table below, we have computed the prices of the digital

options for parameters r = 0.05, σ = 0.2, S0 = 100, window length D = 1 year and 1/2 year, and a

range of values of strike K and maturity T.

Table 1: Price of Digital drawdown option, Pdigital(K, T)
D = 1 year D = 1/2 year

K T = 3 T = 5 T = 10 T = 3 T = 5 T = 10

50 0.0296580 0.0636077 0.0833472 0.00756906 0.0113523 0.0117774
40 0.0920706 0.147000 0.171030 0.0294364 0.0355767 0.0360833
30 0.232098 0.312667 0.340787 0.118276 0.127419 0.128002
20 0.439482 0.545175 0.576661 0.368242 0.380481 0.381129
10 0.627703 0.751485 0.785158 0.725585 0.740162 0.740852

For small values of K, the options with the same maturity increase in value when the window

length is shortened, as it is easier to achieve the short drawdown period D. However, for large values

of K, there is a trade-off between having a shorter drawdown period or window length, and achieving

a drawdown of K within this short time frame. Hence the option value decreases with the window

length for larger K.

4.2 Drawdown barrier bond with qualifying period

The second derivative we discuss here is a drawdown barrier bond with qualifying period. The

bondholder receives an amount proportional to the drawdown amount, when the drawdown period

reaches the qualifying period length 1, if this happens before maturity T, again only if the size of the

drawdown at this stopping time is larger than a prespecified K, and this payout is made at τµ, im-

mediately after the qualifying period is reached. The digital drawdown call option in the previous

section pays off a unit amount but the payoff for this bond is proportional to the drawdown amount.

14



The payoff of this bond at time τµ is

Payoff =
Ä
Sτµ − Sτµ

ä
1{τµ≤T}1{Sτµ−Sτµ≥K}.

We denote the price of this option by C2(K, T) and using the same method as before, we have

C2(K, T) = EQ
(

e−rτµ
(Sτµ − Sτµ)1{τµ≤T}1{Sτµ−Sτµ≥K}

)
=

∫ T

0

∫ ∞

m=0

∫ 1
σ ln(eσm− K

S0
)

x=−∞
e−rteµme−

1
2 µ2(t−1) f (t, m)(m− x)2e−

(m−x+µ)2

2 dxdmdt

=
∫ T

0

∫ ∞

m=0
e−rteµme−

1
2 µ2(t−1) f (t, m)ψ(km, µ)dmdt,

where we denote

ψ(km, µ) :=
Ç

kme−
k2
m
2 +
√

2πN (−km)(1 + µ2)− 2µe−
k2
m
2

å
.

We compute the prices of the digital options for parameters r = 0.05, σ = 0.2, S0 = 100, window

length D = 1 year and 1/2 year, and a range of values of strike K and maturity T.

Table 2: Price of drawdown option with qualifying period, P(K, T)
D = 1 year D = 1/2 year

K T = 3 T = 5 T = 10 T = 3 T = 5 T = 10

50 0.0728402 0.137864 0.168582 0.0197508 0.0271523 0.0278135
40 0.203153 0.298327 0.333323 0.0729139 0.0838260 0.0845650
30 0.435782 0.560098 0.598316 0.262627 0.277132 0.277930
20 0.680480 0.825283 0.865409 0.663211 0.680418 0.681252
10 0.813264 0.967000 1.007882 1.013994 1.032454 1.033304

This option has a higher payoff than the digital option of the same maturity, window length and

strike, hence it is more expensive. As in the case of Parisian stopping times, the recursion in Theorem

3.1 works particularly well for small values of t. Hence, the computation is fast and particularly

efficient for small values of maturity T relative to the window length D.
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4.3 Parisian drawdown call option

Finally, we discuss the drawdown call option with qualifying period, which is equivalent to a Parisian

call option with the drawdown process as the underlying. The payoff occurs at time τµ, and is

Payoff =
Ä
Sτµ − Sτµ − K

ä+
1{τµ≤T}.

This is a combination of the digital drawdown call and the drawdown barrier bond, becauseÄ
Sτµ − Sτµ − K

ä+
1{τµ≤T} =

Ä
Sτµ − Sτµ

ä
1{τµ≤T}1{Sτµ−Sτµ≥K} − K1{τµ≤T}1{Sτµ−Sτµ≥K}. (4.1)

The price of this option, which we denote by C3(K, T) is

C3(K, T) = C2(K, T)− KC1(K, T). (4.2)

5 Conclusions

In this paper, we prove a variation of the Azéma martingale. This turns out to be a projection of

the Kennedy martingale onto the filtration FU . We use this to study the Parisian drawdown time τ,

and derive an analytical formula for the joint density of the triplet (τ, Mτ, Wτ). We introduce two

new kinds of drawdown type options which take into account both the duration and magnitude of

drawdowns.
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