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Street, London, WC2A 2AE, UK.

29 August 2018

Abstract

We propose Ranking-Based Variable Selection (RBVS), a technique aiming to identify im-
portant variables influencing the response in high-dimensional data. The RBVS algorithm uses
subsampling to identify the set of covariates which non-spuriously appears at the top of a chosen
variable ranking. We study the conditions under which such set is unique and show that it can be
successfully recovered from the data by our procedure. Unlike many existing high-dimensional
variable selection techniques, within all the relevant variables, RBVS distinguishes between the
important and unimportant variables, and aims to recover only the important ones. Moreover,
RBVS does not require any model restrictions on the relationship between the response and
covariates, it is therefore widely applicable, both in a parametric and non-parametric context.
We illustrate its good practical performance in a comparative simulation study. The RBVS
algorithm is implemented in the publicly available R package rbvs.

Key words: Variable screening, subset selection, bootstrap, Stability Selection.

1 Introduction

Suppose Y is a response, covariates X1, . . . , Xp constitute the set of random variables which po-

tentially influence Y , and we observe Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, independent copies of

Z = (Y,X1, . . . , Xp). In modern statistical applications, where p could be very large, even in tens

or hundreds of thousands, it is often assumed that there are many variables having no impact on

the response. It is then of interest to use the observed data to identify a subset of X1, . . . , Xp which

affects Y . The so-called variable selection or subset selection problem plays an important role in

statistical modelling for the following reasons. First of all, the number of parameters in a model

including all covariates can exceed the number of observations when n < p, which makes precise

statistical inference not possible using traditional methods. Even when n ≥ p, constructing a model

with a small subset of initial covariates can boost the estimation and prediction accuracy. Second,
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parsimonious models are often more interpretable. Third, identifying the set of important variables

can be the main goal of statistical analysis, which precedes further scientific investigations.

Our aim is to identify a subset of {X1, . . . , Xp} which contributes to Y , under scenarios in which

p is potentially much larger than n. To model this phenomenon, we work in a framework in which

p diverges with n. Therefore, both p and the distribution of Z depend on n and we work with a

triangular array, instead of a sequence. To facilitate interpretability, here for each j, what variable

Xj represents does not change as p (and n) increases. Our framework includes, for instance,

high-dimensional linear and non-linear regression models. Our proposal, termed Ranking-Based

Variable Selection (RBVS), can in general be applied to any technique which allows the ranking of

covariates according to their impact on the response. Therefore, we do not impose any particular

model structure on the relationship between Y and X1, . . . , Xp. However ω̂j = ω̂j(Z1, . . . ,Zn),

j = 1, . . . , p, a chosen measure used to assess the importance of covariates (either joint or marginal)

may require some assumptions on the model. The main ingredient of the RBVS methodology is a

variable ranking defined as follows.

Definition 1.1. The variable ranking Rn = (Rn1, . . . , Rnp) based on ω̂1, . . . , ω̂p is a permutation

of {1, . . . , p} satisfying ω̂Rn1 > . . . > ω̂Rnp . Potential ties are broken at random uniformly.

A large number of measures can be used to construct variable rankings. In the linear model, the

marginal correlation coefficient serves as an example of such a measure. It is the main component

of Sure Independence Screening (SIS, Fan and Lv (2008)). Hall and Miller (2009a) consider the

generalized correlation coefficient, which can capture (possibly) non-linear dependence between Y

and Xj ’s. Along the same lines, Fan et al. (2011) propose a procedure based on the magnitude

of spline approximations of Y over each Xj , aiming to capture dependencies in non-parametric

additive models. Fan and Song (2010) extend SIS to a class of generalised linear models (GLMs),

using estimates of the maximum marginal likelihood as the measure of association. Cho and

Fryzlewicz (2012) consider variable screening based on the tilted correlation, which accounts for

high correlations between the variables, when such are present. Li et al. (2012a) utilise the Kendall

rank correlation coefficient, which can be applicable when Y is, for example, a monotonic function

of the linear combination of X1, . . . , Xp. Several model-free variable ranking procedures have been

also advocated in the literature. Li et al. (2012b) propose to rank the covariates according to their
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distance correlation (Székely and Rizzo, 2009) to the response. Zhu et al. (2011) propose to use the

covariance between Xj and the cumulative distribution function of Y conditioning on Xj at point

Y as the quantity estimated for screening purposes. He et al. (2013) suggest a ranking procedure

relying on the marginal quantile utility; Shao and Zhang (2014) introduce a ranking based on the

martingale difference correlation. An extensive overview of these and other measures that can

be used for variable screening can be found in Liu et al. (2015). In this work we also consider

variable rankings based on measures which originally have not been developed for this purpose, e.g.

regression coefficients estimated via penalised likelihood minimisation procedures such as Lasso

(Tibshirani, 1996), SCAD (Fan and Li, 2001) or MC+ (Zhang, 2010).

Variable rankings are used for the purpose of so-called variable screening (Fan and Lv, 2008).

The main idea behind this concept is that important covariates are likely to be ranked ahead of

the irrelevant ones, so variable selection can be performed on the set of the top-ranked variables.

Variable screening procedures attained recently considerable attention due to their simplicity, wide

applicability and computational gains they offer to practitioners. Hall and Miller (2009a) suggest

that variable rankings can be used for the actual variable selection. They propose to construct

bootstrap confidence intervals for the position of each variable in the ranking and select covariates

for which the right end of the confidence interval is lower than some cutoff, e.g. p/2. This principle,

as its authors admit, may lead to undesirable high rate of false positives, and the choice of the

ideal cutoff might be very difficult in practice, which was the case in our real data study in the

supplementary materials. Hall and Miller (2009b) show that various types of the bootstrap are

able to estimate the distribution of the ranks consistently. However, they do not prove that their

procedure is able to recover the set of the important variables.

Another approach involving subsampling is taken by Meinshausen and Bühlmann (2010), who

propose Stability Selection (StabSel), a general methodology aiming to improve any variable selec-

tion procedure. In the first stage of the StabSel algorithm, a chosen variable selection technique

is applied to randomly picked subsamples of the data of size bn/2c. Subsequently, the variables

which are most likely to be selected by the initial procedure, i.e. their selection probabilities exceed

a prespecified threshold, are taken as the final estimate of the set of the important variables. An

appropriate choice of the threshold leads to finite sample control of the rate of false discoveries of

a certain type. Shah and Samworth (2013) propose a variant of StabSel with a further improved
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error control.

Our proposed method also incorporates subsampling to boost existing variable selection tech-

niques. Conceptually, it is different from StabSel. Informally speaking, RBVS sorts covariates from

the most to the least important, while StabSel treats variables as either relevant or irrelevant and

equally important in either of the categories. This has several important consequences. First of

all, RBVS is able to simultaneously identify subsets of covariates appearing to be important con-

sistently over subsamples. The same is not computationally feasible for Stability Selection, which

only analyses the marginal distribution of the initial variable selection procedure. The bootstrap

ranking approach of Hall and Miller (2009a) relies on marginal confidence intervals, thus it can be

also regarded as a “marginal” technique. Second, RBVS does not require the choice of a thresh-

old. The main parameters RBVS require are those from the incorporated subsampling procedure

(naturally, these are also required by the approaches of Hall and Miller (2009a) and Meinshausen

and Bühlmann (2010)), thus appears to be more automatic than both StabSel and the approach

of Hall and Miller (2009a).

The key idea behind RBVS stems from the following observation: although some subsets of

{X1, . . . , Xp} containing irrelevant covariates may appear to have a high influence over Y , the

probability that they will consistently exhibit this relationship over many subsamples of observa-

tions is small. On the other hand, truly important covariates will typically consistently appear to

be related to Y , both over the entire sample and over randomly chosen subsamples. This motivates

the following procedure. In the first stage, we repeatedly assess the impact of each variable on the

response, with the use of a randomly picked part of the data. For each random draw, we sort the

covariates in decreasing order, according to their impact on Y , obtaining a ranking of variables. In

the next step, we identify the sets of variables which appear in the top of the rankings frequently

and we record the corresponding frequencies. Using these, we decide how many and which variables

should be selected.

RBVS is a general and widely-applicable approach focusing on the variable selection; it can

be used with any measure of dependence between Xj and Y , either marginal or joint, both in a

parametric and non-parametric context. The framework does not require Y and Xj ’s to be scalar,

they can also be e.g. multivariate, or be curves or graphs. Furthermore, the covariates that are

highly, but spuriously related to the response are intuitively less likely to exhibit relationship to

4



Y consistently over the subsamples than the important ones, thus our approach is “reluctant” to

select irrelevant variables. Finally, the RBVS algorithm is easily parallelizable and adjustable to

available computational resources, making it useful in analysis of extremely high-dimensional data

sets. Its R implementation is publicly available in the R package rbvs (Baranowski et al., 2015).

The rest of the paper is organised as follows. In Section 2, we define the set of important

covariates for variable rankings and introduce the RBVS algorithm. We then show that RBVS is

a consistent statistical procedure. We also propose an iterative extension of RBVS, which aims to

boost its performance in the presence of strong dependencies between the covariates. The empirical

performance of RBVS is illustrated in Section 3. All proofs are deferred to the Appendix. Additional

numerical experiments and real data analysis could be found in the supplementary materials.

1.1 Motivating examples

To further motivate our methodology, we discuss the following examples.

Example 1.1 (riboflavin production with Bacillus subtils (Meinshausen and Bühlmann, 2010)).

The data set consists of the response variable being the logarithm of the riboflavin production

rate and transformed expression levels of p = 4088 genes for n = 111 observations. The aim is to

identify those genes whose mutation leads to a high concentration of riboflavin.

Example 1.2 (Fan and Lv (2008)). Consider a random sample generated from the linear model

Yi = 5Xi1 + 5Xi2 + 5Xi3 + εi, i = 1, . . . , n, where (Xi1, . . . , Xip) ∼ N (0,Σ) and εi ∼ N (0, 1) are

independent, Σjk = 0.75 for j 6= k and Σjk = 1 otherwise. The number of covariates p = 4088 and

the sample size n = 111 are the same as in Example 1.1.

We consider the variable ranking defined in Definition 1.1, based on the sample marginal corre-

lation coefficient in both examples. This choice is particularly reasonable in Example 1.2, where at

the population level the Pearson correlation coefficient is the largest for X1, X2 and X3 which are

the only truly important ones. The linear model has been previously used to analyse the riboflavin

data set (Meinshausen and Bühlmann, 2010), therefore the sample correlation may be useful in

identifying important variables in Example 1.1 too.

Figure 1 demonstrates the “paths” generated by Algorithm 1 introduced in the next section. In

both examples, the paths share common features, i.e. the estimated probability is large for the first
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few values of k and it declines afterwards. Interestingly, in Example 1.2 the curves reach levels very

close to 0 shortly after k = 3, which is the number of the important covariates here. Crucially, the

subset corresponding to k = 3 contains the three first covariates (Xi1, Xi2, Xi3), which are relevant

in this example. This observation suggests that such paths as those presented in Figure 1 may be

used to identify how many and which variables are important, and hence for the purpose of variable

selection.
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(a) Example 1.1
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(b) Example 1.2

Figure 1: Estimated probabilities corresponding to the k-element sets which appear to be the most highly
correlated to the response based on subsamples. On the x-axis, k denotes the number of elements in a set.
On the y-axis we have the estimated probability corresponding to the most frequently occurring subset of
covariates of size k. The three different lines in each example correspond to a different subsample size used
to generate paths details are given in Section 2).

2 Methodology of Ranking-Based Variable Selection

In this section, we introduce the Ranking-Based Variable Selection algorithm and its extension.

The main purpose of RBVS is to find the set of top-ranked variables, which we formally define.

2.1 Notation

Hereafter, |A| stands for the number of elements in a set A. For every k = 0, . . . , p (where p grows

with n), we denote Ωn,k = {A ⊂ {1, . . . , p} : |A| = k}. For the rest of the paper, we suppress the

dependence of Ωn,k on p (and thus n) for notational convenience, and simply write Ωn,k ≡ Ωk.

For any A ∈ Ωk, k = 1, . . . , p, we define the probability of its being ranked at the top by a given
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ranking method as

πn(A) = P
(
{Rn1(Z1, . . . ,Zn), . . . , Rn,|A|(Z1, . . . ,Zn)} = A

)
. (1)

For k = 0, we set πn(A) = πn(∅) = 1. Furthermore, for any integer m satisfying 1 ≤ m ≤ n, we

define

πm,n(A) = P
(
{Rn1(Z1, . . . ,Zm), . . . , Rn,|A|(Z1, . . . ,Zm)} = A

)
. (2)

Here we are interested in the probability of being ranked at the top using partial observations.

Note that one could think of the random samples in our framework as forming a triangular array,

so a double subscript is used in the definition above.

2.2 Definition of a k-top-ranked, a locally-top-ranked, and the top-ranked set

Given a ranking scheme, we define the set of important variables in the context of variable rankings.

Definition 2.1. A ∈ Ωk (with k ∈ {0, . . . , p− 1}) is k-top-ranked if lim supn→∞ πn(A) > 0.

Definition 2.2. A ∈ Ωk is said to be locally-top-ranked if it is k-top-ranked and a k+1-top-ranked

set does not exist, i.e. lim supn→∞ πn(A) = 0 for all A ∈ Ωk+1.

Definition 2.3. A ∈ Ωk is said to be top-ranked if it is locally-top-ranked, and there does not

exist any other locally-top-ranked sets A′ ∈ Ωk′ for any k′ < k. It is unique when the existence of

another top-ranked set A′ ∈ Ωk implies A = A′.

Some remarks are in order. Firstly, Definition 2.1 formalises the statement that A appears at the

top of the ranking with non-negligible probability. We use limit-supremum in the definitions above

as limn→∞ πn(A) in general might not exist. Furthermore, we consider lim supn→∞ πn(A) > 0

in Definition 2.1, as in some scenarios it is strictly lower than 1. In Example 1.2, for instance,

X1, X2, X3 have equal impact on Y , hence under a reasonable ranking scheme (e.g. via marginal

correlations), limn→∞ πn(A) = 1/3 for k = 1 and A = {1}, {2}, {3}.

Secondly, it can be shown that locally-top-ranked sets might exist for different values of k in

some carefully constructed examples, where k is allowed to grow with n. For instance, suppose that

Yi =
∑bp/3c

j=1 2Xij +
∑b2p/3c

j=bp/3c+1Xij + εi, where (Xi1, . . . , Xip) ∼ N (0, Ip) and εi ∼ N (0, 1). Then

7



using marginal correlations, it is easy to see that both {1, . . . , bp/3c} and {1, . . . , b2p/3c} are locally-

top-ranked. Nevertheless, this issue can be handled by picking the smallest k in Definiton 2.3. The

appropriateness of this definition is demonstrated in Section 2.3.

Thirdly, although the top-ranked set is unique under our assumptions (see also Section 2.3),

this does not imply that other k-top-ranked sets are unique as well. In Example 1.2 again, we

observe that {1}, {2}, {3} are 1-top-ranked and {1, 2}, {1, 3}, {2, 3} are 2-top-ranked. However, the

top-ranked set is unique and equal to {1, 2, 3}.

Finally, note that for any given {Zi}ni=1, 1 =
∑
A∈Ωk

1{Rn1(Z1,...,Zn),...,Rnk(Z1,...,Zn)}=A}

∣∣∣{Zi}ni=1

=
∑
A∈Ωk

P
(
{Rn1(Z1, . . . ,Zn), . . . , Rnk(Z1, . . . ,Zn)} = A

∣∣∣{Zi}ni=1

)
. By taking the expection over

{Zi}ni=1 on both sides, we have that
∑
A∈Ωk

πn(A) = 1 for every k and n, and hence maxA∈Ωk πn(A) ≥
1

(pk)
for every k = 1, . . . , p. In particular, if p were bounded in n, the top-ranked set (as well as

locally-top-ranked sets) would not exist. Therefore, we restrict ourselves to the case of p diverging

with n (but allowing for both p ≤ n and p > n). In Section 3 we show that RBVS works well

empirically for p both comparable to and much larger than n.

2.3 Top-ranked set for a class of variable rankings

The top ranked set defined in Definition 2.3 exists for a wide class of variable rankings, as we

show in Proposition 2.1 below. Let ωj , j = 1, . . . , p, be a measure of the contribution of each Xj

to the response at the population level. Note that ωj could depend on the distribution of Z =

(Y,X1, . . . , Xp) (therefore on n, as p changes with n), so could in theory change with n. However,

we suppress this dependence in the notation for simplicity. Furthermore, let ω̂j = ω̂j(Z1, . . . ,Zn)

be an estimator of ωj . We make the following assumptions.

(C1) Z1, . . . ,Zn are independent. For some ϑ > 0 and any cϑ > 0 we have

max
j=1,...,p

P
(
|ω̂j − ωj | ≥ cϑn−ϑ

)
≤ Cϑ exp (−nγ) ,

where constants Cϑ, γ > 0 do not depend on n.

(C2) The index set of important variables is denoted as S ⊂ {1, . . . , p}. S does not depend on n

or p, and could potentially be an empty set.
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(C3) For every a /∈ S, there exists Ma ⊂ {1, . . . , p}\S, such that a ∈ Ma, the distribution of

{ω̂j}j∈Ma is exchangeable and |Ma| →
n
∞.

(C4) There exists η ∈ (0, ϑ], where ϑ is as in (C1), and cη > 0 such that minj∈S ωj −maxj /∈S ωj ≥

cηn
−η uniformly in n.

(C5) The number of covariates p ≤ C1 exp
(
nb1
)
, where 0 < b1 < γ and γ is as in (C1).

Condition (C1) is a concentration bound which holds for a wide range of measures. A few examples

are listed below. The sample correlation coefficient satisfies (C1) when the data follow a multi-

variate normal distribution (Kalisch and Bühlmann, 2007, Lemma 1), or when Y,X1, . . . , Xp are

uniformly bounded (Delaigle and Hall, 2012, Theorem 1), which follows from Bernstein inequality.

Li et al. (2012a) in their Theorem 2 demonstrate that Kendall’s τ meets (C1) under the marginally

symmetric condition and multi-modal condition. Distance correlation satisfies (C1) under regu-

larity assumptions on the tails of distribution of Xj ’s and Y (Li et al., 2012b, Theorem 1). The

Lasso and the Dantzig selector (Candes and Tao, 2007) estimates of the regression coefficients in

the linear model meet (C1) with additional assumptions on the covariates and the sparsity of the

regression coefficients (Lounici, 2008, Theorem 1).

Condition (C2) implies that |S| is bounded in n, which combined with diverging p implies that

the number of important covariates is small. This, combined with Conditions (C3) and (C4) can

be seen as a variant of the well-known “sparsity” assumption.

We are interested in the scenarios where there are a few variables with large impact on the

response plus many variables with similar impact on the response, where those many variables can

only have zero or small impact on the response. Here the first part is characterised by Condition

(C3), while the second part is characterised by Condition (C4).

Condition (C3) can be linked to the sparsity assumption which requires that only a few covari-

ates have a significant impact on the response. In our framework, these are {Xj}j∈S . For all the

remaining covariates, the sparsity may require the regression coefficients corresponding to them to

be zero. On the other hand, in (C3), each Xa with a /∈ S may contribute to Y , but, speaking

heuristically, it is difficult to select a particular Xa with a /∈ S, as many covariates have the same

impact on Y . As such, none of these would be included in our framework. We believe that this

assumption is likely to be met at least approximately (in the sense that large groups of covariates
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exhibit similar small impact on the response), especially for large dimensions p. In addition, we

note that Meinshausen and Bühlmann (2010) use the exchangeability assumption on the selection

of noise variables. However, it concerns a variable selection procedure, while we impose restrictions

on the measure ω̂j . The main difference between their assumption and (C3) is that they require

all covariates to be equally likely to be selected, while we allow for many groups within which each

variable has the same impact on Y . In the remaining of the manuscript, we refer to the elements

of set S as “relevant and important” (or just “important”) variables, to the covariates with zero

impact on the response as “irrelevant” variables, and to the rest as “relevant but unimportant”

variables.

Furthermore, in Condition (C4), we assume that there is a gap between minj∈S ωj and maxj /∈S ωj ,

which separates the important variables from the remaining (i.e. irrelevant, and relevant but unim-

portant) ones. This gap is allowed to decrease slowly to zero. Conditions (C1) and (C4) together

imply that the ranking based on ω̂j has the sure independence screening property (Fan and Lv,

2008).

Finally, Condition (C5) restricts the maximum number of covariates, but allows the ultra-high

dimensional setting where the number of covariates grows exponentially with nb1 for some b1 > 0.

Proposition 2.1. Let Rn be a variable ranking based on ω̂j, j = 1, . . . , p, given in Definition 1.1.

Under conditions (C1)–(C5), the unique top-ranked set defined in Definition 2.3 exists and equals

S.

Proposition 2.1 can be applied to establish a link between the top-ranked set and the set of

the important variables understood in a classic way. Consider the following linear regression model

Y =
∑p

j=1 βjXj +ε, where βj ’s are unknown regression coefficients, Xj ’s - random predictors and ε

is an error term. In this model, the top-ranked set could coincide with {k : βk 6= 0}. To see that, we

consider the variable ranking based on ω̂j = Ĉor (Y,Xj), which satisfies (C1) when (Y,X1, . . . , Xp)

is e.g. Gaussian (Kalisch and Bühlmann, 2007). Condition (C3) is met when e.g. Ĉor (Y,Xj) = ρ

for some ρ ∈ (−1, 1) and all j such that βj = 0, and p →
n
∞. Imposing some restrictions on

the correlations between the covariates, we also guarantee that (C4) holds. Finally, provided that

p→
n
∞ no faster than as indicated in (C5), Proposition 2.1 would then imply that {k : βk 6= 0} is

the unique top-ranked set.
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Nevertheless, we would emphasize that top-ranked set is only about both relevant and important

variables with respect to the chosen measure. Relevant but unimportant variables (unimportant

via exchangeability, in the sense of (C3), so not necessarily small in the traditional sense) will

not be included in the top-ranked set. For instance, in the setting of Example 1.2, but with

Yi = 5Xi1 + 5Xi2 + 5Xi3 +
∑p

j=dp/2e+1 βXij + εi and |β| < 5, the top-ranked set via marginal

correlations would still be {1, 2, 3}, even though thanks to the covariance structure in the covariates,

for all j = 1, 2, 3, dp/2e+ 1 . . . , p, Cor(Y,Xj) is non-zero. For other work to overcome the issue of

small relevant covariates, see Barut et al. (2016). In particular, Barut et al. (2016) also deals with

the issue of marginally uncorrelated covariates, which we aim to address by proposing an iterative

approach in Section 2.7. See also our simulation examples in this direction in Section 3.

2.4 Main idea of Ranking-Based Variable Selection

Now assume the existence and uniqueness of the top-ranked set S, to construct an estimate of S,

we introduce the estimators of πm,n(A) defined by (2) using a variant of the m-out-of-n bootstrap

(Bickel et al., 2012).

Definition 2.4. Fix m ∈ {1, . . . , n}, B ∈ N and set r = bn/mc. For any b = 1, . . . , B, let

Ib1, . . . , Ibr be mutually exclusive subsets of {1, . . . , n} of size m, drawn uniformly from {1, . . . , n}

without replacement. Assume that the sets of subsamples are independently drawn for each b. For

any A ∈ Ωk, we estimate πm,n(A) by the fraction of subsamples in which A appeared at the top of

the ranking, i.e.

π̂m,n(A) = B−1
B∑
b=1

r−1
r∑
j=1

1{
A=
{
Rn,1({Zi}i∈Ibj ),...,Rn,|A|({Zi}i∈Ibj )

}}.
In general πm,n(A) can be different from πn(A), however, we will show in Section 2.6 that

πm,n(A) and πn(A) are similar (in term of their magnitudes) for the same subsets, provided that

m is not too small. This combined with some bounds on the estimation accuracy of π̂m,n(A)

will imply that π̂m,n(A) can be used to find k-top-ranked sets from the data. In practice the

number of elements in S is typically unknown, thus we need to consider subsets of any size in

our estimation procedure. From our argument above, for n sufficiently large, the top-ranked set

S, provided existence and uniqueness, will have to be one of the following sets for a particular
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k ∈ {0, 1, . . . , p− 1}, where

Ak,m = argmaxA∈Ωk
πm,n(A). (3)

We define the correspondingly sample version of Ak,m as

Âk,m = argmaxA∈Ωk
π̂m,n(A). (4)

To motivate the use of resampling scheme, we remark that some irrelevant covariates (i.e. those

having zero impact on the response) can spuriously exhibit large empirical impact on the response,

especially when p� n. The resampling based set probability estimation could provide more stable

estimates to help discover variables which non-spuriously appear at the top of the analysed rankings.

Moreover, to understand the importance of the parameter B introduced in Definition 2.4, we note

that maxA∈Ωk π̂m,n(A) ≥ (Br)−1. For moderate sample sizes, r may not be large, while we expect

the majority of πm,n(A)’s to be small, even smaller than 1/r. In this situation, the estimation

error of maxA∈Ωk π̂m,n(A) with B = 1 for is expected to be high and estimate of Âk,m could be

inaccurate. A moderate value of B aims to bring Âk,m closer to its population counterpart Ak,m.

The theoretical requirements on m and B are given in Section 2.6; our guidance for the choice of

m and B in practice is provided in Section 3.3.

In practice, we do not know the size of the top-ranked set s = |S|, so it should be estimated as

well. One possibility is to apply hard thresholding rule and set ŝζ = min
{
k : π̂m,n

(
Âk+1,m

)
≤ ζ
}

,

where ζ > 0 is a pre-specified threshold. This approach could be justified by the existence of the

asymptotic gap between πm,n(As+1,m) and πm,n(As,m). However, the magnitude of this difference is

typically unknown and can be rather small, which makes the choice of ζ difficult. As an alternative,

we propose to estimate s by

ŝ = argmink=0,...,kmax−1

π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
, (5)

for some pre-specified τ ∈ (0, 1], and some pre-specified large integer kmax. The intuition of this

choice is explained as follows. Note that

π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
=

(
π̂m,n(Âk+1,m)

π̂m,n(Âk,m)

)τ (
1

π̂m,n(Âk,m)

)1−τ

.
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When τ = 1, we look for k where π̂m,n(Âk+1,m) declines in proportion the most drastically. For

a general τ , in essence, we look for k that is a trade-off between the most drastically decline

in proportion and the hard thresholding rule (by not permitting π̂m,n(Âk,m) to be too small).

Furthermore, since we assume that |S| is much smaller than p, it is computationally more efficient

to optimize over {0, . . . , kmax} instead of {0, . . . , p − 1} in (5). In Section 2.6, we show that this

approach leads to consistent estimation of S.

2.5 The Ranking-Based Variable Selection algorithm and its computational cost

The RBVS algorithm consists of the four main steps. Its pseudocode is described in Algorithm 1.

In Step 1, we draw subsamples from the data using the subsampling scheme introduced in Defi-

nition 2.4. In Step 2, for each subsample drawn we calculate the estimates of ωj ’s based on the

subsamples Ibl, and sort the sample measures
{
ω̂j({Zi}i∈Ibl)

}p
j=1

in non-increasing order to find

Rn({Zi}i∈Ibl) defined in Definition 1.1. In Step 3, for each k = 1, . . . , kmax we find Âk,m, the

k-element set the most frequently occurring in the top of Rn({Zi}i∈Ibl), for all b = 1, . . . , B and

l = 1, . . . , r. In Step 4, probabilities π̂m,n(Âk,m) are used to find ŝ, the estimate of the size of the

top-ranked set, and Ŝ = Âŝ,m is returned as the final estimate of S.

Algorithm 1 Ranking-Based Variable Selection algorithm

Input: Random sample Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, subsample size m with 1 ≤ m ≤ n,
positive integers kmax, B, and τ ∈ (0, 1].

Output: The estimate of the set of important variables Ŝ.
procedure RBVS(Z1, . . . ,Zn,m,B, kmax, τ)

Step 1 Let r = bn/mc. For each b = 1, . . . , B, draw uniformly without replacement m-element
subsets Ib1, . . . , Ibr ⊂ {1, . . . , n}.
Step 2 Calculate ω̂j({Zi}i∈Ibl) and the corresponding variable ranking Rn({Zi}i∈Ibl) for all
b = 1, . . . , B, l = 1, . . . , r and j = 1, . . . , p.
Step 3 For k = 1, . . . , kmax, find Âk,m given by (4) and compute π̂m,n(Âk,m).

Step 4 Find ŝ = argmink=0,...,kmax−1
π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
.

return Ŝ = Âŝ,m.
end procedure

We now investigate the computational complexity of Algorithm 1. Denote by c(n, p) the com-

putational cost of evaluating ω̂j for all j = 1, . . . , p using n observations. Firstly, performing B

times of random partition of n observations into r subsets (each of size m and dimension p) takes

O(Bn) operations, while finding all ω̂j ’s for all Br different subsets takes c(m, p) × Br manipula-
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tions. Next, evaluating the rankings based on each subset (only for those kmax highest ones) takes

O(p + kmax log(kmax)) operations via the selection algorithm and QuickSort partition scheme, so

doing it for all Br subsets takes O
(
(p + kmax log(kmax))Br

)
operations. Moreover, Step 3 can be

performed in O(Brk2
max) basic operations (NB. see the supplementary materials for more informa-

tion). Finally, the remaining step requires O(kmax) operations. Consequently, the total compu-

tational complexity of Algorithm 1 is c(m, p) × Br + O(max{p, k2
max}Br). For our recommended

choice of kmax and m, see Section 3.3.

2.6 Theoretical results

Under the theoretical framework below, we show that Algorithm 1 recovers the top-ranked set given

by Definition 2.3 with probability tending to 1 as n→∞. We make the following assumptions.

(A1) Z1, . . . ,Zn are independent. For some ϑ > 0 and any cϑ > 0 we have that for any n,

max
j=1,...,p

P
(
|ω̂j(Z1, . . . ,Zm)− ωj | ≥ cϑm−ϑ

)
≤ Cϑ exp (−mγ) ,

where constants Cϑ, γ > 0 and m (as a function of n) is specified in Assumption (A3) below.

(A2) There exist constants C1 > 0 and 0 < b1 < γ with γ as in (A1) s.t. p ≤ C1 exp
(
nb1
)
.

(A3) The subsample size m goes to infinity at rate nb2 , with 0 < b2 < 1 and γb2 − b1 > 0, where γ

is as in (A1) and b1 as in (A2).

(A4) The index set of important variables is denoted as S ⊂ {1, . . . , p}. S does not depend on n

(or p). Denote s = |S|. For every a /∈ S, there exists Ma ⊂ {1, . . . , p}\S, such that a ∈Ma,

the distribution of {ω̂j,m}j∈Ma is exchangeable and mina/∈S |Ma| ≥ C3n
b3 with C3 > 0 and

b3/2 < 1− b2 < b3, where b2 from (A3).

(A5) There exists η ∈ (0, ϑ], where ϑ is as in (C1), and cη > 0 such that minj∈S ωj −maxj /∈S ωj ≥

cηm
−η uniformly in n. (Here, m, as in (A3), depends solely on n.)

(A6) The number of random draws B is bounded in n.

(A7) The maximum subset size kmax ∈ [s, C4n
b4 ] with C4 > 0 and b4 satisfying b3 > b4, where b3

is as in (A4).
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Assumptions (A1), (A2), (A4) and (A5) can be seen as natural extensions or restatements of

(C1) – (C5), to the case when ω̂j ’s are evaluated with m out of n observations only. They are

formally repeated here for the sake of clarity. Note that the last part of (A4) implies a lower bound

on p (≥ C3n
b3).

Assumption (A3) establishes the required size of the subsample size m. It implies that both

n/m →
n
∞ and m →

n
∞. Such condition is common in literature on bootstrap resampling and

U-statistics, see for instance Bickel et al. (2012), Götze and Račkauskas (2001) or Hall and Miller

(2009b). Finally, (A6) and (A7) impose conditions on B and kmax respectively.

Theorem 2.1. Suppose that assumptions (A1)–(A7) hold. Write Ŝ = Âŝ,m, where Âŝ,m is given

by (4) and (5). Then, for any τ ∈ (0, 1], there exists a constants β,Cβ > 0 such that P
(
Ŝ 6= S

)
=

o
(
exp

(
−Cβnβ

))
→
n

0.

The above theorem states that Ŝ obtained by RBVS is a consistent estimator of the top-ranked

set S, with P
(
Ŝ = S

)
goes to one at an exponential rate. Its proof can be found in the Appendix.

Some empirical evidence is provided in Section 3.

2.7 Iterative extension of RBVS

In the presence of strong dependence between covariates, measure ω̂j may fail to detect some

important variables. For instance, a covariate may be jointly related but marginally unrelated to

the response (see Fan and Lv (2008), Barut (2013) or Barut et al. (2016)). Under such a setting,

the estimated top-ranked set may only contain a subset of the important variables. To overcome

this problem, we propose IRBVS, an iterative extension of Algorithm 1. The pseudocode of IRBVS

is given in Algorithm 2. In each iteration, IRBVS removes the linear effect on the response of the

variables found at the previous iteration. Therefore, it is applicable when the relationship between

Y and Xj ’s is at least approximately linear. Nevertheless, it is possible to extend our methodology

further. For instance, Barut (2013) and Barut et al. (2016) demonstrate how to remove the impact

of a given set of covariates on the response in generalised linear models.

Iterative extensions of variable screening methodologies are frequently proposed in the literature,

see for instance Fan and Lv (2008), Zhu et al. (2011) or Li et al. (2012a). A practical advantage

of the IRBVS algorithm over its competitors is that it does not require the specification of the
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Algorithm 2 Iterative Ranking-Based Variable Selection algorithm

Input: Random sample Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, subsample size m with 1 ≤ m ≤ n,
positive integers kmax, B , and τ ∈ (0, 1].

Output: The estimate of the set of important variables Ŝ.
procedure IRBVS(Z1, . . . ,Zn,m,B, kmax, τ)

Initialise Ŝ = ∅.
repeat

Step 1 Let (Y ∗1 , . . . , Y
∗
n )′ and (X∗1j , . . . , X

∗
nj)
′ (for j = 1, . . . , p) be the residual vectors left

after projecting (Y1, . . . , Yn)′ and (X1j , . . . , Xnj)
′ onto the space spanned by the covariates

with indices in Ŝ. (NB. for any j′ ∈ S, (X∗1j′ , . . . , X
∗
nj′)
′ = 0.) Set Z∗i = (Y ∗i , X

∗
i1, . . . , X

∗
ip) for

i = 1, . . . , n.
Step 2 Calculate Ŝ∗ = RBVS(Z∗1, . . . ,Z

∗
n,m,B, kmax, τ).

Step 3 Set Ŝ := Ŝ∗ ∪ Ŝ.
until Ŝ∗ = ∅
return Ŝ.

end procedure

number of variables added at each iteration or the total number of iterations. Moreover, IRBVS

appears to offer better empirical performance than other iterative methods such as ISIS (Fan and

Lv, 2008); see Section 3.

2.8 Relations to some selected existing methodology

In this section, we provide a brief overview of the differences between Algorithm 1, Stability selection

of Meinshausen and Bühlmann (2010) and the bootstrap ranking approach of Hall and Miller

(2009a).

2.8.1 Stability selection (StabSel)

Denote the selection probabilities by πj = P
(
j ∈ Ŝλ

)
, j = 1, . . . , p, where Ŝλ is the set of variables

selected by a chosen variable selection technique with its tuning parameter set to λ. The aim

of StabSel is two-fold: first, to select covariates that the initial procedure selects with a high

probability; and second, to bound the average number of false positives (denoted by EV ) below

some prespecified level α > 0. For this purpose, Meinshausen and Bühlmann estimate πj ’s and

select variables for which π̂j > π, where π ∈ (1/2, 1) is a pre-specified threshold. To control EV ,

one can set λ such that |Ŝλ| ≤ q, where q ∈ {1, . . . , p} depends on π and α and is adjusted to

ensure EV ≤ α. The exact formula for q and other possible ways of controlling EV are given in

Meinshausen and Bühlmann (2010).
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In contrast to StabSel, which needs a variable selection procedure, RBVS selects variables based

on a variable ranking. In particular, in our approach we consider joint probabilities πm,n(A), while

in StabSel only marginal probabilities are used. The estimates of the joint probabilities can be

used to determine the number of important covariates at the top of the variable ranking, without

the specification of a threshold, as we demonstrate in Section 2.6. Consequently, we believe that

RBVS can be seen as more automatic and “less marginal” than StabSel.

2.8.2 The bootstrapped rankings

Let rnj be the position of the jth covariate in the variable ranking Rn = (Rn1, . . . , Rnp). Mathemat-

ically, assuming there is no tie, rnj = l if and only if when Rnl = j. To identify important covariates

based on Rn, Hall and Miller (2009a) compute [r−nj , r
+
nj ], two-sided, equal tiled, percentile-method

bootstrap confidence intervals for rnj at a significance level α. A variable is considered to be influ-

ential when r+
nj is lower than some prespecified cutoff level c, for instance c = p/2. The number of

variables selected by the procedure of Hall and Miller (2009a) depends therefore on α and c and

“marginal” confidence intervals [r−nj , r
+
nj ]. By contrast, RBVS is based on the joint probabilities

πm,n(A) and does not require the specification of a threshold or a significance level.

2.8.3 Computational complexity of the related methods

Table 1 summarizes computational complexity of Algorithm 1 (with m = bn/2c) and its competi-

tors: SIS (Fan and Lv, 2008) and StabSel (Meinshausen and Bühlmann, 2010). For reference, we

include the computational complexity of the k-fold cross-validation (k-fold CV), which is frequently

used to find optimal parameters for e.g. Lasso, MC+ or SIS. The computational complexity of the

method proposed by Hall and Miller (2009a) is comparable to StabSel, hence omitted in this com-

parison. In theory, SIS requires the least computational resources, especially in the case of p� n.

Simple k-fold cross-validation has the second lowest computational complexity. StabSel in the case

of n >
√
p is theoretically quicker than RBVS, however, the common factor B× c (n/2, p) typically

dominates both O(Bp) and O(max{p, n2}), and our experience suggests that StabSel and RBVS

usually take similar amount of computational resources.
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k-fold CV SIS StabSel RBVS

k × c
(

(k−1)n
k

, p
)

O(np) + k × c
(

(k−1)n
k

, n
log(n)

)
B × c

(
n
2
, p

)
+O(Bp) B × c(n

2
, p) +O(max{n2, p}B)

Table 1: Computational complexity of Algorithm 1 and its competitors. The cost of the base learner
in relation to the sample size n and the number of variables p is denoted by c(n, p); B is the number of
subsamples used in StabSel and RBVS. Parameters for SIS, StabSel, RBVS are set to the recommended
values. For SIS, we assume that k-fold CV is used after the screening step.

3 Simulation study

To facilitate comparison among different methods, we focus on linear models in this section. We

also provide two real data examples in the supplementary materials.

3.1 Simulation models

Model (A) Taken from Fan and Lv (2008): Yi = 5Xi1 + 5Xi2 + 5Xi3 + εi, where (Xi1, . . . , Xip)

are i.i.d. observations from N (0,Σ) distribution and εi follow N (0, 1) distribution. The covariance

matrix satisfies Σjj = 1, j = 1, . . . , p, Σjk = ρ, |ρ| < 1 for k 6= j. This is a relatively easy setting,

where all important Xj ’s are “visible” to any reasonable marginal approach as they are the most

highly correlated to Y at the population level.

Model (B) Factor model taken from Meinshausen and Bühlmann (2010): Yi = β1Xi1 + . . . +

βpXip + εi, where Xij ’s follow the factor model Xij =
∑K

l=1 fijlϕil + θij , with fijl, ϕil, θij , εi i.i.d.

N (0, 1). We set K = 2, 10. In addition, the number of βj 6= 0 is set to s = 5, with their indices

drawn uniformly without replacement, and with their values i.i.d. uniformly distributed on [0, 5]. In

this model some of the non-zero regression coefficients are potentially small, thus the corresponding

covariates might be difficult to detect.

Model (C) Modified from Model Model (A): same covariate and noise structure as Model (A),

but with Yi = 5Xi1 + 5Xi2 + 5Xi3 +
∑p

j=d p
2
e+1

βXij + εi, where we set β = 2−2, 2−1, 20, 21. Here

we have the important variables (i.e. the top-ranked set is {1, 2, 3}), the relevant but unimportant

variables (i.e.
{
dp2e + 1, . . . , p

}
), as well as the irrelevant ones (i.e.

{
4, . . . , dp2e

}
). The challenge

is to select only the important ones. Here we are interested in the behaviour of RBVS as β gets

closer to 5 (so the problem becomes harder).
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Model (D) Modified from Fan and Lv (2008):

Yi = 5Xi1 + 5Xi2 + 5Xi3 − 15
√
ρXi4 +

p∑
j=d p

2
e+1

5p1/2Xij + εi,

where (Xi1, . . . , Xip) are i.i.d. observations from N (0,Σ) and εi follow N (0, 1) distribution. The

covariance Σ is as in Model (A), except that Σ4,k = Σj,4 =
√
ρ for k, j = 1, 2, 3, 5, . . . , p. The

challenge of this model is two-folded: first, Xi4 has a large contribution to Yi but it is marginally

unrelated to the response; second, similar to Model (C), there are both important and unimportant

relevant variables, and our aim is to recover only the important ones, i.e. the top-ranked set.

3.2 Simulation methods

We have applied RBVS and IRBVS with the absolute values of the following measures: Pearson

correlation coefficient (PC) (Fan and Lv, 2008), the regression coefficients estimated via Lasso

(Tibshirani, 1996), the regression coefficients estimated via MC+ algorithm (Zhang, 2010). The

performance of RBVS and IRBVS with Lasso is typically slightly worse than that of MC+ in our

numerical experiments, so is not reported here. More comprehensive numerical results can be found

in Baranowski (2016).

For competitors, we consider the standard MC+ estimator defined as

β̂pen = argminβ(n−1
n∑
i=1

Yi − p∑
j=1

βjXij

2

+

p∑
j=1

pen(|βj |),

where pen(t) = λ
∫ t

0 max {0, (1− x/(γλ))} dx and λ, γ > 0 are tuning parameters. Here λ chosen

via 10-fold cross-validation, and γ = 3 as in Breheny and Huang (2011). We also consider StabSel,

where we set the tuning parameters as per the recommendation of Meinshausen and Bühlmann

(2010).

The final group of the techniques included in our comparison consists of SIS and its iterative

extension ISIS (Fan and Lv, 2008) (and with MC+ after the screening stage). For the SIS method,

we have considered both the standard version of Fan and Lv (2008) based on the marginal sample

correlations (MSC), and a more recent version of Chang et al. (2013) based on the marginal empirical

likelihood (MEL). Note that the standard ISIS procedure did not perform well in our experiments,
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as it was selecting a very large number of false positives, therefore we apply a modified version of

ISIS which involves certain randomisation mechanism (Saldana and Feng, 2018).

We use implementations of MC+ algorithm from the R package ncvreg (Breheny and Huang,

2011). For SIS based methods we use the R package SIS (Saldana and Feng, 2018).

3.3 Choice of parameters of the (I)RBVS algorithm

RBVS involves the choice of several parameters, namely B, m, kmax and τ .

The B parameter has been introduced to decrease the randomness of the method. Naturally,

the larger the value of B, the less the algorithm depends on a particular random draw. However,

the computational complexity of RBVS increases linearly with B. In the simulation study, we take

B = 50. Our experience suggests that little will be gained in terms of the performance of RBVS

for a much larger B.

The problem of the choice of the subsample size m is more challenging. In Section 2.6, we

require m → ∞ at an appropriate rate, which is, however, unknown. In the finite-sample case m

cannot be too small, as it is unlikely that Rn based on a small sample could give a high priority

to the important variables. On the other hand, when m is too large (i.e. close to n), subsamples

largely overlap. In practical problems, we propose to choose m = bn/2c. See also our additional

simulation study in the supplementary materials, which confirms that this choice results in good

finite-sample properties of the RBVS-based methods.

From our experience, kmax has limited impact on the outcome of RBVS, as long as it is not

too small. In all simulations conducted, π̂m,n(Âk,m) given by (4) reaches and stays at the level of

1/(Br) for some k ≤ n, so we recommend kmax = min{n, p}. Finally, our experience also suggests

that RBVS is not very sensitive to the choice of τ as well, as long as it is not too close to zero.

Here we simply take τ = 0.5.

3.4 Results

Our results are reported in Tables 2–5, in terms of the average number of False Positives (FP),

False Negatives (FN), total errors (FP+FN), and the estimated P(Ŝ = S), i.e. probability (Pr) of

correct estimation of the top-ranked set.
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SIS StabSel RBVS ISIS IRBVS
MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 ρ = 0

FP .18 .00 .00 .18 .02 .03 .00 .32 .26 .04 .01
FN .00 .00 .00 .00 .00 .10 .00 .00 .00 .08 .00

FP+FN .18 .00 .00 .18 .02 .13 .00 .32 .26 .12 .01
Pr .88 1.00 1.00 .82 .98 .92 1.00 .91 .92 .94 .99

n = 100 p = 1000 ρ = 0

FP .92 .02 .05 .34 .01 .00 .00 .07 .06 .00 .00
FN .00 .00 .00 .01 .00 .30 .00 .00 .00 .20 .00

FP+FN .92 .02 .06 .34 .01 .31 .00 .07 .06 .20 .00
Pr .70 .99 .98 .70 .99 .84 1.00 .94 .95 .93 1.00

n = 100 p = 100 ρ = 0.75

FP .00 .00 .25 .40 .03 .02 .00 .18 .11 .05 .00
FN .00 .00 .18 .04 .00 1.23 .00 .00 .00 1.00 .00

FP+FN .00 .00 .43 .44 .03 1.25 .00 .18 .11 1.05 .00
Pr 1.00 1.00 .84 .64 .97 .49 1.00 .94 .95 .62 1.00

n = 100 p = 1000 ρ = 0.75

FP .00 .00 2.29 .70 .00 .00 .00 .08 .11 .04 .00
FN .00 .00 1.16 .20 .00 2.12 .03 .00 .12 1.71 .03

FP+FN .00 .00 3.45 .90 .00 2.12 .04 .08 .22 1.75 .04
Pr 1.00 1.00 .25 .43 1.00 .17 .98 .94 .93 .40 .98

Table 2: Model (A): the average number of False Positives (FP), False Negatives (FN), total errors (FP+FN),
and the estimated probability (Pr) of the correct selection of the top-ranked set (i.e. P (Ŝ = S)), calculated over 200
realisations. Bold: within 10% of the lowest value of FP+FN (or within 5% of the highest value of Pr).

SIS StabSel RBVS ISIS IRBVS
MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 K = 2

FP .12 .08 .04 .18 .00 .00 .00 .26 .21 .04 .00
FN .14 .88 .91 2.04 .20 3.38 .28 .16 .15 1.22 .28

FP+FN .26 .97 .96 2.22 .20 3.38 .28 .41 .36 1.26 .28
Pr .81 .34 .34 .00 .82 .00 .79 .76 .78 .60 .79

n = 100 p = 1000 K = 2

FP .40 .22 .32 .36 .00 .01 .00 .06 .08 .04 .00
FN .24 1.65 1.84 2.60 .35 3.69 .39 .30 .36 1.51 .32

FP+FN .65 1.87 2.16 2.96 .35 3.70 .39 .35 .43 1.55 .32
Pr .65 .06 .04 .00 .70 .00 .68 .72 .67 .48 .72

n = 100 p = 100 K = 10

FP .00 .04 .02 .19 .00 .01 .01 .18 .19 .08 .02
FN .22 .86 .84 1.95 .15 3.01 .19 .12 .12 .93 .17

FP+FN .22 .89 .86 2.14 .16 3.02 .20 .30 .32 1.00 .18
Pr .78 .36 .38 .02 .84 .00 .82 .84 .80 .64 .82

n = 100 p = 1000 K = 10

FP .02 .08 .14 .33 .00 .00 .00 .07 .04 .02 .00
FN .26 1.52 1.59 2.27 .20 3.33 .22 .16 .18 .88 .18

FP+FN .28 1.60 1.74 2.60 .20 3.34 .22 .22 .22 .89 .18
Pr .78 .14 .12 .00 .82 .00 .81 .80 .80 .69 .84

Table 3: Model (B): the average number of False Positives (FP), False Negatives (FN), total errors (FP+FN),
and the estimated probability (Pr) of the correct selection of the top-ranked set (i.e. P (Ŝ = S)), calculated over 200
realisations. Bold: within 10% of the lowest value of FP+FN (or within 5% of the highest value of Pr).
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SIS StabSel RBVS ISIS IRBVS
MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 ρ = 0 β = 0.25

FP 7.65 1.06 .95 .24 .04 .02 .01 3.46 3.50 .04 .01
FN .00 .00 .00 .00 .00 .26 .00 .00 .00 .24 .00

FP+FN 7.65 1.06 .95 .24 .04 .28 .01 3.46 3.50 .28 .01
Pr .24 .76 .80 .78 .96 .88 .99 .32 .33 .88 .99

n = 100 p = 100 ρ = 0 β = 0.5

FP 11.96 4.25 4.04 .32 .06 .02 .00 4.36 4.17 .08 .01
FN .00 .00 .00 .00 .00 .59 .00 .00 .00 .50 .00

FP+FN 11.96 4.25 4.04 .32 .06 .61 .00 4.36 4.17 .58 .01
Pr .12 .38 .38 .72 .94 .74 1.00 .23 .25 .76 .99

n = 100 p = 100 ρ = 0 β = 1

FP 19.63 11.44 11.10 .44 .06 .02 .00 5.34 5.13 .04 .00
FN .00 .00 .00 .18 .00 2.06 .34 .00 .00 1.78 .34

FP+FN 19.63 11.44 11.11 .62 .06 2.08 .34 5.34 5.14 1.83 .34
Pr .00 .00 .01 .54 .94 .14 .90 .06 .07 .31 .90

n = 100 p = 100 ρ = 0 β = 2

FP 34.10 15.37 15.10 .78 .14 .00 .00 5.94 5.79 .00 .00
FN .04 .30 .30 1.70 1.59 2.83 2.97 .94 1.00 2.82 2.97

FP+FN 34.15 15.67 15.40 2.48 1.73 2.83 2.97 6.88 6.79 2.83 2.97
Pr .00 .00 .00 .04 .06 .00 .00 .00 .00 .00 .00

Table 4: Model (C): the average number of False Positives (FP), False Negatives (FN), total errors (FP+FN),
and the estimated probability (Pr) of the correct selection of the top-ranked set (i.e. P (Ŝ = S)), calculated over 200
realisations. Bold: within 10% of the lowest value of FP+FN (or within 5% of the highest value of Pr).

SIS StabSel RBVS ISIS IRBVS
MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 ρ = 0.5

FP .07 1.99 1.17 .40 .03 .00 .01 3.27 3.35 .10 .01
FN .00 .06 .44 .90 .00 2.58 .00 .00 .02 .38 .00

FP+FN .07 2.05 1.60 1.30 .03 2.58 .01 3.27 3.36 .48 .01
Pr .95 .56 .44 .20 .97 .02 .99 .24 .27 .78 .99

n = 100 p = 1000 ρ = 0.5

FP .00 .02 .03 .88 .28 .02 .00 .10 .10 .05 .02
FN 2.27 2.59 2.72 2.98 .00 3.00 .00 .00 .02 .69 .00

FP+FN 2.27 2.62 2.75 3.86 .28 3.02 .00 .10 .12 .74 .02
Pr .06 .00 .00 .00 .76 .00 1.00 .92 .92 .72 .98

n = 100 p = 100 ρ = 0.75

FP .00 1.14 .52 .47 .04 .00 .00 2.62 2.75 .06 .01
FN 1.04 .06 .84 1.24 .00 2.80 .00 .00 .02 .40 .00

FP+FN 1.04 1.21 1.35 1.71 .04 2.80 .00 2.63 2.76 .46 .01
Pr .39 .62 .27 .12 .96 .01 1.00 .31 .30 .80 .99

n = 100 p = 1000 ρ = 0.75

FP .00 .16 .02 .86 2.31 .00 .01 .10 .08 .05 .02
FN 3.00 2.69 2.86 2.98 .00 3.00 .02 .00 .01 .82 .00

FP+FN 3.00 2.85 2.88 3.85 2.31 3.00 .02 .10 .08 .87 .02
Pr .00 .00 .00 .00 .07 .00 .98 .92 .92 .68 .98

Table 5: Model (D): the average number of False Positives (FP), False Negatives (FN), total errors (FP+FN),
and the estimated probability (Pr) of the correct selection of the top-ranked set (i.e. P (Ŝ = S)), calculated over 200
realisations. Bold: within 10% of the lowest value of FP+FN (or within 5% of the highest value of Pr).
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Overall, in all the settings we consider here, RBVS and IRBVS with a proper choice of mea-

surement (such as with MC+) typically offer similar and sometimes better performance than their

competitors such as StabSel. In general, RBVS and IRBVS tend to improve the performance of the

base learners (such as Lasso or MC+). Moreover, the iterative extension, IRBVS, in many cases is

able to detect variables overlooked by the pure RBVS, especially with PC.

In Model (C) for fixed n and p, when |β| is small to moderate (i.e. β ∈ {0.25, 0.5}), both

RBVS and IRBVS are able to frequently recover the top-ranked set. Nevertheless, as the value

of |β| increases, the difference between the important and unimportant relevant variables becomes

smaller, making it harder to estimate the top-ranked set. When β = 2, these algorithms (as well

as all their competitors) would fail completely. Not surprisingly, both RBVS and IRBVS tend to

include no variable in the estimated top-ranked set, as all variables appear to be quite similar to

each other in terms of their coefficients using PC or MC+.

In contrast, MC+, SIS and ISIS perform poorly In Model (C) (even when |β| is very small),

as well as in Model (D), due to the presence of unimportant but relevant variables. Thus they are

not suitable for recovering the top-ranked set in these settings. Though StabSel MC+ is also very

competitive in Model (A)–Model (C), it appears to perform considerably worse than RBVS

MC+ or IRBVS MC+ in Model (D), especially when p is large and the covariates are highly-

correlated.

Finally, we note that as long as the covariates are not too highly-correlated, the performance of

IRBVS is relatively robust against the choice of the measure used in the procedure. Therefore, we

recommend to adjust this choice to the available computational resources and the size of the data.

In particular, for large data sets (p > 10000, n > 500), we recommend using IRBVS PC, which

is extremely fast to compute with the R package rbvs. Nevertheless, penalisation-based methods

such as MC+ typically offer better performance, so should be used as the base measure in the case

of moderate data size.
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A Proofs

A.1 Proof of Proposition 2.1

Proof. Firstly, we show that πn (S) tends to 1. Denote by E = {minj∈S ω̂j > maxj /∈S ω̂j}. If there

is no tie, E is equivalent to
{
{Rn1, . . . , Rns} = S

}
, i.e. all indices from S are ranked in front of

those do not belong to S. Otherwise, {minj∈S ω̂j > maxj /∈S ω̂j} implies that
{
{Rn1, . . . , Rns} = S

}
.

Using (C4) we have

πn (S) ≥ P (E) ≥ P
(

max
j=1,...,p

|ω̂j − ωj | < ε

)
,

where ε =
cηn−η

2 . Application of Bonferroni’s inequality yields that

P
(

max
j=1,...,p

|ω̂j − ωj | < ε

)
≥ 1− p sup

j=1,...,p
P (|ω̂j − ωj | ≥ ε) .

The last term is of order 1−O (exp (−nγ)) (since b1 < γ), which tends to 1 as n→∞. This proves

that S is a s-top-ranked set, where s = |S|.

Secondly, consider any A ∈ Ωs+1. We will prove that πn(A) →
n

0. Note that E implies that

S ⊂ A, as all indices from S are ranked in front of those do not belong to S. Thus, it suffices

to only consider the case of S ⊂ A in which A \ S has only one element, which we denote by

a. Suppose there is no tie in the ranking, on the event E , P ({minj∈A ω̂j > maxj 6∈A ω̂j} ∩ E) =

P ({ω̂a > maxj 6∈A ω̂j} ∩ E) . To bound P (ω̂a > maxj 6∈A ω̂j), we observe that P (ω̂a > maxj 6∈A ω̂j) ≤

P
(
ω̂a > maxj∈Ma\{a} ω̂j

)
. Using the exchangeability assumption (C3), we have that the values

of P
(
ω̂j∗ > maxj∈Ma\{j∗} ω̂j

)
are the same for every j∗ ∈ Ma (i.e. any element in {ω̂j}j∈Ma

are equally likely to be the largest). Since
∑

j∗∈Ma
P
(
ω̂j∗ > maxj∈Ma\{j∗} ω̂j

)
≤ 1, we have that

P
(
ω̂a > maxj∈Ma\{a} ω̂j

)
≤ 1
|M{a}|

→
n

0. Consequently,

πn(A) ≤ P
(
ω̂a > max

j 6∈A
ω̂j

)
+ P (Ec) ≤ P

(
ω̂a > max

j∈Ma\a
ω̂j

)
+ P (Ec)→

n
0.

Otherwise, if there are ties in the ranking, since we break the ties at random uniformly, it follows

from the exchangeability assumption that we are equally likely to pick any index from Ma, given

that we have picked one of them. Thus we can argue in a similar manner to show that πn(A) ≤

1/|Ma|+ P (Ec)→
n

0, i.e. S is always locally-top-ranked.
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Thirdly, for every k′ = 1. . . . , s − 1, we show that there exists some A ∈ Ωk′ such that

lim supn→∞ πn(A) > 0. Note that

∑
{A: A∈Ωk′ and A⊂S}

πn(A) ≥ P
(

min
j∈S

ω̂j > max
j /∈S

ω̂j

)
→
n

1

from our previous argument. However, there are
(
s
k′

)
elements in {A : A ∈ Ωk′ and A ⊂ S}, so

max
{A: A∈Ωk′ and A⊂S}

lim sup
n→∞

πn(A) ≥ 1(
s
k′

) .
This implies that S is indeed a top-ranked set.

Finally, the uniqueness of S (among those in Ωs) follows from the fact that πn(S) →
n

1 and∑
A∈Ωs

πn(A) = 1.

A.2 Auxiliary lemmas and proof of Theorem 2.1

A.2.1 Auxiliary lemmas

Lemma A.1 (Theorem 1 of Hoeffding (1963)). Let W be a binomial random variable with the

probability of success π and r trials. For any 1 > t > π, we have P (W ≥ rt) ≤
(
π
t

)rt (1−π
1−t

)r(1−t)
.

Moreover, for any 0 < t < π, P (W ≤ rt) ≤
(
π
t

)rt (1−π
1−t

)r(1−t)
.

Lemma A.2. Let a1, . . . , al be non-negative numbers s.t.
∑l

i=1 ai ≤ 1 and max ai ≤ t for some

1
l ≤ t ≤ 1. Let N ∈ N be the minimum integer such that there exist mutually exclusive sets

I1, . . . , IN ⊂ {1, . . . , l} with
∑

i∈Ij ai ≤ t and
⋃N
j=1 Ij = {1, . . . , l}. Then, N ≤ b2

t c+ 1.

Proof. Since N is the smallest possible integer, there must be at most one j ∈ {1, . . . , N} with∑
i∈Ij ai ≤ t/2. Otherwise, such two sets could be combined, leading to a smaller N . So for all

other j ∈ {1, . . . , N}, we have that
∑

i∈Ij ai > t/2. Consequently, (N − 1)t/2 ≤
∑l

i=1 ai ≤ 1. This

implies that N ≤ b2
t c+ 1.

Lemma A.3. Let be Ω ⊂ Ωk for some k = 1, . . . , p − 1, m ≤ n, B ≥ 1, and t1, t2 satisfying

maxA∈Ω πm,n(A) ≤ t2 < t1 < 1. Then P (maxA∈Ω π̂m,n(A) ≥ t1) ≤ 3B
t2

[(
t2
t1

)t1 (1−t2
1−t1

)1−t1
]r
, where

πm,n(A), π̂m,n(A) are defined by (2) and Definition 2.4, respectively.

25



Proof. Denote by A1, . . . ,Al all the elements of Ω. Applying Lemma A.2 we find a partition

I1, . . . , IN such that maxj=1,...,N
∑

i∈Ij πm,n(Aj) ≤ t2 and N ≤ 2
t2

+ 1. Using the union bound, we

have that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1
)
≤ N max

j=1,...,N
P

∑
i∈Ij

π̂m,n(Ai) ≥ t1

 .

Note that when B = 1, r
∑

i∈Ij π̂m,n(Ai) is a binomial random variable, where there are r trials,

each with the probability of success p∗j =
∑

i∈Ij πm,n(Ai). We could conclude from Lemma A.1

that

P

∑
i∈Ij

π̂m,n(Ai) ≥ t1

 ≤ [(p∗j
t1

)t1 (1− p∗j
1− t1

)1−t1
]r
≤

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
,

where we used the fact that
(
x
t1

)t1 (
1−x
1−t1

)1−t1
is increasing for x ∈ [0, t1]. When B = 1, the above

displayed equation, combined with N ≤ 3
t2

gives that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1
)
≤ 3

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
.

Finally, when B > 1, r
∑

i∈Ij π̂m,n(Aj) is a sample average of B (not necessarily independent)

binomial random variables. Since the average of a collection of non-negative numbers is always no

greater than its maximum, we could simply use the union bound again to establish that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1
)
≤ 3B

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
.

A.2.2 Proof of Theorem 2.1

Proof of Theorem 2.1. For notational convenience, define ω̂j,m = ω̂j(Z1, . . . ,Zm), δ = πm,n (S) and

θ = maxA6⊂S,|A|≤kmax
πm,n (A) , where πm,n(·) is given by (2). We start from showing that δ and θ

are well-separated for sufficiently large n.

Take ε =
cηm−η

2 . Using (A1) and (A5) combined with a simple Bonferroni’s inequality, we get

δ ≥ P (maxj=1,...,p |ω̂j,m − ωj | < ε) ≥ 1−Cεp exp(−mγ) for some constant Cε > 0. In views of (A2)
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and (A3), since here we assume that γb2 > b1, we get that δ = 1−O(exp(−nγb2)), which tends to

one as n→∞.

For every A ∈ Ωk with k ≤ kmax that contains at least one a ∈ A \ S, if there is no tie in the

ranking of {ω̂j,m}1≤j≤p, we have that

πn,m(A) = P
(

min
j∈A

ω̂j,m > max
j 6∈A

ω̂j,m

)
≤ P

(
ω̂a,m > max

j∈Ma\A
ω̂j,m

)
≤ 1

|Ma| − kmax
≤ 1

mina6∈S |Ma| − kmax

≤ 1

C3nb3 − C4nb4
, (6)

where Ma is as in (A4). Here we utilized the exchangeability of {ω̂j,m}j∈Ma\S together with (A4)

and (A7). Even if there are ties, we still have that πn,m(A) ≤ 1/(C3n
b3 − C4n

b4) due to the

exchangeability and since we break the ties uniformly at random. See also the previous proof of

Proposition 2.1 for a similar argument but with a more detailed explanation. Notice that (6) does

not depend on A or a, so the inequality πn,m(A) ≤ 1/(C3n
b3 −C4n

b4) holds for every A ∈ Ωk with

k ≤ kmax and A\S 6= ∅. As such, we conclude that θ = maxA6⊂S,|A|≤kmax
πm,n (A) = O(n−b3).

Next, to fix ideas, take ∆ = (b2 +b3−1)/2 (NB. ∆ > 0 from (A4)), t1 = n(−b3+∆)/2 and t2 = t21.

Note that for sufficiently large n we always have θ < t21 < t1 <
1
2 < δ. Now define events

Ek =

{
max

A∈Ωk,A6⊂S
π̂m,n(A) < t1

}
, for k = 1, . . . , kmax,

B =

{
π̂m,n(S) >

1

2

}
,

E = B ∩
kmax⋂
k=1

Ek.

We will demonstrate that P (E)→
n

1 at an exponential rate, and with Âŝ,m = S on the event E .

To prove the first claim, when B = 1, for sufficiently large n, we could use Lemma A.1 and the

fact that 1− δ = O(exp(−nγb2))→
n

0 to bound P (Bc) by

P (Bc) ≤

[(
δ

0.5

)0.5(1− δ
0.5

)0.5
]r
≤ [2(1− δ)]0.5r ≤ exp

(
−C ′nγb2(1−b2)/2

)
(7)
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for some 0 < C ′ < 1. When B > 1, since π̂m,n(S) is the average of B copies of the that with

B = 1, using the Bonferroni bound, we have that P (Bc) ≤ B exp
(
−C ′nγb2(1−b2)/2

)
. Moreover, by

Lemma A.3,

P (Eck) ≤
3B

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r

=
3B

t21

[(
t1

1 + t1

)t1
(1 + t1)

]r
. (8)

Take the logarithm of
(

t1
1+t1

)t1
(1 + t1). After simple algebra we get t1 log

(
t1

1+t1

)
+ log (1 + t1) =

t1 log
(

1− 1
1+t1

)
+ log (1 + t1) , which can be bounded using (A6) and log(1 + x) ≤ 2x

2+x for x ∈

(−1, 0) and log(1 + x) ≤ x
2

2+x
1+x for x ≥ 0 (Topsøe, 2004). Putting things together, we have that

t1 log
(

1− 1
1+t1

)
+ log (1 + t1) ≤ −t1

(2−t1−2t21)
2(1+t1)(1+2t1) ≤ −

t1
6 . Here we also used the fact that the

function h(x) = (2−x−2x2)
2(1+x)(1+2x) is decreasing for x ∈ [0, 1], h(1

2) = 1
6 and t1 = n(−b3+∆)/2 < 1

2 . This

applied to (8) yields

P (Eck) ≤
3B

t21
exp

(
−rt1

6

)
< exp

(
−C ′′n1−b2−b3/2

)
, (9)

with positive constant C ′′, for sufficiently large n. (A4) implies that the right hand side of the

above inequality goes to 0 because (A4) says that 1 − b2 − b3/2 > 0. It follows from (7), (9) and

(A7) that

P (E) ≥ 1− kmax exp
(
−C ′′n1−b2−b3/2

)
− exp

(
−C ′nγb2(1−b2)/2

)
≥ 1− C4n

b4 exp
(
−C ′′n1−b2−b3/2

)
− exp

(
−C ′nγb2(1−b2)/2

)
≥ 1− exp

(
−Cβnβ

)

for some β ∈ (0, 1) and Cβ > 0, for sufficiently large n. Therefore, P (E)→
n

1.

The remaining arguments used in the proof are valid on E with a sufficiently large n. Notice

that from 1/2 > t1 one concludes that Âs,m = S, where Âs,m is given by (4), hence showing ŝ = s

proves Ŝ = S. Denote Tk =
π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
, then from definition, ŝ = argmink=0,1,...,kmax

Tk. Three

cases are considered.

• For every k = 0, . . . , s − 1, the event {{Rn(Z1, . . . ,Zm), . . . , Rn,s(Z1, . . . ,Zm)} = S} implies

that the index set {Rn(Z1, . . . ,Zm), . . . , Rn,k+1(Z1, . . . ,Zm)} (i.e. of size k + 1) must be one
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of the elements in {A ∈ Ωk+1 : A ⊂ S}. Consequently,

∑
{A∈Ωk+1:A⊂S}

π̂m,n(A) ≥ π̂m,n(S).

The facts that
∣∣∣{A ∈ Ωk+1 : A ⊂ S}

∣∣∣ =
(
s

k+1

)
and π̂m,n(S) > 1

2 imply that

π̂m,n(Âk+1,m) ≥ max
{A∈Ωk+1:A⊂S}

π̂m,n(A) ≥ π̂m,n(S)(
s

k+1

) ≥ 1

2
(
s

k+1

) ,
and hence Tk ≥ 1

2( s
k+1)

. for k = 0, . . . , s− 1.

• Directly from the definition of the events Es and B, we bound Ts ≤ 2tτ1 .

• π̂m,n(Âk+1,m) ≥ 1
Br for any k. To see this, note that

∑
A∈Ωk+1

π̂m,n(A) = 1. Picking Âk+1,m ∈

argmaxA∈Ωk+1
π̂m,n(A) would mean that π̂m,n(Âk+1,m) > 0, because otherwise it would imply∑

A∈Ωk+1
π̂m,n(A) = 0, leading to a contradiction. Now that π̂m,n(Âk+1,m) > 0, it must be

the case that π̂m,n(Âk+1,m) > 1
Br , according to Definition 2.4. Thus Tk ≥ 1

t1(Br)τ for every

k = s+ 1, . . . , kmax.

To prove Tk > Ts for k = 0, . . . , s − 1, it is sufficient to demonstrate that 1
2( s
k+1)

> 2tτ1 , which is

true for sufficiently large n, as t1 →
n

0 and maxk=0,...,s−1

(
s

k+1

)
is bounded. Similarly, to claim that

Ts < Tk for k = s + 1, . . . , kmax, we need to show 2tτ1 <
1

t1(Br)τ , which amounts to 2t1+τ
1 < 1

(Br)τ ,

or 21/τ t
1+1/τ
1 < 1

Br . This is true for sufficiently large n, because t21 = n−b3+∆, Br = O(n1−b2) and

b2 + b3 −∆ > 1 from (A4).

Therefore Tk is necessarily minimised at k = s over E for sufficiently large n, meaning that

ŝ = s, which finishes the proof.
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S1 Details of the implementation of the RBVS algorithm

In this section, we provide a detailed description of our implementation of Algorithm 1, which is

available in the R package rbvs. First, we recall all necessary notation. By Zi = (Yi, Xi1, Xip),

i = 1, . . . n we denote a random sample we observe, where Yi is a response and {Xi1,, . . . , Xip} is

the set of the covariates. A chosen (empirical) measure of dependence between the response and

j-th covariates is denoted by ω̂j , positive integer m < n is a subsample size (parameter of our

method), B is a positive integer (typically from 50 to 500).

The RBVS algorithm aims to identify the set of covariates which non-spuriously appears at the

top of the variable ranking based on the empirical measure ω̂j . It consists of four steps Implemen-

tation of Step 1 is straightforward. It is worth noting that in Step 2 we do not actually need to

evaluate complete rankings for each subsample, it is sufficient to find only a partial ranking, i.e.

indices of the kmax top ranked variables, as only those are used in 3. The computational com-

plexity of finding a full ranking is O(p log(p)). For the partial ranking, it takes (on average) just

O(p+ kmax log(kmax)) operations. The gain can be substantial when p� kmax.

Recall that Âk,m = argmaxA∈Ωk
π̂m,n(A), where Ωk is the set of all k-element subsets of

{1, . . . , p}. Despite the fact that the definition involves searching of the maximum empirical prob-
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ability over a set the size of which grows extremely fast, finding Âk,m is actually quick. This is

because the number of the subsets which could have appeared at the top of the ranking at least

once is limited by the total number of evaluated rankings. In Step 3, we apply procedure outlined

in Algorithm S1.

Algorithm S1 Finding Âk,m and computing π̂m,n

(
Âk,m

)
Input: Variable rankings (Rl1, . . . , Rlkmax), l = 1, . . . , Br.
Output: Estimates Âk,m and π̂m,n

(
Âk,m

)
for k = 1, . . . , kmax.

procedure kTopRankedSets({(Rl1, . . . , Rlkmax}Br
l=1)

for k = 1, . . . , kmax do
Step 1 for each l, insert Rlk into Sl,k−1 s.t. resulting sequence Sl,k is in increasing order
Step 2 find S∗k the most frequently occurring among S1,k, . . . , SBr,k

Step 3 set Âk,m = S∗k and π̂m,n

(
Âk,m

)
=

no. l s.t. Sl,k=S∗k
Br

end for
end procedure

The computational complexity of Step 1 is of order O(kmaxBr) (for each k we use the fact

that at the previous step k − 1 elements are already in increasing order; we do not need to sort

R1,l, . . . , Rk,l from scratch). The second part is relatively quick - we need to find the most frequent

element among k-element sequences. For each k = 1, . . . , kmax, the computational complexity is

O(kBr). Therefore in total the algorithm we use to find Âk,m is of order O(k2
maxrB). Algorithm S1

can be easily run on multiple CPUs (which is supported by the rbvs package) or a GPU, which makes

it feasible for extremely large data sets. In practice, Step 3 of the RBVS algorithm (Algorithm 1)

takes much less computational time than Step 2. Moreover, the rbvs package provides optimised,

C-implemented routines performing Algorithm 1 (which includes Algorithm S1).

S2 Real data examples

In this section, we present applications to two real datasets: the Boston housing data and the

prostate cancer data.

S2.1 Boston housing data

We apply our methodology to the Boston housing data set (Harrison and Rubinfeld, 1978) which

has been frequently adopted to illustrate performance of various variable selection and estimation
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techniques (see e.g. Radchenko and James (2010), Cho and Fryzlewicz (2012) or Fan et al. (2014).

We use Boston Housing data available in the R package mlbench (Leisch and Dimitriadou, 2010)

containing 15 numerical covariates which may have influence over the median price recorded in

n = 506 locations. As in Cho and Fryzlewicz (2012), we additionally consider interaction terms

between the explanatory variables so the final data set has p = 120 covariates.

Harrison and Rubinfeld (1978) used the linear model to analyse the price, thus we apply RBVS

combined with the linear measures introduced Section 3.2.
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Figure S1: The Boston housing data: the estimated probabilities corresponding to the k-element
subsets top-ranked the most frequently. The dots indicate the probability at k = ŝ, which is the
number of elements selected according to the suggested approach. The subsample size m = n

2 = 253
and B = 250.

Figure S1 shows a “RBVS path”, i.e. probabilities corresponding to the k-element subsets

of covariates the most frequently occurring as the most influential ones (defined by (4)). The

probability path for RBVS PC declines much slower than those corresponding to RBVS Lasso

and RBVS MC+. This results in a different numbers of selected variables; RBVS PC chooses 17

covariates, while RBVS MC+ selects 8 and RBVS Lasso MC+ selects only 5. We argue that in this

example RBVS PC, as based on a marginal measure, includes some variables that are not useful

in a predictive model. Intuitively, if two or more variables were highly correlated to the response,

then interactions formed of any two of those would be highly correlated to Y .

To investigate predictive usefulness of RBVS based methods, we split the data randomly, as-

sembling approximately 50%, 25% and 25% observations to the train, validation and test sets,

respectively. On the training set, we select variables and obtain OLS estimates of the regression

coefficients (for Lasso and MC+ we consider all set candidates on their solution paths, for RBVS

based methods we take the subsample size equal to m =
{

1
8 ,

2
8 , . . . ,

7
8

}
ntrain). Next, we evaluate

the average prediction error on the validation set and choose the covariates minimising the error.

3



Finally, we find the average prediction error, R squared coefficient (R2) and adjusted R squared

(R2
adj) on the test set.

Table S1 reports the results averaged over 500 random splits of the data; PG in this summary

corresponds to the linear model studied in Section 2.2 of Pace and Gilley (1997). RBVS PC,

RBVS Lasso and RBVS MC+ perform similar to PG in terms of prediction accuracy, which can

be seen from the corresponding values of the test error and R2. On the other hand, RBVS Lasso

and RBVS MC+ choose on average only 9 variables and consequently perform best in terms of

R2
adj . Lasso and MC+ achieve the best test error; however, they select about 50 variables on

average. By contrast, IRBVS Lasso and IRBVS MC+ choose no more than 27 covariates, yet they

achieve similar prediction accuracy as Lasso and MC+ respectively. Both RBVS PC and IRBVS

PC perform reasonably well in terms of prediction accuracy, however, they select more variables

than the remaining RBVS and IRBVS based techniques. This is probably caused by the strong

correlations between covariates, which is due to the way the data set has been produced.

RBVS IRBVS
PG Lasso MC+ PC Lasso MC+ PC Lasso MC+

test error 0.037 0.032 0.032 0.038 0.038 0.038 0.036 0.033 0.033
R2 0.773 0.803 0.805 0.769 0.766 0.765 0.780 0.798 0.801
R2

adj 0.735 0.638 0.609 0.708 0.748 0.747 0.571 0.739 0.745

# selected variables 18.0 49.3 55.0 25.4 9.2 9.1 44.7 27.6 26.5

Table S1: Boston housing data: test error, R squared, adjusted R squared and the number of
selected variables, averaged over 500 test sets.

S2.2 Prostate cancer data set

We analyse the Prostate cancer data (Singh et al., 2002) which is frequently used to evaluate the

performance of various classification methods (Pochet et al. (2004), Fan and Fan (2008), Hall and

Xue (2014)). It consists of expression levels of p = 12600 genes from 52 tumour and 50 normal

prostate samples in the training set, and 9 tumour and 25 normal samples in the test set coming

from an independent experiment. The response variable Y is binary (1 for tumour samples, 0 for

normal samples) and Xj , the expression of the j’th gene, is a continuous variable.

We compare performance of RBVS against its two competitors, StabSel (Meinshausen and

Bühlmann, 2010) and the approach of Hall and Miller (2009) (HM). Due to a very huge number of

variables, we take the marginal correlation (i.e. PC) as a base learner for both RBVS and StabSel,

4



as it is least computationally demanding across measures studied in the paper. This choice was

previously used in this and similar classification problems; see Fan and Lv (2008) and Hall and Xue

(2014).

To provide a fair comparison, we apply these three methods with the same subsamples taken

from the data, drawn as in Definition 2.4. Besides the number of subsamples and their size, we

need to specify the threshold π and the bound for the expected number of false positives EV for

StabSel, the significance level α and the cut-off level c for HM. We try several values for each pair

of these parameters.

We use RBVS, HM and StabSel on the training set to identify the important genes. Still on the

training set, we fit the logistic regression model, using the selected covariates only. Subsequently,

we use the fitted model to classify samples in the test set. Finally, we record the number of

correctly classified samples. The entire experiment is repeated 50 times, to minimise the impact of

a particular random draw, and the medians are reported.

The median correct classification rate on the test set for the RBVS algorithm is 31 out of 34

and this is always achieved using from 3 to 6 genes only, both for subsamples of size m =
⌊
n
2

⌋
= 51

and m =
⌊

3n
4

⌋
= 76. For some random draws, RBVS selects exactly 4 genes, which result in the

classification rate of 33. Figure S2 summarises the corresponding numbers for the StabSel and HM

algorithms, with various tuning parameters of these methods. For m =
⌊
n
2

⌋
, there exists one pair of

parameters that leads to a better error control for StabSel and HM (33 correctly classified samples),

however, RBVS is always better when m = 76. The parameters which are the best in this example

are much different from those recommended for StabSel and HM. Unlike its competitors, RBVS

automatically selects an appropriate number of genes, being particularly effective in this example.

S3 Additional high-dimensional simulation study

The aim of the simulation study reported in this section is threefold. First, to provide an extensive

comparison of the performance of RBVS and StabSel algorithms. Second, to investigate their utility

in the high-dimensional framework. Third, to check how sensitive both approaches are to the choice

of the subsample size m.
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Figure S2: Prostate cancer data set: the median of the number of correctly classified samples on the test
set, evaluated over 50 runs of the algorithms studied. The larger a circle, the better classification rate. Grey
colour indicates the cases where the median classification rate is no worse than 31, the median classification
rate achieved by RBVS PC. The number of subsamples B = 500.

S3.1 The setting

The data are generated from the following linear model

Yi = β1Xi1 + . . . , βpXip + εi, i = 1, . . . , n,

where

• Xij ’s follow the factor model Xij =
∑K

l=1 fijlϕil + θij , with fijl, ϕil, θij , εi i.i.d. N (0, 1) and

the number of factors equal either K = 0 (variables independent) or K = 5. We choose the

factor model, as it provides a non-trivial dependence structure between the covariates and

it is relatively easy and quick to simulate. The R package rbvs provides a C-implemented

routine gen.factor.model.design which quickly generates the factor model design matrix.

• The number of non-zero β′js is set to s = 5, 10, their indices are drawn uniformly without re-

placement from {1, . . . , p}. Their values are drawn independently and have same distribution

as β =
(
|Z|+ log(n)√

n

)
V , where Z is a standard normal random variable and V is independent

of Z with P (V = 1) = P (V = −1) = 1
2 .

• The total number of variables p = 100, 1000, 10000, 100000.
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• The sample size n = 100, 200, . . . , 1000.

• The subsample size is set to m = 50, 100, n2 .

Due to a very huge number of variables, we take the marginal correlation as a base learner for

both StabSel and (I)RBVS, as it is least computationally demanding across measures studied in

the paper. All computations reported in this section are performed with the R package rbvsGPU

(Baranowski, 2016), which provide a parallel implementation of RBVS PC and IRBVS PC, using

to this end the CUDA framework (Luebke, 2008). The number of random splits is set to B = 500m
n ,

such that there always 500 subsamples, each of sizem, used in computing the empirical probabilities.

Unlike the RBVS algorithm, StabSel requires specification of the two tuning parameters. From

our experience, the values recommended in Meinshausen and Bühlmann (2010) are reasonably

“optimal”, we decided however to test robustness of the StabSel algorithm against the choice of its

parameters. The bound on the error control is set to EV = 2.5, 5, while the thresholding probability

π = 0.55, 0.6, 0.75, 0.9.

S3.2 High-dimensional simulation study results

We report results of this high-dimensional simulation study in Tables S2–S13.

S3.3 Some comments

We address each issue brought up in the introduction of this section in the comments below.

1. Comparison of StabSel to RBVS:

• In the fixed m cases, RBVS typically outperforms StabSel. Moreover, for a moderate

value of m = 100 and p fixed, the average number of false positives and false negatives

decreases with n, which does not hold for StabSel.

• When the subsample size is set to m
2 , there typically exists a set of parameters for

StabSel such that it slightly outperforms RBVS. We have checked that RBVS in this

setting selects slightly more false positives.

• Overall, performance of StabSel is sensitive to the choice of its parameter.
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• “Optimal” parameters for StabSel in one example are not necessarily best in another

case. For instance, in the s = 5, K = 0 and m = n
2 case π = 0.75 and EV = 2.5 results

in the best error control, while for s = 5, K = 0 and m = 50 setting EV = 5 and π = 0.6

yields best FP + FN rate.

• IRBVS almost uniformly outperforms both RBVS and StabSel, which demonstrates that

the iterative extension of our methodology significantly improves its vanilla variant.

2. General comments on the impact of high-dimensionality:

• Perhaps a bit unexpectedly, performance of the IRBVS algorithm improves with di-

mensionality p growing. This phenomenon can be explained by the fact that a single

irrelevant covariate is the less likely to appear at the top of the ranking, the more co-

variates with similar (spurious) impact on the response there are. We note that this

surprising “blessing of dimensionality” has been observed in Fan et al. (2009).

• IRBVS performs very well even for small/moderate values of n and m, even when p is

very large.

3. Comments on the choice of the subsample size m:

• For the IRBVS algorithm, m = 100 yields best FP +FN in this example, often close to

0. On the other hand, choosing m
2 results in IRBVS occasionally picking some irrelevant

covariates. We emphasise again, however, that IRBVS seems to outperform RBVS and

StabSel.

• For the RBVS and StabSel algorithms, m = m
2 leads to best performance.

• The subsample size set to a small number (m = 50) results in a worse selection of the

important variables.
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n\p 102 103 104 105

200 1.57 2.38 3.03 3.53
300 1.50 2.27 3.00 3.47
400 1.41 2.33 2.98 3.48
500 1.53 2.32 2.98 3.46
600 1.47 2.29 2.95 3.46
700 1.56 2.34 2.96 3.46
800 1.44 2.27 2.97 3.50
900 1.61 2.34 2.98 3.44
1000 1.48 2.31 2.98 3.45

(a) RBVS PC

n\p 102 103 104 105

200 .35 .19 .41 .96
300 .16 .10 .45 1.06
400 .04 .12 .49 .98
500 .03 .15 .56 1.02
600 .06 .21 .62 1.18
700 .05 .26 .66 1.17
800 .04 .25 .73 1.12
900 .05 .32 .72 1.31
1000 .05 .27 .74 1.28

(b) IRBVS PC

n\p 102 103 104 105

200 2.05 2.49 2.93 3.40
300 2.15 2.57 3.04 3.46
400 2.19 2.66 3.11 3.48
500 2.29 2.68 3.11 3.50
600 2.30 2.68 3.11 3.54
700 2.41 2.73 3.14 3.49
800 2.25 2.67 3.14 3.51
900 2.43 2.77 3.19 3.56
1000 2.30 2.70 3.09 3.47

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.91 2.43 2.94 3.41
300 2.01 2.52 3.05 3.48
400 2.07 2.63 3.11 3.50
500 2.22 2.62 3.10 3.52
600 2.23 2.64 3.12 3.56
700 2.33 2.70 3.16 3.52
800 2.16 2.63 3.15 3.54
900 2.35 2.74 3.18 3.59
1000 2.22 2.67 3.11 3.49

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 2.07 2.68 3.15 3.62
300 2.23 2.77 3.28 3.73
400 2.27 2.86 3.38 3.81
500 2.42 2.87 3.36 3.76
600 2.40 2.90 3.36 3.77
700 2.50 2.93 3.42 3.77
800 2.37 2.90 3.42 3.77
900 2.54 3.00 3.52 3.81
1000 2.42 2.91 3.34 3.73

(e) StabSel PC π = 0.75 EV =
2.5

n\p 102 103 104 105

200 1.72 2.27 2.80 3.28
300 1.85 2.35 2.87 3.36
400 1.92 2.48 2.97 3.38
500 2.05 2.49 2.96 3.40
600 2.05 2.48 2.98 3.40
700 2.15 2.56 3.02 3.41
800 2.02 2.49 3.02 3.41
900 2.20 2.59 3.03 3.45
1000 2.09 2.54 2.98 3.38

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.68 2.21 2.79 3.28
300 1.83 2.31 2.86 3.37
400 1.88 2.47 2.97 3.39
500 2.02 2.47 2.96 3.41
600 2.02 2.47 2.98 3.42
700 2.14 2.54 3.03 3.42
800 1.99 2.47 3.02 3.43
900 2.17 2.57 3.03 3.46
1000 2.06 2.51 2.97 3.39

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.76 2.46 3.01 3.50
300 1.95 2.58 3.15 3.62
400 2.02 2.68 3.23 3.68
500 2.17 2.70 3.24 3.64
600 2.17 2.73 3.23 3.68
700 2.28 2.78 3.29 3.67
800 2.14 2.73 3.28 3.68
900 2.32 2.83 3.36 3.71
1000 2.19 2.74 3.22 3.63

(h) StabSel PC π = 0.75 EV = 5

Table S2: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 50 and B = 500m

n , number of important variables s = 5 and
number of factors K = 0. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.53 1.82 2.19 2.79
300 1.04 1.40 1.87 2.60
400 .90 1.36 1.89 2.59
500 .85 1.31 1.86 2.55
600 .76 1.34 1.86 2.35
700 .83 1.33 1.90 2.32
800 .73 1.30 1.87 2.31
900 .76 1.32 1.88 2.39
1000 .68 1.30 1.85 2.39

(a) RBVS PC

n\p 102 103 104 105

200 1.49 .98 .66 .58
300 .60 .20 .11 .40
400 .32 .09 .10 .35
500 .18 .03 .09 .41
600 .12 .03 .09 .32
700 .06 .01 .11 .30
800 .02 .02 .15 .30
900 .01 .04 .16 .36
1000 .01 .04 .18 .41

(b) IRBVS PC

n\p 102 103 104 105

200 1.24 1.59 2.10 2.34
300 1.31 1.49 1.84 2.21
400 1.33 1.61 1.96 2.33
500 1.44 1.61 1.96 2.28
600 1.44 1.68 2.01 2.34
700 1.55 1.71 2.05 2.31
800 1.44 1.69 2.05 2.33
900 1.57 1.74 2.07 2.43
1000 1.50 1.72 2.06 2.41

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.15 1.64 2.12 2.56
300 1.17 1.43 1.82 2.48
400 1.22 1.57 1.96 2.56
500 1.29 1.56 1.96 2.54
600 1.33 1.63 2.01 2.35
700 1.44 1.66 2.06 2.32
800 1.34 1.64 2.06 2.34
900 1.46 1.69 2.08 2.46
1000 1.40 1.70 2.07 2.42

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.19 1.61 2.06 2.63
300 1.24 1.60 2.01 2.72
400 1.30 1.73 2.18 2.79
500 1.41 1.75 2.16 2.75
600 1.45 1.82 2.23 2.57
700 1.54 1.87 2.30 2.55
800 1.45 1.82 2.27 2.58
900 1.58 1.88 2.31 2.68
1000 1.51 1.87 2.25 2.63

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.13 1.74 2.31 2.51
300 1.07 1.33 1.72 2.14
400 1.12 1.47 1.84 2.24
500 1.17 1.45 1.83 2.19
600 1.20 1.52 1.89 2.23
700 1.29 1.54 1.94 2.23
800 1.21 1.49 1.94 2.23
900 1.36 1.59 1.96 2.36
1000 1.26 1.57 1.96 2.30

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.17 1.92 2.40 2.54
300 1.02 1.29 1.72 2.13
400 1.07 1.43 1.83 2.23
500 1.12 1.42 1.83 2.19
600 1.15 1.50 1.88 2.24
700 1.25 1.53 1.94 2.23
800 1.18 1.48 1.95 2.24
900 1.33 1.56 1.96 2.36
1000 1.23 1.55 1.96 2.31

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.21 1.69 2.10 2.31
300 1.05 1.43 1.88 2.30
400 1.12 1.59 2.03 2.43
500 1.20 1.60 2.02 2.38
600 1.23 1.67 2.11 2.48
700 1.34 1.72 2.16 2.45
800 1.27 1.68 2.16 2.47
900 1.41 1.74 2.19 2.58
1000 1.32 1.74 2.15 2.55

(h) StabSel PC π = 0.75 EV = 5

Table S3: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 100 and B = 500m

n , number of important variables s = 5 and
number of factors K = 0. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.57 1.79 2.22 2.59
300 1.18 1.31 1.64 1.98
400 1.07 1.10 1.33 1.61
500 .95 1.00 1.13 1.40
600 .94 .88 1.03 1.15
700 .96 .77 .90 1.00
800 .85 .77 .84 .92
900 .73 .67 .74 .87
1000 .80 .62 .78 .84

(a) RBVS PC

n\p 102 103 104 105

200 1.54 .90 .64 .44
300 1.35 .80 .58 .33
400 1.23 .86 .53 .25
500 1.26 .87 .55 .27
600 1.39 .80 .51 .24
700 1.32 .78 .46 .23
800 1.28 .82 .41 .24
900 1.19 .76 .43 .22
1000 1.21 .75 .45 .29

(b) IRBVS PC

n\p 102 103 104 105

200 1.23 1.58 2.10 2.35
300 .88 1.18 1.54 1.81
400 .75 .96 1.31 1.56
500 .62 .83 1.18 1.35
600 .49 .76 1.08 1.19
700 .47 .62 .96 1.12
800 .41 .60 .82 1.02
900 .35 .51 .75 .96
1000 .32 .44 .82 .92

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.16 1.65 2.12 2.38
300 .81 1.22 1.57 1.87
400 .67 1.01 1.33 1.62
500 .58 .91 1.20 1.41
600 .48 .84 1.13 1.22
700 .47 .68 .98 1.13
800 .43 .68 .88 1.05
900 .34 .59 .77 .99
1000 .33 .52 .86 .94

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.18 1.59 2.03 2.43
300 .83 1.19 1.47 1.90
400 .68 .94 1.26 1.69
500 .59 .87 1.09 1.41
600 .49 .78 .98 1.11
700 .49 .64 .86 1.00
800 .45 .61 .77 .89
900 .37 .51 .70 .85
1000 .35 .47 .74 .82

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.15 1.77 2.29 2.52
300 .80 1.33 1.78 2.06
400 .66 1.14 1.52 1.77
500 .59 1.05 1.40 1.61
600 .50 .97 1.34 1.48
700 .49 .82 1.17 1.36
800 .45 .82 1.13 1.29
900 .36 .71 1.00 1.22
1000 .34 .70 1.07 1.21

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.15 1.91 2.41 2.56
300 .80 1.48 1.86 2.10
400 .72 1.33 1.62 1.81
500 .66 1.22 1.48 1.68
600 .56 1.13 1.46 1.52
700 .55 .94 1.28 1.42
800 .51 1.01 1.26 1.35
900 .43 .91 1.12 1.27
1000 .42 .89 1.16 1.29

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.20 1.72 2.12 2.33
300 .85 1.29 1.59 1.77
400 .76 1.10 1.33 1.54
500 .70 .99 1.19 1.30
600 .63 .94 1.11 1.17
700 .63 .77 .99 1.07
800 .55 .76 .85 .98
900 .49 .66 .78 .92
1000 .50 .65 .86 .87

(h) StabSel PC π = 0.75 EV = 5

Table S4: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = n

2 and B = 500m
n , number of important variables s = 5 and

number of factors K = 0. Bold: result better than the corresponding value for RBVS PC.

11



n\p 102 103 104 105

200 1.77 2.45 3.20 3.70
300 1.66 2.44 3.17 3.68
400 1.62 2.38 3.18 3.66
500 1.63 2.39 3.15 3.63
600 1.50 2.31 3.16 3.61
700 1.61 2.38 3.12 3.72
800 1.54 2.35 3.15 3.67
900 1.54 2.37 3.09 3.81
1000 1.56 2.33 3.10 3.79

(a) RBVS PC

n\p 102 103 104 105

200 .28 .11 .09 .48
300 .12 .03 .04 .25
400 .04 .00 .05 .21
500 .02 .01 .03 .15
600 .01 .00 .03 .13
700 .00 .01 .04 .19
800 .00 .00 .05 .17
900 .00 .00 .01 .29
1000 .00 .00 .04 .15

(b) IRBVS PC

n\p 102 103 104 105

200 2.21 2.62 3.10 3.53
300 2.29 2.66 3.18 3.63
400 2.34 2.74 3.20 3.62
500 2.39 2.71 3.21 3.57
600 2.37 2.75 3.27 3.57
700 2.43 2.83 3.26 3.67
800 2.37 2.84 3.31 3.67
900 2.41 2.87 3.31 3.78
1000 2.40 2.73 3.20 3.72

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 2.09 2.57 3.09 3.54
300 2.20 2.62 3.19 3.65
400 2.23 2.71 3.23 3.64
500 2.29 2.69 3.21 3.59
600 2.28 2.70 3.29 3.58
700 2.35 2.80 3.26 3.68
800 2.28 2.80 3.32 3.69
900 2.30 2.84 3.32 3.82
1000 2.35 2.71 3.20 3.74

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 2.24 2.77 3.33 3.76
300 2.40 2.92 3.43 3.89
400 2.47 2.99 3.46 3.91
500 2.47 2.91 3.46 3.84
600 2.50 3.01 3.59 3.86
700 2.58 3.04 3.49 3.94
800 2.53 3.05 3.56 3.92
900 2.56 3.11 3.60 4.04
1000 2.52 2.98 3.51 3.95

(e) StabSel PC π = 0.75 EV =
2.5

n\p 102 103 104 105

200 1.94 2.43 2.98 3.42
300 2.05 2.47 3.07 3.52
400 2.06 2.55 3.11 3.51
500 2.11 2.55 3.09 3.47
600 2.11 2.55 3.15 3.48
700 2.18 2.65 3.15 3.56
800 2.10 2.62 3.20 3.58
900 2.13 2.68 3.17 3.68
1000 2.20 2.56 3.07 3.62

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.88 2.39 2.97 3.42
300 2.01 2.43 3.06 3.52
400 2.03 2.53 3.10 3.52
500 2.09 2.53 3.07 3.48
600 2.08 2.53 3.16 3.49
700 2.16 2.64 3.15 3.57
800 2.08 2.61 3.20 3.58
900 2.11 2.66 3.18 3.70
1000 2.18 2.53 3.07 3.62

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 2.00 2.60 3.18 3.66
300 2.14 2.72 3.30 3.78
400 2.19 2.79 3.34 3.81
500 2.23 2.76 3.34 3.71
600 2.26 2.82 3.44 3.76
700 2.32 2.88 3.38 3.84
800 2.26 2.91 3.42 3.82
900 2.28 2.95 3.47 3.95
1000 2.32 2.80 3.34 3.84

(h) StabSel PC π = 0.75 EV = 5

Table S5: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 50 and B = 500m

n , number of important variables s = 5 and
number of factors K = 5. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.58 1.90 2.39 2.82
300 1.21 1.48 2.15 2.58
400 .97 1.48 2.03 2.52
500 .88 1.39 2.01 2.48
600 .90 1.30 2.01 2.50
700 .83 1.41 2.04 2.49
800 .83 1.42 1.97 2.54
900 .76 1.42 1.98 2.59
1000 .77 1.36 2.01 2.63

(a) RBVS PC

n\p 102 103 104 105

200 1.51 .88 .59 .31
300 .65 .23 .08 .01
400 .30 .05 .01 .00
500 .16 .02 .01 .00
600 .10 .00 .00 .00
700 .05 .00 .00 .00
800 .03 .00 .00 .00
900 .01 .00 .00 .00
1000 .02 .00 .00 .01

(b) IRBVS PC

n\p 102 103 104 105

200 1.33 1.72 2.17 2.56
300 1.45 1.61 2.07 2.37
400 1.44 1.70 2.05 2.38
500 1.50 1.70 2.09 2.41
600 1.53 1.69 2.10 2.51
700 1.54 1.78 2.20 2.43
800 1.54 1.83 2.15 2.54
900 1.55 1.86 2.15 2.61
1000 1.60 1.80 2.19 2.62

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.21 1.73 2.21 2.56
300 1.33 1.56 2.06 2.37
400 1.30 1.65 2.04 2.39
500 1.36 1.65 2.09 2.41
600 1.41 1.66 2.10 2.52
700 1.46 1.75 2.20 2.44
800 1.43 1.82 2.15 2.55
900 1.43 1.83 2.17 2.62
1000 1.48 1.77 2.20 2.63

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.24 1.72 2.18 2.56
300 1.40 1.71 2.25 2.59
400 1.42 1.82 2.28 2.62
500 1.48 1.81 2.30 2.64
600 1.54 1.87 2.31 2.75
700 1.58 1.96 2.41 2.67
800 1.57 1.97 2.40 2.77
900 1.57 2.03 2.41 2.88
1000 1.64 1.98 2.41 2.85

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.21 1.86 2.41 2.74
300 1.21 1.46 1.97 2.25
400 1.21 1.52 1.95 2.30
500 1.24 1.53 1.97 2.32
600 1.29 1.53 2.00 2.41
700 1.31 1.65 2.06 2.33
800 1.27 1.69 2.02 2.43
900 1.32 1.70 2.05 2.52
1000 1.36 1.63 2.09 2.54

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.23 1.96 2.49 2.75
300 1.16 1.41 1.96 2.24
400 1.17 1.50 1.95 2.30
500 1.21 1.50 1.97 2.33
600 1.24 1.49 2.00 2.42
700 1.25 1.64 2.06 2.34
800 1.24 1.65 2.01 2.44
900 1.28 1.68 2.05 2.53
1000 1.32 1.61 2.09 2.54

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.27 1.74 2.24 2.53
300 1.21 1.57 2.11 2.49
400 1.21 1.67 2.15 2.51
500 1.27 1.68 2.19 2.54
600 1.35 1.70 2.19 2.65
700 1.36 1.79 2.31 2.57
800 1.36 1.85 2.26 2.67
900 1.36 1.89 2.29 2.74
1000 1.41 1.82 2.29 2.75

(h) StabSel PC π = 0.75 EV = 5

Table S6: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 100 and B = 500m

n , number of important variables s = 5 and
number of factors K = 5. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.59 1.88 2.38 2.79
300 1.37 1.41 1.83 2.12
400 1.10 1.17 1.45 1.70
500 .92 1.08 1.24 1.48
600 .91 .89 1.13 1.29
700 .82 .87 1.01 1.14
800 .80 .84 .88 1.10
900 .83 .75 .80 .93
1000 .72 .73 .86 .91

(a) RBVS PC

n\p 102 103 104 105

200 1.35 .85 .56 .30
300 1.45 .78 .58 .29
400 1.44 .78 .48 .24
500 1.23 .84 .52 .29
600 1.29 .81 .51 .24
700 1.17 .80 .50 .20
800 1.23 .83 .48 .25
900 1.34 .82 .46 .21
1000 1.19 .79 .51 .19

(b) IRBVS PC

n\p 102 103 104 105

200 1.34 1.75 2.19 2.59
300 1.07 1.26 1.65 2.06
400 .81 1.05 1.37 1.69
500 .63 .94 1.23 1.48
600 .58 .74 1.14 1.34
700 .48 .75 1.09 1.19
800 .43 .67 .89 1.17
900 .42 .60 .82 1.01
1000 .37 .56 .87 .99

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.23 1.75 2.22 2.59
300 1.00 1.29 1.71 2.08
400 .74 1.12 1.42 1.69
500 .59 .99 1.27 1.50
600 .55 .81 1.17 1.37
700 .46 .82 1.14 1.23
800 .39 .75 .93 1.21
900 .38 .65 .86 1.02
1000 .35 .63 .90 1.01

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.25 1.73 2.19 2.56
300 1.01 1.26 1.68 1.95
400 .77 1.05 1.32 1.60
500 .62 .93 1.16 1.40
600 .58 .74 1.03 1.18
700 .47 .75 .99 1.10
800 .41 .68 .80 1.03
900 .40 .59 .76 .93
1000 .38 .58 .81 .85

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.20 1.84 2.40 2.74
300 .97 1.35 1.86 2.29
400 .74 1.22 1.63 1.85
500 .59 1.09 1.46 1.74
600 .58 .92 1.34 1.58
700 .45 .92 1.33 1.44
800 .41 .86 1.10 1.43
900 .39 .77 1.07 1.25
1000 .37 .76 1.07 1.26

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.23 1.93 2.48 2.78
300 1.01 1.48 1.96 2.33
400 .79 1.32 1.72 1.92
500 .65 1.21 1.56 1.80
600 .60 1.05 1.43 1.65
700 .50 1.10 1.42 1.49
800 .47 .99 1.21 1.49
900 .45 .92 1.18 1.29
1000 .42 .93 1.17 1.31

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.27 1.79 2.23 2.56
300 1.02 1.32 1.69 2.03
400 .82 1.17 1.40 1.66
500 .69 1.05 1.25 1.44
600 .64 .88 1.15 1.30
700 .55 .87 1.14 1.13
800 .52 .80 .91 1.13
900 .51 .72 .84 .96
1000 .49 .70 .90 .94

(h) StabSel PC π = 0.75 EV = 5

Table S7: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = n

2 and B = 500m
n , number of important variables s = 5 and

number of factors K = 5. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 6.46 7.50 8.32 8.93
300 6.27 7.48 8.33 8.88
400 6.39 7.44 8.31 8.81
500 6.31 7.38 8.18 8.82
600 6.35 7.41 8.31 8.85
700 6.29 7.47 8.22 8.85
800 6.34 7.43 8.17 8.82
900 6.41 7.46 8.24 8.87
1000 6.30 7.44 8.25 8.81

(a) RBVS PC

n\p 102 103 104 105

200 1.82 1.52 3.01 6.38
300 1.41 1.51 2.94 5.97
400 1.49 1.59 3.08 5.61
500 1.20 1.54 2.87 5.37
600 1.33 1.67 3.33 5.69
700 1.57 2.02 3.05 5.83
800 1.46 1.76 3.08 5.35
900 1.66 2.17 3.52 6.08
1000 1.29 1.91 3.04 5.36

(b) IRBVS PC

n\p 102 103 104 105

200 6.97 7.49 8.17 8.82
300 6.96 7.60 8.35 8.92
400 7.14 7.69 8.32 8.84
500 6.98 7.57 8.21 8.83
600 7.06 7.72 8.37 8.92
700 7.18 7.73 8.39 8.89
800 7.15 7.75 8.35 8.85
900 7.23 7.73 8.41 9.02
1000 7.12 7.64 8.33 8.89

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 6.67 7.39 8.17 8.84
300 6.71 7.51 8.34 8.94
400 6.90 7.59 8.33 8.86
500 6.74 7.50 8.23 8.83
600 6.87 7.64 8.40 8.94
700 6.97 7.67 8.41 8.93
800 6.94 7.68 8.37 8.88
900 7.01 7.67 8.43 9.05
1000 6.89 7.58 8.33 8.91

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 6.92 7.81 8.54 9.11
300 6.99 7.96 8.71 9.24
400 7.25 8.10 8.76 9.17
500 7.09 7.96 8.61 9.14
600 7.21 8.08 8.86 9.25
700 7.34 8.13 8.79 9.25
800 7.26 8.11 8.74 9.20
900 7.39 8.20 8.78 9.37
1000 7.25 8.02 8.71 9.21

(e) StabSel PC π = 0.75 EV =
2.5

n\p 102 103 104 105

200 6.29 7.08 7.95 8.70
300 6.39 7.15 8.12 8.74
400 6.53 7.33 8.11 8.71
500 6.40 7.17 7.98 8.66
600 6.53 7.36 8.19 8.77
700 6.56 7.34 8.18 8.75
800 6.61 7.38 8.12 8.71
900 6.68 7.40 8.22 8.87
1000 6.60 7.31 8.12 8.75

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 6.13 7.00 7.92 8.70
300 6.27 7.08 8.09 8.76
400 6.42 7.27 8.11 8.72
500 6.30 7.11 7.98 8.67
600 6.45 7.33 8.19 8.80
700 6.46 7.30 8.18 8.77
800 6.51 7.32 8.12 8.75
900 6.57 7.34 8.22 8.90
1000 6.51 7.26 8.11 8.76

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 6.26 7.45 8.29 8.98
300 6.46 7.62 8.53 9.08
400 6.70 7.73 8.54 9.05
500 6.50 7.63 8.42 9.02
600 6.69 7.77 8.61 9.13
700 6.73 7.84 8.62 9.13
800 6.80 7.81 8.53 9.10
900 6.87 7.84 8.61 9.24
1000 6.74 7.71 8.52 9.10

(h) StabSel PC π = 0.75 EV = 5

Table S8: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 50 and B = 500m

n , number of important variables s = 10 and
number of factors K = 0. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 4.69 5.79 6.75 7.61
300 4.21 5.42 6.53 7.38
400 3.97 5.31 6.37 7.31
500 3.77 5.30 6.40 7.22
600 3.85 5.36 6.37 7.24
700 3.95 5.35 6.42 7.24
800 4.01 5.31 6.40 7.24
900 4.01 5.37 6.41 7.24
1000 3.98 5.21 6.44 7.25

(a) RBVS PC

n\p 102 103 104 105

200 2.09 1.22 .93 1.38
300 .90 .46 .40 .70
400 .51 .17 .25 .75
500 .32 .07 .38 .84
600 .16 .15 .36 .86
700 .24 .18 .39 1.13
800 .11 .15 .47 1.09
900 .12 .16 .63 1.10
1000 .08 .13 .55 1.18

(b) IRBVS PC

n\p 102 103 104 105

200 5.29 5.31 6.05 6.91
300 5.43 5.32 6.05 6.79
400 5.58 5.42 6.02 6.88
500 5.49 5.47 6.11 6.85
600 5.62 5.64 6.15 6.79
700 5.60 5.62 6.20 6.89
800 5.68 5.62 6.35 6.89
900 5.69 5.66 6.34 6.98
1000 5.65 5.60 6.35 6.94

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 4.73 5.20 6.06 6.92
300 4.93 5.13 6.03 6.80
400 5.02 5.29 6.03 6.89
500 4.94 5.31 6.11 6.87
600 5.14 5.52 6.14 6.82
700 5.17 5.50 6.22 6.90
800 5.25 5.48 6.37 6.92
900 5.28 5.54 6.35 7.02
1000 5.23 5.49 6.36 6.96

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 4.58 5.34 6.21 7.01
300 4.84 5.54 6.43 7.25
400 5.04 5.65 6.41 7.32
500 5.00 5.74 6.54 7.26
600 5.21 5.93 6.60 7.34
700 5.24 5.90 6.73 7.34
800 5.34 5.95 6.85 7.35
900 5.39 5.98 6.79 7.49
1000 5.33 5.89 6.78 7.37

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.48 5.08 6.06 6.98
300 4.60 4.91 5.77 6.59
400 4.71 5.02 5.80 6.68
500 4.64 5.03 5.87 6.62
600 4.84 5.24 5.87 6.58
700 4.91 5.21 5.93 6.69
800 4.95 5.21 6.10 6.68
900 5.02 5.25 6.12 6.81
1000 4.96 5.20 6.08 6.74

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.22 5.07 6.11 6.97
300 4.35 4.82 5.74 6.58
400 4.41 4.91 5.78 6.68
500 4.39 4.93 5.82 6.64
600 4.60 5.13 5.85 6.60
700 4.70 5.14 5.93 6.72
800 4.71 5.14 6.08 6.72
900 4.83 5.19 6.12 6.85
1000 4.74 5.14 6.08 6.75

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.06 5.14 6.07 6.96
300 4.22 5.12 6.16 7.02
400 4.38 5.31 6.17 7.10
500 4.37 5.34 6.29 7.07
600 4.60 5.60 6.33 7.12
700 4.71 5.57 6.42 7.13
800 4.78 5.57 6.61 7.17
900 4.85 5.62 6.55 7.29
1000 4.79 5.57 6.57 7.20

(h) StabSel PC π = 0.75 EV = 5

Table S9: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 100 and B = 500m

n , number of important variables s = 10 and
number of factors K = 0. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 4.66 5.84 6.78 7.54
300 3.52 4.52 5.46 6.29
400 2.80 3.62 4.51 5.46
500 2.38 3.19 3.98 4.72
600 2.20 2.77 3.44 4.17
700 2.13 2.58 3.21 3.81
800 1.99 2.35 3.04 3.53
900 1.81 2.14 2.81 3.27
1000 1.70 1.96 2.51 3.05

(a) RBVS PC

n\p 102 103 104 105

200 1.96 1.34 1.09 1.25
300 1.62 1.01 .63 .46
400 1.61 .97 .54 .35
500 1.65 .95 .51 .31
600 1.58 .90 .58 .26
700 1.61 .89 .51 .26
800 1.36 .90 .48 .26
900 1.44 .80 .54 .22
1000 1.39 .90 .56 .30

(b) IRBVS PC

n\p 102 103 104 105

200 5.28 5.31 6.05 6.93
300 4.82 4.22 4.94 5.63
400 4.51 3.46 4.06 4.88
500 4.35 3.02 3.64 4.29
600 4.33 2.70 3.15 3.82
700 4.29 2.48 2.90 3.54
800 4.26 2.29 2.86 3.26
900 4.23 2.09 2.60 3.02
1000 4.21 1.87 2.29 2.91

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 4.70 5.19 6.04 6.93
300 4.00 4.09 4.95 5.64
400 3.52 3.34 4.05 4.88
500 3.11 2.87 3.64 4.32
600 2.96 2.62 3.17 3.82
700 2.87 2.40 2.93 3.56
800 2.76 2.20 2.87 3.25
900 2.61 2.01 2.63 3.04
1000 2.68 1.76 2.30 2.93

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 4.51 5.31 6.24 7.01
300 3.64 4.23 5.04 5.80
400 2.99 3.44 4.15 4.99
500 2.54 2.95 3.71 4.33
600 2.36 2.69 3.19 3.88
700 2.11 2.43 2.98 3.53
800 2.04 2.27 2.94 3.29
900 1.80 2.06 2.63 3.04
1000 1.69 1.83 2.36 2.88

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.47 5.09 6.06 6.97
300 3.78 4.02 4.95 5.77
400 3.29 3.27 4.14 4.95
500 2.96 2.86 3.70 4.49
600 2.83 2.62 3.22 3.94
700 2.72 2.41 3.00 3.67
800 2.63 2.20 2.97 3.43
900 2.48 2.02 2.72 3.22
1000 2.51 1.75 2.43 3.10

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.18 5.05 6.12 7.02
300 3.39 4.04 5.00 5.82
400 2.81 3.30 4.18 4.98
500 2.41 2.88 3.77 4.53
600 2.25 2.63 3.30 3.98
700 2.02 2.43 3.08 3.75
800 1.98 2.26 3.02 3.46
900 1.79 2.06 2.78 3.26
1000 1.67 1.84 2.48 3.18

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.01 5.13 6.05 6.92
300 3.16 4.03 4.96 5.66
400 2.55 3.27 4.08 4.92
500 2.10 2.84 3.63 4.29
600 2.00 2.66 3.18 3.83
700 1.74 2.42 2.97 3.54
800 1.69 2.22 2.89 3.26
900 1.49 2.03 2.62 3.02
1000 1.37 1.78 2.32 2.88

(h) StabSel PC π = 0.75 EV = 5

Table S10: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = n

2 and B = 500m
n , number of important variables s = 10 and

number of factors K = 0. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 7.23 8.05 8.77 9.35
300 7.04 8.02 8.74 9.27
400 7.02 7.90 8.68 9.26
500 6.83 7.88 8.62 9.21
600 6.96 7.94 8.69 9.18
700 7.14 7.90 8.63 9.11
800 6.96 7.97 8.63 9.13
900 7.01 7.94 8.68 9.22
1000 6.94 7.90 8.55 9.08

(a) RBVS PC

n\p 102 103 104 105

200 2.49 1.94 4.04 8.38
300 1.55 1.73 3.26 7.48
400 1.93 1.52 2.76 7.14
500 1.19 1.01 2.51 6.21
600 1.68 1.38 2.94 6.12
700 2.09 1.45 2.65 5.50
800 1.57 1.38 2.41 5.19
900 1.44 1.44 2.84 6.09
1000 1.66 1.41 2.13 4.89

(b) IRBVS PC

n\p 102 103 104 105

200 7.37 7.97 8.67 9.24
300 7.41 8.17 8.79 9.33
400 7.48 8.15 8.81 9.39
500 7.44 8.09 8.74 9.34
600 7.55 8.17 8.83 9.31
700 7.66 8.25 8.83 9.31
800 7.51 8.20 8.80 9.31
900 7.67 8.26 8.89 9.38
1000 7.55 8.13 8.73 9.23

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 7.13 7.88 8.68 9.26
300 7.24 8.09 8.80 9.33
400 7.26 8.08 8.83 9.39
500 7.25 8.02 8.75 9.35
600 7.39 8.09 8.85 9.34
700 7.50 8.16 8.85 9.33
800 7.29 8.12 8.82 9.34
900 7.47 8.20 8.90 9.41
1000 7.33 8.06 8.76 9.26

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 7.42 8.26 9.00 9.51
300 7.50 8.47 9.12 9.54
400 7.61 8.51 9.14 9.62
500 7.59 8.45 9.09 9.56
600 7.74 8.61 9.17 9.59
700 7.84 8.55 9.18 9.56
800 7.71 8.59 9.16 9.55
900 7.89 8.61 9.21 9.67
1000 7.75 8.51 9.10 9.48

(e) StabSel PC π = 0.75 EV =
2.5

n\p 102 103 104 105

200 6.75 7.63 8.50 9.13
300 6.92 7.83 8.59 9.23
400 6.91 7.76 8.61 9.25
500 6.95 7.77 8.53 9.20
600 7.01 7.78 8.64 9.22
700 7.11 7.86 8.60 9.19
800 6.96 7.82 8.60 9.18
900 7.13 7.90 8.71 9.30
1000 6.97 7.76 8.55 9.12

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 6.63 7.56 8.48 9.13
300 6.83 7.76 8.58 9.23
400 6.84 7.71 8.62 9.27
500 6.85 7.71 8.53 9.21
600 6.95 7.74 8.65 9.24
700 7.05 7.84 8.61 9.23
800 6.91 7.78 8.59 9.20
900 7.06 7.87 8.73 9.30
1000 6.92 7.73 8.55 9.13

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 6.83 7.94 8.81 9.38
300 7.04 8.19 8.95 9.43
400 7.10 8.19 8.99 9.53
500 7.10 8.15 8.89 9.48
600 7.27 8.24 9.01 9.48
700 7.34 8.32 9.01 9.49
800 7.20 8.28 8.97 9.48
900 7.38 8.34 9.08 9.59
1000 7.20 8.22 8.91 9.41

(h) StabSel PC π = 0.75 EV = 5

Table S11: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 50 and B = 500m

n , number of important variables s = 10 and
number of factors K = 5. Bold: result better than the corresponding value for RBVS PC.

18



n\p 102 103 104 105

200 5.43 6.53 7.47 8.34
300 5.07 6.17 7.23 8.05
400 4.67 5.92 7.06 7.95
500 4.65 6.05 7.05 7.80
600 4.55 5.84 6.99 7.87
700 4.54 5.96 6.99 7.83
800 4.48 5.98 6.97 7.80
900 4.55 6.03 7.10 7.87
1000 4.56 5.89 7.03 7.71

(a) RBVS PC

n\p 102 103 104 105

200 2.13 1.57 1.13 1.89
300 1.01 .56 .30 .60
400 .56 .13 .21 .31
500 .44 .14 .23 .28
600 .31 .13 .16 .60
700 .28 .15 .16 .40
800 .25 .23 .20 .26
900 .12 .21 .24 .53
1000 .20 .19 .26 .15

(b) IRBVS PC

n\p 102 103 104 105

200 5.64 5.88 6.80 7.60
300 5.84 5.91 6.66 7.45
400 5.93 5.95 6.72 7.50
500 5.93 6.11 6.77 7.41
600 5.96 5.99 6.71 7.47
700 5.95 6.13 6.84 7.51
800 5.93 6.16 6.89 7.57
900 6.03 6.21 6.92 7.58
1000 5.95 6.06 6.87 7.41

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 5.21 5.78 6.76 7.59
300 5.38 5.76 6.62 7.45
400 5.50 5.83 6.72 7.51
500 5.49 5.97 6.78 7.45
600 5.50 5.87 6.72 7.50
700 5.55 6.02 6.83 7.54
800 5.54 6.06 6.91 7.61
900 5.67 6.08 6.95 7.63
1000 5.55 5.95 6.88 7.46

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 5.09 5.93 6.91 7.67
300 5.42 6.17 7.12 7.83
400 5.58 6.20 7.19 7.89
500 5.59 6.39 7.20 7.86
600 5.64 6.35 7.24 7.94
700 5.70 6.47 7.27 7.96
800 5.72 6.45 7.35 8.04
900 5.85 6.55 7.41 8.02
1000 5.76 6.41 7.31 7.91

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.99 5.70 6.80 7.71
300 5.05 5.50 6.37 7.21
400 5.16 5.55 6.39 7.28
500 5.16 5.68 6.54 7.25
600 5.17 5.58 6.46 7.25
700 5.25 5.72 6.54 7.29
800 5.24 5.74 6.62 7.38
900 5.36 5.76 6.61 7.38
1000 5.24 5.66 6.58 7.23

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.72 5.66 6.80 7.72
300 4.80 5.41 6.34 7.20
400 4.96 5.42 6.38 7.29
500 4.94 5.58 6.52 7.26
600 4.97 5.49 6.43 7.26
700 5.01 5.65 6.54 7.31
800 5.05 5.68 6.62 7.41
900 5.20 5.71 6.63 7.41
1000 5.06 5.60 6.58 7.24

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.55 5.73 6.75 7.53
300 4.74 5.79 6.76 7.65
400 4.97 5.85 6.88 7.72
500 4.97 6.03 6.92 7.65
600 5.02 5.92 6.94 7.75
700 5.13 6.11 7.05 7.76
800 5.14 6.14 7.11 7.86
900 5.29 6.21 7.14 7.84
1000 5.15 6.06 7.09 7.71

(h) StabSel PC π = 0.75 EV = 5

Table S12: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = 100 and B = 500m

n , number of important variables s = 10 and
number of factors K = 5. Bold: result better than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 5.47 6.51 7.54 8.35
300 4.33 5.22 6.24 7.08
400 3.48 4.29 5.34 6.09
500 2.96 3.80 4.65 5.30
600 2.59 3.35 4.08 4.85
700 2.27 2.96 3.74 4.22
800 2.16 2.72 3.46 3.95
900 1.98 2.45 3.13 3.70
1000 1.83 2.32 2.90 3.44

(a) RBVS PC

n\p 102 103 104 105

200 2.21 1.48 1.11 1.83
300 1.95 1.13 .67 .45
400 1.59 1.00 .57 .30
500 1.73 .99 .56 .32
600 1.70 .97 .56 .30
700 1.70 .90 .49 .28
800 1.53 .91 .50 .29
900 1.52 .91 .50 .27
1000 1.46 .90 .51 .26

(b) IRBVS PC

n\p 102 103 104 105

200 5.65 5.86 6.81 7.61
300 5.02 4.74 5.54 6.29
400 4.71 4.08 4.71 5.33
500 4.49 3.57 4.13 4.76
600 4.38 3.15 3.68 4.36
700 4.29 2.86 3.39 3.76
800 4.23 2.59 3.17 3.57
900 4.29 2.35 2.90 3.38
1000 4.24 2.17 2.71 3.17

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 5.22 5.74 6.78 7.60
300 4.35 4.63 5.52 6.29
400 3.88 3.99 4.72 5.33
500 3.50 3.44 4.14 4.78
600 3.26 2.97 3.67 4.36
700 3.07 2.74 3.39 3.76
800 2.96 2.52 3.18 3.58
900 2.80 2.26 2.92 3.38
1000 2.71 2.09 2.72 3.18

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 5.10 5.89 6.90 7.66
300 4.11 4.78 5.70 6.42
400 3.50 4.10 4.81 5.42
500 3.05 3.55 4.25 4.80
600 2.70 3.08 3.76 4.39
700 2.49 2.84 3.46 3.83
800 2.30 2.58 3.24 3.65
900 2.11 2.32 2.94 3.44
1000 1.92 2.14 2.73 3.19

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.96 5.69 6.82 7.72
300 4.13 4.52 5.52 6.39
400 3.65 3.91 4.78 5.46
500 3.32 3.40 4.24 4.92
600 3.09 2.94 3.70 4.52
700 2.93 2.68 3.46 3.88
800 2.80 2.55 3.25 3.69
900 2.69 2.24 3.03 3.52
1000 2.57 2.09 2.82 3.32

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.70 5.70 6.87 7.72
300 3.78 4.51 5.60 6.39
400 3.29 3.89 4.84 5.49
500 2.89 3.43 4.26 4.99
600 2.55 2.95 3.75 4.57
700 2.40 2.73 3.51 3.92
800 2.23 2.59 3.31 3.74
900 2.03 2.28 3.08 3.57
1000 1.89 2.17 2.92 3.36

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.53 5.71 6.77 7.57
300 3.54 4.56 5.52 6.31
400 3.04 3.91 4.72 5.33
500 2.67 3.39 4.13 4.76
600 2.28 2.96 3.65 4.36
700 2.08 2.67 3.39 3.75
800 1.96 2.54 3.19 3.60
900 1.75 2.23 2.94 3.39
1000 1.62 2.10 2.73 3.15

(h) StabSel PC π = 0.75 EV = 5

Table S13: High-dimensional example: the average number of FP+FN (False Positives and False Negatives)
calculated over 500 realisations with m = n

2 and B = 500m
n , number of important variables s = 10 and

number of factors K = 5. Bold: result better than the corresponding value for RBVS PC.
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