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Abstract: We introduce a class partial correlation network models whose
network structure is determined by a random graph. In particular in this
work we focus on a version of the model in which the random graph has
a power-law degree distribution. A number of cross-sectional dependence
properties of this class of models are derived. The main results we establish
is that when the random graph is power-law, the system exhibits a high
degree of collinearity. More precisely, the largest eigenvalues of the inverse
covariance matrix converge to an a�ne function of the degrees of the most
interconnected vertices in the network. The result implies that the largest
eigenvalues of the inverse covariance matrix are approximately power-law
distributed, and that, as the system dimension increases, the eigenvalues
diverge. As an empirical illustration we analyse a panel of stock returns of
a large set of companies listed in the S&P 500 and show that the covariance
matrix of returns exhibits empirical features that are consistent with our
power-law model.

Keywords and phrases: Partial Correlation Networks, Random Graphs,
Power-Law.

1. Introduction

The recent financial crises in the United States and Europe have boosted the
interest in network analysis in economics and finance. These crises have force-
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fully shown that when the degree of interdependence in the system is excessive,
a large fraction of firms may experience distress simultaneously, and the mag-
nitude of the aggregate distress may be large relative to the entire system. In
the aftermath of these crises, several authors have proposed network estimation
techniques for large panels of time series. These methods are typically applied to
carry out inference on the degree of interdependence among firms on the basis
of market data, such as stock prices. Contributions in this area include the work
of Diebold and Yılmaz [16], Hautsch et al. [21, 22], Barigozzi and Brownlees [4],
Brownlees et al. [9]. An early influential contribution that analyzed the degree of
interconnectedness in the financial system in the US and Europe that predates
the crisis is Hartmann et al. [20]. This literature is often motivated by the claim
that a high degree of interconnectedness poses threats to the stability of the
entire system. However, the notion of excessive interconnectedness is typically
not explicitly formalized and it often remains an elusive concept.

In this work we introduce a partial correlation network model for a random
vector that is a function of a latent random graph. The model we introduce
bridges ideas from partial correlation networks and graphical models [15, 28]
together with random graphs [17, 12, 35]. The key feature of the model is that
the cross-sectional dependence properties of the components of the random vec-
tor depend on the underlying random graph, and by considering di↵erent types
of random graphs one can generate models with di↵erent cross-sectional depen-
dence properties. In particular, in this work we focus on the important special
case in which the random graph has a power-law degree distribution. This class
of models is often documented to replicate well the empirical characteristics of
many real-world networks [12, 35], like “small world” e↵ects and hubs. We name
the model the power-law partial correlation network model.

We derive a number of properties of the power-law partial correlation network
model we introduce. The key result we establish concerns the spectrum of the
covariance matrix of the random vector. We show that when the dimension of
the system is large, the largest eigenvalues of the inverse covariance matrix (also
known as the concentration matrix) converge to a positive a�ne transformation
of the degrees of the most interconnected vertices. This result has a number of
implications from the perspective of the class of models we consider. First, when
the underlying graph has a power-law structure then the system can exhibit an
excessive degree of collinearity. More precisely, the condition number of the
covariance matrix diverges as the cross-sectional dimension increases. Second,
the largest eigenvalues of the concentration matrix can be used to learn the
power-law tail parameter of the random graph, which characterizes the power-
law structure of the network. This allows us to carry out inference on the degree
of interdependence in the system without having to estimate the underlying
partial correlation structure of the data (typically, using LASSO as in Peng et al.
[30]), which can be computationally challenging when the system dimensionality
is large.

As an empirical illustration, we analyze the covariance matrix of a large
panel of stock returns of companies listed in the S&P 500 index. We propose an
estimator of the tail parameter of the power-law degree distribution based on
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the eigenvalues of the concentration matrix building up on standard procedures
proposed in the literature. Estimation results deliver a power-law tail parameter
lower than three, which signals, from the standpoint of our model, the presence
of highly influential assets in the S&P 500.

This paper is related to the literature on network estimation in econometrics
and statistics which includes, among others, the work of Diebold and Yılmaz
[16], Hautsch et al. [21, 22] and Barigozzi and Brownlees [4]. Our main mes-
sage has analogies to the contribution of Acemoglu et al. [1] that shows that
because of network interdependence among firms, firm specific shocks can lead
to aggregate system fluctuations.

The paper is structured as follows. Section 2 presents the framework and the
main results. Sections 3 and 4 provide illustrations using simulated and real
data. Concluding remarks follow in Section 5.

2. Framework

2.1. Partial Correlation Network Model

Consider an n-dimensional random vector Y = (Y
1

, . . . , Yn) that is assumed
to have mean zero and invertible covariance matrix ⌃ = (E[YiYj ])n⇥n. The
inverse covariance matrix K = ⌃

�1, also known as the concentration or pre-
cision matrix, plays an important role in this paper. It is well known that the
concentration matrix contains information on the partial correlation structure
among the components of the vector Y [15, 28]. Partial correlation measures the
linear dependence between Yi and Yj after eliminating the linear e↵ects of the
remaining n� 2 variables in the system [see 31, chapter 5]. Formally the partial
correlation between Yi and Yj may be defined as follows. Let Y be partitioned
in (Y 0

1

,Y 0
2

)0 where Y
1

is a 2 dimensional vector comprising of Yi and Yj whereas
Y
2

is an n � 2 dimensional vector comprising of the remaining variables in Y .
Let � denote the 2⇥(n�2) matrix of linear least-squares regression coe�cients
associated with the regression of Y

1

on Y
2

and let U denote the vector of regres-
sion residuals Y

1

��Y
2

. Then, the partial correlation coe�cient ⇢ij between Yi

and Yj is defined as
⇢ij = Cor(U

1

, U
2

) .

Partial correlations can be expressed as a function of the entries kij of the
concentration matrix K using the identity

⇢ij = � kijp
kii kjj

.

Thus, the (i, j) entry of the concentration matrix K is zero if and only if Yi and
Yj are partially uncorrelated given all other variables in the system.

In this work we propose a model for the concentration matrix K that is
a function of an underlying network N . A network N is defined as a simple
undirected graph (V, E) where V = {1, ..., n} is the set of vertices and E is the
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set of edges. There are a number of matrices associated with a network that are
relevant in this work: the degree, the adjacency, and Laplacian matrices. The
degree matrix D is defined as a diagonal matrix whose entry Dii = [D]ii is
equal to the degree of vertex i, that is, the number of edges adjacent to vertex i.
The degree of vertex i is also denoted by Di. The adjacency matrix A is defined
as a matrix whose entry Ai,j = [A]i,j is one if i and j are connected by an edge
and it is zero otherwise. Notice that the adjacency matrix is symmetric and its
diagonal terms are zero. Finally, the Laplacian matrix L of a network is defined
as L = D �A.

We now describe a simple model for a multivariate random vector whose
partial correlation dependence structure is determined by a network.

Definition 1. (partial correlation network model) We say that the
random vector Y is generated by a partial correlation network model based on
network N and scalars �2 > 0 and � � 0 if Y has a multivariate distribution
with mean zero and concentration matrix

K =
1

�2

I +
�

�2

L ,

where L is the Laplacian matrix of N . The coe�cients �2 and � are called the
variance and the network dependence parameters, respectively.

A number of comments is in order. Our model establishes a link between the
concentration matrix of the random vector Y and the Laplacian of the network
N . This is a natural model in many situations. The Laplacian matrix often arises
in network analysis as its spectrum encodes several key properties of the net-
work. For instance, the number of connected components of the network is equal
to the number of zero eigenvalues of the Laplacian. Moreover, indices of central-
ity, inter alia eigenvector centrality, are associated with the largest eigenvalues
of the Laplacian as well. We refer to Chung [11] and Brouwer and Haemers [8]
for good general introductions to spectral graph theory. Importantly, the model
ensures that the partial correlation between Yi and Yj is zero if and only if
there is no edge between i and j in the network N . Moreover, the Laplacian is
diagonally dominant with positive diagonal entries, which implies that K is a
strictly diagonally dominant and therefore positive definite.

It is important to clarify what type of relations are captured by the partial
correlation network. Our network definition based on partial correlations cap-
tures the linear predictive dependence structure of the variables in the system
that is implied by the covariance matrix. The partial correlation network can be
interpreted as one of the natural generalizations of Gaussian graphical models
for non-Gaussian data. If the distribution of Y is Gaussian, then the partial
correlation ⇢ij is equal to the conditional correlation Cor(Yi, Yj |{Yk : 1  k 
n, k 6= i, j}). Therefore, in this case, ⇢ij = 0 implies that Yi and Yj are condi-
tionally independendent and the partial correlation network can be interpreted
as a conditional independence graph.
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We provide a number of properties of the model of Definition 1 that are
straightforward to verify. We begin with the regression representation of the
model. The i-th variable in the system can be expressed as

Yi =
X

j2N(i)

�

�Di + 1
Yj + ✏i ,

where N(i) denotes the set of neighbors of vertex i and ✏i is a prediction error
term with mean zero and variance �2

✏ i = �2/(1 + �Di). Rearranging terms, we
get

Yi =

✓
Di

Di + 1/�

◆
1

Di

X

j2N(i)

Yj + ✏i =
 i

Di

X

j2N(i)

Yj + ✏i ,

where  i = Di/(Di + 1/�). The last equation shows that conditionally on the
other variables in the system, the realization of the i-th variable can be inter-
preted as a linear function of the average of the neighbors and a location-specific
innovation.

The partial correlations implied by the model are

⇢ij =
Ai,jp

(Di + 1/�)(Dj + 1/�))

(recall that Ai,j = {i⇠j} is the indicator of an edge joining vertex i and vertex
j). Expansion of this formula with respect to � gives insight to the partial
correlation behavior of the model. For � close to zero we have that the partial
correlations are approximately constant in the sense that, as �! 0,

⇢ij = �Ai,j +O(�2) .

On the other hand, when � is large, the magnitude of the partial correlation
between two variables is a decreasing function of the number of linkages of each
variable, that is, as �! 1,

⇢ij =
Ai,jp
DiDj

+O(��1) .

The covariance matrix ⌃ of the system (see Proposition 1 in the Appendix)
is

⌃ = �2(I + �D)�1 +
�2

�

1X

k=1

Wk ,

where Wk is what we call the weighted walk matrix of length k, defined as

[Wk]i,j =
X

w2Wk

{w goes from i to j}Q
v2V(w)

(d(v) + 1/�)
,

where Wk denotes the set of walks of length k (i.e., sequences of vertices
v
1

, . . . , vk+1

such that for i = 1, . . . , k we have that vi and vi+1

are joined
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by an edge) in the network, V(w) denotes the set of vertices in walk w, d(v)
denotes the degree of vertex v and is the indicator function. Notice that two
variables are correlated if and only if there exists a path in the graph that con-
nects them and that the higher the number of walks between two variables the
higher their correlation is (importantly, this is due to the fact that in our model
all partial correlations are positive).

An important characteristics of our model is that it does not have a factor
structure in the sense of, for example, Chamberlain and Rothschild [10], Stock
and Watson [33, 34], and Bai [3]. According to their definitions, if ⌃ has an
r-factor structure then its r largest eigenvalues diverge as the cross-sectional
dimension increases at a rate O(n), while the remaining n � r stay bounded.
However, in the partial-correlation network model it is straightforward to see
that the eigenvalues of ⌃ are bounded from above. Indeed, let �Mi denote the
i–th eigenvalue of a matrix M in a non-increasing order. Then, we have

�⌃
1

=
1

�Kn
=

�2

1 + ��Ln
= �2,

which follows from the fact that the smallest eigenvalue of the Laplacian of a
network is zero. It is possible to consider our model as complementary to a factor
model. Indeed, in the presence of a factor structure, a partial-correlation network
structure can be defined for the idiosyncratic component (the component not
driven by the factors) without violating the standard assumptions of factor
models.

2.2. Partial Correlation Network Model and Random Graphs

An interesting feature of the partial correlation network model we have intro-
duced is that its cross-sectional dependence properties depend on the choice of
the underlying network N . In this work we model the underlying network N as
a random graph. In particular, we work with an inhomogeneous random graph
model known as the Chung-Lu model [12, 6]. The Chung-Lu model is a general-
ization of the classical Erdős-Rényi random graph [17] that allows one to model
general degree distributions. In particular, the Chung-Lu model o↵ers a flexible
and versatile tool to model and analyze random graphs with a power-law degree
distributions.

Definition 2. (chung-lu random graph model) Let w = (w
1

. . . wn)0 2 Rn

be a nonnegative weight vector such that

w2

M = max
i

w2

i <

nX

l=1

wl . (2.1)

A Chung-Lu random graph is a simple undirected graph where the existence of
an edge between vertex i and j (i 6= j) is determined by an independent Bernoulli
trial with probability

pi,j =
wiwjPn
l=1

wl
.
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The weights wi are closely related to the expected degrees in the random
graph, since

EDi = E

0

@
nX

j=1

Ai,j

1

A =
nX

j=1

pi,j

=
nX

j:j 6=i

wiwjPn
l=1

wl
= wi

Pn
j:j 6=i wjPn
j=1

wj
⇡ wi .

Note, in particular, that by (2.1),

wi � EDi � wi

 
1� wiPn

j=1

wj

!
= wi

⇣
1� wi

nw

⌘
, (2.2)

where w = 1

n

Pn
l=1

wi is the average weight (i.e., roughly the average expected
degree). Also, EDi � EDj if and only if wi � wj .

By appropriately choosing the specification of the weight sequence wi it is
possible to replicate di↵erent types of random graph models proposed in the
literature. In this paper we work with random graphs with specific sparsity
properties. We focus on sparse graphs in which the average weight is a positive
constant w > 0. This sparsity assumption allows us to analyze the implications
of power-law degree distribution in networks in which the total number of edges
is constrained to be O(n). Thus, our results are driven by the configuration of the
edges rather than by their sheer number. Note that for sparse graphs Condition
2.1 in Definition 2 implies that the maximum weight wM cannot grow faster
than n1/2.

We recover the classical Erdős-Rényi model by taking wi = w for all i =
1, . . . , n. The Erdős-Rényi model is often acknowledged to be of limited power
in modelling networks. In particular, the degree distribution of many networks
appearing in practice seems to be much more heavy tailed than what would be
implied by an Erdős–Rényi model. In order to overcome the limitations of this
class of models, several authors have proposed di↵erent formulations of so-called
power-law random graphs, that is, random graphs in which the degree distribu-
tion follows a power-law. In this work we find it convenient to focus on power-law
random graphs derived from the Chung-Lu model. Other well-studied power-
law random graphs include the configuration model and preferential attachment
models, see [35] for a survey.

Definition 3. (power-law random graph model) The power-law random
graph with power-law parameter � > 2 is defined as a Chung-Lu random graph
with weight sequence given by

wi = c

✓
i+ i

0

� 1

n

◆�1/(��1)

i = 1, . . . , n ,

with

i
0

= n

✓
c

wM

◆��1

and c = w

✓
� � 2

� � 1

◆
,
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where w is the average weight and w
1

= wM is the maximum weight.

It is straightforward to show [12] that the expected number nk of vertices of
degree k is power-law distributed, that is,

nk / �(k � � + 1)

�(k + 1)
⇡ k�� . (2.3)

Power-law networks with � 2 (2, 3) are particularly interesting as, empirically,
this interval typically contains the vast majority of empirical estimates of the
tail parameter obtained from many networks.

We define the power-law partial correlation network by associating the partial
correlation model with the power-law random graph.

Definition 4. (power-law partial correlation network model) The
power-law partial correlation network model is a partial correlation network
model in which the underlying network N is a power-law random graph with
parameters � > 2, w > 0, and wM = n↵ with ↵ 2 (0, 1/2).

One of our main findings is that the behavior of the largest eigenvalues of
the concentration matrix is determined by the highest degrees in the network.
The result is summarized in the following theorem.

Theorem 1. Let Y be generated by the power-law partial correlation network
model with � 2 (2, 3) and ↵ < 1/(��1). Let �Ki denote the ith eigenvalue of the
concentration matrix K ordered in descending order. Then for every ✏ > 0 there
exist constants C, � > 0 such that, with probability at least 1 � n exp

�
�Cn�

�
,

for all i  nmin(↵,1�↵(��1))�✏,

�Ki =
1

�2

⇥
�wi

�
1 +O(n��)

�
+ 1
⇤
. (2.4)

Our result implies that the largest eigenvalues of the concentration matrix
are closely related to the power-law distribution of the degrees. By a simple
concentration argument, wi may be replaced by either EDi or Di in (2.4).

A number of comments on the implications of Theorem 1 are in order. First,
notice that as the system dimension n increases, the smallest eigenvalues of the
covariance matrix ⌃ of the model, which are the reciprocals of the largest eigen-
values of K, converge to zero. Thus, the power-law partial correlation network is
a model in which, in spite of the sparsity of the underlying network, the system
exhibits high collinearity among the variables. Second, the largest eigenvalues
of the concentration matrix K are a noisy proxy (up to a linear transformation)
of the largest degrees of the network. This suggests that these eigenvalues can
be used to gain insight to the underlying degree distribution and, in particular,
to the power-law tail parameter �. This is appealing in that it suggests that we
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Fig 1. Network Decomposition.
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The figure provides an illustration of the network decomposition strategy we

use to prove the main theorem of this work.

can learn the degree of the power-law exponent of the power-law partial corre-
lation network simply by analyzing the spectrum of the concentration matrix
and without having to learn the entire underlying network using, for instance,
sparse network estimation techniques. Last we note that Theorem 1 provides an
upper bound on the largest eigenvalues of the concentration matrix, and that
similar arguments to the ones used in the proof of the theorem can be used to
establish an analogous lower bound.

We detail the proof of this result in the following section and we sketch
here the main steps of our argument. Central to our proof is a decomposition

imsart-ss ver. 2014/10/16 file: ppcn_rev1.tex date: July 27, 2018



M. Barigozzi et al./ 10

of the power-law network N into two networks N
1

and N
2

. For illustration
purposes, Figure 1 contains an example of our graph decomposition using a
simulated power-law network (appropriately pruned to enhance the plot read-
ibility). Fix some k < n and consider the k vertices v

1

, . . . , vk with largest
expected degree in the network N . (For instance, in Figure 1 the three ver-
tices with highest degree are selected.) The sub-network N

1

has the same set
of vertices as N and it consists of all edges adjacent to v

1

, . . . , vk, except for
all edges between these vertices. (Thus, N

1

is a bipartite graph with bipartition
{v

1

, . . . , vk}, {vk+1

, . . . , vn}.) The network N
2

(also defined on the same vertex
set as N ) contains all remaining edges of N .

Next we note that the Laplacian of N is equal to the sum of the Laplacians
of N

1

and N
2

. Thus, we can obtain bounds for the largest eigenvalues of the
Laplacian of N using the eigenvalues of the Laplacians of N

1

and N
2

. As it
turns out, the largest eigenvalues of the Laplacian of N

1

are closely related
to the largest expected degrees in N . This follows from general bounds for
Laplacian eigenvalues in terms of degrees and probabilistic arguments.

Next we show that the largest eigenvalue of the Laplacian of N
2

is small
relative to the largest eigenvalues of the Laplacian of N

1

. Finally, the claim of
the theorem follows by applying Weyl’s inequality which allows us to establish
that the largest eigenvalues of the Laplacian of N are close to the degrees of the
largest degree vertices in the network, with high probability.

2.3. Proof of Theorem 1

Introduce ` = n� for some � < min(↵, 1�↵(��1)). We prove that the ` largest
eigenvalues of K satisfy the relation stated in the theorem.

We begin by noting that, with w
1

= n↵, the weights of the power-law random
graph become

wi = cn1/(��1)

⇣
c��1n1�↵(��1) + i� 1

⌘�1/(��1)

.

When i < c��1n1�↵(��1), then within the expression in parenthesis, the first
term dominates, otherwise the second. In particular, we have

wi 2
⇢

[n↵/21/(��1), n↵] if i < c��1n1�↵(��1)

⇥
c(n/(2i))1/(��1), c(n/i)1/(��1)

⇤
if i � c��1n1�↵(��1) .

(2.5)

The proof is based on decomposing the power-law network N in the union
of two non-overlapping networks N

1

and N
2

. We say that the networks N
1

and N
2

are non-overlapping if the networks are defined over the same vertex
set and their edge sets are disjoint. That is, N

1

= (V, E
1

), N
2

= (V, E
2

) with
E
1

\ E
2

= ;. The union N = N
1

[N
2

of non-overlapping networks N
1

and N
2

is N = (V, E
1

[ E
2

). The Laplacian of the union of non-overlapping networks
equals the sum of the Laplacians L = L

1

+L
2

.
As described above, the sub-network N

1

consists of all edges adjacent to the
vertices v

1

, . . . , vk of highest weight, except for those edges that join two vertices
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vi, vj such that i, j  k. We choose k = n⇢ for some ⇢ 2 (1 � ↵(� � 1), 1 � ↵).
N

2

contains all remaining edges of N so that N
1

and N
2

are non-overlapping
and N = N

1

[N
2

.
In order to estimate the largest eigenvalues of the Laplacian L of the power-

law network N , we write L as the sum of the Laplacians L
1

of N
1

and L
2

of
the residual network N

2

, L = L
1

+ L
2

. It follows from Weyl’s inequality that
the eigenvalues of L satisfy, for all i = 1, . . . , n,

�L1

i + �L2

n  �Li  �L1

i + �L2

1

. (2.6)

Noting that the smallest eigenvalue of any Laplacian equals zero, we have �L2

n =
0, and therefore, in order to prove the theorem we need to study the behavior
of �L1

i and �L2

1

.
First we bound from above the largest eigenvalue �L1

1

of the Laplacian L
1

of the graph N
1

. Our main tool is a well-known bound of [2] (Proposition 3 in

the Appendix) that implies that �L1

1

is at most max
⇣
DN

1

i +DN
1

j

⌘
, where DN

1

i

denotes the degree of vertex vi in N
1

and the maximum is taken over all pairs
(i, j) such that vi and vj are joined by an edge in N

1

.
Since N

1

is bipartite, we have

�L1

1

 max
ik

DN
1

i +max
i>k

DN
1

i

 max
ik

Di +max
i>k

kX

j=1

Ai,j .

In order to bound the right-hand side, first note that

max
ik

Di  max
ik

EDi +max
ik

(Di � EDi)  n↵ +max
ik

(Di � EDi) .

By a simple Cherno↵ bound (see, e.g., Proposition 2 in the Appendix),

P
✓
max
ik

(Di � EDi) > n3↵/4

◆
 kP

⇣
Di � EDi > n3↵/4

⌘
 k exp

⇣
�n↵/2

⌘
.

On the other hand, note that for i > k, using (2.5),

E
kX

j=1

Ai,j 
kw

1

wi

nw
 n↵ cn

⇢+(1�⇢)/(��1)�1

w
.

(Note that � > 2 implies ⇢+ (1� ⇢)/(� � 1) < 1 and so E
Pk

j=1

Ai,j = o(n↵).)

imsart-ss ver. 2014/10/16 file: ppcn_rev1.tex date: July 27, 2018



M. Barigozzi et al./ 12

Thus, again by Proposition 2,

P

8
<

:max
i>k

kX

j=1

Ai,j > 2n↵ cn
⇢+(1�⇢)/(��1)�1

w

9
=

;

 P

8
<

:max
i>k

0

@
kX

j=1

Ai,j � E
kX

j=1

Ai,j

1

A > n↵ cn
⇢+(1�⇢)/(��1)�1

w

9
=

;

 n exp

✓
�n↵ cn

⇢+(1�⇢)/(��1)�1

w

◆
.

Hence, since ⇢ > 1� ↵(� � 1) implies ↵+ ⇢+ (1� ⇢)/(� � 1)� 1 > 0, we have
that, there exist positive constants C

1

, ✏
1

such that, with probability at least
1� 2n exp(�C

1

n✏
1),

�L1

1

 n↵
�
1 + C

1

n�✏
1

�
. (2.7)

Recall that ` = n� for some � < min(↵, 1� ↵(� � 1)) We derive a lower bound
for the `-th largest eigenvalue �L1

` of the Laplacian of N
1

. To this end, we use
Proposition 4 that implies that

�L1

` � DN
1

` � ` . (2.8)

Since ` < k, DN
1

` =
Pn

i=k+1

Ai,`. Thus, using (2.2) and (2.5)

EDN
1

` = ED` � w`

kX

i=1

wi

nw
� w`

⇣
1� w`

nw
� k

wk

nw

⌘

� w`

✓
1� n↵�1

w
� c

w
n(⇢(��2)+1)/(��1)�1

◆
. (2.9)

Since ` = n� with � < 1�↵(� � 1)), we have from the definition of the weights
that

w` = n↵

✓
1 +

1

c��1

n�+↵(��1)�1

◆�1/(��1)

� n↵

✓
1 +

1

(� � 1)c��1

n�+↵(��1)�1

◆�1

(by Bernoulli’s inequality)

� n↵

✓
1� 1

(� � 1)c��1

n�+↵(��1)�1

◆
. (2.10)

Putting (2.9) and (2.10) together, we have that, for some positive constants
C

1

, ✏
1

,
EDN

1

` � n↵
�
1� C

1

n�✏
1

�
.

By Proposition 2,DN
1

` � EDN
1

` �n3↵/4 with probability at least 1�exp(�⌦(n↵/2)),
and thus, combining these bounds with (2.8) and (2.7), we find that there exist
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positive constants C
0

, ✏
0

such that, with probability at least 1 � exp(�C
0

n✏
0),

for all i = 1, . . . , `,

n↵
�
1� C

0

n�✏
0

�
 �L1

i  n↵
�
1 + C

0

n�✏
0

�
. (2.11)

Next, we bound the largest eigenvalue �L2

1

of the Laplacian of the residual
network N

2

. To this end, once again we apply the Anderson-Morley inequality
(Proposition 3 below) that implies that

�L2

1

 2 max
i=1,...,n

DN
2

i ,

where DN
2

i is the degree of vertex vi in N
2

. By the definition of N
2

, we have
that

max
i=1,...,n

DN
2

i  max
i=1,...,k

kX

j=1

Ai,j + max
i=k+1,...,n

Di .

We proceed the same way as before. First we estimate the expected values of
the random variables appearing in the bound and then use Proposition 2 and
the union bound to conclude. For each i = 1, . . . , k,

E
kX

j=1

Ai,j =
kX

j=1

pi,j  k
w2

1

nw
= n↵n

↵+⇢�1

w
.

(Recall that ⇢ < 1 � ↵ and therefore E
Pk

j=1

Ai,j = O(n↵��) for some � > 0.)
On the other hand, for all i > k, using the fact that ⇢ > 1� ↵(� � 1), we have

EDi  wi  c
⇣n
k

⌘
1/(��1)

= cn(1�⇢)/(��1) ,

and therefore EDi = O(n↵��) for a positive �. Using Proposition 2 and the
union bound exactly as before, we obtain that, there exist positive constants
C

2

, ✏
2

such that, with probability at least 1� n exp(�C
2

n✏
2),

�L2

1

 n↵�✏
2 . (2.12)

Finally, combining (2.6) with (2.11) and (2.12), we see that, there exist positive
constants C

3

, ✏
3

such that, with probability at least 1 � n exp(�C
3

n✏
3), for all

i = 1, . . . , `, the eigenvalues of the power-law network N satisfy

n↵
�
1� C

3

n�✏
3

�
 �Li  n↵

�
1 + C

3

n�✏
3

�
. (2.13)

This, together with (2.10), implies that, with probability at least 1�n exp(�C
3

n✏
3),

for all i = 1, . . . , `, ����
�Li
wi

� 1

����  Cn��

for some positive constants C, �. The relationship between the eigenvalues of K
and L

�Ki =
1 + ��Li
�2

concludes the proof. ⇤
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Fig 2. random graph simulation.
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Realizations of a simulated power-law (left) and Erdős-Rényi (right) random

graphs.

3. Simulation Study

In this section we carry out a simulated illustration of the model introduced in
the previous section to highlight some of its key properties, and we perform a
Monte Carlo study to verify numerically the conclusion of Theorem 1.

We begin by showing a realization of the power-law partial correlation net-
work model and comparing it with a partial correlation network model based on
the Erdős-Rényi random graph. The average expected degree of both networks
is w = 1 and the size of the system is n = 500. The variance parameter �2 and
the network dependence parameter � are both set to one. For the power-law
network we also set the power-law tail parameter � to 2.5 and the maximum
expected degree wM to d5000.45e = 16 (i.e., ↵ = 0.45).

We display the realizations of the two random graphs in Figure 2. The plot of
the two networks shows how the power-law model produces structures containing
hubs of highly interconnected vertices, analogously to what is often encountered
in the network analysis of economic and financial time series. Figure 3 shows the
heat maps of the concentration and covariance matrices associated with the two
networks. The power-law model delivers a more interdependent multivariate
system, as it can be gauged by the inspection of the covariance matrix. In
Figure 4 we report the degree distribution of the two simulated networks where
it is evident that the power-law model is associated with heavier tails than the
Erdős-Rényi.

A Monte Carlo experiment is run to verify the conclusion of Theorem 1.
The experiment is designed as follows. In each replication, we simulate the
power-law partial correlation network model and draw 5000 random vectors
from it. We then compute the eigenvalues of the concentration matrix as well
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Fig 3. sparsity of the concentration and covariance matrices.

Concentration matrices in the upper panels and corresponding covariance ma-

trices in the lower panels. Left column: power-law partial correlation model;

right column: Erdős-Rényi model.

as the eigenvalues of sample concentration matrix obtained from the sample of
random vectors. The simulation exercise is replicated 10000 times. We also carry
out the same exercise using a partial correlation network model based on the
Erdős-Rényi random graph.

We report the results in Figure 5, where we plot the Monte Carlo averages
of the largest eigenvalues minus one, that is �Ki � 1, together with the largest
expected degrees. Recall that in this current setting Theorem 1 implies that for n
large enough the largest eigenvalues of the power-law partial correlation network
model concentration matrix are �Ki = wi(1 + op(1)) + 1. Notice that we plot
adjusted eigenvalues and expected degrees using the so-called log-log rank-size
plot, which is a plot of the log expected degree/eigenvalue versus its log rank.
The plot shows that, as predicted by Theorem 1, the largest eigenvalues of the
concentration matrix of the power-law partial correlation network model are
close to the largest expected degrees of the power-law graph. Moreover, when
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Fig 4. degree distribution

Degree distribution of the power-law (red) and the Erdős-Rényi (blue) random

graphs.

plotted on a log-log scale, the eigenvalues lie on a straight line with a slope
which is, roughly, close the negative of the power-law coe�cient �. Not that for
large sample sizes the impact of estimation uncertainty in the estimation of the
concentration matrix is marginal. In the Erdős-Rényi model on the other hand,
it is easy to see that the relationship between eigenvalues and expected degrees
does not hold.

4. Empirical Illustration

4.1. Data description

In this last section we carry out an empirical study to assess to which extent real
data presents empirical features that are consistent with the power-law partial
correlation network model. In particular, we consider two large panels of daily
stock returns both spanning the period from 2006-01-03 to 2013-12-31. The first
panel contains daily stock returns of companies listed in the S&P 500 index and
that have been trading for more than 2000 days in the S&P 500 throughout the
sample period, which delivers a sample of 387 companies over 2013 time periods.
The second panel is larger and contains 1234 companies listed in the S&P 1500
index. The dependence structure of these data is clearly much more complex
than the one implied by the power-law partial correlation network model and
the analysis carried out in this section only aims at providing rough empirical
validation for our model.

4.2. Controlling for common factors

As a preliminary step of our analysis we first have to control for common factors,
which, as explained below, are also likely to induce interdependencies but of a
di↵erent kind than those we are interested in investigating in this paper. Many
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Fig 5. eigenvalues behavior in simulated data.
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Erdős-Rényi model
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Log-log rank-size plot for the Monte Carlo averages of 25 largest eigenvalues log(�K
i ) (left, squares),

estimated eigenvalues log(

b�K
i ) (right, squares) with 5% and 95% quantiles (dashed lines), and ex-

pected degrees wi (circles) when assuming a power-law (top panel) or an Erdős-Rényi (bottom

panel) partial correlation model.

empirical studies prove that stock returns are driven by few, market related,
common factors [see e.g. 14]. Such feature is usually formalized by means of the
Capital Asset Pricing Model (CAPM, see 32), where the return of stock i on
day t, denoted as ri t, is generated according to

ri t = ai + bi rmt + ✏i t , i = 1, . . . , n, t = 1, . . . , T , (4.1)

where rmt denotes the market return and ✏t = {✏i t, i = 1, . . . , n} are inde-
pendent vectors with zero mean and covariance ⌃✏. The CAPM model has im-
portant implications for our model of dependencies. Indeed, the concentration
matrix implied by (4.1) is

⌃

�1 = ⌃

�1

✏ � ⌃

�1

✏ bb0⌃�1

✏

1 + b0⌃�1

✏ b
,

where b is the n⇥1 vector of factor loadings bi, and, under the usual assumption
of pervasive factors, i.e.

Pn
i=1

b2i = O(n) or equivalently �⌃
1

= O(n) [10], it is
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straightforward to see that the matrix ⌃

�1 is, in general, not sparse. Conse-
quently the corresponding network will be fully interconnected, thus violating
the assumptions of our model. Therefore, we consider the model proposed in this
paper as a model for the partial correlation structure of the stocks only after
conditioning on the market factor, rmt. As it is commonly assumed in empirical
finance, the market factor is here treated as observed and is here identified with
the S&P 500 or the S&P 1500 index. We then carry out our analysis on the par-
tial correlation structure of the idiosyncratic shocks ✏i t, obtained as the residuals
of the n univariate least squares regressions defined in (4.1), and, according to
our notation, we define as K = ⌃

�1

✏ .

4.3. Estimation of the power-law parameter �

Theorem 1 motivates us to fit a power-law distribution to the largest eigenvalues
of the concentration matrix in the attempt to estimate the power-law parameter
�. Di↵erent methodologies have been proposed in the literature to estimate
this parameter. In particular here we adapt the popular power-law estimation
methodology proposed Clauset et al. [13]. We make the simplifying assumption
that the top eigenvalues of the concentration matrix �Ki for i = 1, . . . , i

max

are an ordered sample from a power-law distribution with parameter �. (In
other words, we ignore the error between eigenvalues and degrees generated by
the model). Note that i

max

denotes the (unknown) threshold index from which
the distribution of the largest eigenvalues of K is power-law. The procedure of
Clauset et al. [13] allows one to estimate simultaneously � and i

max

. If i
max

is known the estimation of the power-law parameters is straightforward. For a
given sample of eigenvalues {�Ki }imax

i=1

the log-likelihood of the model is given by

L(�|i
max

,�K
1

, . . . ,�Ki
max

) = ln

"
i
maxY

i=1

� � 1

i
max

✓
�Ki
i
max

◆��
#
. (4.2)

By maximizing (4.2), we obtain the maximum likelihood estimator of �, also
known as Hill estimator [23]:

b�i
max

= 1 + i
max

 
i
maxX

i=1

log
�Ki
�Ki

max

!�1

.

As we are assuming that i
max

is not known, consider next the set I of possible
values for i

max

and the corresponding family of estimators {b�i
max

: i
max

2
I}. Let P(�Ki � ` |�, i

max

) and bP(�Ki � ` |�, i
max

) denote, respectively, the
theoretical and empirical survival functions of �Ki . Then Clauset et al. [13]
propose to estimate the optimal threshold as

i⇤
max

= arg min
i
max

2I

���P(�Ki � ` | b�i
max

, i
max

)� bP(�Ki � ` | b�i
max

, i
max

)
��� .

In other words, the threshold i⇤
max

is such that it minimises the Kolmogorov-
Smirnov distance between the empirical and theoretical survival functions of the
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eigenvalues. It can be shown that, for i⇤
max

large enough,
p
i⇤
max

(b�i⇤
max

� �) ⇠
N(0, (� � 1)2) [see e.g. 19].

4.4. Estimation of eigenvalues

The above procedure cannot be applied directly since we do not observe the
eigenvalues of the concentration matrix, but these need to be estimated from
the data. Let b⌃✏ be an estimator of the covariance matrix of the vector ✏t (see

(4.1)) obtained from a sample of size T and denote by b�b⌃✏
i its eigenvalues. Then

the eigenvalues of the concentration matrix K = ⌃

�1

✏ are estimated as b�Ki =

(b�b⌃✏
n�i+1

)�1. Specifically, we consider here two possible alternative estimators of
⌃✏: the sample covariance matrix estimator and the shrinkage covariance matrix
estimator of Ledoit and Wolf [29].1 The second estimator is particularly useful
when the sample size T and the cross-sectional dimension n are both large and
of comparable size. Once an estimate of the eigenvalues {b�Ki }ni=1

is available we

use these to compute b�i⇤
max

according to the procedure outlined above.

4.5. Results

We report the estimated values b�i
max

in Table 1 for the S&P 500 and S&P 1500
datasets and constructed on the basis of both the sample covariance and the
regularised covariance matrix. The top panel of Table 1 reports the estimates
obtained using fixed exogenous choices of the threshold i

max

, while in the bot-
tom panel we report b�i⇤

max

and i⇤
max

obtained with the methodology described
above. Estimates exhibit a moderate degree of variation depending on the chosen
estimation approach. Interestingly, all estimates hint at a tail parameter larger
than 2 and smaller than 3, indicating a heavy-tailed power-law distribution.

For both datasets considered, we show in Figure 6 the size-rank log-log plot
of the largest estimated eigenvalues of the concentration matrix based on the
shrinkage covariance estimator jointly with the power-law fit, obtained using
b�i⇤

max

and reported for di↵erent values of the intercept. Overall, we find the tail
of the largest eigenvalues of the concentration matrix to be well described by a
power-law parameter smaller than three.

Last, for comparison purposes it is interesting to report the estimate of the
underlying partial correlation network to see if such network exhibits feature
consistent with our power law model. We estimate the partial correlation net-
work using the space algorithm, a lasso estimation procedure originally pro-
posed by Peng et al. [30].2 We report the graph plot and degree distribution of
the estimated networks in Figure 7 and 8 respectively. The estimated networks

1Alternative regularised covariance estimators are given for example in Bickel and Levina
[5], Lam and Fan [27], Lam [26].

2This estimator depends on a tuning parameter which determines the degree of penalization
of the lasso procedure, which is here chosen on the basis of the BIC criterion, as suggested
among others by Peng et al. [30] themselves.
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Table 1

power-law behavior of S&P panels.

S&P 500 (n = 387) S&P 1500 (n = 1234)

Threshold Sample Regularised Threshold Sample Regularised
i
max

covariance covariance i
max

covariance covariance

100 2.79
(0.18)

3.04
(0.20)

250 2.65
(0.10)

2.87
(0.11)

150 2.42
(0.12)

2.65
(0.14)

350 2.33
(0.07)

2.50
(0.08)

200 2.18
(0.08)

2.37
(0.10)

450 2.13
(0.05)

2.26
(0.06)

Clauset et al. [13] 2.94
(0.20)

2.90
(0.17)

Clauset et al. [13] 2.60
(0.10)

2.98
(0.13)

i⇤
max

90 122 i⇤
max

266 230

Values of the estimated power-law exponent

b�i
max

with standard errors in parenthesis.

Fig 6. power-law behavior of S&P panels.

S&P 500 S&P 1500

0.3 0.8 1.3 1.8
0

1

2

3

4

5

log(λ̂K
i )

lo
g
(i
)

0.9 1.4 1.9 2.4
0

1

2

3

4

5

log(λ̂K
i )

lo
g
(i
)

Log-log rank-size plot for the 50 largest eigenvalues log(

b�K
i ). Dashed lines: power-law fit for the

largest log-eigenvalues with slope �b�i⇤
max

for di↵erent values of the intercept.

exhibit several features that are commonly encountered in power-law graphs.
They are made up of a giant component containing several hubs and a few
small components. There is substantial heterogeneity in the number of connec-
tions of each vertex and the most interconnected vertices have a large number of
connections relative to the total. Accordingly, the degree distribution of the net-
work exhibits heavy tails. Interestingly, overall the estimated partial correlation
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Fig 7. partial correlation network of the S&P500.
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Fig 8. degree distribution of the S&P 500

network has features that are consistent with the power-law model.

5. Conclusions

In this work we introduce a tractable class of partial correlation network models
whose underlying network structure is a function of a random graph. In par-
ticular, we focus on a special case of this model where the underlying network
is power-law. Power-law networks are a class of random graphs able to repro-
duce several of the empirical stylized facts that can be observed in real world
networks, in particular small world e↵ects and power-law degree distribution.
Our central result concerns the behavior of the largest eigenvalues of the con-
centration matrix of the model. We show that the largest eigenvalues of the
concentration matrix converge to an a�ne function of the degree of the ver-
tices with largest expected degree. The result implies that when the tails of the
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power-law distribution are heavy and the system dimension is large, the system
exhibits a high degree of collinearity. As an empirical illustration, we analyze
the covariance matrix of a large panel of stock returns of companies listed in
the S&P 500 index and document that the data exhibits empirical features that
are consistent with the power-law partial correlation network model.
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Appendix A: Auxiliary Results

Proposition 1. (covariance of the partial correlation network) The
covariance matrix of the partial correlation network model is

⌃ = �2(I + �D)�1 +
�2

�

1X

k=1

Wk ,

where Wk is defined as

[Wk]i,j =
X

w2Wk

{w goes from i to j}Q
v2V(w)

(d(v) + 1/�)
, (A-1)

where Wk denotes the set of walks of length k in the network, V(w) denotes
the set of vertices in walk w, d(v) denotes the degree of vertex v and is the
indicator function (and convergence is defined in spectral norm). We call Wk

the weighted walk matrix of length k.

Proof. Define C = I+�D and notice that C is a diagonal matrix with positive
diagonal entries. Then

⌃ = K�1 = �2(C � �A)�1

= �2(C1/2(I � �C�1/2AC�1/2)C1/2)�1

= �2C�1/2(I � �C�1/2AC�1/2)�1C�1/2

where C1/2 and C�1/2 denote diagonal matrices with diagonal equal respec-
tively to the square root and inverse square root of the diagonal of C. Notice
that the eigenvalues of �C�1/2AC�1/2 are smaller than one in absolute value.
(To see this, note that k�C�1/2AC�1/2k  �kAk/kCk and that kCk � �D

max

and kAk  D
max

where D
max

denotes the highest degree in the network.) Thus,
we can apply the von Neumann series identity to (I � �C�1/2AC�1/2)�1 and
get

K�1 = �2C�1/2

 
I +

1X

k=1

(�C�1/2AC�1/2)k
!
C�1/2

= �2C�1 + �2

1X

k=1

C�1/2(�C�1/2AC�1/2)kC�1/2

= �2C�1 + �2

1X

k=1

�k C�1A C�1A . . . C�1A| {z }
k times

C�1 .

Recall that the (i, j) element of Ak is equal to the number of distinct walks of
length k from i to j, which can be expressed as

nX

i
1

=1

nX

i
2

=1

· · ·
nX

ik�1

=1

Ai,i
1

Ai
1

,i
2

· · ·Aik�1

,j .
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Analogously, it is straightforward to see that the (i, j) entry of (C�1A)kC�1 is
equal to

nX

i
1

=1

nX

i
2

=1

· · ·
nX

ik�1

=1

Ai,i
1

�Di + 1

Ai
1

,i
2

�Di
1

+ 1
· · ·

Aik�1

,j

�Dik�1

+ 1

1

�Dj + 1
.

We obtain the statement of the proposition by applying the last equation and
rearranging terms.

Proposition 2. (See 24, 25, 18.) Let X
1

, . . . , Xn be independent random vari-
ables, taking their values from [0, 1]. If m = ESn with Sn =

Pn
i=1

Xi then for
any t � m,

P{Sn � t} 
⇣m
t

⌘t
et�m .

In particular, for all u  m,

P{Sn � ESn + u}  e�u2/m .

On the other hand, for all u  m,

P{Sn  ESn � u}  e�u2/(2m) .

Proposition 3. (2.) Let G be a graph with edge set E. Then the maximum
eigenvalue of the graph Laplacian LG satisfies

�LG
1

 max {Di +Dj |(i, j) 2 E} .

Proposition 4. (7, see also 8.) Let G be any graph on n vertices that is not the
union of the complete graph Km and n � m isolated vertices for any m  n.
Then, for all i = 1, . . . , n,

�LG
i � Di � i+ 2 ,

where �LG
i is the i-th largest eivenvalue of the Laplacian of G and Di is the i-th

largest degree of the vertices of G.
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