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Abstract
Schelling models of segregation attempt to explain how a population of agents or particles of
two typesmay organise itself into large homogeneous clusters. They can be seen as variants of
the Isingmodel.While suchmodels have been extensively studied, unperturbed (or noiseless)
versions have largely resisted rigorous analysis, with most results in the literature pertaining
models in which noise is introduced, so as to make them amenable to standard techniques
from statistical mechanics or stochastic evolutionary game theory. We rigorously analyse
the one-dimensional version of the model in which one of the two types is in the minority,
and establish various forms of threshold behaviour. Our results are in sharp contrast with the
case when the distribution of the two types is uniform (i.e. each agent has equal chance of
being of each type in the initial configuration), which was studied in Brandt et al. (in: STOC
’12: proceedings of the 44th symposium on theory of computing, pp. 789–804, 2012) and
Barmpalias et al. (in: 55th Annual IEEE symposium on foundations of computer science,
Oct 18–21, Philadelphia, FOCS’14, 2014).

Keywords Schelling segregation · Minority population · Phase diagram

1 Introduction

The economist Thomas Schelling introduced hismodel of segregation in [30] (developed later
in [28,29]), with the explicit intention of explaining the phenomenon of racial segregation
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in large cities. Perhaps the earliest agent-based model studied by economists, since then it
has become an archetype of agent-based modelling, prominently featuring in libraries of
modelling software tools such as NetLogo [35] and often being the subject of experimental
analysis and simulations in the modeling and AI communities [11,12,15,16,18,19,21,32,36].
Many versions of the model have been analysed theoretically, from a number of different
viewpoints and disciplines: statistical mechanics [8,14] and [4, Sect. 3.1], evolutionary game
theory [37–40] the social sciences [9,10,27], andmore recently computer science andAI [1,5,
7,13]. It was observed in [7], however, that despite the vast amount of work that has been done
on the Schelling model in the last 40 years, rigorous mathematical analyses in the previous
literature generally concern altered versions of the model, in which noise is introduced in
the dynamics, i.e. where one allows that agents may make non-rational decisions that are
detrimental to their welfare with small probability. The introduction of such ‘perturbations’
may be justifiable from a ‘bounded rationality’ standpoint.

The model (which will be formally defined shortly) concerns a population of agents
arranged geographically, each being of one of two types. Each agent has a certain neighbour-
hood around them that they are concerned with, and also an intolerance parameter τ ∈ [0, 1]
which we shall assume here to be the same for all agents. An agent’s behaviour is dictated
by the proportion of the agents in their neighbourhood which are of its own type. So long
as this proportion is ≥ τ the agent may be considered ‘happy’ and will not move. Starting
with a random configuration, one then considers a discrete time dynamical process. At each
stage unhappy agents may be given the opportunity tomove, swapping positions with another
agent, so as to increase the proportion of their own type within their neighbourhood. Now one
might justify a perturbed version of these dynamics, in which agents will occasionally move
in such a way as to decrease their utility (i.e. the proportion of their own type within their
neighbourhood) by arguing, for example, that it is reasonable to suppose that only incomplete
information about the make-up of each neighbourhood is available to the agents. It is a fact,
however, that

(a) the methods used for the analysis of the perturbedmodels do not apply to the unperturbed
model;

(b) the segregation occurring in the perturbedmodels is very different than in the unperturbed
model.

In the unperturbedmodels the underlyingMarkov chain does not have the regularities that are
found in the perturbed case (e.g. the Markov process is irreversible). The presence of a large
variety of absorbing states means that entirely different and more combinatorial methods are
now required. Beyond the basic aim of a rigorous analysis for these unperturbed models,
which have been so extensively studied via simulations, further motivation is provided by
the fact that the Schelling model is part of a large family of models, arising in a broad variety
of contexts—spin glass models, Hopfield nets, cascading phenomena as studied by those in
the networks community—all of which aim at understanding the discrete time dynamics of
competing populations on underlying network structures of one kind or another, and formany
of which the unperturbed dynamics are of significant interest. The hope is that techniques
developed in analysing unperturbed Schelling segregation may pave the way for similar
analyses in these variants of the model.

The first rigorous analysis of an unperturbed Schelling model was described by Brandt et
al. in [7]. In this work it was also demonstrated that the eventual state of the process differs
significantly from the stochastically stable states of the perturbed models. This study focused
on the one-dimensional Schelling model and provided an asymptotic analysis, in the sense
that the results hold with arbitrarily high probability for all sufficiently large neighbourhoods
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Table 1 Parameters of the
Schelling model

Parameter Symbol Range

Population n N

Neighbourhood radius w [0, n]
Tolerance threshold τ [0, 1]
Expected/actual minority proportion ρ/ρ∗ [0, 1]

and population. More significantly, however, it dealt only with the symmetric case where
intolerance parameter τ = 0.5 (i.e. an agent is happy when at least 50% of the agents in its
neighbourhood are of its own type). In [1] a much more general analysis of the unperturbed
one-dimensional Schelling model for τ ∈ [0, 1]was provided. In fact it was shown there that
various forms of surprising threshold behaviour exist. A significant symmetry assumption
underlying the results in [1,7] is that the populations of the two types of agents are assumed
to be uniform (i.e. each agent has equal chance of being of each type in the initial configu-
ration). Indeed, there is no rigorous study of the unperturbed spacial proximity model with
swapping agents for the rather realistic case where the distribution of the two types of agents
is skewed. In fact, the question as towhat type of segregation occurs with a skewed population
distribution was raised by Brandt et al. in [7, Sect. 4] as well as in popular expositions of the
Schelling model like [20].

The purpose of the present work is to give an answer to this question. We show that
complete segregation is the likely outcome if and only if the intolerance parameter is larger
than 0.5. Moreover in the case that the minority type is at most 25%, there is a dichotomy
between complete segregation and almost complete absence of segregation.

1.1 Definition of the Model

Schelling’s model of residential segregation belongs to a large family of agent-based models,
where a system of competitive agents perform actions in order to increase their personal
welfare,while possibly decreasing thewelfare of other individuals. This phenomenon roughly
corresponds to the so-called spontaneous order approach1 in economics literature, which
studies the emergence of norms from the endogenous agreements among rational individuals.

The Schelling model that we study is a direct generalisation of that in [7] and also that
studied by the authors in [1]. The one-dimensionalmodel with parameters n, w, τ, ρ (as listed
in Table 1) is defined as follows. We consider n individuals which occupy an equal number
of sites 0, . . . , n − 1 (ordered clockwise) on a circle. Each of the individuals belongs to one
of the two types α and β. The type assignment of individuals is independent and identically
distributed (i.i.d.), with each individual having probability ρ of being type β. Without loss of
generality we always assume that ρ ≤ 0.5, i.e. that the individuals of type β are the expected
minority (so long as ρ �= 0.5). This random type assignment takes place at stage 0 of the
process, and defines the initial state. At the end of stage 0, we let ρ∗ be the actual proportion
of the individuals that are of type β (i.e. ρ∗ is the random proportion, as opposed to the
expected proportion ρ).

Unless stated otherwise, addition and subtraction on indices for sites are performedmodulo
n. Given two sites u, v in any configuration of the individuals on the circle, the interval [u, v]

1 This contrasts the mechanism design approach which studies the exogenous (a priori) design of regulations
in order to achieve desired properties in a system of interacting agents.
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consists of the individuals that occupy sites between u and v (inclusive). For example, if
0 ≤ v < u < n then we let [u, v] denote the set of nodes [u, n − 1] ∪ [0, v] (while [v, u] is,
of course, understood in the standard way). When we talk about a particular configuration,
we identify each individual with the site it occupies, referring to both entities as a node. The
neighbourhood of node u consists of the interval [(u −w), (u +w)] where w is a parameter
of the model that we call the (neighbourhood) radius. The tolerance threshold τ ∈ (0, 1) is
another parameter of the model that reflects how tolerant a node is to nodes of different a
type in its neighbourhood. We say that a node is happy if the proportion of the nodes in its
neighbourhood which are of its own type is at least τ .

Given the initial type assignment (colouring) of the nodes, the Schelling process then
evolves dynamically in stages as follows. At each stage s > 0 we pick uniformly at random
a pair of unhappy nodes of different type, and we swap them provided that in both cases the
number of nodes of the same type in the new neighbourhood is at least that in the original
neighbourhood. If at some stage there are no further legal swaps the process terminates. If
at some stage all nodes of the same type are grouped into a single block (i.e. a contiguous
interval), we say that at that stage we have complete segregation.

This completes the definition of the Schelling process with parameters n, w, τ and ρ,
which we denote by the tuple (n, w, τ, ρ). The process can be seen as a Markov chain with
2n states corresponding to the configurations that we get by varying the type of each node
between α and β. A state is called dormant if either all α-nodes are happy, or all β-nodes
are happy. We shall be interested in the case that w is large, and that n is large compared
to w. In this context it will turn out that the absorbing states of the Schelling process are
exactly the dormant states and, in fact, the only recurrence classes of the Schelling process
are the dormant states and complete segregation. Complete segregation is, strictly speaking,
a recurrence class of the process, consisting of the rotations of the two blocks, one consisting
of all the α-nodes and the other consisting of all the β-nodes. Hence, modulo symmetries, we
may regard complete segregation as an absorbing state. Dormant states are a different kind
of absorbing state, as the process actually stops when it hits a dormant state. Note that a static
process cannot come to complete segregation, since it does not allow a sufficient number of
swaps for the complete separation of the node types on the ring to be formed, starting from a
random state. Note that the number of nodes of type α and of type β does not change between
transitions, once the initial state has been chosen.

1.2 Our Results

Given the Schelling process (n, w, τ, ρ) we wish to determine with high probability the type
of equilibrium that will eventually occur in the system. Given a constant c ≥ 0, we write ‘for
c � w � n’, to mean ‘for all w sufficiently large compared to c, and all n sufficiently large
compared to w’; formally, we say that a result with parameters w, n holds for c � w � n,
if there exist functions c 	→ Wc, w 	→ Nw such that the result holds for each w > Wc and
n ≥ Nw .We are interested in asymptotic results, i.e. statements that hold with arbitrarily high
probability for 0 � w � n. The following definition encapsulates the type of asymptotic
statements about the Schelling process (n, w, τ, ρ) that we are interested in establishing.

Definition 1 (Properties with high probability and static processes) Suppose that R is a
property which may or may not be satisfied by any given run of the Schelling process
(n, w, τ, ρ), and T is a property of τ, ρ. The sentence “if T (τ, ρ), then with high probability
R(n, w, τ, ρ)” means that, provided that τ, ρ satisfy T , for all ε > 0 and 1/ε � w � n,
the process (n, w, τ, ρ) satisfies R with probability at least 1 − ε. We say that the process
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(n, w, τ, ρ) is static if, given ε > 0, with high probability the number of nodes that ever
change their type in the entire duration of the process is ≤ ε · n.2

By [1,7], the asymptotic behaviour of the process (n, w, τ, ρ) is known for ρ = 0.5
(except on the threshold τ = κ0 ≈ 0.353). The present work is dedicated to the case where
one type of node is the minority, i.e. when ρ < 0.5. We show that with probability 1 the
process will either reach complete segregation or reach a dormant state. Moreover we show
that when τ > 0.5 the highly probable outcome is complete segregation. Moreover, in many
cases when τ ≤ 0.5 the outcome is negligible segregation (i.e. the process is static). Let
κ0 ≈ 0.353 and λ0 ≈ 0.4115 be the unique solutions of (0.5 − x)0.5−x = (1 − x)1−x and
2τ · (0.5 − τ)1−2τ = (1 − τ)2(1−τ) respectively in [0, 0.5].3

Theorem 1 (Main result) If τ > 0.5, ρ < 0.5 and τ + ρ �= 1, then with high probability the
Schelling process (n, w, τ, ρ) reaches complete segregation. The process is static (with high
probability) if

[τ ≤ λ0 & ρ ≤ λ0] or [τ ≤ κ0 & ρ < 0.5] or [τ ≤ 0.5& ρ ≤ 0.25]
or, more generally, if 2ρ · (1 − 2κ0) + τ + κ0 < 1.4

The values of (τ, ρ) for which we show that the process is static, correspond to the
triangular area of the first diagram (or, equivalently, the collapsed part of the surface of the
third diagram) of Fig. 1. The case when ρ ≤ 0.25 presents a remarkable contrast as τ crosses
the boundary of 0.5. In this case, when τ exceeds the threshold 0.5, the process changes from
static to the other extreme of complete segregation.

Corollary 1 (Phase transition on 0.5) If ρ ≤ 0.25, then with high probability the process
(n, w, τ, ρ)

– converges to complete segregation if τ > 0.5;
– is static, if τ ≤ 0.5.

Moreover with high probability it reaches its final state in time o
(
n
)
, if τ ≤ 0.5 and time

Ω(n), if τ > 0.5.

We display these results in Table 2. In Sects. 2–4 we present the argument that proves
these results. This argument uses a number of smaller results which are stated without proof,
and are the building blocks of the proof of Theorem 1. It is our intention that the reader gets
a fairly good understanding of our analysis in this part of the paper, without the burden of
having to verify some of the more technical parts of the proof. Sect. 5 contains the detailed
proofs of all the facts that were used in Sects. 2–4, and completes the proofs of Theorem 1
and Corollary 1.

2 In otherwords, we say that the process (n, w, τ, ρ) is static if throughout the process (which could potentially
take infinitely many steps) the number of nodes that ever change their type is an arbitrarily small proportion of
the entire population—tends to 0 with probability tending to 1 as n tends to infinity. In Sect. 4.2 we will show
that this definition is equivalent to requiring that with high probability the duration of the process in steps is
an arbitrarily small proportion of n, in the same sense.
3 At this point, the constants κ0, λ0 are simply the solutions of the above equations. These equations are
generated by comparing certain distributions in the limit, as will become clear in the technical sections of this
article.
4 The first three conditions are special cases of the latter inequality—see the first item of Fig. 1 for an
illustration.
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Fig. 1 Threshold behaviour when τ, ρ are in [0, 0.5]. The two-dimensional axes refer to τ and ρ. In the first
figure, the process is static except for the (τ, ρ) in the small area at the top right corner. The second figure is a
plot of Pstab and Punhap (for w = 100) as functions of (τ, ρ). The third figure is a plot of g(τ, ρ) for w = 100

Table 2 The main result Process parameters Segregation

τ < λ0 & ρ < λ0 Negligible

τ ≤ κ0 & ρ < 0.5 Negligible

τ ≤ 0.5 & ρ ≤ 0.25 Negligible

τ > 0.5 & ρ ≤ 0.5 Complete

Table 3 Two cases for the process (n, w, τ, ρ) and the corresponding expectations of the number of initially
happy nodes

Case Condition Happy α Happy β

Balanced happiness τ + ρ > 1, τ > 0.5 n · e−Θ(w) n · e−Θ(w)

Unbalanced happiness τ + ρ < 1, τ > 0.5 n ·
(
1 − e−Θ(w)

)
n · e−Θ(w)

Our proof of Theorem 1 is nonuniform, and the analysis is roughly divided in the two
cases displayed in Table 3: balanced happiness (when τ + ρ > 1, τ > 0.5) and unbalanced
happiness (when τ + ρ < 1, τ > 0.5). Here happiness refers to the numbers of initially
happy nodes of the two types, and determines the dynamics that drives the process to an
equilibrium. Of the two cases, unbalanced happiness is the most challenging to deal with,
and the dynamics is driven by a small number of unhappy α-nodes against the large number
of unhappy β-nodes, which in fact is preserved throughout a significant part of the process.

1.3 SchellingModels and Relation to Spin-1 Physical Models

The definition of the Schelling model in Sect. 1.1 is rather standard, close to the spacial
proximity model from [28,30] and identical to the model studied in [1,7]. Most significantly,
it is an unperturbed Schellingmodel, where agents cannot makemoves that are detrimental to
their welfare. We have already remarked in the introduction that various rigorously analysed
perturbed versions of the model in the literature (such as [38]) actually force ‘regularity’
on the process, which makes it fit an already existing methodology (such as Markov chains
with a unique stationary distribution, or with properties that guarantee stochastically stable
states). Even if we commit to the absence of perturbations in the model, it is possible to
add complications to the simple dynamics defined in Sect. 1.1. For example, the agents may
take into account the distance they need to travel before they move, and such considerations
separate models with ‘short-range’ interactions from models with ‘long-range’ interactions,
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such as the Schelling model. Although similar models but with ‘short-range’ interactions
have been studied in the past, e.g. [17], rigorous results for the corresponding models with
“long-range” interactions are currently under study.

Numerous authors, for example [14,23,25,26,34], have noted the close relationship
between Schelling models and variants of the Ising Model, widely studied by statistical
physicists to understand phase transitions. In this situation, perturbed or noisy versions of
the model correspond to a temperature T > 0, which can productively be analysed using
the Boltzmann distribution. Typically the limit T → 0 is then studied. Thus the current
work can be viewed as a study of a family of 1-dimensional kinetic Ising models with range
of interaction w, as non-equilibrium systems under rapid cooling, that is at T = 0 (where
radically different behaviour can be observed than in the limit T → 0). In this situation, the
Boltzmann distribution is no longer a viable tool, and the use of the threshold τ can be seen
as a simple alternative in determining whether or not a spin will update if selected.

In the current work, the model evolves by swapping pairs of agents of opposite types, cor-
responding to “closed” spin-1 systems under Kawasaki dynamics in which magnetization is
conserved (andwhich are used tomodel alloy systems), whereas versions such as [2] inwhich
individual agents switch type correspond to “open” spin-1 systems under Glauber dynamics
in which magnetization is not conserved. To make the connection explicit, (temporarily)
write Si (t) = +1(respectively− 1) if site i is occupied by a node of type α (respectively β)
at time t . Then the spin at site i is unhappy (and thus willing to swap) if and only if

∣∣∣∣∣∣

∑

j :| j−i |≤w

Si S j − (2τ − 1)(2w + 1)

∣∣∣∣∣∣
< 0.

In our view, it is the simplicity of the original Schellingmodel, contrastedby the complexity
of the analysis required to specify its behaviour, as demonstrated in [1,7] and the presentwork,
that make this topic fundamental and interesting. Under the above requirement for simplicity
and proximity to the original model, there remain a number of ways that the model can be
altered or generalised. For example, note that in the case that τ > 0.5 in themodel of Sect. 1.1,
two nodesmay swap although the number of same-type nodes in their neighbourhoods remain
the same after the swap. Onemay alternatively require that for such a swap, the corresponding
numbers of same-type nodes in the neighbourhoods increase (note that such a modification
would not make a difference if τ ≤ 0.5). Our choice on this issue follows Brandt et al. in
[7, §2]. One generalisation, considered in [2], is to allow different tolerance thresholds for
the two types of individuals. Another generalization, already present in [30], is to introduce
a number of vacancies, i.e. to allow the total number of individuals to be smaller than the
number of sites.

We can also alter the dynamics. Instead of switching two chosen individuals at each stage,
we could choose one individual and change his type. Such an action may be interpreted as
the departure of the individual to some external location and the arrival of an individual of
the opposite type at the site that has just become available. Models with this dynamics are
often said to have switching agents (see [2], where such a model was analysed) as opposed to
the swapping agents of the current model. Finally one can consider versions of this model in
higher dimensions, where the most relevant recent works are [3,22] and concern switching
agents.
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Table 4 Segregation regions in the case ρ = 0.5

Intolerance τ ∈ [0, κ0) τ ∈ (κ0, 0.5) τ = 0.5 τ ∈ (0.5, 1]
Segregation Negligible Exponential Polynomial Complete

Fig. 2 500K population with w = 3000, ρ = 0.5 and τ = 0.485, 0.49, 0.495, 0.5. All made about 130K
swaps

1.4 Objectives of the Analysis of the UnperturbedModel and RelatedWork

We use the notation of Sect. 1.1, so that the symbol n always means the population variable
of the process, and w always is the parameter of the process which determines the length of
the neighbourhood of nodes. Similarly, τ, ρ always refer to the parameters of the Schelling
process.

In Sect. 2.2.3 we show that, with probability one, the process (n, w, τ, ρ) either reaches
complete segregation or it reaches a dormant state. In the second case, we wish to determine
the extent of segregation in the dormant state. In view of the large number of states that the
process may have (most of them ‘random’) a question arrises as to how to classify or even
talk precisely about different states that may be the outcome of the process. Brandt et al.
noticed in [7] that, at least in the case τ = ρ = 0.5 that they considered, the extent of the
segregation that occurs in the final state depends crucially on w. In fact, they showed that the
dependence on w is at most ‘polynomial’. We may say that a state is regarded as polynomial
segregation if, with high probability a randomly chosen node belongs to a contiguous block5

of size that is proportional to the value of a polynomial on w. A similar definition applies
to exponential segregation. These two notions turn out to provide a very useful language for
explaining the eventual outcome of the Schelling process. A full characterization (extending
the work of Brandt, Immorlica, Kamath, and Kleinberg [7]) of the asymptotic behaviour of
the process (n, w, τ, ρ) for ρ = 0.5 and τ ∈ [0, 1] was provided by the authors in [1] in
terms of polynomial and exponential segregation, as well as static processes. Intuitively, a
random state is non-segregated, while polynomial and exponential segregation correspond
to highly non-random states.

The characterization from [1] is summarized in Table 4. It is rather striking that when
intolerance is increased from, say, 0.4–0.5 the segregation is decreased. This phenomenon
is akin to the many paradoxes that stem from the missing link between local motives of
agents and global behaviour of a system (e.g. see Schelling’s classic monograph [31], and
in particular Chapter 4 which relates to his segregation models). Even more strikingly, the
authors showed in [1] that the paradox occurs for all τ ∈ (κ0, 0.5), i.e. as τ approaches 0.5
the segregation (in the final state) decreases.

5 An interval of nodes of the same type is called a contiguous block.
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If few unhappy then safe

No dormant state

Preservation of unhappy
α-nodes until few unhappy

τ + ρ < 1

Initial state safe
Always unhappy β-nodes

Process

τ + ρ > 1

Complete
segregation

§2

§2.2.2

§3

§2.2.2

§3

§2.2.3§2.2.3

Fig. 3 The logic of the proof that if τ > 0.5, with high probability the process reaches complete segregation

This paradoxical phenomenon is also clear in many simulations of the model. Figure 2
shows typical runs of the processes (5×105, 3×103, τ, 0.5) for τ ∈ {0.485, 0.49, 0.495, 0.5}.
The final state is depicted in the circle, where the nodes of one type are black and the nodes
of the other type are grey. We use the space between the centre of the ring and the ring in
order to record the actual process, as it evolves in time. In particular, if a grey node switches
its place with a black node, we put a black node (the colour of the more recent node) between
the location of the node and the centre of the ring, at a distance from the centre which is
proportional to the stage where the swap occurred. Hence we may observe “cascades’ of
swaps of nodes of the same type, which are less severe as τ approaches 0.5. Such cascades
are crucial in the rigorous analysis of themodel, both in [7] and in [1]. Figure 2 shows that as τ

approaches 0.5, the segregation is decreased. This behaviour can be traced to the probability
that a node is unhappy in the initial configuration, and in fact, the threshold constant κ0 is
derived by comparing related probabilities in [1].

In the case ρ = 0.5 the two constants κ0 and 0.5 mark phase transitions in the limit state
of the process (n, w, τ, ρ), as τ takes values in [0, 1]. This brings us to another important
objective of the analysis of the Schelling process, which is the discovery of phase transitions
with respect to the parameters τ, ρ. Incidentally,wenote that the discoveryof phase transitions
has been one of the original motivations for the study of the one and two dimensional Ising
model, when one varies the temperature (see the end of Sect. 1.3 for a brief discussion of the
analogy between the Ising and the Schelling models). Finally we are also interested in the
expected time that the process takes to converge.

1.5 Overview of Our Analysis

We use different methods for the cases τ ≤ 0.5 (Sect.4) and τ > 0.5 (Sects. 2 and 3). If
τ ≤ 0.5, in order to derive conditions under which the process is static, we analyse and
compare the probabilities of initially unhappy nodes and stable intervals.6 If τ > 0.5 we
consider the two cases τ + ρ < 1 (Sect. 3) and τ + ρ > 1 (Sect. 2) and argue (using distinct
arguments) that in each of them complete segregation is the high probability outcome.

Case τ > 0.5 This case is divided to the cases τ + ρ > 1 and τ + ρ < 1, and the structure
of the analysis is depicted as a flowchart in Fig. 3 (along with the sections where the various
implications are analysed), and in more detail in Fig. 4. First, we show that asymptotically
(on w, n), from any state there is a series of transitions that leads to either a dormant state, or
complete segregation. Hence, since there are only finitely many states, with probability one
the process will reach either a dormant state or complete segregation. So in order to establish
complete segregation as the eventual outcome, it suffices to show that the process maintains
unhappy nodes of each colour during all stages.

6 Stable intervals are, roughly speaking, intervals of nodes that do not allow the spread of unhappy α-nodes
through them in the segregation process. A formal definition is given in Sect. 4.1.
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Uα � nρ preserved if Uβ > nρ/w

β-block implies Uα > 0

Initial β-block β-block expands if Uα � Uβ

If Uα + Uβ � n then safe

Uβ > 0 and Uα > 0
until Uβ + Uα � n

Initially Uα � Uβ ≈ nρτ + ρ < 1

Initial state safe Always Uβ > 0

Process

τ+ρ > 1

Complete
segregation

No dormant state

Fig. 4 The logic of the proof that if τ > 0.5, with high probability the process reaches complete segregation.
Here ‘β-block’ refers to the persistent β-block of Sect. 3.1

First, assume that τ + ρ > 1, a case which is dealt with in Sect. 2. In this case we can
show in Sect. 2.2.3 that, assuming that the actual proportion of β-nodes is sufficiently close
to ρ (which is very likely according to the law of large numbers), every reachable state
is not dormant. More precisely, we show that given such numbers of α and β-nodes, every
permutation of them on the ring corresponds to a state which has both unhappyα and unhappy
β-nodes. Since the numbers of nodes of each type do not change during each transition, this
argument suffices for this case. States with the property that no series of transitions from
them leads to dormant states are called safe. So, in the case τ + ρ > 1 we argue that (with
high probability) the initial state is safe.

Second, we assume that τ + ρ < 1, which is a considerably harder case that we deal with
in Sect. 3. Under this hypothesis, in the initial configuration we have o

(
n
)
many unhappy

α-nodes and Ω(n) many unhappy β-nodes. As before, it suffices to show that (with high
probability) the process never reaches a dormant state. It is not hard to see that (with high
probability) the initial state is not dormant. However it is no longer clear if the initial state is
safe. In Sect. 2we show that given the expected numbers of nodes of the two types in the initial
state (or numbers sufficiently close to their expectations) any permutation of the nodes on a
ring corresponds to a state with at least one unhappy β-node. Hence, with high probability,
the process will never run-out of unhappy β-nodes and we only need to argue about the
preservation of unhappy α-nodes. Already it should be clear that this is an asymmetric case
where the α-nodes (the majority) and the β-nodes (the minority) play different roles. When
τ + ρ < 1 there are many permutations of the nodes (which correspond to states where all
α-nodes are happy, i.e. dormant states. So the argument that was used in the case τ + ρ > 1
is no longer relevant for arguing for the preservation of unhappy α-nodes in the process. The
argument we use instead (technically overviewed in Sect. 3.2 and executed in Sects. 3.3, 3.4)
is based on the asymmetry between the number of unhappyβ-nodes and the unhappyα-nodes,
which creates a dynamic that favours the preservation of unhappy α-nodes. More precisely,
it favours the preservation of β-blocks of length > w, which is a condition implying the
existence of unhappy α-nodes (indeed, the α-nodes neighbouring a β-block of length at least
w are unhappy). Hence if we show that the expected number of unhappy α-nodes remains
small during the stages of the process, then we can expect the existence of unhappy α-nodes
(and unhappy β-nodes) up to the point where the total number of unhappy nodes is small.

In addition we show that if the total number of unhappy nodes in a state is sufficiently
small, then this state is safe, i.e. there is no series of transitions from it to a dormant state. The
argument is concluded in Sect. 3.5 by showing that it is very likely that by stage n the process
will arrive at a state with appropriately low number of unhappy nodes, before it reaches a
dormant stage. Figure 5 is a plot of the numbers of unhappy α-nodes and the unhappy β-
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Fig. 5 The first plot is from the process (200, 000, 50, 0.6, 0.3) and the second one from the process
(1000, 20, 0.6, 0.3). These simulations illustrate that the numberα-nodes in the infected area remains bounded,
until the number of β-nodes outside the infected area becomes small. The second figure also illustrates the
fact that the number of unhappy nodes fluctuates locally

node during the stages, taken from two typical simulations (one with large and one with small
population), when τ + ρ < 1.7 The process we described is clearly visible: the number of
unhappy α-nodes remains small, until the number of unhappy β-nodes becomes small. Up to
the later point, as we explained, the dynamics favours the preservation of unhappy α-nodes.

Case τ ≤ 0.5 In this case, dealt with in Sect. 4, we have τ + ρ < 1, and this means that
in the initial configuration the α-population is happy with a few exceptions, while the β-
population is unhappy, with a few exceptions. Recall that in this case we wish to show that
the process is static. By the definition of the dynamics of the model α-to-β swaps can only
occur in areas where there are unhappy α-nodes. Hence in this case the α-to-β swaps will
be concentrated in a very few selected areas in the ring, at least in the first stages of the
process. This concentration of α-to-β swaps creates cascades of α-node evictions which can
be clearly seen in simulations such as the one displayed in Fig. 6.8 If we could argue that
such cascades are restricted to small areas around the initially unhappy α-nodes, then it is not
hard to argue that the process reaches a dormant state rather quickly, having affected only a
very small number of nodes. The way we do this is through stable intervals, a device that
was also used in [1]. Roughly speaking, these are intervals that do not allow the spread of
unhappy α-nodes through them.

If ρ is very small, or if τ is very small, then stable intervals occur with high probability.
On the other hand, if ρ, τ get sufficiently large, the probability of a stable interval tends to
0 as w → ∞. This contrasts with prevalence of unhappy α-nodes. When τ, ρ are small, the
probability of (the occurrence of) an unhappy α-node is small, while it gets large when τ, ρ

increase. Figure 7 shows the actual probabilities (as calculated in Sect. 4) as functions of τ, ρ
for the specific value of w = 100 (the shape of the plots does not change significantly for
different values ofw). The interesting case is the range for τ, ρ where both probabilities tend
to 0 as w → ∞, i.e. both events become rare. Somewhere on the horizontal τ -ρ plane there
is a line marking the intersection of the two surfaces. This is where the probability of a stable

7 Roughly speaking, the infected area includes the parts of the ring which contain unhappy α-nodes; a formal
definition is given in Sect. 3.2.
8 Here the current configuration is the outer circle, while the initial random state is the inner small circle.
Whenever a swap occurs at some stage, a dot is placed at a distance from the center which is proportional to
that stage, at the same angle where the involved node lies. The color of the dot corresponds to the type that
the node changed to under the particular swap.
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Fig. 6 The evolution of the infected area when τ + ρ < 1. The current state in the outer circle, the initial
state is in the inner circle, and each move of an α-node is represented by a dot at the coordinates of the new
position, but at a distance from the center which is proportional to the stage where the swap occurred. This
representation of the process in time illustrates the cascades of swaps that occur and start from the initial
unhappy α-nodes

Fig. 7 The probabilities of a stable interval and an unhappy α-node, as functions of τ, ρ ≤ 0.5 when w = 100

interval becomes less than the probability of an unhappy α-node. Moreover, as w → ∞ the
ratio of the two probabilities tends to infinity or zero, depending whether τ, ρ sit on one side
of the plain (with respect to the intersection line) or the other. The crux of the argument in
Sect. 4 is that for many values of τ, ρ stable intervals are much more common than unhappy
α-nodes in the initial configuration. This allows us to argue that, in this case, the process has
to reach a dormant state after o

(
n
)
many swaps, which implies that the process is static.

1.6 Probability Terminology and Asymptotic Notation

In Sect. 5.1 we summarize some facts from probability theory that are used in our analysis. In
Sect. 5.2 we state and prove some basic probabilistic facts about the Schelling model, which
are also needed in our analysis. Asymptotic notation will be useful in expressing various
statements in our analysis. We already defined the notation 0 � w � n in Sect. 1.2. Given
two functions f , g on the positive integers, (as is standard) we say that f is O

(
g
)
if there

exists a positive constant c such that f (t) ≤ c · g(t) for all t . We say that g is Ω( f ) if f
is O

(
g
)
, and that g is Θ( f ) if both f is O

(
g
)
and f is Ω(g). We also use this notation,

however, in a more general sense: we say that f is g(O
(
t
)
) if there exists some c > 0 such

that f ≤ g(ct) for all t . For example, when we say that a function f is ne−O
(

t
)
, this means

that there is c > 0 such that f (t) ≤ ne−ct for all t . Or, if we say that f is n(1 − e−O
(

t
)
),
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this means that there is c > 0 such that f (t) ≤ n(1 − e−ct ) for all t . Similarly, we use Θ in
a more general sense. We say that f is g(Θ(t)) to mean that there exist constants c0 and c1
such that g(c0 · t) ≤ f (t) ≤ g(c1 · t) for all t . We say that f = o

(
g
)
if limt f (t)/g(t) = 0.

The (often hidden) variable underlying the asymptotic notation in the various expressions
will be w. In other words, for fixed values of ρ and τ , the choice of constants required in the
asymptotic notation, will always depend only on w. We also combine the ‘high probability’
terminology with the asymptotic notation in a manner which is worth clarifying. When we
say, for example, that ‘with high probability the number of initially unhappy α-nodes in the
process (n, w, τ, ρ) is n · (1 − ρ) · e−Θ(w)’, this means that there exist constants c0 and
c1 such that, with high probability, the number of initially unhappy α-nodes in the process
(n, w, τ, ρ) lies between n · (1 − ρ) · e−c0·w and n · (1 − ρ) · e−c1·w .

2 Metrics and Reaching Complete Segregation (� > 0.5, � + � > 1)

One of the most challenging problems in the analysis of the segregation process is the large
number of absorbing states. In order to understand which transitions are possible, we use
certain metrics that describe the current state.

2.1 Welfare, Mixing, and Expectations

We define global metrics that reflect the welfare of the entire population.9 These metrics and
their properties are essential in all of the proofs that will follow. An obvious choice is the
number of happy nodes at a given state. It is not hard to devise transitions of the process which
reduce the total number of happy nodes (see the second plot of Fig. 5). However it is possible
to show that if τ > 0.5 the total number of happy nodes is approximately non-decreasing
(in the sense that it is Θ(g) for some nondecreasing function g on the stages, where the
underlying constant depends only on w).10 Let the utility of a node (at a certain state) be the
number of nodes of the same type in its neighborhood. A better behaved global metric of
welfare of a state (compared to the number of happy nodes) is the sum of the utilities of the
nodes in the state. We call this parameter the social welfare of the state and denote it by V. A
consequence of the transition rule and the definition of utility is that the social welfare does
not decrease along the stages of the process. Furthermore, if τ ≤ 0.5, every transition of the
process strictly increases the social welfare. Let the mixing index of a node be the number
of nodes in its neighbourhood that are of different type. The mixing index mix of a state is
the sum of the mixing indices of the α-nodes in that state. The mixing index of a state is also
equal to the sum of the mixing indices of the β-nodes in that state. The relationship between
the two metrics is

V = (2w + 1) · n − 2 · mix.

Hence themixing index is non-increasing along the transitions. Note that a single swap cannot
decrease the mixing index by more than 4w. On the other hand, by linearity of expectation
we can calculate that

the expectation of the mixing index in the initial state of (n, w, τ, ρ) is 2nwρ(1 − ρ).

9 The proofs of the statements of this section are deferred to Sects. 5.3 and 5.4.
10 In other words, there exist functions c1(w), c2(w) of w and a non-decreasing function g(n) of n such that
the number of happy nodes is always in the interval (c1(w) · g(n), c2(w) · g(n)).
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Table 5 Metrics of welfare

Metric Symbol Dynamics

Social welfare V Positive (strictly if τ ≤ 0.5)

Mixing index mix Negative (strictly if τ ≤ 0.5)

No. of unhappy nodes U Approximately negative if τ ≥ 0.5

No. of unhappy α-nodes Uα Ambiguous

The mixing index of complete segregation (in nontrivial cases) is w(w + 1). Since ρ ≤ 1/2,
this means that (with high probability) the process can reach complete segregation only after
(nρ − (w + 1))/4 > nρ/5 stages, i.e. Ω(n) stages. On the other hand, a case analysis shows
that if τ ≤ 0.5, each step in the process decreases the mixing index by at least 4. This happens
because each time a swap occurs, the mixing index decreases by at least 4 (so its not possible
that a constant number of nodes swap more than o

(
n
)
times). We have shown that the second

clause of Corollary 1 (concerning the time to the final state) follows from the first clause.
As another measure of mixing, we may consider the number kβ of maximal β-blocks in

the state. These are the contiguous β-blocks that are maximal, in the sense that they cannot
be extended to a larger contiguous β-block. Let U be the number of unhappy nodes in a state.
It is not hard to show that if τ > 0.5 then mix = Θ(U) = Θ(kβ) and in particular

mix ≤ w · (w + 1) · kβ ≤ w · (w + 1) · U < mix · 2w/(1 − τ). (1)

This means that the number of unhappy nodes at a certain state reflects the progress of the
process towards segregation.More precisely, themetricsmix,kβ ,U aremutually proportional
when τ > 0.5, where the analogy coefficient depends onw (see Fig. 5). In Table 5 we display
these global metrics of welfare, along with their dynamics. A function (on the stages of the
process) has positive dynamics if it is non-decreasing and approximately positive dynamics
if it is Θ(g) for some nondecreasing function g, where the multiplicative constant does not
depend on n. Similar definitions apply for ‘negative’. The first clause of Theorem 1 (the case
when τ > 0.5) is the hardest to prove. It turns out that in this case we can deduce a non-trivial
lower bound on the mixing index of dormant states.

Lemma 1 (Mixing in dormant states) Consider the process (n, w, τ, ρ) with τ > 0.5. The
mixing index in a dormant state is more than n(w + 1)τρ∗, as long as w > 1/(2τ − 1).

The case τ > 0.5 is further divided in two cases, which reflect the proportions of happy
nodes in the initial state. We display these in Table 3, along with the corresponding expecta-
tions for the numbers of happy nodes of each type. Lemma 1 is crucial for the proof of the
first clause of Theorem 1 (in particular the case τ + ρ < 1).

2.2 Accessibility of Dormant States and Complete Segregation

Here we prove Theorem 1 for the case τ > 0.5 and τ + ρ > 1. However Lemma 3 is more
general and will also be used in Sect. 3 which deals with the harder part of the proof of
Theorem 1.
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2.2.1 Overview of the Proof of Theorem 1 for � > 0.5 and � + � > 1

This argument consists of two parts. First, we show that in this case with high probability
the initial state is such that every state with the same number of α-nodes has unhappy nodes
of both types (i.e. it is not dormant). Hence under these conditions, no accessible state is
dormant. The second part consists of showing that from every state there is a sequence of
transitions to either a dormant state or complete segregation. Moreover the latter fact holds
in general, for any values of τ, ρ, so it can be reused for the case when τ + ρ < 1, in Sect. 3.
This latter case is more challenging, as it can be seen that there are permutations of the initial
state which are dormant.

Lemma 2 (Existence of unhappy nodes) Suppose that τ > 0.5 and ρ∗ < τ Then for 0 �
w � n, every state of the process (n, w, τ, ρ) has unhappy β-nodes. If in addition τ +ρ∗ > 1,
every state also has unhappy α-nodes.

Given ρ, by the law of large numbers with high probability (tending to 1, as n tends to
infinity) ρ∗ will be arbitrarily close to ρ. Hence wemay deduce the absence of dormant states
(with high probability) in the case that τ + ρ > 1.

Corollary 2 (Absence of dormant states when τ > 0.5 and τ + ρ > 1) If ρ ≤ 0.5 < τ and
τ +ρ > 1 then with high probability none of the accessible states of the process (n, w, τ, ρ)

is dormant.

It remains to show the accessibility of either a dormant state or complete segregation,
from any state of the process. An inductive argument can be used in order to prove this fact,
which along with Corollary 2 shows Theorem 1 for τ > 0.5 and τ + ρ > 1.

Lemma 3 (Complete segregation or dormant state) Given 0 � w � n, from any state of
the process (n, w, τ, ρ) there exists a series of transitions to complete segregation or to a
dormant state.

Here is a sketch of the proof. If τ ≤ 0.5 the mixing index is strictly decreasing through the
transitions, so it is immediate that the process will reach a dormant state (indeed, 0 is a lower
bound for the mixing index). For the case where τ > 0.5 (which we assume for the duration
of this discussion) we can argue inductively, in four steps. First we show that from a stage
with few unhappy nodes of one type (here 5w4 is a convenient upper bound of what we mean
by ‘few’, which is by no means optimal) there is a series of transitions which lead to either
a state with a contiguous block of length 2w or a dormant state. Second, from a state with a
contiguous block of length ≥ 2w there is a series of transitions to complete segregation or
to a dormant state. Third, from any state which has at least w4 unhappy nodes of each type,
there is a series of transitions to a state with a contiguous block of length at least w. Finally
from a state that has a contiguous block of length ≥ w and at least 4w unhappy nodes of
opposite type from the block, there is a series of transitions to a state with a contiguous block
of length ≥ 2w. The combination of these four statements constitutes a strategy for arriving
to a dormant state or a state of complete segregation, from any given state. We illustrate this
strategy in Fig. 8, where two arrows leaving a node indicate that at least one of these routes
are possible.

2.2.2 Proof of Lemma 2 and Corollary 2

It is crucial to understand the dormant states and assess their accessibility from an initial
state. We demonstrate that this issue ultimately depends on the given parameters τ, ρ. We
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Contiguous 2w-block

Dormant state

Complete segregation

Few unhappy of one typeMany unhappy of each type

Contiguous w-block and
many unhappy of each type

Fig. 8 The path to a dormant state or complete segregation when τ > 0.5, proved in Sect. 2.2.3

show that if τ + ρ > 1 then with high probability we may assert that no dormant state is
accessible from the initial state.11 The following lemma implies Lemma 2.

Lemma 4 (Existence of unhappy nodes) Suppose γ ∈ {α, β} and let θ∗ be the proportion of
γ -nodes in a state of the process (n, w, τ, ρ). If τ > 0.5 and θ∗ < τ , then for 0 � w � n
there exist unhappy γ -nodes in the state.

Proof Given the parameters θ∗, τ , w which is large, and any state of the process (n, w, τ, ρ)

with no unhappy γ -nodes, it suffices to produce an upper bound on n (which does not depend
on the particular state but only on θ∗, τ, w and the fact that no γ -nodes are unhappy). Let
δ ∈ {α, β} − {γ }. Since τ > 0.5 and all γ -nodes are happy, there are no δ-blocks of length
≥ w. We may assume that n > 3w + 1. Define the bias B(I ) of an interval I of nodes
to be the difference between the number of γ -nodes in the interval and the number of δ-
nodes in the interval. Without loss of generality suppose that the node occupying site w is a
γ -node (otherwise consider a rotation). We define a sequence (ui ) of γ -nodes in the state,
starting with u0 = w. Let Ni denote the neighbourhood of ui . Given ui , define ui+1 to be
the rightmost γ -node in Ni . Since there are no δ-blocks of length ≥ w, the sequence (ui )

is well defined and it never happens that ui = ui+1. Let m be the largest number such that
none of the neighbourhoods Ni for 0 < i ≤ m contain the node at site 0. Since n > 3w + 1
we have m > 0. Let Im = ∪m

i=0Ni and Vm = ∑m
i=0 B(Ni ). Note that Im contains all of the

nodes except at most w. Moreover since ui+1 − ui ≤ w we have

|Im | ≤ 2w + 1 + mw. (2)

Let Li , and Ri be the leftmost and rightmost w-many nodes in Ni respectively. Since Ni

contains at least τ(2w + 1) nodes of type γ :

B(Ni ) ≥ (2w + 1)(2τ − 1) and Vm ≥ (m + 1)(2w + 1)(2τ − 1). (3)

Note, however, that some nodes have been counted multiple times in the sum that defines
Vm , since the intervals Ni are not disjoint. For each k ∈ N let J m

k consist of the nodes in Im

which belong to exactly k distinct intervals Ni .
By the definition of (ui ), the node ui+2 is always outside Ni (since it is a γ -node, and if

it was in Ni then ui+1 would not be the rightmost γ -node in Ni ). Similarly, ui+4 is always

11 On the other hand, if τ + ρ < 1 then with high probability there are permutations of the initial state
which are dormant. Formally, if τ + ρ∗ < 1 then there are permutations of the initial state which are dormant
(provided that n > 2w +1/(1− τ −ρ∗)). In order to prove this, consider the state where the β-nodes occur in
blocks of length (2w + 1)ρ∗�, which are divided by blocks of α-nodes of length at least �(2w + 1)(1−ρ∗)�.
Since �(2w + 1)(1 − ρ∗)� = (2w + 1) − (2w + 1)ρ∗� and n > 2w + 1/(1 − τ − ρ∗) we can consider
an arrangement such that all blocks of α-nodes have length exactly �(2w + 1)(1 − ρ∗)�, except perhaps one
which may have longer length. In this state all α-nodes are happy and all β-nodes are unhappy. In particular,
it is a dormant state.
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outside Ni+2. This means that it is not possible for the neighbourhoods of 5 consecutive terms
of (ui ) to have a nonempty intersection.12 This, in turn, implies that J m

k = ∅ for each k > 4.
A similar consideration shows that J m

4 consists entirely of δ-nodes (hence B(J m
4 ) ≤ 0). Next,

note that J m
1 ⊆ L0 ∪ Rm , so |J m

1 | ≤ 2w. Hence by counting the multiplicities of the nodes
in the sum which defines Vm , we have

Vm = 2B(Im) − B(J m
1 ) + B(J m

3 ) + 2B(J m
4 ) and Vm ≤ 2B(Im) + 2w + B(J m

3 ). (4)

Let N ′
i = Ni−1 ∩ Ni+1 and note that N ′

i = Ri−1 ∩ Li+1. Moreover let L ′
i = N ′

i ∩ Li and
R′

i = N ′
i ∩ Ri . By the definition of (ui ) it follows that if R′

i is nonempty, then it consists
entirely of δ-nodes. Since ui ∈ J m

3 for each i ∈ [1, m − 1], N ′
i = L ′

i ∪ R′
i ∪ {ui } and

J m
3 ⊆ ⋃

i∈[1,m−1] N ′
i , we have:

B(J m
3 ) < m +

m−1∑

i=1

(|L ′
i | − |R′

i |). (5)

Let di = ui − ui−1. Then |R′
i | = w − di and |L ′

k | = w − di+1. Hence |L ′
i | = |R′

i+1| and
m−1∑

i=1

(|L ′
i | − |R′

i |) ≤ |L ′
m−1| − |R′

1| ≤ w.

Then from (5) we get B(J m
3 ) < m + w. From the second clause of (3) and (4) we have

2B(Im) > (m + 1)(2w + 1)(2τ − 1) − 3w − m. (6)

If xm, ym are the numbers of γ and δ nodes in Im respectively, then xm + ym = |Im | and
xm − ym = B(Im). Hence 2xm = |Im |+B(Im). By hypothesis we have xm ≤ nθ∗. Moreover,
since n ≤ |Im | + w we have xm ≤ (|Im | + w)θ∗. Hence B(Im) ≤ (2θ∗ − 1)|Im | + 2wθ∗, so
by (2),

B(Im) ≤ mw(2θ∗ − 1) + 2w(3θ∗ − 1) + 2θ∗ − 1.

By (6) we may deduce that

2m · [2w(τ − θ∗) − (1 − τ)] < w(12θ∗ − 4τ + 1) + 4θ∗ − 2τ − 1. (7)

We may assume that w is larger than (1 − τ)/[2(τ − θ∗)]. By this condition and the fact
that τ − θ∗ > 0, the left side of (7) is positive. Also, n ≤ |Im | + w, so by (2) we have
n ≤ 3w + 1 + mw. If we combine the latter inequality with (7) we get

n < 3w + 1 + w · w(12θ∗ − 4τ + 1) + 4θ∗ − 2τ − 1

4w(τ − θ∗) − 2(1 − τ)

which is the required bound on n. ��
Note that in the above result, the lower bound that is required onw depends only on τ, ρ∗,

while the lower bound that is required on n depends on τ, ρ∗ and w. We may now apply
Lemma 4 in order to establish the conditional existence of unhappy nodes of both types.

Corollary 3 (Existence of unhappy nodes) Suppose that τ > 0.5 and ρ∗ < τ . Then if 0 �
w � n, every state of the process (n, w, τ, ρ) has unhappy β-nodes, and if τ + ρ∗ > 1 then
every state also has unhappy α-nodes.

12 Since ui+2 is outside Ni , the distance between ui and ui+2 is more than w, and the same holds for ui+2
and ui+4. Hence the distance between ui and ui+4 is more than 2w, which means that Ni ∩ Ni+4 = ∅.
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Given ρ, by the law of large numbers with high probability (tending to 1, as n tends to
infinity) ρ∗ will be arbitrarily close to ρ. Hence wemay deduce the absence of dormant states
(with high probability) in the case that τ + ρ > 1.

Corollary 4 (Absence of dormant states) If ρ ≤ 0.5 < τ and τ + ρ > 1 then with high
probability none of the accessible states of the process (n, w, τ, ρ) is dormant.

This corollary along with the remark made in Footnote 11 establishes the main dichotomy
in the analysis of the process.

2.2.3 Proof of Lemma 3 (Accessibility of Complete Segregation or Dormant State)

A central part of our analysis is the fact that from any state there is a transition to either a
dormant state or complete segregation. This is what we prove in this section. This also means
that the only absorbing states of the process are the dormant states.

If τ ≤ 0.5 then it is clear that the only absorbing states of the process are the dormant
states, since unhappy pairs of nodes of different type can always swap. Consider the mixing
index which is non-negative and strictly decreasing in stages for τ ≤ 0.5. This means that
there can only be finitely many swaps in the process, and so a dormant state must eventually
be reached.

For the case where τ > 0.5more effort is required.We argue in four steps. The numbers in
what follows are fairly arbitrary. First we show that from a statewith atmost a small number of
unhappy nodes of one type (here 5w4 is a convenient upper bound ofwhatwemean by ‘small’,
which is by no means optimal) there is a series of transitions which lead to either a state with
a contiguous block of length 2w or a dormant state. Second, from a state with a contiguous
block of length ≥ 2w there is a series of transitions to complete segregation or to a dormant
state. Third, any state which has at least 2w4 unhappy nodes of each type, there is a series
of transitions to a state with a contiguous block of length at least w, and at least w4 unhappy
nodes of each type. Finally from a state that has a contiguous block of length≥ w and at least
4w unhappy nodes of opposite type from the block, there is a series of transitions to a statewith
a contiguous block of length ≥ 2w. The combination of these four statements constitutes a
strategy for arriving at a dormant state or a state of complete segregation, from any given state.

In the following arguments we will often make use of the following two rather simple
facts that hold when τ > 0.5. One is that (if w > (1 − τ)/(2τ − 1)), any β-node that is
adjacent to a happy α-node is unhappy. The second concerns the situation where next to a
happy α-node there is a β-node, and we swap the β-node for another α-node. Then, provided
that before the swap the the second α node is outside the neighbourhood of the β-node, both
α-nodes will be happy after the swap.

Lemma 5 (Shortage of unhappy nodes) Suppose that τ > 0.5 and 0 � w � n. From a state
with less than 5w4 unhappy nodes of one of the types, there is a series of transitions to either
a dormant state or to a state containing a contiguous block of length at least 2w.

Proof Without loss of generality suppose that the state has less than 5w4 unhappy α-nodes.
Since ρ∗ ∈ (0, 1), and 0 � w � n, if there does not already exist a contiguous block of
length 2w then there exists an interval [u, v] of 2w nodes which contains at least one α-node
and such that any unhappy α-node is at distance at least 2w2 from any node in [u, v].13 Any
13 Otherwise, every α-node would be less than 2w2 + 2w + 2 many nodes away from some unhappy α-
node. But there are at least (1 − ρ∗) · n many α-nodes, and by the previous observation there are at least
(1− ρ∗) · n/(2w2 + 2w + 2) many unhappy α-nodes. By choosing n > 5w4 · (2w2 + 2w + 2)/(1− ρ∗) we
get that there are more than 5w4 unhappy α-nodes, which contradicts our assumption.
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unhappy α node which cannot see any node in [u, v] can move to any position in [u, v] that is
adjacent to an α-node (because by doing so, it becomes happy and because if a swap is legal
for one member of a potential swapping pair then it is legal for both). Hence we can start
successively replacing the β-nodes in [u, v] which are adjacent to α-nodes, with unhappy
α-nodes, each time choosing unhappy α-nodes that have maximal distance from u, v. Note
that this recursive procedure is valid because all α-nodes in [u, v] are happy after each swap.
Ultimately we either run out of unhappy α-nodes, or else [u, v] becomes an α-block. ��

Lemma 6 (Toward a block of length w) Suppose τ > 0.5. If 0 � w � n then from any state
which has at least 2w4 unhappy nodes of each type, there is a series of transitions to a state
with an α-block or β-block of length at least w, and at least w4 many unhappy nodes of each
type.

Proof Suppose that we are given a certain state of the process. Define a sequence ui , i ≤ w2

of α-nodes with neighbourhoods Nui respectively, by induction as follows. Let u0 be the
least α-node whose neighbourhood contains the minimum number of α-nodes amongst all
neighbourhoods of α-nodes. If ui is defined and i < w2, define ui+1 to be the least α-
node whose neighbourhood is disjoint from ∪ j≤i Nui and whose neighbourhood contains
the minimum number of α-nodes amongst all α-nodes with the same property (i.e. with
neighbourhoods that are disjoint from∪ j≤i Nui ). This completes the definition of (ui ), which
is sound provided that n is sufficiently large. We define a sequence vi , i ≤ w2 of β-nodes
with neighbourhoods Nvi respectively, in a way entirely analogous to the above definition,
ensuring also that all neighbourhoods Nui and Nv j are disjoint.

The sequences (ui ) and (vi ) provide a pool of nodes which will be used for legitimate
swaps in a series of transitions which will lead to the desired state of the process. We start
by considering an interval J of nodes of length 3w which is disjoint from ∪ j≤w2 Nui and
disjoint from ∪ j≤w2 Nvi . Such an interval exists, provided that n is sufficiently large. Let I
consist of the w-many nodes in J that are at distance at least w + 1 from any node outside
the interval. Clearly any swap that occurs between a node in I and one of the nodes ui , does
not affect the composition of the neighbourhoods Nu j for j �= i , or Nv j for j ≤ w2 (and
similarly for a swap between a node in I and one of the vi ).

Let ti , i < w be the nodes of I enumerated from left to right.We shall describe a swapping
process, involving less than w2 swaps. At the end of this process of legal swaps, all nodes
in I will be of the same type, (but which type that is will not be determined until the end of
the process). This process has w-many steps, with each step s involving up to s swaps. Let
γs be the type of ts at the end of stage s. Also, let Vs contain the nodes ui , vi , i ≤ w2 which
are of type γs and have not been involved in a swap by the end of stage s. The construction
is designed so that γs is the type of all ti , i ≤ s st the end of stage s. This feature guarantees
that at the end of the process, all nodes in I have the same type. Stage 0 is null (i.e. we carry
out no instructions at stage 0).

At stage s + 1 we check if ts+1 has type γs . If so, then we go to the next stage. If not,
then suppose first that ts+1 is unhappy. In the case that ts is happy, any unhappy γs-node
outside J can swap with ts+1 (because an unhappy γs-node moving next to a happy γs-node
cannot decrease its utility). In the case that ts is unhappy, we claim that any node x from
Vs can legitimately swap with ts+1. In order to see this, note that the number of γs-nodes in
the neighbourhood of ts is at least as large as this number at the beginning of the process.
By the definition of Vs , this number is at least as large as the number of γs nodes in the
neighbourhood of x . This means that if x moves to the place that ts+1 occupies, its utility
will not decrease.
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The last case in the procedure is if ts+1 is happy and of type different than γs . In this case
we define γs+1 ∈ {α, β} − {γs} and swap all ti , i ≤ s with distinct nodes in Vs+1, starting
with ts and moving to the left. These are legitimate swaps, as nodes of type γs+1 move next to
happy nodes of the same type (so their utility is not decreased after the swap). This concludes
the description of the process.

By the end of stage w − 1, all nodes in I are of the same type. Since we perform less
than w2 many swaps, there are less than 2(2w + 1)w2 many nodes whose neighbourhoods
are affected by these swaps. Since w is large, there are therefore at least w4 many unhappy
nodes remaining of each type remaining. ��
Lemma 7 (Toward a contiguous block of length 2w) Suppose that τ > 0.5 and 0 � w � n.
From a state that has an α-block of length ≥ w and at least w4 unhappy nodes of each type,
there is a series of transitions to a state with an α-block of length ≥ 2w. The same holds for
β-blocks.

Proof Consider the given state and assume that there is no α-block of length≥ 2w (otherwise
0 transitions suffice). Let [x, y] be the longest α-block in the given state, and let J consist of
all the nodes that are at distance at least w from the interval [y − 2w, y]. Note that x − 1 is a
β-node and since τ > 0.5 it is unhappy. Let z be the rightmost α-node to the left of x . If z is
unhappy, then we may swap it with x − 1 since its utility will not decrease. Otherwise, if z is
happy, then it is at a distance at most w from x and we may successively swap the β-nodes in
(z, x), starting from z + 1 and moving to the right, for an equal number of unhappy α-nodes
in J . This is possible because each time that we move an α node next to a happy α-node, the
new α node becomes happy. We repeat this process until an α-block of length 2w has been
formed. Each step of the process increases the length of the α-block that is adjacent and to
the left of y the process will terminate. We also perform at most w many swaps, meaning
that we shall not run out of unhappy nodes to perform the swaps with. ��
Lemma 8 (Complete segregation or dormant state from long block) Suppose τ > 0.5 and
that 0 � w � n. From a state with a contiguous block of length ≥ 2w there is a series of
transitions to complete segregation or to a dormant state.

Proof Consider any state which is not completely segregated, but which has a contiguous
block of length at least 2w. Without loss of generality, suppose that this is a block of α nodes
occupying the interval [u, v], where this interval is chosen to be of maximum possible length.
Our aim is to show that from this state, onemay legally reach another with a contiguous block
of greater length (or else a dormant state). Now if the nodes u and v are both happy then the
length of the interval ensures that all nodes in the block are happy.14 In this case, if there
exists an unhappy α node u′, then let t ∈ {u, v} be distance at least w + 1 from u′. Then u′
and the β neighbour of t may legally be swapped, increasing the length of the run by at least
1.

So suppose instead that at least one of the nodes u and v is not happy, and without loss
of generality suppose that u has bias less than or equal to v, where the bias of a node is the
number of α-nodes minus the number of β-nodes in its neighbourhood. Then u and v + 1
may legally be swapped. Performing this swap causes position v+1 to have at least the same
bias as v did before the swap, and causes u + 1 to have at most the same bias as u did before
the swap. Thus, the swap has the effect of shifting the run one position to the right and may

14 Indeed, the neighborhood of any node in (u, v − w] consists of the neighborhood of u, with some nodes
replaced by α-nodes, and similarly the neighbourhood of any node in [u −w, v) consists of the neighborhood
of v, with some nodes replaced by α-nodes.
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be repeated until the length of the run is increased by at least 1, i.e. for successive i ≥ 0 we
can swap the nodes u + i and v + i + 1, so long as the latter is of type β. The first stage at
which the latter is of type α the length of the contiguous block has been increased. Putting
these observations together, we conclude that from any state which has a contiguous block
of length at least 2w it is possible to reach full segregation. ��

Finally, we piece together the above processes in order to show the following comprehen-
sive statement.

Corollary 5 (Complete segregation or dormant state) From any state of the process
(n, w, τ, ρ) with 0 � w � n, there exists a series of transitions to complete segregation or
to a dormant state.

Proof The case τ ≤ 0.5, we considered earlier. Suppose that τ > 0.5. We may assume that
ρ∗ ∈ (0, 1), because otherwise every state is a dormant state. If there exist at most 5w4

unhappy nodes of each type in the state, Lemma 5 shows how to reach a dormant state or a
state with a contiguous block of length ≥ 2w. In the latter case, Lemma 8 shows that there
is a series of transitions to complete segregation or to a dormant state. So we may assume
that the given state has more than 5w4 unhappy nodes of each type. Then Lemma 6 shows
how to reach a state with a contiguous block of length ≥ w and at least w4 many unhappy
nodes of each type. Furthermore, from such a state Lemma 7 shows how to reach a dormant
state or a state with a contiguous block of length ≥ 2w. In the latter case, Lemma 8 shows
that there is a series of transitions to complete segregation or to a dormant state. This is an
exhaustive analysis that establishes a path to a dormant state or complete segregation, from
every state. ��

This completes our proof of Theorem 1 for the case that τ + ρ > 1.

3 Reaching Complete Segregation when � > 0.5, � + � < 1

This case of Theorem 1 is challenging because we need to show that the process avoids
accessible dormant states, until it reaches a safe state i.e. a state from which no dormant
state is accessible. The reason for this avoidance is (in contrast with the case τ + ρ > 1 of
Sect. 2.2) the dynamics of the process with the given parameters. The methodology we use is
based on a martingale argument, which involves a great deal of the analytical tools (e.g. the
metrics of social welfare) and their properties that were developed in the previous sections.
Having shown that dormant states are avoided until the process reaches a safe state, Lemma 3
gives Theorem 1 (for the case where τ > 0.5 and τ + ρ < 1). An overview of this argument
is given in Fig. 3.

3.1 The Persistence of Large Contiguousˇ-Blocks

According to our plan, wewish to establish the existence of unhappy nodes of both types until
a safe state is reached.15 ByLemma 2,we do not have toworry about the existence of unhappy
β-nodes. One device that guaranties the existence of unhappy α-nodes is a contiguous block
of β-nodes, of length at least w. Such a block exists in the initial random state (with high
probability). One way to argue for its preservation in subsequent stages is to consider the

15 The proofs of the facts stated in this section are deferred to Sect. 5.5.
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ratio of the unhappy nodes of the two types. Even more relevant is the ratio between the
number of unhappy α-nodes, and the number of β-nodes which are not just unhappy, but
actually sufficiently unhappy that they can swap with any unhappy α-node.

Definition 2 (Very unhappy β-nodes) Given a stage of the process, a node of type β is very
unhappy if there are at least (2w + 1)τ nodes of type α in its neighbourhood. The number of
very unhappy β-nodes is denoted by U∗

β .

In the case that we study (τ > 0.5 and τ + ρ < 1) initially, the number of very unhappy
β-nodes is Ω(n) while the number of unhappy α-nodes is o

(
n
)
. The following lemma says

that as long as this imbalance (large number of very unhappy β-nodes versus small number
of unhappy α-nodes) is preserved, it is very likely that a sufficiently long contiguous block
of β-nodes is preserved.

Lemma 9 (Persistent β-block) Consider the process (n, w, τ, ρ) with τ > 0.5 and let s∗ be
the least stage where the ratio between the very unhappy β-nodes and the unhappy α-nodes
becomes less than 4w2 (putting s∗ = ∞ if no such stage exists). Then with high probability
there is a β-block of length ≥ 2w at all stages < s∗ of the process.

Since a β-block of length at least w is a guarantee for unhappy α-nodes, we get the
following corollary.

Corollary 6 (Conditional existence of unhappy α-nodes) Under the hypotheses of Lemma 9,
with high probability there are unhappy α-nodes at all stages < s∗ of the process.

It remains to construct an elaborate martingale argument in order to show that the imbal-
ance between Uα and U∗

β persists for a sufficiently long time (until the process reaches a safe
state).

3.2 Overview of the Infected Area of the Schelling Process

In the case of unbalanced happiness (i.e. when τ > 0.5, τ +ρ < 1, see Table 3) the unhappy
α-nodes are initially very rare, so the interesting activity (namely α-to-β swaps) occurs in
small intervals of the entire population (at least in the early stages). These intervals contain
the unhappy α-nodes, and gradually expand, while outside these intervals all β-nodes are
very unhappy. Figure 9 shows the development of this process, where the height of the nodes
(perpendicular lines) is proportional to the number of α-nodes in their neighborhood and the
horizontal black line denotes the threshold where an α-node becomes unhappy. Hence nodes
with high proportion of α-nodes in their neighbourhood will be higher than the nodes with
low proportion of α-nodes in their neighbourhood. The three horizontal bars are snapshots
of the process, and show cascades forming, originating from the initially unhappy α-nodes.
Figure 6 shows the same process, with the current state in the outer circle, and with swaps
represented by a dot at a distance from the center which is proportional to the stage where
the swap occurred. These cascades that spread the unhappy α-nodes are due to the following
domino effect. An unhappy α-node moves out of a neighbourhood, thus reducing the number
of α-nodes in that interval. This in turn often makes another α-node in the interval unhappy,
which can move out at a latter stage, thus causing another α-node nearby to be unhappy, and
so on. The expanding intervals are the infected segmentswhich start their life as incubators.16

Roughly speaking, incubators are a small intervals that surround the unhappy α-nodes in the

16 Formal definitions of the infected segments and the incubators are given in Sect. 3.3.
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Fig. 9 Formation and dynamics of the infected area when τ + ρ < 1. Here instead of a circle, we lay the
nodes horizontally, representing them as perpendicular lines of a fixed length, which appear lower or higher
according to the proportion of α-nodes in their neighborhood. The horizontal line represents the level below
which an α-node becomes unhappy

initial state. Moreover they are defined in such a way that, every β-node that is outside the
incubators is very unhappy in the initial state. During the process, as we discussed above,
these expand into larger infected segments, so that at each stage every unhappy α-node is
inside an infected segment. The union of all infected segments is called the infected area
which, roughly speaking, consists of the areas containing unhappy α-nodes (formal definition
is given in the next section). At any stage, every β-node outside the infected area is very
unhappy and every α-node outside the infected area is happy. It is not hard to show that if
τ + ρ < 1, the probability that a node belongs to an incubator is e−Θ(w). Hence with high
probability the number of incubators as well as the number of nodes belonging to incubators
of the process (n, w, τ, ρ) is ne−Θ(w).

It turns out that the number of unhappy β-nodes in an interval of nodes, is conveniently
bounded in terms of the number of α-nodes in the interval. This means that if the number
of α-nodes in the infected area remains o

(
n
)
, then the number of unhappy β-nodes in the

infected area also remains o
(
n
)
. In order to give a clear sketch of the argument depicted in

Fig. 3 (for the current case when τ > 0.5 and τ + ρ < 1) let us define the global variables in
Table 6.17 Let Zs be the number of the α-nodes in the infected area and Ys be the number of
unhappy β-nodes in the infected area at stage s. Also letGs be the number of β-nodes outside
the infected area and let C be the number of nodes inside the incubators (in the initial state).
Let Us be the number of unhappy nodes at stage s (this metric was discussed in Sect. 2.1 in
the context of a fixed state).

Note that Us ≤ Gs + Ys + Zs . A combinatorial argument can be used in order to show
that Ys ≤ Zs/(1 − τ) + 2wC (see Sect. 5.5 for the proof). Hence

Us ≤ wC + Gs + 2Zs/(1 − τ). (8)

By (1) we know that a stage where the number of unhappy nodes is less than nτρ∗/w is a
safe stage. Hence we wish to show that (with high probability) the process will arrive at a
stage where each of the three summands in (8) are at most nτρ∗/(3w). We know that C can
be bounded appropriately. Our main argument will show how to obtain a similar bound for
Zs . Note that Gs plays a different role, since it is initially large and shrinks monotonically
(as the infected area expands monotonically). In order to find a stage where Gs becomes
sufficiently small, it is instructive to consider what is a typical swap in the process. At the
start of the process the infected area is a very small proportion of the entire ring. The vast
majority of unhappy β-nodes occur outside the infected area, while all unhappy α-nodes are
inside the infected area. It follows that with high probability a swap will involve an α-node

17 For the current discussion we will not be concerned with Ds or its definition.
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Table 6 Random variables indicating the number of certain nodes in infected area at stage s of the process

Zs α-nodes in infected area ps Probability of a bogus swap

Ys Unhappy β-nodes in infected area Gs β-nodes outside infected area

Ds Anomalous nodes in infected area C Nodes inside the incubators

Table 7 Critical stages in the
unbalanced happiness process, as
stopping times for certain
conditions

Stage Stopping time for

Tg Gs > τρ · n/(4w)

Ty Ys ≤ Gs , s < Tg

Tmix mix > n(w + 1)τρ∗
Tstop Uα > 0

in the infected area and a β-node outside the infected area. A bogus swap is a swap is one
that is not of this kind.

Definition 3 (Bogus swaps) A swap which involves a β-node currently inside the infected
area is called bogus. Given an infected segment I , a bogus swap in I is a swap that moves
an α-node into I .

Note that any swap which is not bogus, reduces Gs by at least 1. Hence if we show that
the bogus swaps have small probability throughout a significant part of the process, we can
ensure that Gs becomes sufficiently small. In order to be more precise, recall the stopping
time s∗ from Lemma 9. We introduce a few more stopping times, all of which will turn
out to be earlier than s∗ (with high probability). These basically concern the satisfaction of
conditions which will ensure that the mixing index is sufficiently low as to guarantee a safe
state. By (1) we have mix ≤ U · w(w + 1) and in order to ensure a safe state (by Lemma 1)
we want mix < n(w + 1)τρ∗. So we want U < nτρ∗/w at some stage of the process. Let
Tmix be the first stage which satisfies this condition. Similarly, consider the stopping times
Tg, Tstop of Table 7 (for simplicity, we will not consider Ty in the present discussion). Here
Tg is the first stage where Gs ≤ τρ · n/(4w) and Tstop is the first stage at which there are no
more unhappy α-nodes.

We use an elaborate martingale argument in order to show the following.

Lemma 10 (Bounding the α-nodes in the infected area) If τ > 0.5 and τ + ρ < 1, with high
probability we have Zs = o

(
n
)

and ps = o
(
1
)

for all s < Tg.

This lemma in combination with Lemma 9 implies that Tg ≤ s∗ ≤ Tstop. Hence every
stage up to Tg involves a swap. Then it follows from the second clause of Lemma 10 that
Tg < n (since Gs is reduced by at least 1 at every non-bogus swap). Hence by (8) we have
established (with high probability) the existence of a stage Tg < n such that

UTg ≤ wC + GTg + 2ZTg

1 − τ
≤ o

(
n
) + nτρ∗

4w
+ o

(
n
)

<
nτρ∗
w

.

Hence by (1) we have Tmix ≤ Tg , which means that by stage Tg a safe state has been
reached. Then by Corollary 3 the process will reach complete segregation, with probability
1 − o

(
1
)
.
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Corollary 7 (Safe state arrival) Suppose that τ + ρ < 1. Then with high probability the
process (n, w, τ, ρ) reaches a safe state by stage n, and eventually complete segregation.

This argument (with the full details given in the following sections) concludes the proof
of Theorem 1 for the case τ > 0.5. The case τ ≤ 0.5 is dealt with in Sect. 4.

3.3 Infected Area and RandomVariables (Formal Definitions)

In this case of unbalanced happiness (i.e. when τ > 0.5 and τ + ρ < 1, see Table 3) the
unhappy α-nodes are initially very rare, so the interesting activity (namely α-to-β swaps)
occurs in small intervals of the entire population (at least in the early stages). These intervals
contain the unhappy α-nodes, and gradually expand, while outside these intervals all β-
nodes are very unhappy. Figure 9 (produced from a simulation) shows the development
of this process, where the height of the nodes (perpendicular lines) is proportional to the
number of α-nodes in their neighborhood and the horizontal black line denotes the threshold
where an α-node becomes unhappy. These cascades that spread the unhappy α-nodes are
due to the following domino effect. An unhappy α-node moves out of a neighbourhood, thus
reducing the number of α-nodes in that interval. This in turn often makes another α-node
in the interval unhappy, which can move out at a latter stage, thus causing another α-node
nearby to be unhappy, and so on. The expanding intervals are the infected segments which
start their life as incubators.

Definition 4 (Incubators) Consider the set I of nodes in the initial state which belong to an
interval of nodes of length w with less than ε∗ = w(1 − ρ + τ)/2 many α-nodes. Let I ∗
be the set of nodes whose neighborhood contains a node in I . An incubator is a maximal
interval of nodes that is entirely contained in I ∗.

Each incubator in the initial state may initiate a cascade of α-to-β swaps, which generates
additional unhappy α-nodes nearby, and which sustains itself by motivating additional α-to-
β swaps, thus creating a cycle of α-to-β swaps and unhappy nearby α-nodes. The infected
segment around an incubator I is, informally speaking, the minimum interval containing
I which is affected by this process, i.e. by the appearance of additional nearby unhappy
α-nodes. The infected area is the union of all of these infected segments, and it is always
expanding during the process. We give a precise inductive definition of this notion in order
to eliminate any ambiguity that may confuse the reader. An interval of nodes is called active
at a certain state if it contains an unhappy α-node.

Definition 5 (Infected segments) For each incubator I , let the infected segment I0 corre-
sponding to I at stage 0 be I itself. At the end of stage s + 1, suppose that the infected
segment Is is defined for each incubator I , and define Is+1 for each incubator I as follows.
Starting at position 0 and moving clockwise, consider each Is which is currently active and
was also active at the end of stage s, and define Is+1 = Is ∪ J , where J consists of the nodes
which do not already belong to another active infected segment (by the time we consider Is)
and whose neighborhood contains an unhappy α-node in Is at stage s + 1. Finally we define
Is+1 for those incubators I which are no longer active by letting Is+1 = Is − Q, where Q
consists of the nodes in Is which now belong to an active infected segment.

The infected area is the union of the infected segments. The fresh infected segment cor-
responding to infected segment I is I − I0, i.e. consists of the nodes I except the nodes in
its incubator. Hence a fresh infected segment consists of two growing intervals of nodes. The

123



G. Barmpalias et al.

fresh infected area is the infected area except the nodes in the incubators. The interior of
a set of nodes J consists of those nodes whose neighbourhood is entirely contained in J .
The boundary of J consists of the nodes in J which are not in the interior. It is not hard to
show that if τ + ρ < 1, the probability that a node belongs to an incubator is e−Θ(w). Hence
with high probability the number of incubators as well as the number of nodes belonging to
incubators of the process (n, w, τ, ρ) is ne−Θ(w).

Our goal is now to show that the number of unhappy α-nodes remains suitably bounded
throughout a significant part of the process. Formally, the main idea is to bound this number
with a martingale. Intuitively though, why should the number of unhappy α-nodes remain
fairly small? At the start of the process the infected area is a very small proportion of the
entire ring. The vast majority of unhappy β-nodes occur outside the infected area, while all
unhappy α-nodes are inside the infected area. It follows that with high probability a swap
will involve an α-node in the infected area and a β-node outside the infected area.

In the absence of bogus swaps, it is not hard to show that the α-nodes in the infected area
(except those in the incubators) are unhappy. This in turn can be used in order to show that
the α-nodes in the infected area (and so, the unhappy α-nodes too) are likely to remain o

(
n
)
.

However there will be bogus swaps, and these can make certain α-nodes in the infected area
happy.

Definition 6 (Anomalous nodes) A node is called actively anomalous at some stage of the
process if it is a happy α-node in the interior of the fresh infected area; it is called anomalous
if it has been actively anomalous in this or a previous stage. Finally a node is called generally
anomalous at some stage, if it is in the current infected area and has been or will be actively
anomalous at some later stage of the process.

Clearly actively anomalous implies anomalous, which in turn implies generally anoma-
lous (but not the other way around). LetDs denote the number of anomalous nodes at stage s,
and let D̄s denote the number of generally anomalous nodes at stage s. Amartingale argument
will be used in order to show that as long as Ds = o

(
n
)
, the α-nodes in the infected area are

likely to remain o
(
n
)
. The definition of anomalous nodes and D̄s may seem strange at this

point, not least because D̄s is not predictable at stage s. The reason that we introduce D̄s is
that Ds is very hard to analyze, and very hard to bound directly via a martingale (adapted to
the stages of the process). However it is possible to bound D̄s via a martingale argument of
a more general type (i.e. which is not adapted to the stages of the process). Since Ds ≤ D̄s ,
this suffices for our purposes.

Define the global variables Table 6 (also recall Table 5). By the definitions we have
Ds ≤ Ds+1,

(a) Uα(s) ≤ Zs (b) Uβ(s) ≤ Gs + Ys (c) Gs ≤ U∗
β(s) (d) E [C] = ne−Θ(w)

Here (d) holds because of the likely total size of the incubators and (c) holds because β-nodes
outside the infected area are very unhappy.

3.4 Probabilities in the Infected Area and Anomalous Nodes

Our current goal is to show that the number of unhappy α-nodes remains suitably bounded
for a significant part of the process.18 The basic idea is that if the number of unhappy α-nodes
increases sufficiently, then the infected area must become quite large, and it becomes very

18 In this section we use the expectation estimates that are established in Sect. 5.4.
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likely that the next swap will involve an unhappy α-node in the interior of the infected area.
We shall be able to argue that there are good chances that the swap is not bogus. This means
that this α-node will move outside the infected area and will become happy. The anomalous
nodes, however, present a difficulty with this line of argument. The eviction of the α-node
from the infected area (and its replacement by a β-node) may producemore unhappy α-nodes
in its neighbourhood. So it is not absolutely true that the total number of unhappy α-nodes
will decrease. In fact, as the simulations of Fig. 5 suggest, at the early stages of the process
this number is likely to increase slightly.

If we assume the absence of bogus swaps, then it is not hard to show that the nodes in the
interior of the infected area and outside the incubators have neighborhoods with proportion
of α-nodes well below (2w + 1)τ . In this case it is straightforward to employ a martingale
argument which shows that the number of α-nodes in the infected area (hence also the total
number of unhappy α-nodes) remains bounded with high probability throughout the process.
Indeed, in this case there will be no happy α-nodes in the interior of the fresh infected area,
so (according to the argument we outlined above) the likely swap absolutely reduces the total
number of unhappy α-nodes.

In the presence of bogus swaps, we will use a more sophisticated martingale argument to
bound the anomalous nodes. This bound can be used by another simplermartingale argument,
in order to bound the number of unhappy α-nodes, at least up to some stopping time of the
process and with high probability. This plan requires the calculation of certain probabilities.

Lemma 11 (Probability of a bogus swap) At each stage s +1, the probability that the current
swap will be bogus is bounded above by Ys/Gs .

Proof The number of pairs which can cause a bogus swap is bounded by Uα(s) · Ys . On the
other hand, any unhappy α-node can swap with a β-node outside the infected area. Indeed,
this is because the number of α-nodes in the neighbourhood of any β-node outside the
infected area is at least (2w + 1)τ . Hence there are at least Uα(s) · Gs pairs of nodes that
can swap at stage s + 1. We can conclude that the probability of a bogus swap is bounded
by Uα(s)Ys/Uα(s)Gs = Ys/Gs . ��

The calculation of the following probabilities is a first step towards our martingale argu-
ment.

Lemma 12 (Probabilities for Zs ) The numbers

Gs

Uα(s)
· Zs − Ds − 2w · C

Gs + Ys
and 2w · C · Gs + Ys

Gs · Uα(s)
(9)

are a lower bound for the probability that Zs+1 < Zs and an upper bound for the probability
that Zs+1 > Zs , respectively.

Proof The probability that Zs+1 < Zs is at least as much as the probability that the swap is
not bogus and it involves a node in the interior of the infected area at stage s + 1. Indeed,
in this case the swap moves an α-node from the interior of the infected area to outside the
infected area, so Zs+1 = Zs − 1, because the length of the infected area remains the same.19

The unhappy α-nodes of the infected area that cannot be part of such a swap are the ones that
belong to the boundary of the infected area, so they are at most 2wC many. This means that
there are at least Zs −Ds − 2wC nodes of type α which can be picked as part of a swapping

19 The removal of the α-node will only affect the neighborhoods of nodes inside the given infected segment.
Hence it will not produce any additional unhappy α-nodes outside this infected segment.
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pair at stage s + 1 such that Zs+1 − Zs is negative. Note that each of these α-nodes forms
a swapping pair with any β-node outside the infected area, since all such β-nodes are very
unhappy. Therefore there are at least (Zs − Ds − 2wC) · Gs many swapping pairs which
make Zs+1 −Zs negative. On the other hand, the total number of swapping pairs are at most
(Gs +Ys) ·Uα(s)many. Hence the first expression of (9) is a lower bound for the probability
that Zs+1 < Zs .

For the second clause, note that Zs+1 > Zs can only happen in the case that the infected
area expands at stage s + 1. This can only occur if the swapping pair involves an α-node that
belongs to the boundary of the infected area of stage s. There are at most 2wC such nodes so
there are at most 2wC · (Gs +Ys) swapping pairs that can cause Zs+1 < Zs . Moreover there
are at least Gs · Uα(s) possible swapping pairs for stage s + 1. Hence the second expression
of (9) is an upper bound for the probability that Zs+1 > Zs . ��

We may now identify our first supermartingale. Note that the following fact is the reason
why we defined the anomalous nodes the way we did. The fact that Ds is nondecreasing is a
necessary part of the following proof.

Lemma 13 (Non-anomalous nodes in an infected segment) The following process is a super-
martingale, for all s < Ty: Z∗

s := max{Zs − Ds, 11w2 · C}
Proof At the end of stage s (and given all information as to how the process has unfolded
so far) denote the probability that Zs+1 < Zs by q and the probability that Zs+1 > Zs by
p. Let E be the expected value of Zs+1. Now at stage s + 1 the infected area can expand by
at most w nodes. Moreover, it is not possible that at stage s + 1, an α-node which is not in
the infected area of stage s is moved to a position in the infected area of stage s + 1. This is
because all α-nodes outside the infected area of stage s are happy at stage s. It follows that
Zs+1 − Zs ≤ w at each stage s. Therefore

E ≤ p · (Zs + w) + q · (Zs − 1) + (1 − p − q) · Zs = Zs + wp − q. (10)

By Lemma 12, in order to ensure that wp − q ≤ 0, it suffices that

2w2 · C · Gs + Ys

Gs · Uα(s)
≤ Gs

Uα(s)
· Zs − Ds − 2w2 · C

Gs + Ys

so Zs ≥ Ds + 2w2 · C ·
[

1 +
(
1 + Ys

Gs

)2
]

.

Since s < Ty the expression inside the parentheses in the latter inequality is bounded above
by 2. Hence for the condition wp − q ≤ 0 it is sufficient that Zs ≥ Ds + 10w2 · C for all
s < Ty . So nowwe divide into two cases. IfZs < Ds +10w2 ·C thenZ∗

s+1 = Z∗
s = 11w2 ·C.

Otherwise, E ≤ Zs and the result follows from the fact that Ds is non-decreasing. ��
Now to get from Z∗

s to Zs , we need to bound Ds . Intuitively, we expect the proportion
of the α-nodes in neighborhoods of nodes in the interior of the infected area to be rather
low, e.g. considerably lower than the threshold (2w + 1)τ . The following lemma gives a
justification for such an expectation and is also the reason why we chose ε∗ = (1− τ −ρ)/2
in the definition of incubators, Definition 4. Here is an intuitive explanation of this fact. Let
us say that a node in the infected area which is not in the interior of the infected area is in the
boundary of the infected area. A node in the boundary of the infected area can see a node
outside the infected area. The nodes in the complement of the infected area have never seen
unhappy α-nodes, hence the proportion of α-nodes in their semi-neighbourhoods can only
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increase. This means that one of the semi-neighbourhoods of each node in the boundary of
the infected area has not been affected by α-to-β swaps. The following lemma says that such
a node can only be included in the interior of the infected area if the semi-neighbourhood
of it which has been affected by α-to-β swaps, is affected by at least ε∗w such swaps. In
other words, the expansion of the infected area requires a considerable number of stages.
The particular statement refers to the case where the infection travels from right to left. By
symmetry, an analogous statement holds for the case where the infection travels the opposite
direction.

Lemma 14 (Concentration of α-to-β swaps) Let [a, d] be an interval of nodes in the initial
state of the process, and δ > 0 such that for each u ∈ [a, d] the proportion of α-nodes in
each semi-neighbourhood of u is at least τ + δ. Consider a stage of the process up to which
there have been no α-to-β swaps in [a − w, a). For each u ∈ [a, d] and any stage in this
interval, if there is an unhappy α-node in [a, u] then there have been at least 2wδ many
α-to-β swaps in the right semi-neighbourhood of u by that stage.

Proof Let s be a stage of the process and suppose that there have been no α-to-β swaps in
[a −w, a) by stage s. Suppose that there is an unhappy α-node in [a −w, u] at stage s. Then
there must have been an unhappy α-node in [u − w, u] at some stage ≤ s. Consider the first
such stage t0 and let v0 be the rightmost α-node in (u −w, u]which became unhappy at stage
t0. By our hypothesis, up to stage t0 there has been no α-to-β swaps in (v0, u]. Hence all of the
α-to-β swaps that occurred in the right semi-neighbourhood of v0 are also in the right semi-
neighbourhood of u. The proportion of the α-nodes in the left semi-neighbourhood of v0 is
more than τ +δ. Since v0 is unhappy at t0, the proportion of the α-nodes in its neighbourhood
is less than τ . Hence the proportion of the α-nodes in its right semi-neighbourhood is at most
τ − δ at stage t . Hence by hypothesis, by stage t at least 2wδ many α-to-β swaps have
occurred in the right semi-neighbourhood of v. By the above discussion, these swaps have
also occurred in the right semi-neighbourhood of u. ��

According to the definition of incubators, this fact is relevant for δ = (1 − τ − ρ)/2
and shows that the infected area expands reasonably slowly in the stages of the process
(n, w, τ, ρ). Indeed, the proportion of α-nodes in the neighbourhood of any node outside the
infected area at any particular stage is at least τ + (1 − τ − ρ)/2. This also shows that, in
the absence of bogus swaps, all α-nodes in the interior of the fresh infected area are always
unhappy (i.e. there are no anomalous nodes). In the presence of bogus swaps this is no longer
true, and this is why we have to work in order to bound the spread of anomalous nodes.

3.5 Bounding the Anomalous Nodes

Recall thatDs denotes the number of anomalous nodes at stage s. In this section we construct
a martingale process which shows that Ds is likely to be bounded appropriately, throughout
a significant part of the Schelling process. This argument requires us to consider the random
variables localized into the individual infected segments. Recall the stopping times defined
in Table 7. We use τρn/(4w) rather than τρn/(3w) in the definition of Tg so as to allow for
the slight discrepancy which one might expect between ρ and ρ∗.

Definition 7 (Stopping times) Let Tg be the least stage such that GTg ≤ τρn/(4w). Define
Ty to be the first stage which is either Tg or else such that Ys > Gs . Finally let Tmix be the
first stage for which mix < n(w + 1)τρ∗. In all cases, if the stage described does not exist
then we define the corresponding stopping time to be ∞.
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Given an infected segment I , let D̄s = D̄s(I ) be the number of nodes in Is that will ever
become anomalous, up to stage Tg . This is a version of the generally anomalous nodes D̄s .
A stage is called an I -stage if a swap occurs involving a node from I .

If (ν(s)) is an enumeration of the I -stages, let D̄∗
s = D̄ν(sw5) and I ∗

s = Iν(sw5).

We use ∗ as a superscript in other variables in the following, in order to indicate that they are
‘jump processes’ in the sense that they are not updated at every stage or even every I -stage
of the Schelling process. For example, D∗

s is only updated every w5 many I -stages of the
Schelling process.

We may view the underlying probability space Ω as a tree, where the nodes are states and
branchings correspond to state transitions. Let Ω ∧ Tg denote the subspace restricted to the
stages up to time Tg (whichmay be infinite).Normallywewould say that an eventA ⊆ Ω∧Tg

is I -independent if it did not impose any branching restrictions regarding the I -stages that
occur in the reals in it.We give a sightlymore general definitionwhich is more appropriate for
the argument to follow. An eventA ⊆ Ω ∧ Tg is called I -independent if for each β ∈ A and
any s such that the transition from β �s to β �s+1 occurs at an I -stage, β �s ∗S ∈ A for every
state that is obtained from β �s through a non-bogus swap. A filtrationAs ⊆ As+1 ⊆ Ω ∧Tg

is called I -independent if for each s the event As is I -independent. Analogously, a process
(Js) on Ω is called I -independent if the natural filtration of it is I -independent. Intuitively,
a process (Js) on the underlying probability space Ω is I -independent, if for each s, fixing
the value of Js does not impose any restriction on (i.e. is compatible with all) the transitions
of the Schelling process from stage s to stage s + 1 that involve a non-bogus swap and a
node from I . Here we use boldface font for Js because this process will typically be global,
in the sense that it involves information about the process that is not restricted to the infected
segment I . In the following lemma we use (J∗

s ) for the underlying I -independent global
process in order to indicate that it refers to the subsequence of stages sw5 of the process,
much like D̄∗

s .

Lemma 15 (I -supermartingale) Given an infected interval I , the process D̄∗
s − 10ws is a

supermartingale relative to any I -independent process J∗
s to which D̄∗

s is adapted.

Proof Given an I -independent process J∗
s such that D̄∗

s is adapted to J∗
s (i.e. D̄∗

s is a function
of J∗

s ) it suffices to show that E
[
D̄∗

s

∣∣ Js−1
] ≤ D̄∗

s−1 + 10w for all s. Let D̄∗0
s be the number

of nodes in the fresh part of Is , to the left of its incubator, that will ever become anomalous,
up to stage Tg . Similarly let D̄∗1

s be the number of nodes in the fresh part of Is , to the right
of its incubator, that will ever become anomalous, up to stage Tg . Clearly D̄∗

s = D̄∗0
s + D̄∗1

s .
So it suffices to show that

E

[
D̄∗i

s

∣∣ J∗
s−1

]
≤ D∗i

s + 5w for each i = 0, 1.

Similarly, let I ∗0
s be the left interval of the fresh part of I ∗

s and let I ∗1
s be the right interval of

the fresh part of I ∗
s . Fix i = 0, 1 and set H∗i

s = I ∗i
s − I ∗i

s−1. In order to bound the expectation
of D∗i

s , we consider the following cases (where each case applies only if the one above it
fails):

(a) |H∗i
s | < 4w;

(b) There are bogus swaps in the I -stages (s − 1)w5 to sw5;
(c) A happy α-node appears in the interior of J i

s before the interior becomes all β-nodes;
(d) The above β-firewall forms, but it shrinks by 4w at some later I -stage tw5.
(e) Otherwise.
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Wewill show that all of these events yield small expectation (conditional on Js) on the number
of happy α-nodes that will ever appear in the interval H∗i

s after I -stage sw5 of the original
process (in particular, the probabilities of (b)-(d) are very small). We decide to accept 4w
happy α nodes in Hi

s as a desirable (i.e. not too high) count. So, irrespective of likelihood,
event (a) is desirable. Note that by Lemma 14,

in w5 many I -stages I cannot grow by more than 2w5/(1 − τ − ρ). (11)

Note that Lemma 11 also holds locally, by the same proof. In other words, given an
interval of nodes of length �, then the probability that at stage s + 1 a bogus swap will occur
involving a β-node from the given interval is bounded above by �/Gs . Since all stages are
bounded by Tg , it follows that the probability (conditional on J∗

s−1) of a bogus swap in an
area of length � is less than 4w�/nτρ. Hence by (11), event (b) has probability (conditional
on J∗

s−1) upper bounded by w2·5+2/n. In this case we can bound the expectation trivially by
w3·5+2/n = w17/n.

Now suppose that (a), (b) do not occur so that, by Lemma 14, each subinterval of length
w in the interior of H∗i

s has α-proportion at most τ − ε∗ at I -stage sw5, where recall that
(ε∗ = 1− τ − ρ)/2. In particular, all α nodes in the interior of H∗i

s are unhappy, and remain
so unless wδ bogus swaps happen in Hi

s . We wish to show that in this case

event (c) has probability (conditional on J∗
s−1) upper bounded by (w3·5/n)wδ.

Indeed couple this process (conditional on J∗
s−1, where each stage is either a non-bogus

swap in H∗i
s , or something else) with a gambler’s ruin process, where the gambler has w5/δ

chips and the house has wδ chips, and the ratio of the winning probabilities is less than
q = 4w5+2/n in favor of the house. Then we can estimate an upper bound the probability
that wδ bogus swaps occur in J i

s before all the interior turns into a β-firewall. According to
the standard gambler’s ruin result, this is

1 − qw5/δ

q−wδ − qw5/δ
<

1

q−wδ
< (w3·5/n)wδ

which is also a bound on the (conditional) probability of event (c). Now assume that (a)-(c)
do not occur, and lets estimate an upper bound for the probability of (d). Again, couple
this process (conditionally on J∗

s−1) with a biased random walk where a negative move
corresponds to a bogus swap moving something from the w border (one or the other) of
the firewall, and a positive move is swapping the α-node at the edge with a β-node (other
events are ignored). The ratio of the probabilities is bounded above by 2w/(nτρ/4w) which
is bounded byw3/n. Also note that a negative move chips (at most)w away from the firewall,
while a positive move only contributes (at least) one node to the firewall. Then the probability
that it will eat up tw at any future time is bounded by w · (w3/n)t−1. For t = 4 we get

event (d) has probability (conditional on J∗
s−1) upper bounded by w10/n3.

Then the expectation of the number of anomalous nodes that will ever appear in H∗i
s is

bounded by

4w + 2
w2·5+2

n
· w5 ≤ 4w + w3·5+3

n
< 5w.

Finally under case (e) it is clear that the conditional expectation of D∗i
s is also bounded by

D̄∗i
s−1 + 5w. Considering all the different cases, by the law of alternatives for conditional

expectation we have that E
[
D̄∗i

s

∣∣ J∗
s−1

] ≤ D̄∗i
s−1 + 5w, which concludes the proof. ��
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Let I j , j < t be the infected segments (and I j [s] their state at stage s). Recall that D̄s is
the sum of all D̄s(I j ), j < t . In order to bound D̄s we need to prove a global version of
Lemma 15. An immediate obstacle is the asynchrony of the I -stages with respect to the
various infected segments I . We need to find a process Ls relative to which D̄s (or some
‘asynchronous’ version D̂s of it) is a supermartingale.

For each j < t let τs( j) be the stage where exactly s · w5 many I j -stages have occurred.
Also let (τi ) be a monotone enumeration of the times {τs( j) | j < t, s ∈ N}. Let λs( j) be
τm( j) for the maximum m such that τm( j) ≤ s. Let D̂s be the sum of all D̄λs ( j)(I j ), j < t .
The point of this definition is that D̂s considers values of D̄(I j ), j < t at the last stage ≤ s
where they completed a cycle (which happens at every w5 many I j -stages) and outputs their
sum. Define Ls to be the vector containing the tuples (D̄λs ( j), λs( j)) for each j < t . In
this way, the process (D̂s) is adapted to (Ls) (in other words, for each s, the value of D̂s is
a function of Ls). Note that D̂s remains constant in the intervals [τs, τs+1), just as D̄λ j (s)

remains constant in the interval [τs( j), τs+1( j)).

Lemma 16 The process D̂τs − 20ws is a supermartingale relative to the process Lτs .

Proof Using the law of alternatives for conditional expectation, it suffices to show that for
each s there is a (finite) partition A of events relative to Lτs such that for each A ∈ A we
have

EA

[
D̂τs+1

∣∣ Lτs

]
≤ D̂τs + 20w for all s. (12)

Each event A ∈ A describes which pair of infected intervals I j completes a cycle at stage
τs+1, and the sequence of I j -stages (for each of the two j) from λ j (τs) to τs+1. Formally,
event A is a tuple one tuple (m0, m1) where mi < t , and for each i = 0, 1 an increasing
sequence of stages starting from λmi (τs) and ending on the same number a. If m0 = m1

then the two sequences should be the same. The meaning of A is that τs+1 = a and infected
intervals with indices mi are hit at stage a, with the sequence of stages representing the exact
stages from λmi (τs) to a where a swap occurs in Imi . By the definition of A, this event is
Imi -independent for i = 0, 1. At stage τs+1 of the process there must be exactly one tuple
(m0, m1) where i < t , such that the swap occurred in Im0 and Im1 . For each such event A on
Lτs we have

EA

[
D̂τs+1

∣∣ Lτs

]
=

∑

j<t

EA

[
D̂τs+1(I j )

∣∣ Lτs

]

But for j �= m0, m1 we have EA
[
D̄τs+1(I j )

∣∣ Lτs

] = D̄τs (I j ) and by Lemma 15 we have

EA
[
D̄τs+1(Imi )

∣∣ Lτs

] ≤ D̄τs (Imi ) + 10w for i = 0, 1

since A is Imi -independent for i = 0, 1. Therefore (12) holds for each of the events A. By
the law of alternatives, and since there can be at most two infected segments that complete a
cycle at stage τs+1, we get

E

[
D̂τs+1

∣∣ Lτs

]
≤ D̂τs + 20w for all s.

Therefore D̂τs − 10ws is a supermartingale adapted to Lτs . ��
Corollary 8 Let a ∈ N. With probability > 1−1/a, for all s < Tg we have Ds < a + 20s

wk−1 +
ne−O(w).
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Proof By Lemma 16 and the maximal inequality for supermartingales, given any a > 1,
with probability at least 1 − 1/a we have D̂τs < a + 20ws for all s < Tg . Since each stage
can be an I j -stage for at most two distinct j < t , we have |{i | τi ≤ s}| ≤ 2s/w5. Hence for
each a > 1 we have

with probability > 1 − 1/a, D̂s < a + 20s

w4 for all s < Tg. (13)

Also, note that at each stage s we have D̄s(I j ) ≤ D̄λ j (s)(I j ) + w5 for each j < t . Hence

D̄s ≤ D̂s + nw5e−O(w). Since we also have Ds ≤ D̄s for all s, the corollary follows from
(13). ��

3.6 Bounding the Arrival Time to a Safe State

By Lemma 13 and Corollary 8 we have the desired bound on Zs .

Corollary 9 Let a ∈ N. With probability > 1 − 1/a, for all s < Ty we have Zs < a + 20s
w4 +

ne−O(w).

By Lemma 11 and Corollaries 12 and 9 we have the following

Corollary 10 Let a ∈ N. With probability > 1 − 1/a, for all s < min{Ty, n} we have
w3 · Zs = o

(
n
)

and ps = o
(
1
)
.

The following result is the technical basis for the result that with high probability a safe
state will be reached (at some finite stage). It says that, with high probability the stopping
times Ty, Tg are equal and are bounded by n.

Lemma 17 (Stopping times) With probability 1 − o
(
1
)

we have Ty = Tg < n.

Proof Let ε > 0 such that 1 − ε > ρ + 1/8. By Hoeffding’s inequality for Bernoulli trials
we may consider n large enough such that the probability that G0 > (ρ + 1/8)n is less than
ε/4. Recall that ps is the probability of a bogus swap at stage s + 1. Suppose that w is large
enough such that with probability at least 1 − ε/4

(a) w2C < nτρ/32;
(b) wZs < nτρ · (1 − τ)/32 for each s ≤ min{Ty, n};
(c) ps < ε3/16 for each s ≤ min{Ty, n}.
Clause (a) can be ensured by Lemma 33. Clause (b) can be ensured by Corollary 9. Clause
(c) can be ensured by Corollary 10. First, for a contradiction, assume that Ty < Tg . Then
GTy < YTy . By Corollary 10 and since (by definition) Ty ≤ Tg we have

n · τρ/4 < w · GTy < w · ZTy

1 − τ
+ w2 · C <

nτρ(1 − τ)

32
+ nτρ

32
<

nτρ

16

which is the required contradiction. Hence with probability > 1 − ε/4 we have Ty = Tg .
Second, we show that with probability at least 1− ε/2 we have Ty < n. By clause (c) above,

with probability at least 1 − ε/4, at all stages s < min{Ty, n} we have ps < ε2/4. (14)

By (14), with probability at least 1− ε/4, the expectation of the number of bogus swaps that
have occurred by stage Ty is< ε2 ·Ty/4. Hence, conditionally on the event that ps < ε2/4 for
all stages s ≤ min{Ty, n}, the probability that by stage min{Ty, n}more than εn bogus swaps
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have occurred is less than ε/4. Hence the unconditional probability that by stage min{Ty, n}
at most εTy bogus swaps have occurred is at least (1 − ε/4)2 > 1 − ε/2.

We conclude the argument. We have established that the probability of the event Ty < Tg

or G0 > n(ρ + 1/8) is bounded by ε/2. It remains to show that outside this rare event,
Ty < n. Since every non-bogus swap reduces Gs by (at least) 1, and G0 ≤ n(ρ + 1/8),
ρ < 0.5, with probability at least 1 − ε/2 we have

GTy ≤ G0 − (1 − ε)Ty ⇒ Ty ≤ (G0 − GTy )/(1 − ε) ≤ n(ρ + 1/8)/(1 − ε) < n

which shows that Tz = Tg < n with probability at least 1 − ε. ��
Corollary 11 (Safe state arrival) Suppose that τ +ρ < 1, τ > 0.5. Then with high probability
the process (n, w, τ, ρ) reaches a safe state, and then complete segregation.

Proof Let ε > 0. By the lawof large numbers, with probability at least 1−ε/4 and sufficiently
large n we have 3ρ < 4ρ∗. Pick w, n large enough such that

(a) Tg = Ty < n with probability > 1 − ε/4;
(b) 2wZTg /(1 − τ) < nτρ/4 with probability > 1 − ε/4;
(c) C(w + 1) < nτρ/(4w) with probability > 1 − ε/4.

Clause (a) can be ensured by Lemma 17 and clause (b) can be ensured by Corollary 9. Clause
(c) can be ensured by Lemma 33. By the definition of Tg , GTg ≤ τρn/(4w). Hence by
Corollary 10 we have

UTg ≤ GTg + YTg + ZTg ≤ C(w + 1) + GTg + 2ZTg /(1 − τ) ≤ 3ρ

4
· nτ

w
<

nτρ∗
w

with probability > 1 − ε. But mix ≤ U · w(w + 1) so the mixing index at stage Tg is less
than nτρ∗ · (w + 1). In other words, Tmix ≤ Tg , so by Proposition 1 the process at stage Tg

is in a safe state, with probability more than 1 − ε. Hence by Corollary 5, the process will
arrive to complete segregation with probability at least 1 − ε. ��

4 The CaseWhen Intolerance is at Most 50% (� ≤ 0.5)

In this case the behaviour of the process (n, w, τ, ρ) is very different, since the mixing index
is strictly decreasing.20 This means that the process is bound to arrive to a dormant state,
with absolute certainty. Note that if τ ≤ 0.5 then complete segregation is a dormant state,
but it can be shown that the final state is never complete segregation. We show that in most
typical cases for ρ, the outcome is static when τ ≤ 0.5.

4.1 Overview of the ArgumentWhen � ≤ 0.5

We assume that ρ < 0.5 because the case ρ = 0.5 has already been analysed in [1,7] and
the case ρ > 0.5 is symmetric. Hence on the hypothesis τ ≤ 0.5 we have ρ + τ < 1 and by
Table 3 the unhappy α-nodes are an arbitrarily small proportion of the α-nodes as w → ∞.
In any case, since ρ < 0.5 < 1 − ρ we have τ − ρ < 1 − τ − ρ, so the probability that an
α-node is unhappy is much smaller than the probability that a β-node is unhappy. However
what matters in the analysis for τ ≤ 0.5 is the relationship between the likelihood of stable
intervals and unhappy α-nodes. This analysis is a reminiscent of the work in [1], but has
some new features.

20 The proofs of the facts used in this section are deferred to Sect. 4.2.
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Table 8 Likelihood of various properties in the initial configuration under certain conditions, when ρ ≤ 0.5
and τ ≤ 0.5

Property Probability Distribution Likelihood

Stable α-interval Pstab Zstable ∼ B(w, 1 − ρ) High if 2τ + ρ < 1, low if 2τ + ρ > 1

Unhappy α-node Punhap Zunhap ∼ B(2w, ρ) Always rare

Definition 8 (Stable intervals) A stable interval is an interval of nodes of length w which
contains at least (2w+1)τ nodes of one or the other type. An interval is α-stable if it contains
at least (2w + 1)τ nodes of type α.

The β-stable intervals are defined analogously. Note that no α-node which is inside an
α-stable interval can swap during the process. The reason is that such α-nodes are happy just
because of the presence of the other α-nodes in the same interval. Then a simple induction
shows that they will continue to be happy throughout the process, thereby remaining immune
to swaps and fixed in their initial positions. A similar observation applies toβ-stable intervals.
The existence of stable intervals is characteristic to the case τ ≤ 0.5.

The events we are interested in are the occurrences of α-stable intervals and unhappy α-
nodes. The probabilities Pstab,Punhap of these two rare events can be viewed as tails of certain
binomial distributions. Consider the variables, probabilities and distributions of Table 8. It is
not hard to see that

Pstab = P[Zstab ≥ (2w + 1)τ ] and Punhap ≥ P[Zunhap ≥ 2w(1 − τ)].
We are interested in the event where the ratio Punhap/Pstab becomes small, because of the
following fact.

Lemma 18 (Static processes) Suppose that τ, ρ are such that Punhap = O
(
c−w · Pstab

)
for

some c > 1. Then with high probability the process (n, w, τ, ρ) is static, and in fact there
exists some c∗ > 1 such that with high probability the process stops after at most n · c−w∗
many steps.

The intuition here is that, if the unhappy α-nodes are much more rare than the α-stable
intervals (i.e. if Punhap = o

(
Pstab

)
) then it is very likely that unhappy α-nodes are enclosed in

small intervals which are guarded by α-stable intervals. This means that the familiar cascades
that can be caused by the eviction of an unhappy α-node are bound to be contained in small
areas of nodes. The very definition of stable intervals ensures that such cascades cannot pass
through them. Hence the condition Punhap = o

(
Pstab

)
guarantees that any α-to-β swaps are

contained in small areas of nodes of total size o
(
n
)
. Due to the monotonicity of the mixing

index, this means that there can only be at most o
(
n
)
swaps in this case.

The second item in Fig. 1 shows the probabilities Pstab,Punhap (for w = 100) with respect
to τ, ρ. We see that for points away from (0.5, 0.5), the surface Punhap is above Pstab, and
there is a threshold curve beyond which the opposite relationship is established. Using basic
results about the tail of the binomial distribution, and Stirling’s approximation we can derive
the following sufficient condition for Punhap = o

(
Pstab

)
:

g(τ, ρ) > 0, where g(τ, ρ) = 1

2
·
(

(1 − τ)1−τ

(0.5 − τ)0.5−τ

)2

− ρ. (15)

The third item of Fig. 1 is a representation of g(τ, ρ) in the space, up to where it becomes
negative, at which point we project it on the plane. The values of τ, ρ that we are interested
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Table 9 Threshold constants of interest and their derivation equations

Threshold Solution to equation Stability condition

κ0 ≈ 0.35309 (1 − τ)1−τ = (0.5 − τ)0.5−τ ρ < 0.5 and τ ≤ κ0

λ0 ≈ 0.41149 (1 − τ)1−τ = (0.5 − τ)0.5−τ · √
2τ ρ < λ0 and τ ≤ λ0

correspond to points on the plane, outside the collapsed area. This boundary (a curve) is
more clear in the first item of Fig. 1 which is the projection of the surface to the plane, with
different colours indicating the points which make g positive or negative. This boundary
can be simplified (with slight loss of generality) if we consider the line that passes from the
two points where the boundary curve intersects the lines τ = 0.5 and ρ = 0.5. Hence if
2ρ·(1−2κ0)+τ+κ0 < 1,we are in the stable region,which shows a clause ofTheorem1.Note
that both of the partial derivatives of g are negative when τ, ρ ∈ [0, 0.5). If we fix ρ = 0.5
then the largest value of τ that keeps g(τ, ρ) ≥ 0 is the solution (κ0 ≈ 0.353092313) of
the first equation of Table 9. Hence we may conclude that if τ < κ0 and ρ ∈ (0, 0.5] then
Punhap = O

(
c−w · Pstab

)
for some c > 1. We can also look for the largest square that is

contained in the large area of the first item of Fig. 1 (where the process is static). The edge
of this square is given in Table 9. Hence if ρ, τ ∈ (0, λ0) then Punhap = O

(
c−w · Pstab

)
for

some c > 1.
We have one last observation to make about the function g. If we let do not restrict the

values of τ ∈ (0, 0.5) then we wish to find the values of ρ such that g(τ, ρ). According to the
properties of g (in particular its negative derivative on ρ), these are all the positive numbers
which are less than the limit (which is also an infimum)

lim
τ→0.5

1

2
·
(

(1 − τ)1−τ

(0.5 − τ)0.5−τ

)2

= 0.25

Hence we may conclude that if ρ ≤ 0.25 and τ ∈ (0, 0.5) then Punhap = O
(
c−w · Pstab

)

for some c > 1. This concludes the proof of the second clause of Theorem 1.

4.2 Proofs for the Case � ≤ 0.5 (Stable Intervals)

Let Pstab be the probability that an interval of lengthw in the initial configuration is α-stable.
In order to express Pstab as a tail of the binomial distribution with w trials and probability of
success 1− ρ let Zstab ∼ B(w, 1− ρ). Then a w-block is α-stable if and only if there are at
least (2w + 1)τ successes. Similarly, let Zunhap be the probability that a node u in the initial
configuration is α and unhappy. Note that if u is an α-node then it is unhappy if and only if
there are more than (2w + 1)(1 − τ) = 2w(1 − τ) + 1 − τ nodes of type β in N (u) − {u}.
If w is sufficiently large, this is equivalent to having more than 2w(1 − τ) nodes of type β

inN (u)−{u}. These are 2w Bernoulli trials with probability of success ρ, and any unhappy
α-node has at least 2w(1 − τ) successes. In order to express Punhap as a tail of the binomial
distribution with 2w trials and probability of success ρ let Zunhap ∼ B(2w, ρ). Then

Pstab = P[Zstab ≥ (2w + 1)τ ] and Punhap ≥ P[Zunhap ≥ 2w(1 − τ)].
We are interested in the event where the ratio Punhap/Pstab becomes small. Note that
Punhap,Pstab are functions of w. Hence, using the asymptotic notation, we may say that
we are interested in finding conditions on τ, ρ such that Punhap = o

(
Pstab

)
, which means that
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Punhap/Pstab → 0 as w → ∞. By Hoeffding’s inequality for Bernoulli trials, if 2τ + ρ < 1
stable intervals are common. Hence

if 2τ + ρ < 1 then Punhap = o
(
Pstab

)
. (16)

Note that if τ < 1/4 we have 2τ + ρ < 1, so we have what we want (independently of ρ).
In other words, if τ ≤ 1/4 and ρ < 1/2 then Punhap = o

(
Pstab

)
. Similarly, if ρ < 1/3 and

τ < 1/3 then Punhap = o
(
Pstab

)
. When 2τ + ρ > 1, we have Pstab → 0 and Punhap → 0

so the previous argument does not apply. The analysis in this case requires some work, and
gives better results than the ones we just discussed.

We wish to derive conditions on τ, ρ under which we have Punhap = o
(
Pstab

)
. Our argu-

ment only requires that τ, ρ < 0.5 and τ + ρ < 1. However it is particularly essential for
the case where (in addition) 2τ + ρ > 1, which is not covered by our previous discussion.
We start by calculating suitable bounds for Punhap,Pstab.

Pstab ≥ P[Zstab = �(2w + 1)τ�] =
(

w

�(2w + 1)τ�
)

· (1 − ρ)�(2w+1)τ� · ρw−�(2w+1)τ�

Hence by Lemma 24 there exists a quadratic polynomial w 	→ p(w) such that, Pstab is
bounded below by

p(w)−1 · ww · (1 − ρ)2wτ · ρw(1−2τ)

((2w + 1)τ )2wτ · (w(1 − 2τ))w(1−2τ)
= p(w)−1

·
(

ρ1−2τ (1 − ρ)2τ · (1 − 2τ)2τ−1 · (2τ)−2τ · (1 + 1

2w
)−2τ

)w

Since (1 + 1/(2w))2w ≥ e−1 we get

Pstab ≥ p(w)−1 · eτ · (
ρ1−2τ (1 − ρ)2τ · (1 − 2τ)2τ−1 · (2τ)−2τ )w

(17)

The next step is to establish a suitable upper bound for Punhap. For this reason, and since
ρ < 1− τ , we may use Lemma 25 with h(2w) = 2w(1− τ)� and parameter k ∈ (τρ/(1−
ρ)(1 − τ), 1) in order to get

Punhap ≤ 1

1 − k
·
(

2w

2w(1 − τ)�
)

· ρ2w(1−τ)� · (1 − ρ)2w−2w(1−τ)�.

Then by Lemma 24 there exists a quadratic polynomial w 	→ q(w) such that

Punhap ≤ q(w) · (2w)2w · ρ2w(1−τ) · (1 − ρ)2wτ

(2w(1 − τ))2w(1−τ) · (2wτ)2wτ
= [

(1 − ρ)2τ · ρ2−2τ · (1 − τ)2τ−2 · τ−2τ ]w

Hence, combining this inequality with (17), there exists a quadratic polynomial w 	→ r(w)

such that
Punhap

Pstab
< p(w) ·

[

ρ ·
(
2 − 2τ

1 − 2τ

)2τ

· 1 − 2τ

(1 − τ)2

]w

(18)

We are interested in conditions on τ, ρ which guarantee that Punhap/Pstab → 0 as w → ∞.
The latter condition is equivalent to the condition that the expression inside the square brackets
in (18) is less than 1. So for Punhap/Pstab → 0 it suffices that

ρ <

(
1 − 2τ

2 − 2τ

)2τ

· (1 − τ)2

1 − 2τ
= 2−2τ · (1 − τ)2(1−τ)

(1 − 2τ)1−2τ = 1

2
·
(

(1 − τ)1−τ

(0.5 − τ)0.5−τ

)2
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i.e. that the function (15) is positive. The first illustration of Fig. 1 is a representation of
g(τ, ρ) in the space, up to where it becomes negative, at which point we project it on the
plane. The values of τ, ρ that we are interested correspond to points on the plane, outside
the collapsed area. This boundary is more clear in the second illustration of Fig. 1 which is
the projection of the surface to the plain, with different colours indicating the points which
make g positive or negative (along with three areas which we are going to discuss in the
following). Note that both of the partial derivatives of g are negative when τ, ρ ∈ [0, 0.5).
If we fix ρ = 0.5 then the largest value of τ that keeps g(τ, ρ) ≥ 0 is the solution of the
equation

(1 − τ)1−τ = (0.5 − τ)0.5−τ (19)

This equation was previously considered in [1]. It has a unique solution in [0, 0.5] which is
κ0 ≈ 0.353092313. Hence (as indicated in the second illustration of Fig. 1) we may conclude
that

if τ < κ0 and ρ ∈ (0, 0.5] then Punhap = O
(
c−w · Pstab

)
for some c > 1. (20)

Let us find the largest number λ0 such that for all τ, ρ ≤ λ0 we have g(τ, ρ) ≥ 0. In other
words, we are asking for the edge of the largest square that is contained in the large area
of the second illustration of Fig. 1. According to the dynamics of g, this is the solution of
the equation g(x, x) = 0 in [0, 0.5], i.e. the solution to 2τ · (0.5 − τ)1−2τ = (1 − τ)2(1−τ),
which is λ0 ≈ 0.411493631109785, so we may conclude that

if ρ, τ ∈ (0, λ0) then Punhap = O
(
c−w · Pstab

)
for some c > 1. (21)

We have one last observation to make about the function g. If we let do not restrict the values
of τ ∈ (0, 0.5) then we wish to find the values of ρ such that g(τ, ρ). According to the
properties of g (in particular its negative derivative on ρ), these are all the positive numbers
which are less than the limit

lim
τ→0.5

1

2
·
(

(1 − τ)1−τ

(0.5 − τ)0.5−τ

)2

= 0.25

Hence we may conclude that

if ρ ≤ 0.25 and τ ∈ (0, 0.5) then Punhap = O
(
c−w · Pstab

)
for some c > 1. (22)

This area of (τ, ρ) is indicated in the second illustration of Fig. 1.
We wish to show that, for some c > 1, the condition Punhap = O

(
c−w · Pstab

)
implies that

the process is static. Recall that the definition of static processes (see Definition 1) is given in
terms of the number of swaps that occur throughout the process. Before we lay out the main
argument, we note that this definition can be alternatively and equivalently given in terms
of the number of nodes that swap throughout the process, or even in terms of the growth of
the infected area throughout the process. In particular, we show that a process is static if and
only if one of the following conditions hold:

– an arbitrarily small proportion of nodes are ever involved in swaps
– the final length of the infected area is an arbitrarily small proportion of the population.

The number of swaps ST that have occurred before we arrived at a certain state T tells us
how late into the process we are by the time we hit that state. If MT is the number of nodes
that changed colour by the time we arrived in ST then

4ST /(2w + 1)2 ≤ MT ≤ 2ST
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which means that the variables ST , MT provide similar information about the history of the
process before state T was reached (recall that a state can be reached at most once through the
process). The second inequality is clear, while the first one requires justification. If the same
bunch of, say, k nodes keep getting swapped with each other, then the welfare progress is
concentrated in their neighbourhoods, which consist of at most (2w + 1)k nodes. Since each
swap increases the social welfare by at least 4, and the total social welfare of the (2w + 1)k
nodes cannot exceed (2w + 1)2, it follows that that a collection of k nodes can sustain at
most (2w + 1)2k/4 swaps. Hence ST swaps have to produce at least 4ST /(2w + 1)2 many
moved nodes. So MT ≥ 4ST /(2w + 1)2.

Another metric that provides similar information, is the length of the infected area at that
state. It can be shown that the two metrics agree, in the sense that knowing one can provide a
bound for the other. We only need one direction of this ‘equivalence’, which we encapsulate
in the following lemma.

Lemma 19 (Length of infected area and number of swaps) Suppose that the infected area at
stage t of the process has length �. Then the number of swaps that have occurred up to stage
t is bounded above by (w + 1)�.

Proof In general, when a swap occurs (and τ ≤ 0.5) the β-welfare increases by at least 2
(one for the one which moved and one from the difference of the other β-nodes in the two
neighbourhoods). Note that each swap (whether it is bogus or not) moves a β-node into a
position inside the interior of the infected area. This is because at the end of each stage, only
the interior of the infected area contains unhappy α-nodes. Moreover the infected area does
not shrink. We wish to count the increase of the β-welfare inside the infected area at each
swap. If a swap is bogus, then an α-node inside the interior of the infected area moves to a
position which is on the boundary of the infected area. In this case we count only part of the
decrease of the β-welfare in the new position of α. But since the total decrease is less than
the increase (which occurs inside the new neighbourhood of the α-node, entirely included in
the infected area) there is still a positive increase of at least 2 overall, of the total β-welfare
inside the infected area. Hence we may conclude that each bogus swap strictly increases
the β-welfare of the nodes in the infected area. On the other hand each non-bogus swap
involves the swap between an α-node inside the interior of the infected area and a β-node
outside the infected area. Again the difference in the β-welfare in the two neighbourhoods is
at least 2, and we only have to count the over all increase of the β-welfare in the interior of
the infected area (which is even larger than the overall increase of the β-welfare in the total
population). It follows that every swap increases the β-welfare of the infected area by at least
2. Now consider the process (n, w, τ, ρ) up to some stage t . The β-welfare of the nodes in
the infected area at stage t can be at most (2w + 1)�, so there can be at most (2w + 1)�/2
i.e. swaps up to stage t . ��

Recall that the probabilities Punhap,Pstab (as functions of w) are completely determined
by the parameters τ, ρ. By the definition of α-stable intervals, the infected area cannot pass
through them. Indeed, only the creation of unhappy α-nodes can spread the infected area, but
no such event can happen through an α-stable interval. Based on this observation, we show
Lemma 18, i.e. that the cases that we exhibited earlier in this section lead to static processes.

Proof of Lemma 18 By our previous discussion it suffices to show that, under the hypothesis
of the lemma, there exists some d∗ > 1 such that for every ε > 0 and 0 � w � n, with
probability at least 1− ε the process (n, w, τ, ρ) stops after at most nd−w∗ many steps. Given
a node u in a non-dormant state, let xu be the first node v to the left of u which has one of
the following properties:
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(a) it belongs to an α-stable interval;
(b) there is an unhappy α-node in its neighbourhood.

Moreover let yu be the first node to the right of u which satisfies (a) or (b). Note that xu, yu

are well defined and for each u it is not possible that xu or yu satisfy both (a), (b) (because
an α-stable interval does not contain unhappy α-nodes). Given a state of the process, we say
that a node u is exposed if at least one of xu, yu satisfies clause (b). Moreover, let us use the
term exposed area for the collection of the exposed nodes.

Let us bound the probability that a node is exposed (in the initial configuration). By our
hypothesis there exists constants c1 > 0 and c2 > 1 such that Pstab > c1 · cδw

2 ·Punhap for all
w. Then by Lemma 27, if n is sufficiently large, the probability that xu belongs to a stable
interval is at least

Pstab/(Pstab + (2w + 1)Punhap) ≥ c1/(c1 + (2w + 1)c−w
2 ) ≥ 1 − d−w

1

for some d > 1 and allw. Moreover the same bound applies to the probability that yu belongs
to a stable interval, so the probability that u is not exposed is at least (1− d−w

1 )2 ≥ 1− d−w
2 ,

where d2 > 1 is a suitable number (e.g. d2 = d1/2 is sufficient, provided thatw is sufficiently
large). Hence the probability that a randomnode is exposed is atmost d−w

2 . So the expectation
for the length of the exposed area is at most n ·d−w

2 . By the definition of the α-stable intervals,
it follows that the interior of the infected area remains a subset of the exposed area for the
entire process. Moreover the expectation of the number of blocks of the infected area is
bounded by nd−w

3 for some d3 > 1 which does not depend on w, n. Hence by Lemma 19
and the linearity of expectation, the expected total number of swaps that occur throughout
the process is bounded by (w + 1) · (n · d−w

2 + n · 2w · d−w
3 ) ≤ n · d−w

4 for δ4 > 1 that does
not depend on w, n. In order to conclude the argument, pick ε > 0 and set d∗ = d4/2. It
suffices to show that, for 0 � w � n, the probability that the process takes more than nd−w∗
steps is bounded by ε. Note that if w is sufficiently large, nd−w

4 < εnd−w∗ . Hence, under
such conditions, if the of the total number of swaps exceeds ε · nd−w∗ , it exceeds nd−w

4 by a
multiple of at least 1/ε. On the other hand, we showed that d−w

4 is a bound on the expectation
of of the total number of swaps. So (for 0 � w � n) if the total number of swaps exceeds
ε · nd−w∗ , it is at least 1/ε times its mean. By Markov’s inequality, the probability of such an
event is bounded by ε. ��

5 Deferred Background and Proofs

5.1 Background on Probability

Recall Hoeffding’s inequality for independent Bernoulli trials.21

Lemma 20 (Tight Hoeffding for Bernoulli variables) Let Zi be independent Bernoulli tri-
als with expected value p, and let Sk = ∑

i<k Zi . Then P[Sk ≤ k(p − ε)] ≤ e−2ε2k

and P[Sk ≥ k(p + ε)] ≤ e−2ε2k for each ε > 0. If p ≤ 1/2 then P[Sk ≥ k(p + ε)] ≥
1/4 · e−2ε2k/p for each ε > 0 such that ε ≤ 1 − 2p.

Since there are complex dependences amongst the random variables of the Schelling
process, we often need to ‘approximate’ certain processes with canonical processes like

21 The second clause of Lemma 20 (the tightness of the inequality) follows from Slud’s inequality [33] (which
gives a lower bound of the binomial upper tail in terms of the upper tail of the normal distribution) and standard
lower bounds for upper tail of the normal distribution (see [24] for more details).
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simple randomwalks.Here a randomwalkwith respect to the integer-valued randomvariables
(Zi ) is the stochastic process Rk = r +∑

i<k Zk , for some r ∈ N. We say that (Ri ) is ruined
at step k if k is the least number such that Rk ≤ 0. The following two facts are folklore.

Lemma 21 (Random walk simulation) Let t0, t1 ∈ N, Xi ∈ {−t0, 0, t1} be (possibly depen-
dent) random variables, let X̂i ∈ {−t0, 0, t1} be independent Bernoulli trials and let
Yk = ∑

i<k Xk, Ŷk = ∑
i<k X̂k be the associated random walks. Provided that, no mat-

ter what occurs at stages prior to i , at stage i we have P[Xi = −t0] ≤ P[X̂i = −t0] and
P[Xi = t1] ≥ P[X̂i = t1], then for all k, x ∈ N the probability that (Yi + x) is ruined by
step k is bounded above by the probability that (Ŷi + x) is ruined by step k.

Lemma 22 (Biased random walks) Let t0, t1, r ∈ N, and let Xi ∈ {−t0, 0, t1} be (possibly
dependent) random variables such that at stage i , no matter what has occurred at previous
stages, we haveP[Xi = t1 | Xi �= 0] > t0/(t0+t1)+δ for some δ > 0. Let Y j = r+∑

i< j Xi ,
be the associated random walk. Then the probability that (Y j ) is ever ruined is bounded above

by e−2rδ2/t0/(1 − e−2δ2).

Our analysis depends on various exponential bounds that we can obtained on the expec-
tations of certain parameters (e.g. the number of unhappy α-nodes). The following fact will
be routinely used in order to express such bounds in a canonical form. In the following state-
ment the variables Zs concern stage s of the Schelling process (n, w, τ, ρ) and the constants
q, q ′, p are independent of n, w.

Lemma 23 (Expectation bounds) Let f be a polynomial, p < 1 and Zs a random variables
such that E(Zs) < np for all s. If E(Zs) ≤ n · f (w) · e−wq for some q > 0 and all all s and
all sufficiently large w then there exists q ′ > 0 such that E(Zs) ≤ n · e−wq ′

for all w, s.

The binomial distribution with t trials and success probability p is denoted by B(t, p),
and Z ∼ B(t, p) means that random variable Z follows this distribution. Stirling’s formula

asserts that n! ≈ nn+ 1
2 e−n , i.e. that the limit of the ratio of the two expressions tends to 1 as

n tends to infinity.

Lemma 24 (Stirling’s approximation) There exists a polynomial y 	→ p(y) such that for all
k ∈ N and all x ∈ R ∩ (0, k)

there exists q ∈
(

1

p(k)
, p(k)

)
such that

(
k

�x�
)

= q ·
(

k

x�
)

.

In our analysis of the Schelling process for the case when τ ≤ 0.5wewill need to compare
the tails of different binomial distributions. For this purpose we use the following fact from
[6, Theorem 1.1].

Lemma 25 (Tails of the binomial distribution) Suppose that X N ∼ B(N , p), p, k ∈ (0, 1)
and for all sufficiently large N, (1+ k(1− p)/p) · h(N ) > N ≥ h(N ) > p · N > 0, where
h : N → N. Then

P[X N = h(N )] ≤ P[X N ≥ h(N )] ≤ P[X N = h(N )]/(1 − k)

for all sufficiently large N. In asymptotic notation we haveP[X N ≥ h(N )] = Θ (P[X N = h(N )]).
The combination of this result with Lemma 24 gives the required information about the

asymptotic behaviour of the ratio of the two binomial probabilities of interest (unhappy nodes
and stable intervals).
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5.2 Probability in Schelling Segregation

We lay out a general way for arguing about the probability of the various properties Pu that
a node u can have in the initial configuration. For example, Pu could be the property ‘at least
half of the nodes in the neighborhood of u are of the same type as u’.

Definition 9 (Rare and common events in the initial configuration) A property of a node in
the initial configuration is called rare (or a rare event) if it holds with probability at most
n · e−δw , for some positive constant δ which may depend on τ, ρ but not on w, n. A property
whose negation is rare is called common.

Definition 10 (Local properties) Given f : N → N, a property P = Pu of a node u in the
initial configuration is f -local if it only depends on the nodes that are at most f (w)-near from
u. In other words, P is f -local if, for any two nodes u, v such that for all i ∈ [− f (w), f (w)],
u + i is of the same type as v + i , we have that Pu holds if and only if Pv holds.

Note that the two probabilities mentioned in Lemma 26 are on different spaces. The first
one refers to the product space where a point is an infinite series of initial states. The second
one refers to the space of points on a random initial state.

Lemma 26 (Strong law of large numbers for the Schelling process) Given a local property
Pu of nodes in the initial state of the process (n, w, τ, ρ), with probability one, as n → ∞
the proportion of nodes u that satisfy Pu tends to the probability of Pu.

Proof Let p be the probability of Pu and let f be the function indicating the area around u on
which Pu depends (as in Definition 10). We wish to use the strong law of large numbers, so
we need to manufacture a series of independent trials of properties with given expectation.
Let m ∈ N be a parameter that depends on n (to be specified shortly). We consider the ring
as a union of intervals of length m f (w) + 2 f (w) (which we think of an interval of length
m f (w)with padding f (w) nodes on each side).We always assume thatm f (w)+2 f (w) < n.
Starting from node 0, denote the i th such interval by Vi so that |Vi | = m f (w)+2 f (w). Also,
denote the subinterval of Vi that results from deleting the f (w)-node prefix and the f (w)-
node suffix of Vi by Ii . Hence |Ii | = m f (w). Let Mn ∈ N be the largest integer such that
Mn(m f (w) + 2 f (w)) ≤ n, so that Mn → ∞ as n → ∞ and n − Mn(m f (w) + 2 f (w)) <

m f (w) + 2 f (w). Hence for each i < Mn , the intervals Vi are defined and are disjoint. The
same is true for Ii , i < Mn . Moreover, if S is the set of all nodes,

2 f (w)Mn ≤ |S − ∪i<Mn Ii | < 2 f (w)Mn + m f (w) + 2 f (w). (23)

For each i < Mn let Yi be the number of nodes u ∈ Ii such that Pu holds, and note that these
random variables are independent. Moreover, by linearity of expectation, E(Yi ) = pm f (w).
Recall that Mn → ∞ as n → ∞. According to the strong law of large numbers,

∑
i<Mn

Yi

Mn
→ pm f (w) as n → ∞, with probability 1. (24)

By (23), the required proportion is

∑
i<Mn

Yi + ζ f (w) · (2Mn + m + 2)

(Mn + δ) f (w)(m + 2)
=

∑
i<Mn Yi

Mn
+ ζ f (w) · (2 + m+2

Mn
)

(1 + δ
Mn

) f (w)(m + 2)
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where δ, ζ range in [0, 1) (depending on how close n is to being a multiple of f (m)(m +2)).
If we take 0 � m � n, the ratio m/Mn tends to 0, so by (24) the required proportion tends
to
(

pm f (w) + 2 f (w)ζ
)
/
(

f (w)(m + 2)
) = (

pm + 2ζ
)
/(m + 2) = (

p + 2ζ/m
)
/
(
1 + 2/m

)
.

Since 0 � m, the required proportion tends to p. More formally, we may let m = log n. In
this case, as n → ∞we havem/Mn → 0 because (log n)2/n tends to 0.Moreover Mn → ∞
and m → ∞ when n → ∞ so the previous argument applies as indicated. ��

The following fact concerns pairs of properties P and Q that a node can have, which may
both be rare but one (say P) occurs with much higher probability than the other. It asserts
that in this case, a random node u is much more likely to be nearer to a node v satisfying P
than a node t satisfying Q (although it may be far from any node satisfying P or Q). In the
statement and proof of this result we use Pu as a Boolean random variable which asserts that
‘u satisfies P’ (and similar with Qu).

Lemma 27 (Rare properties in the Schelling ring) Let Pu, Qu be �-local properties of nodes
in the initial state (where � = �w is a function of w) and for each node u let xu be the
first node v to the right of u such that either Pv or Qv holds. If ρ, λ are the probabilities of
Pu, Qu respectively, the probability that Pxu and there is no node v with Qv to the left of
and at distance at most � from xu tends to a number ≥ ρ/(ρ + λ(2� + 1)) as n → ∞. An
analogous result holds when ‘right’ is replaced by ‘left’.

Proof Consider a partition of the ring into disjoint neighbourhoods, starting from a node
u0 as follows. Given u = u0, suppose inductively that ut has been defined. Then define
ut+1 = xut + 2� + 1. This iteration continues as long as ut+1 < n. Let kn be the number of
iterations in this recursive definition (i.e. the number of terms of the sequence (ut )). Consider
the property

Tu : Pxu holds and no node v to the left of xu and at distance at most � satisfies Qv.

The sequence (ui ) can be seen as independent trials for this property. Let πn be the proportion
of the terms of (ui ) that satisfy of Tui in a random initial state. Note that kn → ∞ as n → ∞
with probability 1. If π is the probability of Tu , by the strong law of large numbers we have
that πn → π as n → ∞ with probability 1. Let ρn be the proportion of nodes that satisfy
Pu and let λn be the proportion of nodes that satisfy Qu . Note that we view πn, ρn, λn as
random variables that depend on the initial state. Then

ρn

λn
≤ (2� + 1)πnkn

(1 − πn)kn
= (2� + 1)πn

1 − πn
⇒ πn ≥ ρn

ρn + λn(2� + 1)

By Lemma 26we have ρn → ρ and λn → λ as n → ∞, which gives the required asymptotic
bound. ��

5.3 Deferred Proofs from Sect. 2.1:Welfare, Mixing, and Expectations

The social welfare V of the state can easily be seen to be non-decreasing along the transitions
of the process. Let us establish the relationship with the mixing index. Given a certain state
of the process and a node u, we let uα denote the number of α nodes that are located in the
neighbourhood of u at this state. Similarly, we let uβ denote the number of β-nodes that
are located in the neighbourhood of u. Given a state, let nα, nβ be the number of α and
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β-nodes respectively, and let αi , i < nα and β j , j < nβ be the finite sequences of α and

β nodes respectively in the state. Hence α
β
j denotes the number of β-nodes that are located

in the neighbourhood of α j while βα
j denotes the number of α-nodes that are located in the

neighbourhood of β j . Then ∑

j<nβ

βα
j =

∑

i<nα

α
β
i . (25)

In order to prove this equality, consider the configuration of α and β types in the state and
start by removing all β from their positions. Then, adding the β types one-by-one back to
their original positions we can see each placement incurs the same increase to the two sums.
Hence by induction, the two sums are equal.

We call the number in (25) the mixing index of the state, because it can be used as a metric
of how mixed (i.e. not segregated) the population of α and β types is at the given state.
Indeed, suppose that the state has at least 2w + 1 nodes of each type. In the state of complete
segregation the sums in (25) take the value 2 · (1+ · · ·+w), which is w(w + 1). This can be
shown to be the minimum mixing index (in a state which has at least 2w + 1 nodes of each
type). At the other extreme, if the two types are uniformly mixed (in the sense that every
interval I has approximately ρ∗ · |I | green nodes) then the sums in (25) take approximately
the value n ·2w ·ρ∗(1−ρ∗), which can be shown to be the maximum possible mixing index.
We also have

∑

i<nα

αα
i +

∑

i<nα

α
β
i = (2w + 1) · nα and

∑

j<nβ

β
β
j +

∑

j<nβ

βα
j = (2w + 1) · nβ . (26)

From (25) and (26) we get V = (2w + 1) · n − 2 · mix.
Lemma 28 If τ ≤ 0.5, each step in the process decreases the mixing index by at least 4.

Proof Suppose that we swap an unhappy α-node u with an unhappy β-node v. Let Nu, Nv

be the neighbourhoods of u, v respectively and let I = Nu ∩ Nv . Here we view the nodes
as stationary, so that a swap of nodes means a swap of their types. The mixing index of
the nodes in I will not change after the swap. Since τ ≤ 0.5 the number x of α-nodes in
Nu − I −{u} is smaller the number y of α-nodes in Nv − I −{u}. After the swap the mixing
index of each of the α-nodes in Nu − I − {u} will increase by one while the mixing index
of each of the β-nodes in the same set will decrease by one. If t = 2w + 1 is the length of
the neighbourhood and i is the number of α-nodes in I then the mixing index of u before
and after the swap is t − x − i (the size of the neighbourhood minus the α-nodes in the
neighbourhood) and x + i (the number of α-nodes in Nu − I plus the number of α-nodes in
I ⊆ Nu) respectively. Hence the difference in the sum of the mixing indices of the nodes in
Nu − I before and after the swap is the addition of (a) the difference in the mixing index of u,
and (b) the difference in the sum of the mixing indices of the nodes in Nu − I −{u}, where the
differences refer to the stages before and after the swap. For (a) we have (x + i)− (t − x − i).
For (b) there is an increase (by 1) of the mixing indices of each α-node in Nu − I − {u}
since u becomes a β-node. Moreover there is a decrease (by 1) of the mixing index of the
β-nodes (as u ceased to be an α-node). Hence for (b) we have x − (t − x − i). Overall, the
difference in the sum of the mixing indices of the nodes in Nu − I before and after the swap
is x − (t − x − i) − (t − x − i) + (x + i) = 4x − 2t + 3i . A similar argument shows that the
difference in the sum of the mixing indices of nodes in Nv − I is 2t −3i −4y. Hence overall
(and since the nodes outside Nu ∪ Nv maintain the same mixing index before and after the
swap) the difference in the (total) mixing index is 4(x − y). Since x < y this means that a
decrease by at least 4 occurs due to the swap. ��
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In our analysis, one of the basic facts used is that dormant states have at least a reasonably
high mixing index. If we can show that with high probability the process reaches a point
where the mixing index is too low for dormant states to be accessible, then by Corollary 5
we will have shown that with high probability complete segregation is the eventual outcome.
Proposition 1 below provides an appropriate bound for the mixing index of dormant states.
First we prove a technical lemma, which will then be used in the proof of Proposition 1.
Given c ∈ N, we say that a node γ is c-near to a node δ if either there are at most c −1 nodes
between γ and δ or there are at most c − 1 nodes between δ and γ .

Lemma 29 Suppose that τ > 0.5, ρ∗ < τ , 0 � w � n. In a dormant state of the process
(n, w, τ, ρ) every β-block has length at most 2�(1− τ)w� and every β-node is �(1− τ)w�-
near to an α-node.

Proof Since the second claim implies the first, it suffices to prove the second claim. By
Lemma3we can assume that there are unhappyβ-nodes in the given state. For a contradiction,
suppose that some β-node is not �(1− τ)w�-near to any α-node. Consider the α-node which
is adjacent to the block and to the right of it. For large w, 2�(1 − τ)w� + 1 < w, meaning
that this α-node has at least 2�(1 − τ)w� + 1 nodes of type β in its neighbourhood. Hence
the α-node has at most 2w − 2(1 − τ)w� nodes of type α in its neighbourhood, which is
less than (2w +1)τ . The fact that this α node is unhappy means that the state is not dormant.

��
Proposition 1 (Mixing in dormant states) Suppose that τ > 0.5, ρ∗ < τ , and 0 � w � n.
The mixing index in a dormant state of the process (n, w, τ, ρ) is more than n(w + 1)τρ∗.

Proof Suppose that in a dormant state the mixing index is at most n(w + 1)τρ∗. Since there
are nρ∗ nodes of type β, there exists such a node u with mixing index at most (w + 1)τ . By
Lemma 29 there exists an α-node v within �(1 − τ)w� nodes to the left or to the right of u.
The number of α-nodes in the neighbourhood of ν is therefore at most (w+1)τ +�(1−τ)w�
(because given c ∈ N, the mixing index can change by at most c when we shift inside an
interval of β-nodes of length c). However this same number must be at least (2w + 1)τ
since v is happy in a dormant state. This holding for arbitrarily large w would imply that
(1 − τ) ≥ τ which gives the required contradiction. ��

As another measure of mixing, we may consider the number kβ of maximal contiguous
β-blocks in the state. Let βi be the i th node of type β and let βα

i denote the number of
α-nodes in the neighbourhood around βi . Let [x, y] be a finite interval of integers such that
{βi : i ∈ [x, y]} constitutes a block (i.e. there is no α-node between βx and βy). If x − y ≥ w

then βα
x + · · · + βα

y is bounded above by 2 · (1 + · · · + w) = w(w + 1). If x − y < w the
number w(w + 1) continues to be a bound for βα

x + · · · + βα
y . Therefore

∑

i<nβ

βα
i ≤ w(w + 1) · kβ, where kβ is the number of maximal β-blocks. (27)

This inequality is a formal expression of the rather obvious fact that the fewer maximal
β-blocks there are, the less mixed the two types are. By the definition of happy nodes, if
τ > 0.5 and w > (1 − τ)/(2τ − 1) then no two adjacent nodes of different types can
both be happy. This means that, as we move around the circle of nodes, every time we cross
the border between a maximal β-block and a maximal α-block we may count an additional
unhappy node. So, provided that τ > 0.5 and w is sufficiently large, the number of maximal
β-blocks is bounded above by the number of unhappy nodes in the state. Then by (27) we
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get mix ≤ w · (w + 1) · kβ ≤ w · (w + 1) · U. Intuitively this inequality says that the only
way to have a small number of unhappy nodes is a small mixing index, i.e. a large degree of
segregation. On the other hand we may bound the number of unhappy nodes in terms of the
mixing index. By (25) and the definition of unhappy nodes,22 Uα · (1 − τ)(2w + 1) ≤ mix
and Uβ · (1 − τ)(2w + 1) ≤ mix, where Uα,Uβ are the numbers of unhappy nodes of type
α and β respectively. So

mix ≤ w · (w + 1) · kβ ≤ w · (w + 1) · U ≤ mix · 2w(1 + 1/w)

(1 − τ)(2 + 1/w)
< mix · 2w

1 − τ

and 1
w

· mix
w+1 ≤ kβ ≤ U < 2

1−τ
· mix
w+1 whichmeans that if τ > 0.5 thenU = Θ(kβ) = Θ(mix).

5.4 Deferred Proofs About Initial Expectations (Sects. 2.1 and 3.4)

An important part of our analysis relies on the values of the welfare metrics at the initial
state. By measure concentration inequalities, with high probability, these will be near to their
expected values, which we may compute. We start with the mixing index.

Lemma 30 The expectation of the mixing index in the initial state of (n, w, τ, ρ) is 2nwρ(1−
ρ).

Proof Consider the random variables βα
i and note that E

[
βα

i

] = 2w(1 − ρ) for each i .
If nβ is the number of β-nodes, the expectation of the mixing index in the initial state is
nβ ·2w(1−ρ) by the linearity of expectation. If we see nβ as a random variable, its expected
value is nρ. By the rule of iterated expectation, the expected value of the mixing index is
2nwρ(1 − ρ). ��

Note that the expected value of the mixing index in the initial state is only slightly smaller
than the maximum possible mixing index n · (2w +1) ·ρ∗(1−ρ∗). This is hardly surprising,
as a random state will be almost perfectly mixed, with the occasional non-uniformities that
are implied by randomness (e.g. the existence of contiguous blocks of certain sizes).

Next, we are interested in the expected number of unhappy nodes of each type. It is not
hard to see that this depends on whether τ + ρ < 1 or τ + ρ > 1 (we will not consider the
special case where τ + ρ = 1).

Lemma 31 (Unhappy α-nodes) Given ρ, τ such that ρ + τ < 1, with high probability the
number of initially unhappy α-nodes in the process (n, w, τ, ρ) is n · e−Θ(w).

Proof Let X j be 1 if the j th node u j in the initial state is of type α and unhappy, and 0
otherwise. By Lemma 26, it suffices to show that E

[
X j

]
is e−Θ(w). Recall that the nodes are

labelled independently, following a Bernoulli distribution, with the probability of a β-label
being ρ. Let ε = 1 − ρ − τ which is positive, according to our hypothesis. If u j is an
unhappy α-node, then the proportion of β-nodes in its neighbourhood N (u j ) is larger than
1 − τ . Hence the proportion of β-nodes in N (ui ( j)) − {ui ( j)} is larger than 1 − τ , so it is
at least ρ + ε.

Let A be the event that u j is an α-node and B the event that u j is unhappy, so that
P[A] = 1 − ρ and P[A ∩ B] = P[B | A] · P[A]. If we see the labels of the nodes in
N (u j ) − {u j } as a series of 2w independent Bernoulli trials, by Hoeffding’s inequality for

22 This is because each unhappy α-node has, by definition, less than τ · (2w + 1) many α-nodes and so, more
than (1 − τ)(2w + 1) many β-nodes in its neighborhood.
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Bernoulli trials the probability that the proportion of β-nodes is at least ρ + ε is bounded
by e−4wε2 . Hence by the above discussion, P[B | A] < e−4wε2 . We may conclude that
P[X j = 1] < (1 − ρ) · e−4wε2 . Hence E

[
X j

] ≤ (1 − ρ) · e−4w(1−τ−ρ)2 . Similarly, by

Lemma 20 we haveE
[
X j

] ≥ (1−ρ) ·e−4w(1−τ−ρ)2/ρ/4. HenceE
[
X j

]
is n ·e−Θ(w), which

concludes the proof. ��
Similar arguments give information about the number of the unhappy β-nodes and the

incubators.

Lemma 32 (Unhappy β-nodes)Given τ, ρ such that ρ < τ , with high probability the number

of initially happy β-nodes in the process (n, w, τ, ρ) is n · e−O
(
w
)
. If in addition τ + ρ < 1,

with high probability this number is n · e−Θ(w).

Proof Let Y j be 1 if u j is of type β and happy, and 0 otherwise. Then provided that ρ < τ , by

Hoeffding’s inequality for Bernoulli variables we have that E
[
X j

] ≤ ρ · e−4w(τ−ρ)2 . Then
Lemma 26 gives the first clause of the claim. Now lets assume that we also have τ + ρ < 1.
Then by the second clause of Lemma 20 we get E

[
X j

] ≥ ρ · e−4w(τ−ρ)2/ρ . This application
is possible with p = ρ and ε = τ − ρ because ρ < 0.5 and τ + ρ < 1, which means that
ε < 1 − 2p. Then by Lemma 26 we get the second clause of the claim. ��
Lemma 33 (Number of incubators) If τ + ρ < 1, the probability that a node belongs to an
incubator is e−Θ(w). Hence with high probability the number of incubators as well as the
number of nodes belonging to incubators of the process (n, w, τ, ρ) is ne−Θ(w).

Proof Let ε∗ = (1 − τ − ρ)/2, and let X j be the index variable of the event that the left
semi-neighbourhood of the j th node has less than (τ + ε∗)w many α-nodes. Given that
τ + ρ < 1, by Hoeffding’s inequality for Bernoulli variables (Lemma 20) and the tightness
of it (Lemma 20), the probability that X j = 1 is e−Θ(w). Let Y j be the index variable of
the event that the j th node belongs to an incubator, so that the probability that Y j = 1 is
e−Θ(w) (since (2w + 1)e−Θ(w) is e−Θ(w)). Hence E(Y j ) is e−Θ(w). Then by Lemma 26 with
high probability the number of nodes belonging to incubators of the process (n, w, τ, ρ) is
ne−Θ(w). ��

5.5 Deferred Proofs from Sect. 3.1: Persistent Blocks and Unhappy Nodes

Now we focus on the case where τ > 0.5 and τ + ρ < 1. Having established that a low
number of unhappy nodes suffices to ensure dormant states are inaccessible, we now wish
to show that such state is reached, before any dormant state is reached. Since in this case
there are always unhappy β-nodes, we are only concerned about the existence of unhappy
α-nodes. One way to ensure this is to establish the existence of blocks of β-nodes of length
> w.

Lemma 34 (Persistent β-block) Consider the process (n, w, τ, ρ) with τ > 0.5 and let s∗ be
the least stage where the ratio between the very unhappy β-nodes and the unhappy α-nodes
becomes less than 4w2 (putting s∗ = ∞ if no such stage exists). Then with high probability
there is a β-block of length ≥ 2w at all stages < s∗ of the process.

Proof Let ε > 0, let δ = 2w/(2w + 1) − w/(w + 1), and let y be a sufficiently large integer
so that

e−2(y−2w)δ2/w/(1 − e−2δ2) < ε/2. (28)
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Since the initial state is random, as n → ∞ the probability that there is a β-block of length
at least y in the initial state tends to 1. Hence (for sufficiently large n) we may assume that
there is a β-block of length ≥ y in the initial state, with probability at least 1 − ε/2. Fix
such a block and note that during the stages it may expand or retract. It suffices to show that,
conditionally on the existence of such a block in the initial state, the probability that it shrinks
to a block of length less than 2w before stage s∗ is bounded by ε/2. Let �s be the length of
the block at stage s, so that �0 = y. Also let X0 = 0 and for each s > 0 let Xs = �s − �s−1.
Then Xs ≥ −w for all s, and �s = �0 + ∑

t≤s Xs . Let Zs be −w if Xs < 0, and let Zs be
1 if Xs > 0 (and Zs = 0 if Xs = 0). Also let Ys = ∑

t≤s Zs + �0 − 2w, so if at stage s the
length of the β-block becomes less than 2w, the random walk (Yi ) is ruined (by stage s∗).
Let (Ŷi ) be identical to (Yi ), except for stages after s∗, at which it remains identical to Ys∗−1.
Hence it suffices to show that the probability that (Ŷi ) is ruined is bounded above by ε/2.
Let ps = P[Xs > 0 | Xs �= 0] and let qs = P[Xs < 0 | Xs �= 0], so that ps + qs = 1.

Since τ > 1/2, as long as the length of the block is at least w, the nearest α-node on each
side is unhappy. Moreover these α-nodes can swap with any very unhappy β-node. Any such
swap at stage s would make Zs = 1. On the other hand, the only way that Zs = −w (i.e. the
length of the block is reduced) is that a β-node from one of the 2w outer nodes in the block (w
on each side) is part of a swap at stage s (with an unhappy α-node). Hence according to our
hypothesis we have ps/qs > 2w for all s < s∗. So P[Xs > 0 | Xs �= 0] > 2w/(2w + 1) >

w/(w + 1)+ δ which means that the walk (Ŷi ) meets the requirements of Lemma 22. Hence
the probability that (Ŷi ) is ruined is bounded by the expression on the left-hand-side of (28).
We sum up our argument. Given ε > 0, we start with a block of β-nodes of length y, with
probability at least 1 − ε/2. Conditionally on this starting assumption, our argument says
that with probability at least 1 − ε/2 this block will continue to have length more than 2w
at all stages up to stage s∗. Hence the probability that there is no β-block of length ≥ 2w at
some stage < s∗ is less than ε. ��

Another tool that was used in our analysis is a bound on the number of unhappy β-nodes
in the infected area, in terms of the number of α-nodes in the infected area. This is based
on the fact that, when the number of α-nodes in an interval is limited, then the number of
unhappy β-nodes in the same interval is also limited.

Lemma 35 (Proportions in a block of nodes) Consider a block of adjacent nodes which
contains exactly x nodes of type α. Then for each y ∈ (0, 1) there are at most x/y + 2w
many β-nodes in the block for which the proportion of α-nodes in their neighbourhood is at
least y.

Proof We are given a block of adjacent nodes A. Let us call a node weak if it is a β-node for
which the proportion of α-nodes in its neighbourhood is less than y. It suffices to show that
the number of β-nodes in A which are not weak is at most x/y + 2w. If we remove all of
the weak nodes from A, thus obtaining a possibly different (and shorter) block B, then in the
resulting configuration there are no weak nodes. It then suffices to show that the number of
β-nodes in B is at most x/y + 2w. Note that the number of α-nodes in B remains x , since
we did not remove any α-nodes. Let b0 < b1 be the endpoints of block B and define a finite
sequence (βi ) of β-nodes as illustrated in Fig. 10 and formally defined as follows. Let β0 be
the leftmost β-node in B such that the left endpoint of its neighbourhood is ≥ b0 and such
that the neighbourhood of β0 is entirely contained in B (if there exists such). Assuming that
βi is defined and there are β-nodes between the right endpoint of βi and b1, define βi+1 to be
the leftmost β-node in B which is to the right of βi , whose neighbourhood is disjoint from
that of βi and entirely contained in B. Let βi , i < k be the sequence defined in this way. Then
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β0 β1 · · ·
· · ·

Fig. 10 Partition of patched block B in the proof of Lemma 35

βi , i < k have disjoint neighbourhoods, each of them containing at least y(2w + 1) nodes of
type α. Hence ky(2w + 1) ≤ x so k(2w + 1) ≤ x/y which means that the number of nodes
that are contained in the union of these neighbourhoods is bounded by x/y. Since these are
neighbourhoods of β-nodes that are not weak, the number of β-nodes that are contained in
the union of these neighbourhoods is at most x/y(1 − y) = x/y − x .

Let xi be the distance between the right endpoint of the neighbourhood of βi and the left
endpoint of the neighbourhood of βi+1. Note that for each i < k there is a block of at least xi

nodes of type α in the left semi-neighbourhood of βi+1. Indeed, according to the definition of
(βi ), the only reason why there is some distance d between the two endpoints is that a block
of α-nodes of length d immediately to the left of βi+1.Wemay conclude that there are at least∑

i xi nodes of type α. By the hypothesis the α-nodes are exactly x , so
∑

i xi ≤ x . Hence
the number of β-nodes in B that do not belong to the neighbourhood of some βi , i < k is at
most x + 2w (where 2w is an upper bound for the number of β-nodes in the final segment
of B to the right of the neighbourhood of βk−1, or the whole of B if k = 0). Hence, overall,
there are at most (x/y − x) + (x + 2w) = x/y + 2w nodes of type β in B, which concludes
the proof. ��

A β-node is unhappy if and only if the proportion of α-nodes in its neighbourhood is more
than 1 − τ . Hence we may apply L emma 35 with y equal to a value that is slightly larger
than 1−τ (taking the limit y → 1−τ from above and taking into account that the number of
nodes are integers) gives the following bound on the number of unhappy β-nodes in a block.

Corollary 12 (Unhappy β-nodes versus α-nodes) Consider a block of adjacent nodes of type
α or β such that exactly x of these nodes are of type α. Then there are at most x/(1−τ)+2w
unhappy β-nodes in this block.

By applying this fact to each of the infected segments of the process, and adding up the
numbers unhappy nodes in each of the segments we see thatYs ≤ Zs/(1− τ)+2wC, which
is the fact used in the main part of our analysis.
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