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Variants on the Berz sublinearity theorem

N. H. Bingham and A. J. Ostaszewski

To Roy O. Davies on his 90th birthday.

Abstract. We consider variants on the classical Berz sublinearity theorem, using only DC,
the Axiom of Dependent Choices, rather than AC, the Axiom of Choice, which Berz used.
We consider thinned versions, in which conditions are imposed on only part of the domain
of the function—results of quantifier-weakening type. There are connections with classical
results on subadditivity. We close with a discussion of the extensive related literature.
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1. Introduction: sublinearity

We are concerned here with two questions. The first is to prove, as directly as
possible, a linearity result via an appropriate group-homomorphism analogue
of the classical Hahn–Banach Extension Theorem HBE [5]—see [18] for a sur-
vey. Much of the HBE literature most naturally elects as its context real Riesz
spaces (ordered linear spaces equipped with semigroup action, see Sect. 4.8),
where some naive analogues can fail—see [19]. These do not cover our test-
case of the additive reals R, with focus on the fact (e.g. [14]) that for A ⊆ R

a dense subgroup, if f : A → R is additive (i.e. a partial homomorphism) and
locally bounded (see Theorem R in Sect. 2), then it is linear: f(a) := ca for
some c ∈ R and all a ∈ A. Can this result be deduced by starting with some
natural, continuous, subadditive majorant S : R → R (so that, equivalently,
S̄|A ≤f ≤ S|A for S̄(.) = −S(−.), which is super-additive) and then invoking
an (interpolating) additive extension F majorized by S? For then F, automat-
ically being continuous, is linear, because its restriction to the rationals F |Q
is so (as in Th. 1 below). Assuming additionally positive-homogeneity, HBE
yields an F , but this strategy relies very heavily on powerful selection axioms
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(formally a weakend version of the Prime Ideal Theorem, itself a weakening
of the Axiom of Choice, AC, see Sect. 4.7). The alternative is to apply either
semigroup results in [29,43,48], or the recent group-theoretic result in [3], but
all these again rely on AC (see Sect. 4.7 again). We give an answer in Theo-
rem 3 that relies on the much weaker axiom of Dependent Choices, DC (see
Sect. 4.7 once more). We stress that, throughout the paper, all our results need
only DC.

The group analogue (for R) of sublinearity used by [9] (cf. [43]) requires sub-
additivity as in Banach’s result [5, §2.2 Th. 1], but restricts Banach’s positive-
homogeneity condition to just N-homogeneity:

S(nx) = nS(x) (x ∈ R, n = 0, 1, 2, . . .)

(with the universal quantifier ∀ on x and n understood here, as is usual in
mathematical logic). From here onwards we take this to be our definition of
sublinearity. This is of course equivalent to ‘positive-rational-homogeneity’.
Berz proves and uses a Hahn–Banach theorem in the context of R as a vector
space over Q (for which see also [50, §10.1]) to show that if S : R → R is
measurable and sublinear, then S|R+ and S|R− are both linear; for general-
izations to Baire (i.e. having the Baire property) and universally measurable
functions in contexts including Banach spaces, again using only DC, see [13].
Berz’s motivation was questions of normability in topological spaces [9]. The
key result here is Kolmogorov’s theorem [47]: normability is equivalent to the
origin having a bounded convex neighbourhood ([61, Th. 1.39 and p. 400]).

Our second, linked, question asks whether the universal quantifier (x ∈ R)
above can be weakened to range over an additive subgroup. Since S = 1R\Q
is subadditive and N-homogeneous on Q, but not linear on R±, the quantifier
weakening must be accompanied by an appropriate side-condition. We give in
Theorem 5 a necessary and sufficient condition (referring also to a thinned-
out domain), by extending the standard asymptotic analysis—as in [34] (see
Theorem HP below)—of the ratio S(t)/t near 0 and at infinity; this, indeed,
permits thinning-out the universal quantifier of N-homogeneity to a dense
additive subgroup A.

We come at these questions here employing ideas on quantifier weakening
previously applied in [14] to additivity issues in classical regular variation, and
in [13] to Jensen-style convexity in Banach spaces. We borrow from [14] two
key tools: Theorem 0 below on continuity (exploiting an idea of Goldie), and
Theorem 0+ on linear (upper) bounding (exploiting early use by Kingman of
the Baire Category Theorem—see [11]), the latter delayed till Sect. 3, when
we have the preparatory results needed.

Theorem 0. For subadditive S : R → R∪ {−∞,+∞} with S(0+) = S(0) = 0 :
S is continuous at 0 iff S(zn) → 0, for some sequence zn ↑ 0, and then S is
continuous everywhere, if finite-valued.
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In Sect. 2 below we discuss subadditivity, sublinearity and theorems of
Berz type, proving Theorems 1–3, Th. BM (for Baire/measurable) and Th.
HP (for Hille–Phillips). The work of Hille and Phillips is a major ingredient
in the Kingman subadditive ergodic theorem (Sect. 4.9) of probability theory.
In Sect. 3 we give stronger versions of Berz’s theorem by thinning the domain
of definition, under appropriate side-conditions, results of quantifier-weakening
type (Theorems 4 and 5). We close in Sect. 4 with a discussion of the extensive
background literature.

2. Subadditivity, sublinearity and theorems of Berz type

We first justify our preferred use of local boundedness. Here and below we
write Bδ(x) := (x − δ, x + δ) for the open δ-ball around x.

Theorem R. (cf. [50, Th. 16.22]) For A ⊆ R a subgroup and S|A,→ R subad-
ditive: if S is bounded above on some interval, say by K on Bδ(a) ∩ A, then
for any b ∈ A

S(b + a) − K ≤ S(x) ≤ S(b − a) + K (x ∈ Bδ(b) ∩ A).

In particular, it is locally bounded on A: so here, local boundedness from above
is equivalent to local boundedness.

Proof. Mutatis mutandis, this is [14, Prop. 5(i)], as the proof there relies only
on group structure. �

The proof in [50] is more involved, and not immediately adaptable to
the subgroup setting that we need. The proof offered here we learned from
the Referee of [14] (see the Acknowledgements) and in view of that and of
some related helpful correspondence with Professor van Rooij we gladly label
this Theorem R. As it pinpoints the group dependence, we thank the present
Referee for urging us to make explicit reference to local upper boundedness
as an alternative assumption (calling to mind the Darboux-Ostrowski-type
assumption—see [12]).

We may now begin with a sharpened form of the Berz theorem, with a
proof that seems new. Below we write R+ := [0,∞), R− := (−∞, 0], and
A± := A ∩ R±.

Theorem 1. (cf. [14]) For S : R → R a sublinear function (i.e. subadditive,
with S(nx) = nS(x) for x ∈ R and n = 0, 1, 2, . . .), if S is locally bounded,
then both S|R+ and S|R− are linear.

Proof. For M a bound on S in Bδ(0) = (−δ, δ),

|S(x)| = |S(kx)/k| ≤ M/k,
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for k ∈ N, x ∈ Bδ/k(0); so S is continuous at 0, and so everywhere uniformly,
since |S(x + h)| − S(x) ≤ max{|S(h)|, |S(−h)}, [33, Th.7.8.2] cf. [14, Proof of
Th. 0]. But S(q) = qS(1) for rational q > 0, so by continuity S(x) = xS(1) for
x ∈ R+; likewise S(x) = |x|S(−1) for x ∈ R−. �

Remark. The argument can be repeated for S : X → R with X a normed vector
space; then S(x) = ||x||S(ux) for ux the unit vector on the ray: {λx : λ ≥ 0}.
Here |S(ux)| ≤ M/δ for all x �= 0.

This gives us a corollary

Theorem BM. ([9,13], cf. [14]) For S : R → R a sublinear function, if S is
Baire/measurable, then both S|R+ and S|R− are linear.

Proof. For S Baire/measurable, S is bounded above on a non-negligible set and
so, being subadditive, is bounded above on some interval (by the Steinhaus–
Weil Theorem, [13,56]), and so, being subadditive, is locally bounded. �

The following is a slightly sharper form of results in [14] with a simpler
proof (the subgroup here is initially arbitrary). This extension theorem may be
interpreted in Hahn–Banach style as involving a subadditive function S which,
relative to a subgroup A, majorizes an additive function G that happens to
agree with the restriction S|A.

Theorem 2. If S : R → R is a subadditive locally bounded function and A any
non-trivial additive subgroup such that S|A is additive, then S|A is linear.

In particular, for A dense, any additive function G on A has at most one
continuous subadditive extension S : R → R.

For the proof, we will need the following theorem; for completeness, we
show how to make the simple modification needed for the result given in [34,
Th. 7.6.1]. (We replace their additional blanket condition of measurability of S
by local boundedness, and give more of the details, as they are needed later.)

Theorem HP. For S : R → R a locally bounded subadditive function

β = βS := inft>a
S(t)

t
= limt→∞

S(t)
t

< ∞ (a > 0),

so β does not depend on the choice of a > 0. In particular,

βS := inft>0
S(t)

t
∈ R.

Proof. Following [34, Th.7.5.1], for a > 0 and ma ≤ t < (m + 1)a with m =
2, 3, . . . , we note two inequalities, valid according as S(a) ≥ 0 or S(a) < 0 :

S(t)

t
≤ mS(a) + S(t − ma)

t
≤ S(a)

a
+

K

a
, if S(a) ≥ 0,

S(a)

2a
+

K

a
, if S(a) < 0,

(†)
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for K := sup |S([0, 2a])|; indeed
1
2a

≤ 1
a

− 1
t

≤ m

t
≤ 1

a
.

Also S(t)/t itself is bounded on [a, 2a], so β = β(a) < ∞ is well-defined.
Suppose first that β > −∞, and let ε > 0. As inft>0 S(t)/t < β + ε, choose

and fix b ≥ a with S(b)/b ≤ (β + ε). For any t ≥ 2b, let n = n(t) ∈ N satisfy
(n + 1)b ≤ t < (n + 2)b; then b < t − nb < 2b and

1 − 2b

t
<

nb

t
≤ 1 − b

t
.

This time with K = sup |S([0, 2b])| a bound on S as above, since S(t) =
S(nb + t − nb) ≤ S(nb) + S(t − nb),

β ≤ S(t)
t

≤ nb

t

S(b)
b

+
S(t − nb)

t
≤ nb

t
(β + ε) +

K

t
≤ (β + ε) + ε,

for t > max{nb,K/ε}. So limt→∞ S(t)/t = β.
The case β = −∞ would be similar albeit simpler. In fact it does not arise.

Indeed, writing T (t) = S(−t), which is subadditive and locally bounded, since
also βT < ∞, we have

βS + βT = limt→∞

[
S(t)

t
+

T (t)
t

]
≥ 0,

as 0 ≤ S(0) ≤ S(t) + T (t). So βS > −∞, since βS ≥ −βT > −∞. �

Remark. In fact

−βT = − limt→∞
T (t)

t
= − inft>0

T (t)
t

= supt>0

S(−t)
(−t)

= supz<0

S(z)
z

= limz→−∞
S(z)

z
.

Proof of Theorem 2. Put G := S|A, and let βS denote the unique β of Th.
HP. For any a ∈ A ∩(0,∞), we have, by Th. HP, that

βS = limn→∞
S(na)

na
=

G(a)
a

.

Now for all a ∈ A, as G(−a) = −G(a) and G(0) = 0 (by additivity), G(a) =
βSa. In particular, for S continuous and A dense, S(t) = βSt for all t ∈ R. �

The next extension theorem employs majorization and minorization on a
subspace. The assumption of subgroup divisibility—gives (the more conve-
nient) Q+− homogeneity from N-homogeneity, but otherwise a/k ∈ A (a ∈ A ,
k ∈ N)—gives (the more convenient) Q+− homogeneity from N-homogeneity,
but otherwise is innocuous (as any (infinite) subgroup may be extended to
a divisible one without change of cardinality—as with the rationals from the
integers).
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Theorem 3. For A a non-trivial, divisible (so dense) subgroup of R and a
locally bounded sublinear (in particular, additive) S : A → R,

S+
A

(x) : = limδ→0 sup{S(t) : t ∈ Bδ(x) ∩ A},

S−
A

(x) : = limδ→0 inf{S(t) : t ∈ Bδ(x) ∩ A},

define locally bounded, subadditive, indeed sublinear, functions S±
A

: R → R

with

S−
A

(x) ≤ S+
A

(x) (x ∈ R) and S−
A

(a) ≤ S(a) ≤ S+
A

(a) (a ∈ A).

Hence
(i) S+

A
|R± = S−

A
|R±;

(ii) S±
A

|R±, S|A± are linear;

(iii) S±
A

|A = S.
(iv) In particular, for S additive, S+

A
= S−

A
and is linear, as is also S = S+

A
|A.

Proof. To lighten the notation, we write S± for S±
A

. Local boundedness of
S± follows immediately from local boundedness of S. Subadditivity is routine,
and follows much as in [34, §7.8]. As regards sublinearity of S±, note that if
an → x for an ∈ A with limn→∞ S(an) = S±(x), then, as kan ∈ A for k ∈ N,
by sublinearity of S

kS+(x) = limn→∞ kS(an) = limn→∞ S(kan) ≤ S+(kx),
kS−(x) = limn→∞ kS(an) = limn→∞ S(kan) ≥ S−(kx).

Similarly, for k ∈ N, if an → kx for an ∈ A with limn→∞ S(an) = S±(kx),
then an/k → x with an/k ∈ A, and so again by sublinearity of S,

S+(kx)/k = limn→∞ S(an/k) ≤ S+(x),
S−(kx)/k = limn→∞ S(an/k) ≥ S−(x).

So kS±(x) = S±(kx). By Theorem 1 the four functions S±
A

|R± are linear,
and so by dominance the two functions S|A± are continuous at 0 and so
continuous everywhere (as in Th. 1). So if an → a with a, an ∈ A, then
limn→∞ S(an) = S(a) = S±(a), proving (iii). So S±|A+ = S|A+; this implies
S|A+ is linear and also that S+|R+ = S−|R+, since A is dense, proving (i)
and (ii) on R+ and A+; similarly on R− and A−. For additive S this means
that S+ = S− is linear, as is S, proving (iv). �

Remark. The conclusions (i)-(iv) of Theorem 3 continue to hold for (just)
a dense subgroup A and a locally bounded, sublinear S : A → R, by similar
reasoning as follows. As in Th. 1, S is continuous on A, and, since in particular
|S(a) − S(a′)| ≤ max{|S(a − a′)|, |S(a′ − a)|} for a, a′ ∈ A, this gives both
S+
A

(x) = S−
A

(x)(= S̄A(x̄)) say) for any x ∈ R and the equality S̄A(a) = S(a)
for a ∈ A. This equality implies directly (from the same properties of S) that
S̄A(x) is sublinear and locally bounded, so linear on R± and continuous, by
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Th. 1. For a more detailed exposition, see the extended arXiv version of the
paper.

Actually S+
A

(S−
A

) is upper (lower) semicontinuous, hence Baire cf. [17,
Prop. 3]. Of course S±(kx) ≤ kS±(x), so (in view of the first displayed in-
equality above, etc.) a less symmetric proof would have fewer steps. Inducing
functions (such as S± from S, above) is a method followed variously in e.g.
[49, Th. 1], [13, Th. 5].

3. Thinning: a stronger Berz theorem

We now give a stronger version of the Berz theorem by weakening a condition
of Heiberg–Seneta type by thinning, as in [14], and requiring the homogeneity
assumption to hold on only a dense additive subgroup A of R; all in all, with
rather less than sublinearity, we improve on Theorem BM. This comes at the
price of assuming more about S. To motivate the next definition, note that for
locally bounded subadditive S, the inequalities (†) of Sect. 2 imply that for
any a > 0

γ(a) := supt>a

S(t)
t

< ∞,

as |S(t)/t| is bounded on [a, 2a]. As γ(a) is decreasing for a > 0, we have

−∞ < βS ≤ lim supt↓0

S(t)
t

≤ ∞.

We note that, with T as in Theorem HP, αS := supz<0 S(z)/z = −βT is finite
(by the remark above), so the definition below fills the gap for supt>0 S(t)/t,
by asking apparently a little less.

Definition. Say that S : R → R satisfies the strong Heiberg–Seneta (SHS)
condition if

γ = γ+
S := lim supt↓0

S(t)
t

< ∞. (SHS)

See Sect. 4.4 for the origin of this term. For S subadditive, we will see in
Proposition 2 that this implies its dual:

−∞ < γ−
S := lim inft↑0

S(t)
t

≤ γ+
S .

Proposition 1, to which we now turn, associates to each subadditive function
S a sublinear function S∗ dominating S, here and below to be called the
(upper) sublinear envelope of S. (Albeit multiplicatively, [43] studies the lower
envelope dominated by S, using instead S(nx)/n—also noted in [29], cf. [3] and
[50, 16.2.9]—an approach followed in [31] employing the decreasing sequence
S(2nx)/2n.) However, some assumption on S is needed to ensure that S∗ is
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finite-valued: recall that the subadditive function S = 1R\Q is N-homogeneous
on Q, yet S∗ = (+∞) · 1R\Q.

Proposition 1. For S : R → R locally bounded and subadditive with S(0) = 0,
the function defined by

S∗(x) := lim supn→∞ nS(x/n) (x ∈ R)

is subadditive and sublinear and dominates S. If further S satisfies (SHS),
then, for t ≥ 0,

βSt ≤ S(t) ≤ S∗(t) ≤ γ+
S t.

In particular, S(0+) = S∗(0+) = 0 and S∗ is locally bounded; furthermore,
γ+

S > −∞ and

supt>0

S(t)
t

≤ γ+
S .

Proof. By subadditivity of S, for any n ∈ N and x ∈ R

S(x) = S(nx/n) ≤ nS(x/n) ≤ S∗(x).

Evidently S∗ is subadditive (cf. [34, 7.2.2, 7.2.3]). Moreover, as S(0) = 0, S∗

is Q+-homogeneous, since for fixed k ∈ N

kS∗(x) = lim supm→∞ k · mS(kx/km)
≤ lim supn→∞ nS(kx/n) (via specialization: n = km)
= S∗(kx) ≤ kS∗(x),

the latter by subadditivity. Combining,

S∗(kx) = kS∗(x).

Suppose now that (SHS) holds. Let ε > 0. Then there is δ > 0 with

S(x)/x ≤ γ+
S + ε (0 < x < δ).

Fix t > 0. Then for integer n > t/δ

S(t/n)
t/n

≤ γ+
S + ε : nS(t/n) ≤ (γ+

S + ε)t,

and so taking limsup as n → ∞
S∗(t) ≤ (γ+

S + ε)t,

for t ≥ 0, as S∗(0) = 0 (since S(0) = 0). Taking limits as ε ↓ 0 yields

S∗(t) ≤ γ+
S t.

Furthermore, for t ≥ 0,

βSt ≤ S(t) ≤ S∗(t).

Finally, by Th. R, S∗ is locally bounded, since S∗ is locally bounded for
t > 0. �
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In view of the linear bounding of S∗ (and hence of S) just proved from
SHS, we proceed to a weaker property of S in which the domain of the limsup
operation is thinned-out. This will nevertheless also yield linear bounding of S
(from above), hence finiteness of γ+

S , and in turn the bounding of S∗. We need
a definition and a theorem from [14].

Definition. [13,14,17] Say that Σ ⊆ R is locally Steinhaus–Weil (SW), or has
the SW property locally, if for x, y ∈ Σ and, for all δ > 0 sufficiently small, the
sets

Σδ
z := Σ ∩ Bδ(z),

for z = x, y, have the interior-point property, that Σδ
x ± Σδ

y has x ± y in its
interior. (Here again Bδ(x) is the open ball about x of radius δ.) See [15, §6.9]
or [17, §7] for conditions under which this property is implied by the interior-
point property of the sets Σδ

x − Σδ
x (cf. [7]); for a rich list of examples, see

Sect. 4.5. An obvious example is an open set Σ.

We now cite from [14] the following result.

Theorem 0+. Let Σ ⊆ [0,∞) be locally SW accumulating at 0. Suppose that
S : R → R is subadditive with S(0) = 0 and:
S|Σ is linearly bounded above by G(x) := cx , i.e. S(σ) ≤ cσ for some c and
all σ ∈ Σ, so that in particular,

lim supσ↓0, σ∈Σ S(σ) ≤ 0.

Then S(x) ≤ cx for all x > 0, so

lim sup
x↓0

S(x) ≤ 0,

and so S(0+) = 0.
In particular, if furthermore there exists a sequence {zn}n∈N with zn ↑ 0

and S(zn) → 0, then S is continuous at 0 and so everywhere.

Definition. Say that S : R → R satisfies the weak Heiberg–Seneta (WHS)
condition if for some Σ ⊆ (0,∞), a locally SW set accumulating at 0,

γΣ
S := lim supt↓0,t∈Σ

S(t)
t

< ∞.

Corollary. For S : R → R locally bounded and subadditive with S(0) = 0, if S
satisfies WHS, then S is linearly bounded by γΣ

S t for t ≥ 0, and so satisfies
SHS with γ+

S ≤ γΣ
S .

Proof. Write γ = γΣ
S . Let ε > 0. Then there is δ > 0 with

S(t) ≤ (γ + ε)t (t ∈ Σ ∩ (0, δ)).
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So S(t) ≤ (γ + ε)t for all t > 0, by Th. 0+ applied to c = γ + ε. Taking limits
as ε ↓ 0 yields S(t) ≤ γt for all t > 0 and so

γ+
S = lim supt↓0

S(t)
t

≤ γΣ
S < ∞.

So S satisfies the SHS. �

We now derive in Theorem 5 below a form of Berz’s Theorem, in which
the weak Heiberg–Seneta condition on S permits a thinned-out assumption
of homogeneity; the argument is based on the following result, a corollary of
Theorem 1 and Prop 1.

Theorem 4. For S : R → R locally bounded and subadditive with S(0) = 0, if
S satisfies WHS, and S∗(tn) → 0 for some sequence tn ↑ 0, then S and its
sublinear envelope S∗ are continuous, and further, by sublinearity, both S∗|R+

and S∗|R− are linear.

Proof. By the Corollary we may assume that SHS holds. By Prop. 1, S∗(0+) =
0, so S∗ is continuous by Theorem 0, and now linearity on half-lines follows by
Theorem 1, as S∗ is sublinear (and locally bounded at 0, so everywhere—see
Theorem R). In fact, it follows directly, since, by N-homogeneity and conti-
nuity, S∗(x) = xS∗(1) and S∗(−x) = xS∗(−1) for x > 0, as Q is dense and
S∗(±q) = qS∗(±1) for q ∈ Q+.

Now for x ≥ 0, by subadditivity −S(x) ≤ S(−x) (as S(0) = 0) and so

−S∗(x) ≤ −S(x) ≤ S(−x) ≤ S∗(−x) = xS∗(−1).

So S(0−) = 0, as S∗ is continuous; so S is continuous. �

Proposition 2. For S : R → R locally bounded and subadditive with S(0) = 0:
if S satisfies WHS, then, for t ≥ 0,

S∗(−t)/(−t) = γ−
S ≤ αS ≤ βS ≤ γ+

S = S∗(t)/t.

In particular,

−∞ < γ−
S ≤ γ+

S < ∞.

Proof. Just as in Theorem 4 we may assume that SHS holds. By Prop. 1
and Th. 1, write γ± := S∗(±t)/(±t) for t > 0. From Prop. 1 βS ≤ γ+

S ; as
S ≤ S∗, for t > 0, γ+ = S∗(t)/t ≥ S(t)/t, so γ+

S ≤ γ+. For the reverse
inequality, take any ε > 0 and choose δ > 0 such that S(t)/t ≤ γ+

S + ε for all
0 < t < δ. As S∗(1) = γ+, there exists m > 1/δ with γ+ − ε ≤ mS(1/m).
Taking t = 1/m < δ yields

γ+ − ε ≤ γ+
S + ε : γ+ ≤ γ+

S + 2ε.

Taking limits as ε ↓ 0 yields γ+ ≤ γ+
S . Combining, γ+ = γ+

S .
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Now recall from Theorem HP above that αS ≤ βS (via αS = −βT ). We
obtain γ− ≤ αS from

limt→−∞
S∗(t)

t
≤ limt→−∞

S(t)
t

= αS ,

again as S ≤ S∗ (t being negative here).
Put T ∗(t) := S∗(−t) = γ−(−t) for t > 0. Then, by linearity of S∗ for t < 0,

γ− = lim infz↑0
S∗(z)

z
;

so by the definition of γ−
S ,

γ−
S = lim infz↑0

S(z)
z

≥ lim infz↑0
S∗(z)

z
= γ−,

as S ≤ S∗ (z here being negative). So

γ−
S ≥ γ−.

We now show that γ−
S ≤ γ−. This runs analogously to the plus version. Let

ε > 0. Choose δ > 0 with γ−
S − ε ≤ S(t)/t for t ∈ (−δ, 0). As −γ− = S∗(−1),

pick m with m > 1/δ and −γ− − ε ≤ mS(−1/m). Then taking t = −1/m
gives

γ−
S − ε ≤ −mS(−1/m) ≤ γ− + ε : γ−

S ≤ γ− + 2ε.

Taking limits as ε ↓ 0 yields γ−
S ≤ γ−. Combining, γ−

S = γ−. �

Remark. The burden of proof falls on showing that γ±
S = γ±; of course, for

t > 0, S(t) + S(−t) = γ+t − γ−t ≥ 0 yields directly that γ− ≤ γ+.

Theorem 5. (Quantifier-weakened Berz Theorem) For S : R → R locally
bounded and subadditive (in particular for S Baire/measurable and subaddi-
tive) with S(0) = 0, if

(i) S satisfies WHS and,
(ii) A is a (dense) divisible additive subgroup of R with S|A N-homogeneous

– then both S|R+ and S|R− are linear: for t ≥ 0 :

S(t) = βSt, and S(−t) = −αSt.

In particular, for S additive

S(t) = βSt (t ∈ R).

Proof. By the Corollary we may assume that SHS holds. Consider any a ∈
A. Then S∗(a) = lim supn→∞ nS(a/n) = S(a) by N-homogeneity of A, and
further, by sublinearity of S∗(Prop. 1), S∗(a/n) = S∗(a)/n = S(a)/n → 0,
taking limits through n ∈ N. Taking a < 0 gives, via Theorem 4, that S∗

and so S is continuous on A. Now S = S∗, by continuity and density of A,
as S∗|A =S|A. So S|R+ and S|R− are linear, again by Theorem 4. The first
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formulas come from Th. HP, and the final one, in the additive case, from
S(−t) = −S(t) (and then αS = βS). �

Remark. The assumption of divisibility placed on A is innocuous: it may be
omitted by the following reasoning. By the Corollary, we may assume that
S satisfies SHS, being in fact linearly bounded for t > 0. So, by Theorem
0+, S(0+ = 0). By the Remarks after Theorem 3, S|A− is linear. So by density
of A there is a sequence in A− : an ↑ 0 say, with S(an) → 0. So, by Theorem
0, S is continuous. So by the density of A, S|R± is linear.

In the result above, the particular case of S additive includes [14, Th. 1
and Th. 1′

b].

4. Complements

4.1. Approximate homomorphisms

There are results in which one has a property, such as additivity, which holds
only approximately, and then deduces that, under suitable restrictions, it holds
exactly. For example, in Badora’s almost-everywhere version of the Hahn–
Banach theorem [4], if the relevant differences are bounded, as in [2], then they
vanish. That is, the relevant differences are either identically plus infinity or
identically zero. This is a dichotomy, reminiscent of those that occur in prob-
ability theory in connection with 0-1 laws (for example, Belyaev’s dichotomy
[8]; [53, 5.3.10]).

4.2. Popa (circle) group subadditivity

We recall from [14] that the Popa circle operation on R, introduced in [60] (cf.
[39]), given by

a ◦ b = a + bη(a), for η(t) := 1 + ρt with ρ ≥ 0,

turns G+ := {x ∈ R : 1 + ρx > 0} into a group with R+ as a subsemigroup.
The latter induces an order on G+ which agrees with the usual order (cf. e.g.
[30]). So a function f : (R+,×) → (G+, ◦) satisfying

f(xy) ≤ f(x) ◦ f(y)

may be viewed as subadditive in the group context. This abstract viewpoint
encompasses both the current context of subadditivity (for ρ = 0), and a
further significant one arising in the theory of regular variation (the ‘Goldie
Functional Inequality’, for ρ = 1 — cf. [36]); for the latter see [13]. We hope
to return to these matters elsewhere—cf. [14, §7].



Variants on the Berz sublinearity theorem

4.3. Restricted domain

There are results when, as in Sect. 3 on quantifier weakening, a property
such as additivity or subadditivity holds off some exceptional set (say, almost
everywhere), and the conclusion is also similarly restricted. This goes back to
work of Hyers and Ulam [1,20]. See also de Bruijn [25], Ger [32,33].

4.4. Origin of the Heiberg–Seneta condition

This condition, introduced in regular variation (see [10, Th. 3.2.5], prompting
its recent study in [14]), as applied to a subadditive function S : R → R ∪
{−∞,+∞}, took the form

lim supt↓0 S(t) ≤ 0. (HS)

For A ⊆ R a dense subgroup, the assumption that S|A is linear together with
(HS) guaranteed not only that S is finite-valued with S(0+) = 0, but that in
fact S is linear, as in Th. 5, which relates directly to [10, Th. 3.2.5].

4.5. Examples of families of locally Steinhaus–Weil sets

The sets listed below are typically, though not always, members of a topology
on an underlying set.
(o) Σ a usual (Euclidean) open set in R (and in R

n)—this is the ‘trivial’
example;

(i) Σ density-open subset of R (similarly in R
n) (by Steinhaus’s Theorem—

see e.g. [10, Th. 1.1.1], [17], [56, Ch. 8]);
(ii) Σ Baire, locally non-meagre at all points x ∈ Σ (by the Piccard-Pettis

Theorem—as in [10, Th. 1.1.2], [17], [56, Ch. 8]—such sets can be ‘thinned
out’, i.e. extracted as subsets of a second-category set, using separability
or by reference to the Banach Category Theorem [56, Ch.16]);

(iii) Σ the Cantor ’excluded middle-thirds’ subset of [0, 1] (since Σ + Σ =
[0, 2]);

(iv) Σ universally measurable and open in the ideal topology ([15,51]) gen-
erated by omitting Haar null sets (by the Christensen–Solecki Interior-
points Theorem of [21,22] and [64]);

(v) Σ a Borel subset of a Polish abelian group and open in the ideal topology
generated by omitting Haar meagre sets in the sense of Darji [24] (by
Jab�lońska’s generalization of the Piccard Theorem, [35, Th.2], cf. [37],
and since the Haar-meagre sets form a σ-ideal [24, Th. 2.9]); for details
see [17].

If Σ is Baire (has the Baire property) and is locally non-meagre, then it is
co-meagre (since its quasi interior is everywhere dense).
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Caveats.

1. Care is needed in identifying locally SW sets: Matoŭsková and Zelený
[54] show that in any non-locally compact abelian Polish group there are
closed non-Haar null sets A,B such that A + B has empty interior. Re-
cently, Jab�lońska [38] has shown that likewise in any non-locally compact
abelian Polish group there are closed non-Haar meager sets A,B such
that A + B has empty interior.

2. For an example on R of a compact subset S such that S − S contains an
interval, but S + S has measure zero and so does not, see [23] and the
recent [6].

3. Here we were concerned with subsets Σ ⊆ R where such ‘anomalies’ are
assumed not to occur.

4.6. Baire/measurable S and S∗

Of course if S is Baire/measurable, then so is S∗, as the limsup is sequential.
Also for A a countable subgroup, the upper and lower limit functions S±

A

derived from a subbadditive function S are Baire/measurable, as the image
S(A) is countable.

4.7. The Hahn–Banach theorem: variants

There are various theorems of Hahn–Banach type. Text-book accounts, as in
e.g. Rudin [61, § 3.2, 3.3, 3.4], [30], deal with dominated extension theorems
(without any assumed continuity on the partial function f nor on the dominat-
ing function p, HB below), separation theorems for convex sets, and continuous
extension theorems. Variations include the assumption that the dominating
function p is continuous, e.g. [26] (implying continuity of the minorant par-
tial function); another variation—from [28], call this ‘HB-lite’ for our needs
in Sect. 4.8 below—assumes for given p merely the existence of some linear
functional dominated by p. (Here, if the variant axiom is satisfied for all p con-
tinuous, then HB follows for all continuous p [28, §4]). For a most insightful
survey of very many variations in earlier literature see [18]. The context also
varies, correspondingly, from vector spaces, to topological vector spaces and
beyond, so to F-spaces (i.e. topological vector spaces with topology generated
by some complete translation-invariant metric, [42]) and Banach spaces. One
needs to distinguish between the variants, including the category of space over
which the assertions range, when discussing their axiomatic status. Kalton
proved ([27,41], cf. [42, Ch. 4]) that an F-space in which the continuous exten-
sion theorem (in which f is continuous) holds is necessarily locally convex, a
result that is false without metrizability; it is not known whether completeness
is necessary.
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The dominated extension theorem HB (i.e. without any continuity) is equiv-
alent to a weakened form of PIT, the Prime Ideal Theorem, namely the ex-
istence of a non-trivial finitely-additive probability measure (as opposed to
a two-valued measure implicit in PIT) on any non-trivial Boolean algebra
([40,52,55,66])—MB (for ‘measure-Boolean’) in the terminology of [55].

For the relative strengths of HB and the Axiom of Choice AC, see [57,58];
[59] provides a model of set theory in which the Axiom of Dependent Choices
DC holds but HB fails. Moreover, HB for separable normed spaces is not
provable from DC [26, Cor. 4]. On the other hand, any separable normed space
satisfies the version of HB in which the dominating function p is continuous;
indeed the partial function f may first be explicitly extended to the linear span
of the union of its domain with the dense countable set—as in the original
Banach proof [5] by inductive assignment of function-values using the least
possible function-value at each stage (as in [26, Lemma 9])—and then to the
rest of space, essentially as in Theorem 3, using the continuity conferred by
p and our sequential analysis. (Compare [28] for various completeness and
compactness notions here.) Further to [26], we raise, and leave open here, the
question as to whether the separable case of Badora’s result in [3] can be proved
with only DC rather than AC, and the role that completeness (sequential or
otherwise) may play here [42].

For more on axiomatics (with references), see [18, §12, 20], Appendix 1 of
the fuller arXiv version of [13] and also [16].

4.8. The Hahn–Banach Theorem: group analogues

The group analogue of the ‘HB-lite’ property of Sect. 4.7 (mutatis mutandis,
with ‘additive’ replacing ‘linear’ etc.) delineates a class of groups providing the
context for Badora’s ‘general’ Hahn–Banach extension theorem for groups [3,
Th. 1], and includes amenable groups; the class is characterized in [3, Th. 3] by
the group analogue of HB with a side-condition on p. The more special Hahn–
Banach-type extension property for the case of a group G of linear operators g :
V → V on a real vector space V is concerned with a p-dominated G-invariant
extension of a G-invariant partial linear operator f (defined on a G-invariant
subspace W ) satisfying f(w) ≤ p(w) for w ∈ W, where p is a subadditive
and positive-homogeneous functional p : V → R with p(g(v)) ≤ p(v). This as
a property of G turns out to be equivalent to G being amenable (Silverman
[62,63])—see [46] for a clear albeit early approach. See also [66, Th. 12.11].

4.9. Kingman’s Subadditive Ergodic Theorem

Detailed study of subadditivity is partially motivated by links with the King-
man subadditive ergodic theorem, which has been very widely used in proba-
bility theory. For background and details, see e.g. [44,45], Steele [65].
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Postscript.
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[23] Crnjac, M., Guljaš, B., Miller, H.I.: On some questions of Ger, Grubb and Kraljević.
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