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Optimal cutting planes from the group relaxations

Amitabh Basu∗ Michele Conforti† Marco Di Summa† Giacomo Zambelli‡

June 11, 2018

Abstract

We study quantitative criteria for evaluating the strength of valid inequalities for Go-
mory and Johnson’s finite and infinite group models and we describe the valid inequalities
that are optimal for these criteria. We justify and focus on the criterion of maximizing
the volume of the nonnegative orthant cut off by a valid inequality.

For the finite group model of prime order, we show that the unique maximizer is
an automorphism of the Gomory Mixed-Integer (GMI) cut for a possibly different finite
group problem of the same order.

We extend the notion of volume of a simplex to the infinite dimensional case. This is
used to show that in the infinite group model, the GMI cut maximizes the volume of the
nonnegative orthant cut off by an inequality.

1 Introduction

Cutting planes are important tools to solve integer programming (IP) models. While this
technology has seen several revivals and intense research activity since its introduction by
Gomory [12–14, 19], some basic aspects are not well understood. In particular, deciding
which cutting plane family will be most effective in a particular IP instance has been a
thorny problem for the community. Some families, like the Gomory Mixed-Integer (GMI)
cuts, have been enormously useful across all kinds of IP instances [2, 3, 8, 11], but such
empirical observations have never been explained rigorously, to the best of our knowledge.

This problem, known as cut selection, has become even more confounded by the advent of
the theory of so-called cut generating functions, which is a modern perspective on the theories
of Gomory and Johnson [16, 17], and Balas [1] from the 1970s. This is because recent work
in this area has opened the doors to infinitely many distinct families of cutting planes that
are computationally accessible. In a sense, this is great news because we now have not only
many more choices, but potentially more powerful cutting planes than used before. On the
other hand, this makes the problem of cut selection even more difficult than what it was.

The goal of this paper is to make progress towards establishing rigorous criteria for eval-
uating the efficacy of cutting planes, and understanding the structure of the optimal cutting
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planes under these criteria. For this purpose, we restrict ourselves to the family of cut-
ting planes studied under the various group relaxations. The group relaxations were first
introduced by Gomory [15], and then generalized and investigated by Gomory and John-
son [16–18, 20], as a means to provide a unifying framework for deriving cutting planes for
mixed-integer optimization problems.

Our investigations seem to provide analytical evidence supporting the computational suc-
cess of the GMI cuts (see Theorems 2.2 and 2.3).

Our presentation uses notions and terminology that may be unfamiliar in the integer
programming community. However, our approach has a three-fold motivation: 1) this new
language enables us to state results in a unified manner and to borrow necessary mathematical
machinery from the areas of pure algebra and analysis; 2) the abstraction allows us to present
the proofs in a cleaner and more elegant fashion; 3) the added generalization could be useful in
the future to build further bridges between algebra, analysis and mixed-integer optimization.
We next review this material and then introduce Gomory’s finite and infinite group models.

Group theoretic preliminaries. We recall that a group is a set G endowed with a binary
operation mapping G×G to G, denoted by + : G×G→ G, which satisfies three properties:
1) x+ (y+ z) = (x+y) + z for all x,y, z ∈ G (associativity of +), 2) there exists an element
0 ∈ G such that x + 0 = 0 + x = x for all x ∈ G (existence of identity element), and 3)
for every x ∈ G, there exists an inverse −x such that x + (−x) = (−x) + x = 0. A group
is said to be abelian if + is commutative, i.e., x + y = y + x for all x,y ∈ G. All groups
considered in this paper will be abelian, so we drop this qualification in the remainder. We
define x−y := x+ (−y) for every x,y ∈ G. Moreover, we will use the notation kx to denote
x added to itself k times, for any k ∈ N and x ∈ G.

A group G is said to be a topological group if the set G is also endowed with a topology
such that the maps + : G×G→ G and inv : G→ G, x 7→ −x, are continuous with respect
to this topology, where G × G is endowed with the product topology. A topological group
is said to be compact (resp., connected) if G is a compact (resp., connected) space under its
given topology. We will assume that all topological spaces in this paper are Hausdorff, i.e.,
for any two distinct points there exist disjoint neighborhoods containing these two points.1

For any compact, topological group G, there exists a unique measure µ defined on the
Borel sets of G such that µ(G) = 1 and µ(x + A) = µ(A) for every Borel subset A ⊆ G
(where x + A := {x + a : a ∈ A}). This measure is called the Haar probability measure, or
Haar measure for short. It can be also be shown that µ(S) = µ(−S) for all subsets S ⊆ G.
See [24, Chapter 22] for a detailed discussion.

Tn := Rn/Zn will denote the n-dimensional torus. We will use bold-faced letters like
x,y,b etc., to denote elements of a generic group. When the group is a “one-dimensional”
group like T1 or a finite cyclic group Z/qZ, we will not use the bold font for elements in the
group, i.e., refer to elements using x, y, b etc.

Gomory’s group relaxation. Consider a group G and a fixed b ∈ G \ {0}. Gomory’s
group relaxation is defined as the set Ib(G) of finite support functions y : G → Z+ (i.e., y

1For a reference on these terminologies, see [24].
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takes value 0 on all but a finite subset of G) such that∑
x∈G

y(x)x = b.

The usual cases are with G = Tn (the n-dimensional torus), where it is called the n-
dimensional infinite group relaxation, and G = Zn/Λ where Λ is a sub-lattice of Zn, where it
is called an n-dimensional finite group relaxation. These two cases and their use in deriving
cutting planes for integer programming have been studied extensively; we refer the reader to
the surveys [4, 6, 7].

Note that, as b 6= 0, the function y0 that takes value 0 on all the elements of G is not
in Ib(G). In the context of integer programming, the function y0 = 0 corresponds to the
optimal solution of the continuous relaxation of the problem. One is interested in finding
a halfspace in the space of finite support functions y : G → R that contains Ib(G) but not
y0. Any such halfspace is described by an inequality of the form

∑
x∈G π(x)y(x) ≥ 1, where

the function π : G → R (which is not necessarily of finite support) gives the coefficients of
the inequality. We use the notation Hπ to denote this halfspace, and call π a valid function
whenever Ib(G) ⊆ Hπ.

Most of the literature has focused on the family of valid functions π ≥ 0 and recent results
[5] justify this nonnegativity restriction on π for groups G that are most relevant for integer
programming. We will work with nonnegative valid functions in this paper. A valid function
π : G → R+ is minimal if every valid function π̃ : G → R+ such that π̃ ≤ π satisfies π̃ = π.
We denote by Mb(G) the set of minimal functions. The reason for restricting to minimal
functions is that if π : G → R+ is a valid function, then there always exists a minimal
π′ ∈Mb(G) such that Ib(G) ⊆ Hπ′ ∩RG+ ⊆ Hπ ∩RG+. For any group, minimal functions are
characterized by the following theorem [17].

Theorem 1.1. A function π : G → R+ is a minimal function if and only if it is subadditive
(i.e., π(x) + π(y) ≥ π(x + y) for every x,y ∈ G), π(0) = 0, and π(x) + π(b − x) = 1 for
every x ∈ G (this property is known as the symmetry property).

A valid function π : G → R+ is extreme if π1 = π2 for every pair of valid functions
π1, π2 : G→ R+ such that π = 1

2π1 + 1
2π2. It is well known that the set of extreme functions

is a subset of Mb(G). In fact, if G is a finite group, the set Mb(G) is a polytope defined asπ ∈ RG+ :
π(0) = 0

π(x) + π(y) ≥ π(x + y) ∀x,y ∈ G
π(x) + π(b− x) = 1 ∀x ∈ G

 , (1.1)

and the extreme functions are precisely the vertices of this polytope.

Example 1.2. We give some well-known examples of minimal functions.

1. Let G = Tn and b ∈ Tn \ {0}, and let i ∈ {1, . . . , n} be any index such that bi 6= 0.
The Gomory function GMInbi

: Tn → R+ is defined as GMInbi
(x) := xi

bi
if xi ≤ bi and

GMInbi
(x) := 1−xi

1−bi
otherwise, where on the right hand sides the coordinates xi,bi are

interpreted as real numbers in the interval [0, 1). It is well-known that GMInbi
is an

extreme function. This function is used to derive the well-known GMI cut in integer
programming literature.
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2. For G = Z/qZ, where q is any natural number, and b ∈ G \ {0}, the function GOMq
b :

G → R+ defined as GOMq
b(x) := x

b when x ≤ b and GOMq
b(x) := q−x

q−b when x > b is
extreme.

3. Let G = Z/qZ where q is prime. Let b1, b2 ∈ G \ {0} and let π be a valid function for
Ib1(G). Consider the automorphism φ : G→ G that sends b2 to b1 (which exists and is
unique because q is prime). Then π ◦ φ is a valid function for Ib2(G). Furthermore π
is minimal (extreme) if and only if π ◦ φ is minimal (extreme).

2 Criteria to evaluate the strength of a valid function

2.1 The distance criterion

Consider the case when G is a finite group. Given a valid function π, the halfspace Hπ :={
y ∈ RG :

∑
x∈G π(x)y(x) ≥ 1

}
cuts off a portion of the nonnegative orthant RG+ that includes

the origin. A possible measure one can choose to evaluate to strength of π is the distance
of the origin from the hyperplane

{
y ∈ RG :

∑
x∈G π(x)y(x) = 1

}
: the larger this distance,

the better π is. It can be shown that this distance is in fact given by 1
|π|2 , where |π|2 :=√∑

x∈G π(x)2 is the standard `2 norm of the vector of coefficients given by π. Thus, one
looks for π that minimizes the `2 norm. Generalizing, one could also look for a function π
that minimizes the `p norm for p ≥ 1.

If G is a group of infinite order, it is important to have a measure on the group G, with
respect to which one can integrate so that expressions involving sums in the finite group case
can be replaced by integrals. This is why we will consider compact, topological groups with
the Haar measure. Since we would like to integrate functions defined in a topological group,
we will have to restrict our attention to measureable functions (with respect to the Haar
measure). Without further comment, we will assume that all functions π that we consider
are measurable; in particular,Mb(G) is to be thought of as the subset of measurable minimal
functions from this point on. (For groups of finite order this is no restriction because all
functions are measurable.) Under this assumption, for every p ≥ 1 the `p norm can be
generalized to the standard Lp norm |π|p := (

∫
|π|pdµ)1/p, where µ is the corresponding Haar

measure.
The following result shows that the above optimization problem, i.e., maximizing the

distance of the origin from the hyperplane defined by π, has a trivial solution: the Lp norms
are minimized by the function which takes value 1/2 almost everywhere. The result holds for
any group – finite or infinite. Note that in the following statement we restrict to functions
π ∈ Mb(G), as it is easy to verify that every optimal solution to this problem is a minimal
function.

Theorem 2.1. Let G be any (finite or infinite) group and b ∈ G \ {0}. Let p ≥ 1. Then
inf{|π|p : π ∈Mb(G)} = 1/2 and is attained by the function which takes value 1/2 everywhere
except for 0 and b, where it takes value 0 and 1 respectively.

Proof. Proof. The proof of this theorem follows directly from the symmetry of π (see Theorem
1.1). Indeed, since π is symmetric, D := π−1([0, 1/2)) and D′ := π−1((1/2, 1]) have equal
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measure. Moreover,

|π|pp =

∫
D
|π|pdµ+

∫
D′
|π|pdµ+

∫
π−1({1/2})

(1/2)pdµ.

Since µ(D) = µ(D′) and π is symmetric, we obtain that

|π|pp =

∫
D
|π|pdµ+

∫
D
|1− π|pdµ+

∫
π−1({1/2})

(1/2)pdµ

=

∫
D

(|π|p + |1− π|p)dµ+

∫
π−1({1/2})

(1/2)pdµ.

For any real number 0 ≤ a ≤ 1, we have that ap + (1 − a)p ≥ 2(1/2)p by convexity of
the function x 7→ xp. Since π is bounded between 0 and 1 by Theorem 1.1, we obtain
|π|p ≥ 1/2.

The function which takes value 1/2 everywhere (except 0 and b) gives rise to cutting
planes in integer programming that have been called MD2 cuts in the literature [25] and were
obtained as a strengthening of the so-called Dantzig cut, which comes from the valid function
which takes value 1 everywhere [10]. In [25], MD2 cuts are shown to yield a finite cutting
plane algorithm for pure integer programming problems, which is based on earlier results
from [9].

It is interesting to observe that the above optimal function which takes value 1/2 almost
everywhere is not an extreme function. Below we suggest another criterion to evaluate the
strength of π, and we will see that it is optimized by an extreme function.

2.2 The volume criterion

Consider first the case when G is a finite cyclic group of prime order, i.e., G = Z/qZ with q
prime. Take π ∈ Mb(G). We can easily verify that π(x) > 0 for every x ∈ G \ {0}. Indeed,
for any x ∈ G\{0}, there exists k ∈ N such that kx = b because q is prime. Since by Theorem
1.1 π is subadditive and π(b) = 1, we have kπ(x) ≥ π(kx) = π(b) = 1, hence π(x) ≥ 1/k.

Denote by ex, x ∈ G, the unit vectors in RG. The above observation implies that the
halfspace Hπ is parallel to e0 and cuts off a simplex from the (q−1)-dimensional nonnegative

orthant RG\{0}+ . This simplex is given by conv

(
{0} ∪

{
1

π(x)e
x
}
x∈G\{0}

)
. Consequently, its

(q − 1)-dimensional volume is given by 1
(q−1)!

∏
x∈G\{0}

1
π(x) . We consider this volume as a

measure of π: the higher this volume, the “better” the halfspace given by π is. Thus, one
looks for π ∈Mb(G) that minimizes

∏
x∈G\{0} π(x). Since valid functions cut off the function

y defined by y(x) = 0 for all x ∈ G, and Ib(G) is contained in the nonnegative orthant, this
provides a justification of the volume criterion as a measure of the strength of π.

We remark that, unlike the distance criterion, the function π 7→
∏
x∈G\{0} π(x) is strictly

log-concave, and therefore every minimizer π is a vertex of the polytope in (1.1), i.e., π is an
extreme function.

The above definitions were made for a finite group G. We now show how to extend the
volume measure defined above to infinite groups.

5



Let G be a compact topological group with Haar measure µ. Take π ∈ Mb(G). Let
us initially assume that π(x) > 0 for every x ∈ G \ {0}. We denote by R(G) the space of
finite support functions y : G → R. Note that a basis of the vector space R(G) is given by
the family of functions ex, x ∈ G, where ex is the function which takes value 1 on x and 0
elsewhere. Similar to the finite cyclic group case, the halfspace Hπ is parallel to e0 and cuts

off a convex set (let us call it a “simplex”) from the set R(G)
+ ∩{y : y(0) = 0}. This “simplex”

is given by conv

(
{0} ∪

{
1

π(x)e
x
}
x∈G\{0}

)
. However, we cannot compute the volume of this

set, as it is an infinite dimensional object. To overcome this difficulty, we observe that in the
finite cyclic group case maximizing the volume of the simplex is equivalent to maximizing its
average side length (geometric mean). Therefore, in the infinite group case, we look at the
geometric mean of the sides of the “simplex”, i.e., the geometric mean of the function 1/π,
which is defined as

exp

(
1

µ(G \ {0})

∫
G\{0}

ln(1/π)dµ

)
= exp

(∫
G

ln(1/π)dµ

)
.

(The equality holds because the Haar measure satisfies the properties µ(G) = 1 and µ({x}) =
µ({y}) for every x,y ∈ G, thus µ({x}) = 0 for every x ∈ G because G is infinite; in particular,
µ({0}) = 0 and µ(G \ {0}) = 1.) Equivalently, we will minimize

∫
G ln(π)dµ.

While we have motivated this formula for functions that are strictly positive everywhere,
for minimal functions, this restriction is not necessary for the integral to make sense. Indeed,
we will be concerned with integrals of functions of the form ln(π), where π is bounded between
0 and 1. This means that − ln(π) is a nonnegative function taking values in the extended
reals, i.e., it could take the value +∞ at some points where π equals 0. For nonnegative,
extended real valued functions, integrals are always defined but may equal +∞. Below, we
will say a nonnegative extended real valued function is integrable if the integral is finite.

2.3 Our results

With the above setup, we state our main results. The first result is about the volume measure
for finite cyclic groups of prime order q, and shows that the maximum volume is cut off by
appropriate automorphisms of the functions GOMq

q−1 and GOMq
1 (see part 3. of Example 1.2

for these functions).

Theorem 2.2. Let G = Z/qZ where q is prime, and let b ∈ G \ {0}. Then

inf

 ∏
x∈G\{0}

π(x) : π ∈Mb(G)

 =
(q − 1)!

(q − 1)q−1
.

Moreover, this infimum is attained uniquely by the function GOMq
q−1 ◦φ, where φ : G→ G is

the automorphism that sends b to q − 1.

Note that φ exists and is unique because q is prime, and φ is equal to the multiplication by
−b−1, where b−1 is the inverse of b in the field Z/qZ. Note also that GOMq

q−1 ◦φ = GOMq
1 ◦φ′

where φ′ : G→ G is the automorphism that sends b to 1.
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For infinite, connected groups, we show that the average side length of the “simplex” cut
off by an optimal inequality is e (the base of the natural logarithm). Moreover, in the usual
case G = Tn, the Gomory function GMInbi

defined in Example 1.2 is an optimal inequality.

Theorem 2.3. Let G be any compact, connected topological group with Haar measure µ, and
b ∈ G \ {0}. Then for every π ∈Mb(G), − ln(π) is integrable and

inf

{∫
G

ln(π)dµ : π ∈Mb(G)

}
= −1.

If G = Tn, the infimum is attained by GMInbi
for any index i such that bi 6= 0.

We remark that although the two theorems above may seem of different nature, their
meaning is essentially the same. Indeed, if in the discrete case we minimize the natural
logarithm of the geometric mean of the side lengths of the simplex instead of its volume,
Theorem 2.2 yields

inf

ln

(( ∏
x∈G\{0}

π(x)

) 1
q−1
)

: π ∈Mb(G)

 = inf

 1

q − 1
ln

( ∏
x∈G\{0}

π(x)

)
: π ∈Mb(G)


=

1

q − 1
ln

(
(q − 1)!

(q − 1)q−1

)
=

1

q − 1

(
ln((q − 1)!)− ln((q − 1)q−1)

)
=

1

q − 1
(−(q − 1) + o(q)) ,

where the last equality follows from the fact that ln((q − 1)q−1) = (q − 1) ln(q − 1) and, by
Stirling’s approximation, ln((q−1)!) = (q−1) ln(q−1)−(q−1)+o(q). If we take the limit for
q →∞, the above infimum tends to −1. This shows that Theorem 2.2 has a deep similarity
with Theorem 2.3. In fact, a part of the proof of Theorem 2.3 involves using Theorem 2.2
and applying a limit argument on approximating Riemann sums for a Riemann integral.

The proofs of Theorems 2.2 and 2.3 form the content of the rest of the paper.

3 Finite cyclic groups of prime order: Proof of Theorem 2.2

The main tool behind the proof of Theorem 2.2 is a rearrangement idea of the function values
which preserves the properties of subadditivity and symmetry, and makes the “rearranged”
function nondecreasing. The contents of this idea are summarized in Theorem 3.1. One then
shows that within the family of nondecreasing, subadditive and symmetric functions, any
extreme function that minimizes the volume measure is the Gomory function; this is shown
in Lemma 3.3. Putting these two results together gives us Theorem 2.2 (see the last proof of
this section).

In the following, when we say that a function π : Z/qZ→ R+ is non decreasing, we mean
that π(x) ≤ π(y) for every x, y ∈ Z/qZ with x ≤ y, where x and y are viewed as numbers in
{0, . . . , q − 1} with the standard ordering.

7



Theorem 3.1. Let G = Z/qZ with q prime, and let π : G→ R+ be a subadditive function on
G such that π(0) = 0 and π is not identically 0. Then π̂ : G→ R+ defined as

π̂(x) := min{α ≥ 0 : |π−1((0, α])| ≥ x} ∀x ∈ G (3.1)

is finite-valued, subadditive on G and nondecreasing. (On the right-hand side, x is viewed as
a number in {0, . . . , q − 1}.) Moreover, |π−1({β})| = |π̂−1({β})| for all β > 0. Finally, if
there exists some b ∈ G such that π(x)+π(b−x) = 1 for all x ∈ G, then π̂(x)+π̂(q−1−x) = 1
for all x ∈ G.

Proof. Proof. The argument given at the beginning of Subsection 2.2 shows that π(x) > 0 for
all x 6= 0, since π is subadditive and not identically 0, and since q is prime. Thus, for every
x ∈ {0, . . . , q − 1}, there exists α ≥ 0 such that |π−1((0, α])| ≥ x. So the minimum in (3.1)
is taken over a nonempty set. Since G is finite, this set has a minimum, which is attained at
some α ∈ π(G). This shows that the minimum is well-defined. The nondecreasing property
follows from the definition.

For the proof of subadditivity we need to use the Cauchy–Davenport theorem [23], which
states that for any nonempty subsets A,B ⊆ G, we have the inequality |A+B| ≥ min{q, |A|+
|B| − 1} (where A + B := {a + b : a ∈ A, b ∈ B}). Consequently, any nonempty A,B ⊆ G
such that 0 6∈ B satisfy |(A + B) ∪ A| ≥ min{q, |A| + |B|}: apply the Cauchy–Davenport
theorem to A,B ∪ {0}.

Consider x1, x2 ∈ G and let αi = π̂(xi), i = 1, 2. Therefore, |π−1((0, αi])| ≥ xi, i = 1, 2.
Moreover, by subadditivity of π,(

π−1((0, α1]) + π−1((0, α2])
)
∪ π−1((0, α1]) ⊆ π−1((0, α1 + α2]).

Therefore, we obtain

|π−1((0, α1 + α2])| ≥
∣∣(π−1((0, α1]) + π−1((0, α2])

)
∪ π−1((0, α1])

∣∣
≥ min{q, |π−1((0, α1])|+ |π−1((0, α2])|}
≥ x1 + x2

where we use the fact that π(0) = 0, and so 0 6∈ π−1((0, α2])), and also used the Cauchy-
Davenport theorem for the second inequality. Note that the last term x1 + x2 is a sum in G
and is viewed as a real number, thus x1 + x2 < q. This establishes the subadditivity of π̂.

We next confirm that |π−1({β})| = |π̂−1({β})| for all β > 0. To show this, it suffices to
prove that |π−1((0, β])| = |π̂−1((0, β])| for all β > 0 . Observe that for any t ∈ G,

π̂(t) ≤ β ⇔ min{α ≥ 0 : |π−1((0, α])| ≥ t} ≤ β ⇔ |π−1((0, β])| ≥ t.

Therefore, since π̂ is nondecreasing and π̂(0) = 0,

|π̂−1((0, β])| = max{t ∈ G : π̂(t) ≤ β} = max{t ∈ G : |π−1((0, β])| ≥ t} = |π−1((0, β])|.

We finally verify that the symmetry condition is preserved. Consider any x ∈ G and let
α = π̂(x). By definition, |π−1((0, α])| ≥ x. By symmetry of π, t ∈ π−1((0, α)) if and only if
b− t ∈ π−1((1− α, 1)). We now observe that α = π̂(x) implies that

x ≥ |π−1((0, α))|
⇒ x ≥ |π−1((1− α, 1))|
⇒ x ≥ q − 1− |π−1((0, 1− α])|
⇒ |π−1((0, 1− α])| ≥ q − 1− x.
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Thus, by definition of π̂, π̂(q−1−x) ≤ 1−α. Therefore, we have π̂(x)+ π̂(q−1−x) ≤ 1. By
subadditivity of π̂, π̂(x)+π̂(q−1−x) ≥ π̂(q−1). We finally observe that π̂(q−1) = 1 because
π(b) = 1 by symmetry of π and π(x) ≤ 1 for all x ∈ G. Therefore, π̂(x)+ π̂(q−1−x) = 1.

Lemma 3.2. Let G = Z/qZ where q is prime, and let b ∈ G \ {0}. Then the function
h = GOMq

q−1 ◦φ, where φ : G → G is the automorphism that sends b to q − 1, satisfies

ĥ(x) = x
q−1 for every x ∈ G, where on the right hand side x is viewed as a real number.

Proof. Proof. Since GOMq
q−1 takes all the distinct values in

{
0, 1

q−1 ,
2
q−1 , . . . ,

q−2
q−1 , 1

}
, so does

the function h. Since the rearrangement ĥ is nondecreasing, we obtain the result.

Lemma 3.3. Let G = Z/qZ where q is prime. If π ∈Mq−1(G) is an extreme function and is
nondecreasing, then π = GOMq

q−1.

Proof. Proof. Let x, y ∈ G and assume that x + y ≥ q (where x, y, q are viewed as real
numbers). Then x+ y, taken modulo q, is smaller than x, and thus π(x+ y) ≤ π(x), as π is
nondecreasing. Furthermore, the condition x+ y ≥ q implies y 6= 0, and thus π(y) > 0. This
implies that π(x) + π(y) > π(x+ y).

By the above observation, the number γ := min{π(x)+π(y)−π(x+y) : x, y ∈ G, x+y ≥ q}
is strictly positive. Then there exists λ ∈ (0, 1) such that λ ≤ γ(q − 1)/q and λ ≤ π(x)/x for
every x ∈ G \ {0} (where the denominator x is interpreted as a real number). For x ∈ G,
define

π̃(x) =
π(x)− λg(x)

1− λ
,

where g = GOMq
q−1, i.e., g(x) = x

q−1 for every x ∈ G. Note that π = λg+(1−λ)π̃. Therefore,
if we show that π̃ ∈Mq−1(G), then by the extremality of π we have that π = π̃ = g, and the
proof is complete.

It remains to prove that π̃ ∈Mq−1(G). We do so by showing that π̃ fulfills the conditions
of Theorem 1.1. It is clear by definition that π̃(0) = 0. Furthermore, since λ ≤ π(x)/x for
every x ∈ G \{0}, we have π̃(x) ≥ 0 for every x ∈ G. Symmetry holds because, by symmetry
of π and g, for x ∈ G we have

π̃(x) + π̃(q − 1− x) =
π(x) + π(q − 1− x)− λ(g(x) + g(q − 1− x))

1− λ
=

1− λ
1− λ

= 1.

We finally check that π̃ is subadditive. If x, y ∈ G satisfy x+y < q, then, by the subadditivity
of π and by definition of g,

π̃(x) + π̃(y) =
π(x) + π(y)− λ(g(x) + g(y))

1− λ
≥ π(x+ y)− λg(x+ y)

1− λ
= π̃(x+ y).

If, on the contrary, x+ y ≥ q, then

g(x+ y) =
x+ y − q
q − 1

= g(x) + g(y)− q

q − 1

9



and thus

π̃(x) + π̃(y) =
π(x) + π(y)− λ(g(x) + g(y))

1− λ

=
(π(x) + π(y)− π(x+ y)− λq/(q − 1)) + π(x+ y)− λg(x+ y)

1− λ

≥ π(x+ y)− λg(x+ y)

1− λ
= π̃(x+ y),

where the inequality holds by definition of λ.

Proof. Proof of Theorem 2.2. Let G = Z/qZ where q is a prime number, and let b ∈ G \ {0}.
We want to show that

inf

 ∏
x∈G\{0}

π(x) : π ∈Mb(G)

 =
(q − 1)!

(q − 1)q−1

and the infimum is attained uniquely for π = GOMq
q−1 ◦φ, where φ : G→ G is the automor-

phism that sends b to q − 1. We denote by Pb(G) the above optimization problem.
Recall the discussion after Theorem 1.1, where Mb(G) is viewed as a polytope in RG

defined by the linear inequalities in (1.1). This implies that the optimization problem Pb(G)
has an optimal solution, as the objective function is continuous. Furthermore, since the
objective function is strictly log-concave, every minimizer is an extreme point of the polytope
Mb(G). In other words, every minimizer is an extreme function for Mb(G).

Assume first that b = q−1 and let π be an optimal solution to Pq−1(G). By Theorem 3.1,
the function π̂ defined in (3.1) belongs to Mq−1(G) and has the same objective value as π,
thus it is also an optimal solution to Pq−1(G). This implies that π̂ is an extreme function for

Mq−1(G) and therefore, by Lemma 3.3, π̂ = GOMq
q−1 and

∏
x∈G\{0} π̂(x) = (q−1)!

(q−1)q−1 .

Assume now b 6= q − 1. By Lemma 3.2, the function h = GOMq
q−1 ◦φ, where φ : G → G

is the automorphism that sends b to q − 1, satisfies
∏
x∈G\{0} h(x) = (q−1)!

(q−1)q−1 . Thus the

minimum value of Pb(G) is at most (q−1)!
(q−1)q−1 . Let π be an optimal solution to Pb(G) and

assume that the optimal value is smaller than (q−1)!
(q−1)q−1 . By Theorem 3.1, the function π̂

defined in (3.1) belongs to Mq−1(G) and has the same objective value as π, contradicting

the fact that the optimal value of Pq−1(G) is (q−1)!
(q−1)q−1 .

It remains to prove that, for any b ∈ G \ {0}, GOMq
q−1 ◦φ is the unique optimal solution

to Pb(G), where φ : G→ G is the automorphism that sends b to q− 1. The above arguments
show that if π is an optimal solution to Pb(G), then π̂ = GOMq

q−1 ◦φ, and thus each of π and

π̂ takes all the distinct values in
{

0, 1
q−1 ,

2
q−1 , . . . , 1

}
. To conclude the proof, we show that

any function π ∈ Mb(G) that takes all the distinct values in
{

0, 1
q−1 ,

2
q−1 , . . . , 1

}
coincides

with GOMq
q−1 ◦φ.

Let x ∈ G \ {0} be such that π(x) = 1
q−1 . By subadditivity, π(2x) ≤ 2π(x) = 2

q−1 , and

thus π(2x) = 2
q−1 . Iterating this argument yields π(kx) = k

q−1 for every k ∈ {0, . . . , q − 1}.
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This means that π = GOMq
q−1 ◦ψ, where ψ : G→ G is the automorphism that sends 1 to x.

Now let k̄ be the unique number in {0, . . . , q − 1} such that k̄x = b in G. (Such a number

exists because q is prime.) Then 1 = π(b) = π(k̄x) = k̄
q−1 , thus k̄ = q− 1. Then ψ sends b to

q − 1 and therefore ψ = φ.

4 Infinite, connected groups: Proof of Theorem 2.3

In order to prove Theorem 2.3, we will show an analogue of Theorem 3.1. The reader will
notice that Theorem 3.1 permutes the finitely many function values into non-decreasing order,
i.e., sorts the function values. We will try to do the same for infinite, connected groups. Of
course, now we have to do some sort of “continuous” sorting; we will now preserve integrals
as opposed to exact function values. More precisely, we use a rearrangement idea which
preserves the properties of subadditivity, symmetry and the values of integrals, and makes
the “rearranged” function nondecreasing. We then prove Theorem 2.3 by applying a limit
argument to Theorem 2.2.

We now begin with the appropriate definitions and results needed to make the rearrange-
ment idea concrete. In the following, given x ∈ T1, when we say “x viewed as a real number”
we refer to the unique representative of x in the interval [0, 1).

Definition 4.1. Let G be any compact, topological group with Haar measure µ on it. For
any nonnegative function π : G→ R+, define π̂ : T1 → R+ as follows:

π̂(x) := inf{α ≥ 0 : µ(π−1([0, α])) ≥ x} ∀x ∈ T1, (4.1)

where the right hand side of the inequality µ(π−1([0, α])) ≥ x is viewed as a real number.

Remark 4.2. We note that for any x ∈ [0, 1), the set {α ≥ 0 : µ(π−1([0, α])) ≥ x} is
nonempty, and so the infimum in (4.1) is a well-defined real number. Indeed, since π is
nonnegative, we have

⋃
n∈N π

−1([0, n]) = π−1([0,∞)) = G. Then, by continuity of measure,
limn→∞ µ(π−1([0, n])) = µ(G) = 1. Thus, for any x ∈ [0, 1), there must exist some n ∈ N
such that µ(π−1([0, n])) ≥ x.

Lemma 4.3. Let G be any compact, connected topological group with Haar measure µ on it,
and let π : G→ R+. The following hold.

1. The function α 7→ µ(π−1([0, α])) is nondecreasing and right continuous.

2. π̂ is nondecreasing, i.e., x ≤ y implies π̂(x) ≤ π̂(y), where x, y ∈ T1 are viewed as real
numbers with the standard ordering.

3. Let x̄ ∈ T1 and let ᾱ = π̂(x̄). Then µ(π−1([0, ᾱ))) ≤ x̄ ≤ µ(π−1([0, ᾱ])), where x̄ is
viewed as a real number.

4. π̂ is left continuous, i.e., for all x ∈ T1 \ {0}, limε→0+ π̂(x− ε) = π̂(x).

11



Proof. Proof. For the first property, we observe that [0, α] =
⋂
ε>0[0, α + ε], and therefore

π−1([0, α]) =
⋂
ε>0 π

−1([0, α + ε]). By continuity of measure, limε→0+ µ(π−1([0, α + ε])) =
µ(π−1([0, α])), establishing property 1. The fact that the function is nondecreasing is clear
from its definition.

The second property is clear from the definition of π̂.
For the third property, we first show x̄ ≤ µ(π−1([0, ᾱ])). By definition of ᾱ, for every ε > 0,

µ(π−1([0, ᾱ + ε])) ≥ x̄, therefore by part 1 we have µ(π−1([0, ᾱ])) = limε→0+ µ(π−1([0, ᾱ +
ε])) ≥ x̄. We show µ(π−1([0, ᾱ))) ≤ x̄. We have [0, ᾱ) =

⋃
0<ε<ᾱ[0, ᾱ−ε], hence π−1([0, ᾱ)) =⋃

0<ε<ᾱ π
−1([0, ᾱ − ε]). By definition of ᾱ, µ(π−1([0, ᾱ − ε])) < x̄ for every ε ∈ (0, ᾱ). By

continuity of measure, µ(π−1([0, ᾱ))) = limε→0+ µ(π−1([0, ᾱ− ε])) ≤ x̄.
For the fourth property, consider x ∈ T1 \ {0}. For every 0 ≤ ε < x, define tε := π̂(x− ε).

Since π̂ is nondecreasing (property 2 above), the function ε 7→ tε is nonincreasing and tε ≤ t0
for all 0 < ε < x. Therefore (see, e.g., [26, Theorem 4.29]), the limit t̄ := limε→0+ tε exists
and t̄ ≤ t0. We need to show that t̄ ≥ t0. It suffices to prove that µ(π−1([0, t̄])) ≥ x, since
t0 = π̂(x) = inf{α ≥ 0 : µ(π−1([0, α])) ≥ x}. We observe that [0, t̄] ⊇

⋃
0<ε<x[0, tε] since

t̄ ≥ tε for ε ∈ (0, x). By continuity of measure, µ(π−1([0, t̄])) ≥ limε→0+ µ(π−1([0, tε])) ≥
limε→0+(x− ε) = x, where the second inequality follows from property 3.

The next result makes use of Kemperman’s theorem [21, Theorem 1.1], which, in our
context, states that if A and B are nonempty subsets of a compact, connected group G, then
µ(A+B) ≥ min{1, µ(A) + µ(B)}. Kemperman’s theorem can be seen as an analogue of the
Cauchy–Davenport inequality used in the previous section. However, Kemperman’s theorem
only applies to connected groups, while the Cauchy–Davenport inequality only applies to
finite cyclic groups, which are not connected. We highlight that the need to use Kemperman’s
theorem is the only reason for the connectedness assumption in Theorem 2.3.

Theorem 4.4. Let G be any compact, connected topological group with Haar measure µ on
it, and let π : G→ R+ be subadditive on G, with π(0) = 0. Then π̂ is subadditive on T1.

Proof. Proof. Consider x1, x2 ∈ T1. Let π̂(xi) = αi, i = 1, 2. It suffices to show that
µ(π−1([0, α1 + α2])) ≥ x1 + x2, where the right hand side is a sum in T1 and its value is
viewed as real number.

Subadditivity and nonnegativity of π imply that π−1([0, α1 + α2]) ⊇ π−1([0, α1]) +
π−1([0, α2]). This implies:

µ
(
π−1([0, α1 + α2])

)
≥ µ

(
π−1([0, α1]) + π−1([0, α2])

)
≥ min{1, µ(π−1([0, α1])) + µ(π−1([0, α2]))}
≥ x1 + x2,

where the second inequality follows from Kemperman’s theorem (which can be applied be-
cause π−1([0, αi]) 6= ∅ for i = 1, 2, as π(0) = 0), and the last inequality follows from the fact
that µ(π−1([0, αi])) ≥ xi because π̂(xi) = αi, for i = 1, 2 (property 3 in Lemma 4.3).

Lemma 4.5. Let G be any compact, connected topological group with Haar measure µ on it.
Let b ∈ G \ {0}. Consider any π : G→ R+ such that π(x) + π(b− x) = 1 for every x ∈ G.
Then for any x ∈ T1 \ {0}, π̂(x) + π̂(−x) ≤ 1.
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Proof. Proof. Let π̂(x) = α. Since −x, viewed as a real number, is 1 − x, we need to show
that π̂(1 − x) ≤ 1 − α. For this, it suffices to prove that µ(π−1([0, 1 − α])) ≥ 1 − x. Define
S := π−1([0, α)) and S′ := {b − x : x ∈ S} = b − S. Since µ is the Haar measure on
G, µ(S) = µ(S′). Moreover, as π satisfies π(x) + π(b − x) = 1 for every x ∈ G, we must
have that S′ = T1 \ π−1([0, 1 − α]). Since π̂(x) = α, by property 3 of Lemma 4.3 we obtain
x ≥ µ(S) = µ(S′) = 1− µ(π−1([0, 1− α])).

Lemma 4.6. Let G be any compact, connected topological group with Haar measure µ on it.
For any nonnegative function π : G→ R+ and any β ≥ 0, we have

`(π̂−1([0, β])) = µ(π−1([0, β])),

where ` denotes the Haar measure on T1.

Proof. Proof. By property 3 of Lemma 4.3, for every t ∈ T1 and β ∈ R+, π̂(t) ≤ β ⇔
µ(π−1([0, β])) ≥ t. Therefore, since π̂ is nondecreasing,

`(π̂−1([0, β])) = sup{t ≥ 0 : π̂(t) ≤ β} = sup{t ≥ 0 : µ(π−1([0, β])) ≥ t} = µ(π−1([0, β])),

where the first supremum is taken over t ∈ T1 with the standard order on T1, and the
second one is taken over t ∈ T1 viewed as a real number. Note that the first supremum is a
well-defined real number because π̂(0) = 0.

Proposition 4.7. Let G be any compact, connected topological group with Haar measure µ on
it, and let π : G→ [0, 1] be subadditive on G. Let π̂ be as defined in (4.1). Then

∫
G ln(π)dµ

is finite if and only if
∫
T1 ln(π̂)d` is finite, and in this case∫

G
ln(π)dµ =

∫
T1

ln(π̂)d`,

where ` denotes the Haar measure on T1.

Proof. Proof. We use the so-called “layer-cake representation” of a nonnegative function (see,
e.g., [22, Chapter 1]), which states that for any nonnegative function F defined on a measure
space (Ω, ν), ∫

Ω
Fdν =

∫ ∞
0

ν({ω ∈ Ω : F (ω) ≥ t})dt.

Therefore, since π takes values in [0, 1], we have that − ln(π) ≥ 0 and we can write∫
G
− ln(π)dµ =

∫ ∞
0

µ({x ∈ G : − ln(π(x)) ≥ t})dt

=

∫ ∞
0

µ({x ∈ G : π(x) ≤ e−t})dt

=

∫ 1

0

1

s
µ({x ∈ G : π(x) ≤ s})ds,

(4.2)
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where we use the change of variable s = e−t. Since π takes values in [0, 1], so does π̂ and
similarly we get ∫

T1

− ln(π̂)d` =

∫ 1

0

1

s
`({x ∈ T1 : π̂(x) ≤ s})ds, (4.3)

Applying Lemma 4.6 to (4.2) and (4.3) gives the desired result.

We now consider another function derived from π̂. Let G be any compact, connected
topological group with Haar measure µ on it. For any nonnegative function π : G→ R+, let
π̂ : T1 → R+ be defined as in (4.1). Define

π̄(x) := lim
ε→0+

π̂(x+ ε), (4.4)

which is well-defined because π̂ is bounded from below and nondecreasing by property 2 in
Lemma 4.3, and so the limit in the definition of π̄ exists and is finite (see, e.g., [26, Theorem
4.29]).

Lemma 4.8. Let G be any compact, connected topological group with Haar measure µ on it
and let b ∈ G \ {0}. For any π ∈ Mb(G), let π̂, π̄ be defined as in (4.1) and (4.4). Then π̄
is nondecreasing and subadditive. Moreover, for any x ∈ T1 \ {0}, π̂(x) + π̄(−x) = 1.

Proof. Proof. We first note that since π ∈Mb(G), π satisfies the properties listed in Theorem
1.1. Now, π̄ is nondecreasing because π̂ is nondecreasing by property 2 in Lemma 4.3 . We
check that π̄ is subadditive. Consider a, b ∈ T1 and let x = a+ b. Then

π̄(x) = lim
ε→0+

π̂(x+ ε)

≤ lim
ε→0+

(π̂(a+ ε/2) + π̂(b+ ε/2)) by subadditivity of π̂ (Theorem 4.4)

= lim
ε→0+

π̂(a+ ε/2) + lim
ε→0+

π̂(b+ ε/2)

= π̄(a) + π̄(b).

We now check that for any x ∈ T1 \ {0}, π̂(x) + π̄(−x) = 1. For every 0 < ε < x we have
that π̂(x − ε) + π̂(−x + ε) ≤ 1 by Lemma 4.5. Taking the limit ε → 0+, and using the fact
that π̂ is left continuous by property 4 in Lemma 4.3, we obtain that π̂(x) + π̄(−x) ≤ 1. We
show that the reverse inequality holds after establishing the following claim.

Claim 4.9. For all z ∈ T1, π̄(z) = sup{t : µ(π−1([0, t))) ≤ z}, where z inside the supremum
is viewed as a real number.

Proof of Claim. Let t̄ = sup{t : µ(π−1([0, t))) ≤ z}. We need to prove π̄(z) = t̄. We first
show π̄(z) ≥ t̄. For every ε ∈ (0, 1 − z) and every α ∈ [0, t̄), by definition of t̄ we have
µ(π−1([0, α])) < z+ ε, which implies π̂(z+ ε) ≥ t̄, and therefore π̄(z) = limε→0+ π̂(z+ ε) ≥ t̄.

We show π̄(z) ≤ t̄. By property 3 in Lemma 4.3, µ(π−1([0, π̂(z)))) ≤ z, which implies
π̂(z) ≤ t̄ by definition of t̄. Again by property 3 in Lemma 4.3, it then follows that z ≤
µ(π−1([0, t̄])). Suppose that z < µ(π−1([0, t̄])), and let ε̄ = µ(π−1([0, t̄])) − z > 0. Then, for
every ε ∈ (0, ε̄], π̂(z+ε) ≤ t̄. This implies that π̄(z) = limε→0+ π̂(z+ε) ≤ t̄. Assume then that
µ(π−1([0, t̄])) = z. For every δ ∈ (0, 1− t̄), let ε(δ) = µ(π−1([0, t̄+ δ]))− z. By definition of t̄,
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ε(δ) > 0 for every δ ∈ (0, 1− t̄). Furthermore, limδ→0+ ε(δ) = limδ→0+(µ(π−1([0, t̄+δ]))−z) =
µ(π−1([0, t̄]))− z = 0, where the second equation follows from property 1 of Proposition 4.3.
By definition, π̂(z+ε(δ)) ≤ t̄+δ. Since ε(δ) is strictly positive, nonincreasing, and converges to
0 as δ → 0+, it follows that π̄(z) = limε→0+ π̂(z+ε) = limδ→0+ π̂(z+ε(δ)) ≤ limδ→0+(t̄+δ) =
t̄. �

To complete the proof we need to establish that π̂(x) + π̄(−x) ≥ 1. Let α = π̂(x). By
Claim 4.9 and the fact that −x viewed as a real number is 1 − x, it suffices to show that
sup{t : µ(π−1([0, t))) ≤ 1− x} ≥ 1− α. By property 3 in Lemma 4.3, µ(π−1([0, α])) ≥ x. By
symmetry of π, this implies that µ(π−1([1−α, 1])) ≥ x, and therefore 1−µ(π−1([0, 1−α))) ≥ x.
Thus, sup{t : µ(π−1([0, t))) ≤ 1− x} ≥ 1− α.

We now state our main rearrangement theorem. In its proof, we shall need the following
technical lemma about monotone, i.e., nondecreasing or nonincreasing, functions; see [26,
Theorem 4.30].

Lemma 4.10. Any monotone real valued function defined on any real interval has countably
many discontinuities.

Theorem 4.11. Let G be any compact, connected topological group with Haar measure µ, and
b ∈ G \ {0}. Let π ∈Mb(G). Define π̂ as in (4.1) and π̄ as in (4.4). Then the function

π̃ :=
π̂ + π̄

2
(4.5)

defined on T1 is nondecreasing, subadditive and symmetric in the sense that π̃(x)+π̃(−x) = 1
for all x ∈ T1 \ {0}. Further,

∫
G ln(π)dµ exists and is finite if and only if

∫
T1 ln(π̃)d` exists

and is finite, and in this case ∫
G

ln(π)dµ =

∫
T1

ln(π̃)d`,

where ` denotes the Haar measure on T1.

Proof. Proof. Since π̂ is nondecreasing by property 2 in Lemma 4.3, and π̄ is also nonde-
creasing by Lemma 4.8, so is π̃. Since π̂ and π̄ are both subadditive by Theorem 4.4 and
Lemma 4.8, and subadditivity is preserved by convex combinations, π̃ is subadditive. We
now check symmetry of π̄:

π̃(x) + π̃(−x) = π̂(x)+π̄(x)+π̂(−x)+π̄(−x)
2

= (π̂(x)+π̄(−x))+(π̂(−x)+π̄(x))
2

= 1+1
2 by Lemma 4.8

= 1

Since π̂ is nondecreasing by property 2 in Lemma 4.3, it has countably many discontinu-
ities by Lemma 4.10. Therefore, π̄ differs from π̂ only on a countable set, and the same is
true for π̃. Thus, all three functions have the same value of the integral on the torus, if the
integral exists. Proposition 4.7 then gives the final conclusion.
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Theorem 4.12. Let G be the set of functions h : T1 → R+ with h(0) = 0 that are nonde-
creasing, subadditive, and symmetric in the sense that h(x) + h(−x) = 1 for all x ∈ T1 \ {0}.
Then − ln(h) is integrable for all h ∈ G and

inf

{∫
T1

ln(h)d` : h ∈ G
}

= −1.

Moreover, the infimum is attained by the function g(x) = x, where the right hand side is
interpreted as a real number.

Proof. Proof. For any function h on the torus, we will consider the associated function on
[0, 1] which is identical to h on [0, 1) and takes value 1 at 1. Now the integral of such a
function on [0, 1] is equal to the integral of h on the torus. Thus, without further comment,
below we will consider all functions on the torus as functions defined on [0, 1]. With a slight
abuse of notation, if h is subadditive on the torus, we will also say the corresponding function
on [0, 1] is subadditive.

Let h : T1 → R+ be a function with h(0) = 0 that is nondecreasing, subadditive, and
symmetric. For every prime number q, define a function πq : Z/qZ :→ R+ by setting

πq(x) = h

(
x

q − 1

)
for x ∈ Z/qZ,

where x is interpreted as a real number in the fraction x
q−1 .

It is clear that πq(0) = 0. Moreover, for every x ∈ Z/qZ we have

πq(x) + πq(q − 1− x) = h

(
x

q − 1

)
+ h

(
q − 1− x
q − 1

)
= 1,

where we used the fact that h is symmetric. Thus πq is symmetric with respect to b = q− 1.
We show that πq is also subadditive. If x, y ∈ {0, . . . , q − 1} are such that x+ y ≤ q − 1,

then, by subadditivity of h,

πq(x) + πq(y) = h

(
x

q − 1

)
+ h

(
y

q − 1

)
≥ h

(
x+ y

q − 1

)
= πq(x+ y).

If, on the contrary, x+ y ≥ q, then

πq(x)+πq(y) = h

(
x

q − 1

)
+h

(
y

q − 1

)
≥ h

(
x+ y − q + 1

q − 1

)
≥ h

(
x+ y − q
q − 1

)
= πq(x+y),

where in the last inequality we used the fact that h is nondecreasing.
By Lemma 4.10, h has countably many discontinuities. Then, by definition of Riemann
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integral, ∫
T1

ln(h)d` =

∫ 1

0
ln(h(x))dx

= lim
q→∞

1

q − 1

q−1∑
x=1

ln(πq(x))

= lim
q→∞

1

q − 1
ln

(
q−1∏
x=1

πq(x)

)

≥ lim
q→∞

1

q − 1
ln

(
(q − 1)!

(q − 1)q−1

)
= lim

q→∞

1

q − 1

q−1∑
x=1

ln

(
x

q − 1

)
=

∫ 1

0
ln(x)dx = −1,

where in the inequality we used Theorem 2.2.

Proof. Proof of Theorem 2.3. For any π ∈ Mb(G), we consider π̃ : T1 → R+ as defined
in (4.5) which, by Theorem 4.11, is nondecreasing, subadditive, symmetric and satisfies∫

G
ln(π)dµ =

∫
T1

ln(π̃)d`,

where ` denotes the Haar probability measure on T1, if either integral exists and is finite.
By Theorem 4.12, − ln(π̃) is integrable and

∫
T1 ln(π̃)d` ≥ −1. As a consequence, − ln(π) is

integrable and
∫
G ln(π)dµ ≥ −1 for all π ∈Mb(G). The statement about GMInbi

follows from
the fact that the integral of the logarithm of GMInbi

is equal to the integral of the logarithm

of GMI1
bi

, which is easily verified to be −1:∫ bi

0
ln
( x
bi

)
dx+

∫ 1

bi

ln
( 1− x

1− bi

)
dx = bi

∫ 1

0
ln(y)dy+ (1−bi)

∫ 1

0
ln(y)dy =

∫ 1

0
ln(y)dy = −1

We close this section by observing that the Gomory function GMInbi
is not the unique min-

imizer of
∫
Tn ln(π)dµ. Indeed, already for n = 1, the function defined by π(x) := GMI1

b(kx)
for x ∈ T1 achieves value of the integral equal to −1, for every k ∈ N.
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