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Abstract

From small communities to entire nations and society at large, inequality in wealth, social

status, and power is one of the most pervasive and tenacious features of the social world.

What causes inequality to emerge and persist? In this study, we investigate how the struc-

ture and rules of our interactions can increase inequality in social groups. Specifically,

we look into the effects of four structural conditions—network structure, network fluidity, rep-

utation tracking, and punishment institutions—on the distribution of earnings in network

cooperation games. We analyze 33 experiments comprising 96 experimental conditions

altogether. We find that there is more inequality in clustered networks compared to random

networks, in fixed networks compared to randomly rewired and strategically updated net-

works, and in groups with punishment institutions compared to groups without. Secondary

analyses suggest that the reasons inequality emerges under these conditions may have to

do with the fact that fixed networks allow exploitation of the poor by the wealthy and clus-

tered networks foster segregation between the poor and the wealthy, while the burden of

costly punishment falls onto the poor, leaving them poorer. Surprisingly, we do not find evi-

dence that inequality is affected by reputation in a systematic way but this could be because

reputation needs to play out in a particular network environment in order to have an effect.

Overall, our findings suggest possible strategies and interventions to decrease inequality

and mitigate its negative impact, particularly in the context of mid- and large-sized organiza-

tions and online communities.

Introduction

From social status hierarchies in kindergarten play groups and college fraternities [1] to pay

dispersion at the workplace [2] and from extreme levels of popularity in online communities

[3] to shockingly uneven distributions of material wealth within states [4], inequality takes

many forms and occurs at many different levels of social organization. Why do we observe
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extreme distributions of outcomes when people only moderately vary in intelligence, physical

abilities, and psychological traits? Why does inequality exist when people actually have strong

preference for equity and fairness [5, 6]?

Evidently, we cannot explain inequality with human heterogeneity or preferences. Instead,

social scientists have looked at social structure and its effect on behavior to explain the out-

comes of individuals and groups. For example, researchers focusing on historical approaches

have argued that certain global, state-level, and group-level processes and trends have disad-

vantaged some classes of individuals in terms of economic capital and political representation

while enriching others [7–9]. Sociologists working on social stratification and mobility have

observed that structural, network, and psychological factors, such as institutional arrange-

ments, neighborhood and school characteristics, parents’ socioeconomic standing, peer influ-

ences, and innate ability and motivation, translate into individual outcomes such as social

class, education, health, and income [10–12]. Social psychologists and behavioral economists

have used controlled experiments to demonstrate that social differentiation and scarcity of

resources affects individual behavior in a way that reinforces and enhances pre-existing differ-

ences [13–16].

While this research has greatly expanded our understanding of the extent, trends, and con-

sequences of inequality in society, it does not paint a complete picture. Historical approaches

focus on the macro-level and often ignore individuals, stratification research focuses on indi-

viduals but disregards interpersonal interactions, while behavioral research centers on small-

group interactions but rarely compares groups on a macro-level. In many social settings, large

groups of individuals interact in a way that their behavior and interactions drive group-level

outcomes such as inequality, while the emerging group-level patterns in turn affect individual

decision-making and actions. In such complex systems, the coevolution of interaction struc-

ture and individual behavior might create self-reinforcing feedback loops that amplify or exag-

gerate small initial and/or accidental differences into extreme distributions of outcomes [17].

Inequality, then, can be viewed as an emergent phenomenon that can play out differently

under different structural and institutional constraints. This will be the case in mid- and large-

sized social groups based on face-to-face or online interactions such as hunter-gatherer groups,

agrarian villages, large work offices, schools, social media sites, online forums, and user-gener-

ated content communities.

Some research on how inequality emerges in complex social systems already exists. Theo-

retical work from within this paradigm has shown, for example, that population growth and

preferential attachment [18], multiplicative gains and losses [19], and trade and inheritance

[20] create and maintain inequality. Empirical research on this topic is more challenging since

one needs to observe and manipulate multiple large social groups, which could be both costly

and logistically complicated. Nevertheless, empirical work has also started to accumulate.

From large-scale online experiments on cultural and attention markets, we know that due to

social influence, the visibility of success increases inequality [21], even if the initial success was

arbitrarily awarded [22]. In addition, experiments on cooperation games have shown that the

visibility of wealth affects the cooperative behavior of the wealthy and exacerbates pre-existing

inequality [23], reputation systems increase inequality by facilitating increasing returns from

early cooperation [24], and inequality is reduced in networks where the very wealthy and the

very poor are connected [25].

Extending this line of research, we present empirical evidence on how four structural con-

ditions and institutional constraints affect the emergence of inequality in social groups. We

investigate the effects of network structure, network fluidity, visibility of reputation, and pun-

ishment institutions. These conditions determine whether people interact within local clusters

or with random others, whether they interact with the same others again and again, whether
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they have third-party information about others’ past behavior, and whether they can punish, at

a cost, those who do not behave nicely. These are conditions that characterize some existing

social groups more than others (compare, for example, the stable interactions in agrarian vil-

lages versus the constant recombination of nomadic groups) and can be implemented in the

design of new formal organizations and online communities (for example, deciding whether

to institute a reputation system in a local community classifieds website).

To gather observations on social groups, we use data from a large number of experiments

on cooperation games in networks [26–43]. In the past couple of decades, these kinds of exper-

iments have been most commonly used to study the emergence of cooperation and network

formation. The experiments use games such as the Prisoner’s Dilemma and the Public Good

Game in which participants have a choice between cooperating/contributing and defecting/

doing nothing. Cooperation is costly and hence not individually rational but it has positive

returns for the recipients so hence, it is collectively beneficial. Thus, the decision situation

poses a social dilemma. Participants play the game repeatedly with numerous partners simulta-

neously. Further, different groups play in different network structures, with different informa-

tion, or with additional action possibilities. This interaction setup models well situations in

which members of large groups interact in subgroups and work together towards a common

goal, such as rendering a service, producing a product, or increasing knowledge.

To study inequality, we look at the distribution of the points individuals accrue by the end

of the game. These points can be understood as the individuals’ wealth, whether material or

immaterial. For example, if we perceive cooperation as exchanging valuable information or

useful advice, then the points will measure wealth in knowledge or wisdom.

The experiments we analyze were originally used to study the emergence of cooperation.

The researchers found that network clustering, network stability, strategic network rewiring,

and the possibility for reputation tracking and punishment increase the average level of coop-

eration. With the exception of costly punishment which reduces point earnings, more cooper-

ation implies higher average number of points, i.e. higher wealth. However, how do the

different structural factors affect the distribution of wealth in the interaction groups? This

question has not been systematically investigated before. The answer is nontrivial as high levels

of cooperation can have opposite effects on inequality, depending on how cooperators and

defectors are clustered and interconnected. Further, some structural conditions may affect the

behavior of different individuals differently, either erasing or exacerbating emerging wealth

disparities.

Hypotheses

In what follows, we discuss how network structure, network fluidity, reputation tracking, and

punishment institutions affect the network composition and the behavior of individuals in

group cooperation games and hypothesize what this implies for inequality. In the Results sec-

tion, we use the experimental data to test the hypotheses causally at the group level and to pro-

vide some insights as to the actual behavioral and interaction mechanisms at play.

Network structure. From previous research we know that networks with high levels of

clustering, whereby an individual’s neighbors tend to be neighbors with each other, are

expected to foster forward-looking behavior, imitation, and social reinforcement and promote

the emergence of cooperative clusters [30, 38]. This implies that cooperators and defectors are

more likely to become segregated in their own separate clusters. Since cooperators interacting

with cooperators benefit, while defectors interacting with defectors lose out, we would expect

higher inequality in clustered networks compared to networks that are more random and

without local structure. To relate this to a realistic setting, this hypothesis would imply, for
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example, that schools with stringent degree requirements that concentrate most of learning

within classrooms or majors will be marked with higher inequality in educational outcomes

than schools that allow elective courses and more uniform interactions among students,

assuming that student cooperation and collaboration enhance learning.

Network fluidity. The above rationale assumed that the networks are relatively stable and

individuals interact repeatedly with the same partners. If the partnerships are more volatile,

cooperative clusters are less likely to emerge unless individuals self-select into them. Moreover,

fixed networks enable exploitation: knowing that your cooperating partners cannot leave, you

may as well start free-riding on their efforts and contributions; and since defectors gain dispro-

portionately more when they exploit cooperators, inequality may increase. In contrast, exploit-

ative behavior is not possible in networks that are regularly reshuffled and can be costlessly

punished with exclusion in networks that allow choosing partners strategically. In short, higher

clustering of cooperators and more exploitation by defectors would imply higher inequality in

fixed networks compared to networks in which interaction partners change randomly. But the

comparison between fixed networks and networks in which individuals can select their inter-

action partners is less straightforward. The latter structures preclude exploitative defectors due

to the possibility to exclude them but enable even higher segregation due to the possibility to

self-select into cooperative clusters. However, previous research has clearly shown that strate-

gic partner selection essentially eradicates defection [40, 44, 45], so again, we would expect

fixed networks to result in more inequality. To extrapolate to a concrete social setting, the

hypotheses would imply, for example, that sedentary agrarian villages, which are marked by

relatively stable social relations, have higher inequality in material and immaterial wealth than

nomadic groups, which tend to change composition and structure on a regular basis.

Reputation tracking. Reputation institutions, which make available information about

everyone’s past behavior towards others, present another factor that is expected to increase

inequality in social groups. Previous research has shown that individuals are more likely to

select partners who have reputation as cooperators [24], as well as more likely to cooperate

with them [29]. This implies that initial differences in cooperative behavior could have long-

lasting effects that get reinforced and exaggerated over time. As a result, social groups where

reputation is visible will have higher inequality than groups without reputation tracking. Such

an effect would have important implications for the design of online marketplaces and social

media communities, for example.

Punishment institutions. Finally, the possibility for peer punishment is also expected to

increase inequality in social groups. Previous research on the Prisoner’s Dilemma game has

shown that the poor are more likely to pay to punish defecting partners; in contrast, the

wealthy are more likely to use a tit-for-tat strategy and defect in response to defection [32].

This suggests the poor will use costly punishment disproportionately, which will make

them even poorer compared to the wealthy. As a result, punishment will increase not only

cooperation, but also inequality. To give a concrete example, this hypothesis would imply that

communities relying on peer monitoring and punishment would have higher inequality than

communities in which everyone is required to contribute equally, or even proportionally to

wealth, to a single centralized sanctioning institution.

Results

In the following, we investigate whether inequality is higher in groups interacting in clustered

networks compared to random networks, in fixed networks compared to randomly or strategi-

cally rewired networks, with punishment institutions compared to no possibility for costly

punishment, and with reputation tracking compared to without. In addition, we look for

The emergence of inequality in social groups
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possible explanations for the observed results related to the clustering of cooperators, ease of

excluding exploitative defectors, and differential punishment behavior between successful and

unsuccessful players.

Detailed information about the data, the definitions, the measures and the statistical tests

we use in the study can be found at the end of the article in the section Materials and Methods.

Table 1 summarizes the data we use for the analyses. The data come from 18 previously pub-

lished studies and to identify the different data sets, we use an abbreviation constructed from

the first four letters of the first author’s last name and the last two digits of the study’s year of

publication. Some of the studies have substantially different orthogonal treatment that allows

us to split them into separate experiments, which we mark with a lower-case letter appended at

the end of the name. This gives us 33 experiments. The experiments vary in terms of the game

used (Prisoner’s Dilemma, Public Good, or helping), the size of the interaction group (from 8

to 625), the number of interaction groups (from 3 to 84), the number of players’ interaction

partners (from 1 to all other group members), the number of periods of interaction (from 6 to

more than 90), and whether the experimental design is within-subject (participants play in

more than one experimental group) or within-group (groups play in more than one experi-

mental condition). Further, each experiment can have multiple treatment conditions.

Since we rely on experimental data, our tests of the main hypotheses are causal. However,

since we execute our analyses at the group level, we cannot clearly disentangle the individual-

level mechanisms. Nevertheless, we use observational analysis techniques to provide some

descriptive and exploratory evidence as to the extent to which the assumed mechanisms play a

role.

Inequality

We first compare the level of inequality at the end of the games between control-treatment

pairs. We measure inequality with the Gini coefficient and use the Mann-Whitney test to

assess differences between the control and each treatment. However, this evidence is not

always sufficient because the experiments were not designed to test group-level hypotheses nor

to study inequality, so only on several occasions we have large enough effect sizes and enough

statistical power to provide evidence at the level of a single experiment. Instead, what we do is

to treat each of the very different control-treatment pairs as independent trials and to focus on

the direction of the effect, rather than its size and significance. This allows us to use an estab-

lished meta-analytic approach known as the sign test [46]. In essence, the sign test establishes

whether the distribution of observed effects is significantly different from the 50 negative/50

positive distribution we expect if, in reality, there was no causal effect from the particular struc-

tural condition on inequality (see Materials and methods).

Network structure. For the effect of network structure on inequality, we compare the

Gini coefficient in the least clustered networks (usually the random networks) to the other

types of networks in the experiment. In SURI11 we find that paired cliques and cliques have

significantly higher inequality than random networks (Fig 1A). We confirm the finding about

clique networks in WANG12, which uses the Prisoner’s Dilemma instead of the Public Goods

game. The results for the other types of networks and in the other experiments are not statisti-

cally significant but overall, eight of the nine control-treatment differences point in the same

direction. This indicates that more clustered networks have significantly higher inequality

(Binomial test, 1-sided p = 0.020).

Network fluidity. For the effect of network fluidity, we compare the Gini coefficients in

fixed networks to randomly rewired, or shuffled, networks (Fig 1B) and to strategically

updated networks (Fig 1C). As expected, fixed networks have higher inequality than shuffled
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Table 1. Description of the experiments used in the analyses.

Exp Game Ng Sizeg Ni k T Network Fluid Reput Punish

Network Structure

CASS07 PD: 4pC, 0, 5pC, pD 11 18 72 �4 78–84 ran,sw,cyc fix >1 no

KIRC07a PD: 5C, 0, 4 + 5C, 4 11 8–20 168 4 80 cyc,cliq fix 0 no

KIRC07b PD: 5C, 0, 4 + 5C, 4 11 8–20 190 4 80 cyc,cliq fix 1 no

SURI11 PG: 10 − ci + 0.4hcji 30 24 109 5 10 ran,sw,cyc,pcliq,cliq fix 1 no

WANG12 PD: 4C, aD, 7C, bD 10 24 108 5 12 ran,cliq fix 5 no

Network Fluidity

GRAC12a PD: 7C, 0, 10C, 0 2/1 625 625 4 51 lat shuf,fix 1 no

GRAC12b PD: 7C, 0, 10C, 0 2/1 604 604 2–16 58 sf shuf,fix 1 no

GRUJ10 PD: 7C, 0, 10C, 0 3/1 169 169 8 47–60 lat shuf,fix 1 no

RAND14a PD: 40C − 20, −20, 40C, 0 8 15–34 210 2 15 cyc shuf,fix 1 no

RAND14b PD: 40C − 20, −20, 40C, 0 8 15–34 193 2 15 cyc shuf,fix 1 no

RAND14c PD: 60C − 40, −40, 40C, 0 8 15–34 210 4 15 cyc shuf,fix 1 no

TRAU10 PD: 0.3C, 0, 0.4C, 0.1D 25 16 400 4 25 lat shuf,fix 1 no

PAGE05a PG: 10 − ci + 0.4 ∑ cj 8 16 128 3 20 cliq fix,strat avg no

PAGE05b PG: 10 − ci + 0.4 ∑ cj 8 16 128 3 20 cliq fix,strat avg yes

WANG12a PD: 4C, aD, 7C, bD 43 24 108 (5) 12 (ran) fix,strat 5 no

WANG12b PD: 4C, aD, 7C, bD 41 24 108 (5) 12 (cliq) fix,strat 5 no

Reputation Tracking

BOLT05a HG: −0.25, 1.25 6 16 96 1 14 pair shuf 0,1,1+1 no

BOLT05b HG: −0.75, 1.25 6 16 96 1 14 pair shuf 0,1,1+1 no

CUES15 PD: 7C, 0, 10C, 0 22/11 17–25 243 (4) 25 cyc strat 0,1,3,5 no

KAME17a PG: 10 − ci + 0.65 ∑ cj 12 10 120 1 40 pair strat 0,50%,100% no

KAME17b PG: 10 − ci + 0.85 ∑ cj 13 10 130 1 40 pair strat 0,50%,100% no

KIRC07a PD: 5C, 0, 4 + 5C, 4 9 8–20 158 4 80 cyc fix 0,1 no

KIRC07b PD: 5C, 0, 4 + 5C, 4 6 8–20 95 4 80 cliq fix 0,1 no

KIRC07c PD: 5C, 0, 4 + 5C, 4 7 8–20 105 4 80 lcliq fix 0,1 no

SEIN06 HG: −150, 250 8 14 112 1 >90 pair shuf 1,6 no

Punishment Institutions

CASA09 PG: 20 − ci + 0.4 ∑ cj 24/12 20 240 4 10 cliq shuf 0 no,yes,seq,cons

DREB08a PD: 1, −2, 2, 0 2 �26 58 1 71 pair shuf 1 no,yes

DREB08b PD: 1, −2, 4, 0 2 �26 46 1 87 pair shuf 1 no,yes

FEHR02 PG: 20 − ci + 0.4 ∑ cj 20/10 24 236 3 6 cliq shuf 0 no,yes

NIKI08 PG: 20 − ci + 0.4 ∑ cj 12/8 12 96 3 10 cliq shuf 1 no,yes

OGOR09 PG: 20 − ci + 0.5 ∑ cj 10/6 20–24 136 3 6 cliq shuf 0 no,yes,solo

PAGE05a PG: 10 − ci + 0.4 ∑ cj 8 16 128 4 20 cliq fix avg no,yes

PAGE05b PG: 10 − ci + 0.4 ∑ cj 8 16 128 4 20 cliq strat avg no,yes

The games played in the experiments are Prisoner’s Dilemma (PD), Public Good game (PG), and helping game (HG); payoffs are shown for CC, CD, DC, DD for

Prisoner’s Dilemma and for C, D for helping game, where pC (pD) and C (D) are, respectively, the proportion and the number of neighbors who cooperate (defect) and ci

(cj) is the amount contributed by the player (the player’s partners). Ng = number of experimental groups, with / separating the number of group observations from the

number of unique groups for experiments with within-group design, Sizeg = group size, Ni = number of unique participants, k = number of partners, T = number of

periods. Network refers to network structure (ran = random, sw = small world, cyc = cycle, cliq = cliques, pcliq = paired cliques, lcliq = large cliques, lat = lattice,

sf = scale free, pair = pairs). Fluid refers to network fluidity (fix = fixed, shuf = randomly rewired, strat = strategically rewired). Reput refers to reputation tracking with

the number (percentage) indicating the number (percentage) of partner’s past actions that is observed and avg indicating that only average behavior is observed; 1 + 1

refers to observing partner’s action in last period, as well as the action of the partner’s partner from the period before that. Punish refers to punishment institutions

(no = no punishment, yes = players can punish partners, seq = players punish partners sequentially, cons = a player is punished if at least two partners agree to punish

them, solo = one player is randomly selected each period to punish).

https://doi.org/10.1371/journal.pone.0200965.t001
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Fig 1. The effects on inequality from (A) network structure, (B, C) network fluidity, (D) reputation tracking, and (E) punishment institutions. The

figure shows boxplots for each experimental condition and results from the Mann-Whitney tests comparing each treatment condition to the control

condition within each experiment (Mann-Whitney U on top and p-value on bottom, with asterisk if p< 0.05). For each experiment, the first bar shown in the

figure is the control condition and each test result compares this control condition to the treatment conditions represented by each next bar in order.
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networks (Binomial test, 1-sided p = 0.008). The direction of the effect is the same in all seven

experiments, although it is significant only in two of the RAND14 setups. Fixed networks also

appear to have higher inequality than strategically updated networks. The results are signifi-

cant in the PAGE05 experiment with punishment and in the WANG12 experiments starting

from clique networks and varying the level of rewiring. These results were also found in

another published study that investigated the effect of strategic network updating on inequality

[47]. Based on the data we analyze here, 14 out of the 20 control-treatment differences show

higher inequality for fixed networks compared to networks with strategic updating. The sign

test is marginally not significant at the 0.05 level (Binomial test, 1-sided p = 0.058). However,

adding the results from [47], for which we did not have raw data, gives us 22 out of 28 and

stronger statistical evidence overall (Binomial test, 1-sided p = 0.002).

Reputation tracking. For the effect of reputation, we compare any conditions with visible

reputation to the condition without. We expected that reputation tracking increases inequality

but the effects in the different experiments appear to go in both directions (Fig 1D). We

observe significantly higher inequality in groups with reputation compared to without in

CUES15 and KIRC07 but exactly the opposite result in SEIN06, while in BOLT05 and

KAME17 the effects are in both directions and non-significant. Overall, only nine out of the 15

differences point in the expected direction (Binomial test, 1-sided p = 0.304). This suggests

that either there is no effect of reputation, or the effect of reputation is complex and crucially

depends on some of the other structural conditions.

Punishment institutions. Finally, groups with punishment have higher levels of inequal-

ity in ten out of the 11 control-treatment comparisons with the effects being significant in the

CASA09 and OGOR09 experiments (Fig 1D). In other words, the existence of punishment

institutions significantly increases inequality (Binomial test, 1-sided p = 0.006).

Mechanisms

We next analyze the individual behavior and the network dynamics in the experiments to

investigate possible explanations for the observed higher levels of inequality. Unfortunately,

we do not have individual and network data for all of the experiments, so we conduct our anal-

yses on a smaller subset. We use observational data techniques to provide suggestive evidence

on the different behavioral mechanisms behind the main effects that we presupposed.

First, we investigate the extent to which the emergence of cooperative clusters could explain

the higher inequality we observe in fixed and clustered networks. We measure the clustering of

cooperators with the network assortativity by cooperativeness in the final period. We find that

assortativity by cooperativeness is significantly higher than expected for the most clustered

fixed networks in SURI11 and CASS07 (S1A Fig), which also show higher inequality than ran-

dom networks (Fig 1A). Furthermore, in SURI11 we also find that cycles and paired cliques

have significantly higher assortativity by cooperativeness than random networks. Although

these effects do not explain all of the results, they suggest that the emergence of cooperative

clusters is a plausible pathway via which clustered networks increase inequality, at least in

some cases.

Exploitation, whereby individuals get tempted to defect in fixed networks since the cooper-

ators around them cannot move away, could be another pathway for inequality to increase.

We find suggestive evidence for this in S1B and S2B Figs, which show that in many cases fixed

networks have lower network assortativity by cooperativeness and wealth than randomly

Explanation of the experimental conditions can be found in Table 1. In addition, for GRUJ10, “fixed�” refers to a second fixed condition played by the same

group and for WANG12, “strategic a/b” means that participants can make up to a partner updates in each of b partner-update periods of the game.

https://doi.org/10.1371/journal.pone.0200965.g001
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rewired or strategic networks. Additionally, we see that in fixed networks both defectors and

cooperators could achieve the highest wealth (S3–S5 Figs). This suggests that, when networks

are fixed, inequality could increase due to both the clustering of the cooperators and the

exploitation of these clusters by defectors.

To investigate whether punishment institutions increase inequality because the poor pay

for punishment disproportionately more than the wealthy, we correlate the tendency to use

punishment with wealth and cooperativeness. In alignment with [32], we find overwhelming

evidence that this is the case: in all 11 punishment treatments, wealth and the use of punish-

ment are negatively correlated (S6 Fig; Binomial test, 1-sided p = 0.000). This finding cannot

be explained with cooperativeness, as we actually find no systematic relation between being

cooperative and using punishment (S7 Fig; Binomial test, 1-sided p = 0.274). Of course, with

the data we have we cannot establish whether the wealthy do not punish or whether those who

do not punish become wealthy.

Discussion

We analyzed data from a number of experiments on repeated cooperation games in networks

to study how network structure, network fluidity, reputation tracking, and punishment institu-

tions affect inequality in social groups. The results confirm that there is more inequality in

clustered networks compared to random networks, fixed networks compared to randomly

rewired networks, and groups with punishment institutions compared to groups without. We

also find convincing evidence that fixed networks have higher inequality than networks with

strategic updating. These conditions give rise to inequality because they affect either the struc-

ture of interactions or the behavior of individuals in a way that differences between the wealthy

and the poor grow. Fixed networks allow exploitation of the poor by the wealthy (similarly to

the dynamic discovered in [23]), clustered fixed networks foster segregation between the poor

and the wealthy, and costly punishment imposes a disproportionate burden on the poor, mak-

ing them poorer.

Surprisingly, we do not find evidence that inequality increases when reputation is visible.

Given that the experiments we analyze differ on many dimensions, we are unwilling to take

this as a proof that reputation has no effect on inequality; rather, we believe that reputation

needs to interact with another structural condition to play a role. In the experiments that we

find to confirm the expected effect, interaction is situated in a network (whether fixed or stra-

tegically updated) and not in pairs that get re-matched in each period. This would suggest that

the effect of reputation is perhaps only enacted in more stable networks and perhaps even

more so when exclusion is possible. Future research should investigate these ideas.

The findings from our study should be interpreted within the confines of our data-driven

approach. The experiments we analyzed were not designed to study inequality and they were

rarely large enough to test group-level hypotheses. However, although only a handful of the

individual experiments may be convincing by themselves, the fact that we found the same

effects across so many different experimental setups provides strong evidence for the hypothe-

sized causes of inequality. Nevertheless, as is often the case with scientific research, our study is

not the definitive answer to the question of what causes inequality to emerge in social groups.

Ideally, our findings will be replicated and extended using carefully designed large-group

experiments, as well as validated with observational data from different social contexts. Fur-

ther, future research should develop experiments to test a more complete set of structural con-

ditions and mechanisms that cause inequality. For example, it is worth mentioning that the

levels of inequality we observe in our experiments are relatively low. Compared to national-

level wealth inequality, the highest Gini coefficient in our data of 0.34 is well below what we
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observe in any country [4]. This is to be expected because the experiments we analyzed did not

allow for the investment of wealth, as in [48]. Thus, one possible avenue for future research is

to experimentally test how different investment rules and opportunities affect inequality in

social groups.

The significance of our findings depends on the extent to which one considers inequality to

be an undesirable social problem. One argument against worrying about inequality is that it

might fairly reflect differences between individuals. In the context of network games, perhaps

inequality is not so bad if cooperators are rewarded, while defectors struggle. Unfortunately, as

we saw above, this is not always the case (S3–S5 Figs). Another argument for maintaining

inequality is that inequality increases the collective wealth and well-being is thus essential for

prosperity. Again, our data show poor support for this argument: there is no evidence for a sys-

tematic relationship between inequality and average wealth (S8 and S9 Figs; Binomial test,

1-sided p = 0.243). In other words, slightly different incentives, information, or rules may not

affect the collective wealth but may significantly skew how it is distributed in the group, irrespec-

tive of common-sense ideas of fairness; inequality in social groups can indeed be problematic.

Overall, our study suggests that highly clustered fixed networks where punishment is possi-

ble have higher inequality than more unstable communities. This finding has an interesting

parallel to previous research showing that sedentary agrarian communities have higher

inequality than nomadic communities [49, 50]. This research suggested that inequality is

higher in agrarian communities due to the possibility to accumulate wealth and transmit it to

subsequent generations. Our study points to additional structural conditions that could

explain the difference: agrarian communities are likely to have higher inequality because they

are stable and with functioning punishment institutions. These structural characteristics

enable self-reinforcing social processes that create and perpetuate divisions between the

wealthy and the poor. Our findings also provide insights for managing inequality in organiza-

tions such as companies, universities, hospitals, and online communities around user-gener-

ated content sites and peer-to-peer markets. In such social settings, more dynamic and less

locally clustered interaction structures that do not encourage costly mutual sanctioning could

enable a more even distribution of resources and gains.

Materials and methods

Data

To identify suitable data, we conducted online searches on the Scopus database and the Google

Scholar search engine. Our searches looked for articles with the words “cooperation”, “game”,

and “experiment”, together with one of “punishment”, “reputation”, or “network”, in their title

and abstract. When we identified a relevant study, we then also investigated the articles cited

by it. In general, we restricted our interest to experiments in groups of at least 10 (although we

did not exclude the smaller eight-person groups in [31] for our analyses). We thus identified

21 relevant studies and contacted the corresponding authors. In the end, we obtained data for

18 of them.

Measures

We measure wealth with the amount of points the player has amassed at the end of the game.

We then use the Gini coefficient to measure inequality in wealth. A Gini coefficient of 0 indi-

cates perfect equality where all group members have equal resources, while 1 indicates perfect

inequality where a single individual commands all of the resources. The Gini coefficient is the

most common measure of inequality but nevertheless has some limitations. In particular, it is

sensitive to changes in inequality among those in the middle of the distribution and not so
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much to those at the lower end of the distribution [51]. We replicated our analyses using

another measure, the Theil index, and the results are qualitatively similar.

To measure cooperativeness, we calculate the mean number (or amount) of contributions

over all periods. To measure the tendency for clustering, we calculate the network assortativity

by cooperativeness and wealth in the final period. For continuous measures, which is the case

for cooperativeness and wealth here, network assortativity is essentially the correlation in the

measure for all connected pairs [52].

Statistical tests

To test differences between experimental conditions for inequality, we use the Mann-Whitney

U test. This is a non-parametric test that does not assume a normal distribution for the residu-

als. It essentially checks against the null hypothesis that a randomly selected value from one

condition would be equally likely to be less than or greater than a randomly selected value

from the other condition. For the experiments that have a within-group design, whereby

groups interact in more than one experimental condition, we considered using the Wilcoxon

signed rank sum test but unfortunately, the sample sizes were always too small to have reliable

results. Consequently, we only report the Mann-Whitney U in Fig 1. This limitation is not

severe because our main results are based on the meta-analysis of the direction of all control-

treatment differences, rather than the precise test of any individual one.

To test the statistical significance of the observed differences between control and treatment

across all relevant experiments, we use a meta-analysis technique known as the sign test [46].

This technique allows us to focus on whether the effect exists, rather than to accurately mea-

sure its size. We first count the number of positive and negative effects, regardless of whether

they are statistically significant. We then conduct the Binomial test, testing against the null

hypothesis that there is no effect in reality and thus negative and positive effects are equally

likely to occur by chance. This approach is somewhat limited because it does not take into

account the amount of evidence: neither the effect magnitudes nor the sample sizes. Yet, it is

best suited for the research question and experimental data we have. First, although meta anal-

yses typically aim to estimate the effect size, effect sizes in controlled social experiments are

not very meaningful as they are highly sensitive to the experimental design and, in particular,

aspects such as the framing of the decision situation, the monetary incentives, the experience

of the participant pool, and the experimenter demand effect [53]. In relying on experimental

data, our major objective here is to prove a causal relationship and the sign test is perfectly suf-

ficient for that. Second, pooling effect sizes from studies with different designs and research

populations is usually problematic in meta analysis but for us, the variation in our data sources

is a boon, not a drawback. Experiments are often criticized for their lack of replicability and

validity, so being able to confirm the same effect repeatedly in completely different experimen-

tal settings only reaffirms the robustness of the result.

To test the significance of the observed network assortativity by cooperativeness and wealth,

we need a suitable baseline. The reason is that network assortativity depends both on the

connectivity patterns and on the distribution of values of interest. For the baseline, we take

the actual final structure in the networks, randomly shuffle the nodes’ cooperativeness and

wealth values, and estimate the new assortativity. We repeat this 2000 times, which gives us an

expected distribution against which we can estimate the z-score for the empirically observed

value. The z-score is estimated using Z = (Xobs − μ(Xran))/σ(Xran), where Xobs is the assortativity

in the observed network, Xran is the network assortativity in the randomly shuffled network, μ
is the mean, and σ is the standard deviation. If the z-score is above 1.96 (below −1.96), it

implies that the chance to obtain the high (low) network assortativity we actually observe
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under the assumption that the network formation processes are random is less than 5%.

Regardless of whether the network assortativity by cooperation and wealth is significantly dif-

ferent than what we would expect by chance, we can also test whether it is significantly differ-

ent between experimental conditions. As with inequality, we use Mann-Whitney test to do this

(S1 and S2 Figs).

To estimate the correlations between individual wealth and cooperativeness, wealth and the

use of punishment, cooperativeness and the use of punishment, as well as group inequality and

wealth (S3–S9 Figs), we use ordinary least-square regressions with standard errors accounting

for clustering by experimental groups.

Supporting information

S1 Fig. Z-scores for network assortativity by cooperativeness for fixed and strategically

rewired networks from a subset of the experiments on (A) network structure, (B) network

fluidity, and (C) reputation tracking. The z-score shows to what extent the observed assorta-

tivity by cooperativeness for each experimental condition deviates from what we expect to see

in a network with the same structure but with cooperativeness randomly assigned to nodes.

The figure shows the z-score distribution and results from the Mann-Whitney test comparing

each treatment condition to the control condition (Mann-Whitney U on top and p-value on

bottom, with asterisk if p< 0.05). The grey band spans from Z = −1.96 to Z = 1.96, equivalent

to p� 0.05. For each experiment, the first bar shown in the figure is the control condition and

each test result compares this control condition to the treatment conditions represented by

each next bar in order.

(PDF)

S2 Fig. Z-scores for network assortativity by wealth for fixed and strategically rewired net-

works from a subset of the experiments on (A) network structure, (B) network fluidity,

and (C) reputation tracking. The z-score shows to what extent the observed assortativity by

wealth for each experimental condition deviates from what we expect to see in a network with

the same structure but with wealth randomly assigned to nodes. The figure shows the z-score

distribution and results from the Mann-Whitney test comparing each treatment condition to

the control condition (Mann-Whitney U on top and p-value on bottom, with asterisk if p<
0.05). The grey band spans from Z = −1.96 to Z = 1.96, equivalent to p� 0.05. For each experi-

ment, the first bar shown in the figure is the control condition and each test result compares

this control condition to the treatment conditions represented by each next bar in order.

(PDF)

S3 Fig. The relationship between individual cooperativeness and individual wealth in the

conditions from the experiments on network structure. In each plot, values for individuals

in the same interaction group are shown with the same symbol. The figure also shows fitted

curves and estimates from ordinary least-square regressions (standardized regression coeffi-

cient for linear term on top and quadratic term on bottom, including p-values in brackets,

with asterisk if p< 0.05). The standard errors in the regression models are estimated with cor-

rection for clustering by experimental group.

(PDF)

S4 Fig. The relationship between individual cooperativeness and individual wealth in the

conditions from the experiments on network fluidity. In each plot, values for individuals in

the same interaction group are shown with the same symbol. The figure also shows fitted

curves and estimates from ordinary least-square regressions (standardized regression coeffi-

cient for linear term on top and quadratic term on bottom, including p-values in brackets,
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with asterisk if p< 0.05). The standard errors in the regression models are estimated with cor-

rection for clustering by experimental group.

(PDF)

S5 Fig. The relationship between individual cooperativeness and individual wealth in the

conditions from the experiments on network fluidity. In each plot, values for individuals in

the same interaction group are shown with the same symbol. The figure also shows fitted

curves and estimates from ordinary least-square regressions (standardized regression coeffi-

cient for linear term on top and quadratic term on bottom, including p-values in brackets,

with asterisk if p< 0.05). The standard errors in the regression models are estimated with cor-

rection for clustering by experimental group.

(PDF)

S6 Fig. The relationship between individual use of punishment and individual wealth in

the treatment conditions with punishment. In each plot, values for individuals in the same

interaction group are shown with the same symbol. The figure also shows fitted lines and esti-

mates from ordinary least-square regressions (standardized regression coefficient, equivalent

to the Pearson correlation, on top and p-value on bottom, with asterisk if p< 0.05). The stan-

dard errors in the regression models are estimated with correction for clustering by experi-

mental group.

(PDF)

S7 Fig. The relationship between individual use of punishment and individual cooperative-

ness in the treatment conditions with punishment. In each plot, values for individuals in the

same interaction group are shown with the same symbol. The figure also shows fitted lines and

estimates from ordinary least-square regressions (standardized regression coefficient, equiva-

lent to the Pearson correlation, on top and p-value on bottom, with asterisk if p< 0.05). The

standard errors in the regression models are estimated with correction for clustering by experi-

mental group.

(PDF)

S8 Fig. The relationship between group average wealth and group inequality in the experi-

ments on network structure and network fluidity. The figure shows fitted lines and estimates

from ordinary least-square regressions (standardized regression coefficient, equivalent to the

Pearson correlation, on top and p-value on bottom, with asterisk if p< 0.05). The standard

errors in the regression models are estimated with correction for clustering by experimental

group. Colors correspond to experimental conditions as in Fig 1A–1C.

(PDF)

S9 Fig. The relationship between group average wealth and group inequality in the experi-

ments on reputation and punishment. The figure shows fitted lines and estimates from ordi-

nary least-square regressions (standardized regression coefficient, equivalent to the Pearson

correlation, on top and p-value on bottom, with asterisk if p< 0.05). The standard errors in

the regression models are estimated with correction for clustering by experimental group. Col-

ors correspond to experimental conditions as in Fig 1D and 1E.

(PDF)
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