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WEAK TAIL CONDITIONS FOR LOCAL MARTINGALES∗

By Hardy Hulley‡ and Johannes Ruf§,†

University of Technology Sydney‡ and London School of Economics and
Political Science§

The following conditions are necessary and jointly sufficient for
an arbitrary càdlàg local martingale to be a uniformly integrable
martingale: (A) The weak tail of the supremum of its modulus is
zero; (B) its jumps at the first-exit times from compact intervals
converge to zero in L1 on the events that those times are finite; and
(C) its almost sure limit is an integrable random variable.

1. Introduction. Let (Ω,F ,F,P) be a filtered probability space with a
right-continuous filtration F = (Ft)t≥0, and let S and Sf denote the families
of stopping times and finite-valued stopping times on (Ω,F ,F,P). Unless
indicated otherwise, stochastic processes are defined on (Ω,F ,F,P) and are
adapted to F, and all stochastic processes are assumed to be real-valued and
càdlàg. The family of local martingales is denoted by Mloc, while M denotes
the family of uniformly integrable martingales.1 Similarly, Mc,loc and Mc

denote the families of continuous local martingales and continuous uniformly
integrable martingales, respectively. The strict inclusion M ( Mloc gives rise
to the following problem.

Problem 1. Given M ∈ Mloc, formulate necessary and sufficient con-
ditions for determining whether M ∈M .

Since M ∈ Mloc is a martingale if and only if M t := Mt∧ · ∈ M , for all
t ≥ 0, any solution to Problem 1 implicitly solves the following problem as
well.

∗Dedicated to the memory of Nicola Bruti-Liberati.
†Supported by the Bruti-Liberati Visiting Fellowship Fund.
MSC 2010 subject classifications: Primary 60G44
Keywords and phrases: Local martingales, uniformly integrable local martingales, weak

tail of the supremum
1Our notion of local martingales corresponds with that of Jacod and Shiryaev (2003,

Definitions I.1.33 and I.1.45), which implies that E(|M0|) <∞, for all M ∈Mloc. Several
authors, including Protter (2005, Section I.6) and Revuz and Yor (1999, Definition IV.1.5),
allow for the possibility that the initial component of a local martingale may be non-
integrable. This additional generality would add a technical overhead to the results that
follow, without offering any compensating advantages.
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2 H. HULLEY AND J. RUF

Problem 2. Given M ∈ Mloc, formulate necessary and sufficient con-
ditions for determining whether M is a martingale.

Problems 1 and 2 have been the focus of a sustained research effort for over
fifty years. Girsanov (1960) set the ball rolling, by enquiring about conditions
for determining whether an exponential local martingale E (L) ∈ Mloc is a
(uniformly integrable) martingale, for any given L ∈ Mloc. This restricted
version of the problems above derives its importance from the widespread use
of equivalent changes of probability measure in Mathematical Finance and
Stochastic Control Theory, where exponential martingales play the role of
density processes. Novikov (1972) famously demonstrated that E (L) ∈Mc

if
E
Ä
e

1
2
〈L〉∞

ä
<∞,

for all L ∈ Mc,loc, where 〈L〉∞ := 〈L〉∞−, while Kazamaki (1977) demon-
strated that E (L) ∈ Mc if (eLt/2)t≥0 is a uniformly integrable submartin-
gale. Alternative sufficient (and sometimes also necessary) characterisations
of (uniformly integrable) exponential martingales were obtained by Lépingle
and Mémin (1978a,b), Okada (1982), Kazamaki and Sekiguchi (1983), En-
gelbert and Schmidt (1984), Stummer (1993), Kallsen and Shiryaev (2002),
Cheridito et al. (2005), Protter and Shimbo (2008), Blei and Engelbert
(2009), Mayerhofer et al. (2011), Mijatović and Urusov (2012), Ruf (2013b),
Larsson and Ruf (2014) and Blanchet and Ruf (2016).

Delbaen and Schachermayer (1995) and Sin (1998) reinforced the impor-
tance of Problem 2 for Mathematical Finance, by giving examples of models
where discounted security prices are strict local martingales under a risk-
neutral probability measure. The observation that fundamental no-arbitrage
relationships, such as put-call parity, are violated in such models attracted
a lot of interest, with models of this type subsequently interpreted as de-
scriptions of asset price bubbles. Prominent contributions to this literature
include Cox and Hobson (2005), Heston et al. (2007), Jarrow et al. (2007,
2010), Hulley (2010), Protter (2013), Ruf (2013a) and Carr et al. (2014).
In this setting, a solution to Problem 2 allows one to distinguish between
bubbles and non-bubbles.

Rao (1969) initiated an interesting approach to Problem 1 that focuses
on the weak tails of the suprema of the moduli of local martingales, as well
as the weak tails of their quadratic variations. He considered a continu-
ous martingale M = (Mt)t≥0 satisfying supt≥0 E(|Mt|) < ∞, in which case
Doob’s martingale convergence theorem ensures that the almost sure limit
M∞ := M∞− exists and satisfies E(|M∞|) <∞. Let

(1.1) τλ := inf{t ≥ 0 | |Mt| > λ}
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denote the first exit-time from the compact interval [−λ, λ], for all λ ≥ 0.
Since M τλ := Mτλ∧ · is a bounded martingale, and hence also a uniformly
integrable martingale, for all λ ≥ 0, it follows that

E(M τλ
0 ) = E(M τλ

∞ ) = λP

Ç
sup
t≥0
|Mt| > λ

å
+ E

(
1{supt≥0 |Mt|≤λ}M∞

)
.

Finally, an application of the dominated convergence theorem yields

lim
λ↑∞

λP

Ç
sup
t≥0
|Mt| > λ

å
= E(M0)− E(M∞),

whence M ∈ M if and only if limλ↑∞ λP
Ä
supt≥0 |Mt| > λ

ä
= 0. Azema

et al. (1980) derived this result by means of a similar argument. In addi-

tion, they showed that M ∈ M if and only if limλ↑∞ λP
Ä
〈M〉1/2∞ ≥ λ

ä
= 0,

where 〈M〉∞ := 〈M〉∞−. Novikov (1981) independently obtained the same
characterisations of uniformly integrable martingales, in the context of first-
passage problems. Elworthy et al. (1997, 1999) and Takaoka (1999) extended
the results above, to obtain weak tail characterisations of uniformly inte-
grable martingales within the class of continuous local martingales, provided
the processes in question satisfy certain integrability requirements. Further
generalisations were obtained by Novikov (1997) and Liptser and Novikov
(2006), while Kaji (2007, 2008, 2009) derived weak tail characterisations of
uniformly integrable martingales within the class of locally square-integrable
martingales. Once again, the processes must satisfy a variety of additional
integrability conditions in order for the results to be applicable.

We contribute to the literature surveyed above by presenting three con-
ditions that are shown to be necessary and jointly sufficient for determining
whether an arbitrary local martingale is a uniformly integrable martingale.
As opposed to previous characterisations of uniformly integrable martin-
gales, which apply only to specific classes of local martingales, our condi-
tions are universally applicable. As such, they represent the culmination of
a research effort instigated by Girsanov (1960). In detail, we provide the
following solution for Problem 1.

Theorem 1.1. Let M ∈Mloc. Then M ∈M if and only if the following
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three conditions hold simultaneously:

lim
λ↑∞

λP

Ç
sup
t≥0
|Mt| > λ

å
= 0;(A)

lim
λ↑∞

E
Ä
1{τλ<∞}|∆Mτλ |

ä
= 0; and(B)

E

Ç
lim
t↑∞
|Mt|

å
<∞,(C)

where ∆M := M −M− is the jump process associated with M .

Condition (A) generalises Rao’s (1969) weak tail condition. Several stud-
ies recognise that the jumps of a local martingale M ∈ Mloc must be con-
strained in some way, in order for it to be a uniformly integrable martingale
(see e.g. Liptser and Novikov 2006 and Kaji 2008). Condition (B) does this
by controlling jumps that increase |M |. Together, Conditions (A) and (B)
ensure that M∞ := M∞− exists and satisfies M∞ ∈ R (see Lemma 2.2).
When they are combined with Condition (C), it follows that E(|M∞|) <∞.
Ruf (2015) showed that M ∈ M if and only if E(Mτ ) = E(M0), for all
τ ∈ S , and Condition (C) holds. In the presence of Condition (C), the for-
mer criterion (which is too abstract to verify in practice) is thus equivalent
to Conditions (A) and (B) together.

As mentioned previously, a solution for Problem 1 also provides a solu-
tion for Problem 2, since a local martingale is a martingale if and only if
it is a uniformly integrable martingale when stopped at arbitrary determin-
istic times. Based on this observation, we obtain the following solution for
Problem 2.

Corollary 1.2. Let M ∈Mloc. Then M is a martingale if and only if
the following three conditions hold simultaneously:

lim
λ↑∞

λP

Ç
sup
s∈[0,t]

|Ms| > λ

å
= 0;(A′)

lim
λ↑∞

E
Ä
1{τλ≤t}|∆Mτλ |

ä
= 0; and(B′)

E(|Mt|) <∞,(C′)

for all t ≥ 0.

The remainder of the article is structured as follows. We prove Theo-
rem 1.1 in Section 2, after which Section 3 demonstrates the minimality
of Conditions (A)–(C), by presenting three examples of local martingales
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that are not uniformly integrable martingales due to the selective failure of
precisely one of those conditions.

2. The Proof of Theorem 1.1. In the lead-up to the proof of Theo-
rem 1.1, we first explore some of the consequences of Conditions (A)–(C). To
begin with, recall that a continuous local martingale that is stopped when
first it leaves a compact interval is a bounded local martingale, and hence
also a uniformly integrable martingale. The following lemma generalises this
observation.

Lemma 2.1. Let M ∈Mloc satisfy Condition (B). Then M τλ ∈M , for
all λ ≥ 0.

Proof. Condition (B) guarantees the existence of a λ∗ ≥ 0, such that
E
Ä
1{τλ<∞}|∆Mτλ |

ä
<∞, for all λ ≥ λ∗, from which it follows that

E

Ç
sup
t≥0
|M τλ

t |
å
≤ E(|M0|) + λ+ E

Ä
1{τλ<∞}|∆Mτλ |

ä
<∞,

for all λ ≥ λ∗. Given λ ≥ λ∗, an application of the dominated convergence
theorem then yields

lim
K↑∞

sup
σ∈Sf

E

Ç
1{|Mτλ

σ |≥K}|M
τλ
σ |
å
≤ lim

K↑∞
E

Ç
1{supt≥0|Mτλ

t |≥K} sup
t≥0
|M τλ

t |
å

= 0,

since |M τλ
σ | ≤ supt≥0 |M

τλ
t |, for all σ ∈ Sf. In other words, M τλ is a local

martingale belonging to class (D) (see e.g. Jacod and Shiryaev, 2003, Defi-
nition I.1.46), and is thus a uniformly integrable martingale (see e.g. Jacod
and Shiryaev, 2003, Proposition I.1.47). On the other hand, if λ ∈ [0, λ∗],
then τλ ≤ τλ∗ , whence M τλ = M τλ∗∧τλ ∈ M , since M τλ∗ ∈ M and the
family of uniformly integrable martingales is stable under stopping.

Next, we establish two useful facts about local martingales for which
Conditions (A) and (B) hold, one of which is that such processes possess
real-valued almost-sure limits.

Lemma 2.2. Let M ∈Mloc satisfy Conditions (A) and (B). Then

lim
λ↑∞

E
Ä
1{τλ<∞}|M

τλ
∞ |
ä

= 0.

Moreover, the almost sure limit M∞ := M∞− exists and satisfies M∞ ∈ R.
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Proof. Note that the almost sure limit M τλ∞ := M τλ
∞− exists and satisfies

M τλ∞ ∈ R, for all λ ≥ 0, as a result of Lemma 2.1. Now observe that

lim
λ↑∞

E
Ä
1{τλ<∞}|M

τλ
∞ |
ä
≤ lim

λ↑∞
E
Ä
1{τλ<∞}(|M0|+ λ+ |∆Mτλ |)

ä
≤ lim

λ↑∞
E
Ä
1{τλ<∞}|M0|

ä
+ lim
λ↑∞

λP

Ç
sup
t≥0
|Mt| > λ

å
+ lim
λ↑∞

E
Ä
1{τλ<∞}|∆Mτλ |

ä
= 0,

by virtue of the dominated convergence theorem and a direct application of
Conditions (A) and (B). Given λ ≥ 0, it also follows that

1{τλ=∞}M∞− = 1{τλ=∞}M
τλ
∞− = 1{τλ=∞}M

τλ
∞ ∈ R,

whence {M∞− ∈ R} ⊇ {τλ =∞}. Consequently,

P(M∞− ∈ R) ≥ lim
λ↑∞

P(τλ =∞) = 1,

since Condition (A) implies that limλ↑∞ P(τλ <∞) = 0. That is to say, the
almost sure limit M∞ := M∞− exists and satisfies M∞ ∈ R.

Finally, we establish a convergence result that will be used in the proof
of Theorem 1.1 below to show that Conditions (A)–(C) are sufficient for a
local martingale to be a uniformly integrable martingale.

Lemma 2.3. Let M ∈Mloc satisfy Conditions (A)–(C). Then the almost
sure limit M∞ := M∞− exists and

lim
λ↑∞

E(|M τλ
∞ −M∞|) = 0.

Proof. An application of the dominated convergence theorem gives

E
(

lim
λ↑∞

1{τλ<∞}
)

= lim
λ↑∞

P(τλ <∞) = 0,

by virtue of Condition (A), from which it follows that limλ↑∞ 1{τλ<∞} = 0.
Another application of the dominated convergence theorem then yields

lim
λ↑∞

E
Ä
1{τλ<∞}|M∞|

ä
= 0,

since Lemma 2.2 and Condition (C) ensure that M∞ := M∞− exists and
satisfies E(|M∞|) <∞. Finally, we observe that

lim
λ↑∞

E(|M τλ
∞ −M∞|) = lim

λ↑∞
E
Ä
1{τλ<∞}|M

τλ
∞ −M∞|

ä
≤ lim

λ↑∞
E
Ä
1{τλ<∞}|M

τλ
∞ |
ä

+ lim
λ↑∞

E
Ä
1{τλ<∞}|M∞|

ä
= 0,

by virtue of Lemma 2.2 and the previous argument.
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We now prove Theorem 1.1. The first part of the proof shows that every
uniformly integrable martingale satisfies Conditions (A)–(C), while the sec-
ond part uses Lemma 2.3 to demonstrate that any local martingale satisfying
those three conditions is a uniformly integrable martingale.

Proof of Theorem 1.1. (⇒) Suppose M ∈ M , in which case Condi-
tion (C) holds immediately, since the almost sure limit M∞ := M∞− exists
and satisfies E(|M∞|) < ∞. Moreover, |M | is a uniformly integrable sub-
martingale, which implies that

E(|M∞|) ≥ E(|Mτλ |) = E
Ä
1{τλ<∞}|Mτλ |

ä
+ E
Ä
1{τλ=∞}|M∞|

ä
≥ λP(τλ <∞) + E

Ä
1{τλ=∞}|M∞|

ä
,

(2.1)

for all λ ≥ 0. Next, by applying the monotone convergence theorem, followed
by Doob’s maximal inequalities, we obtain

E
(

lim
λ↑∞

1{τλ=∞}
)

= lim
λ↑∞

P(τλ =∞) = 1− lim
λ↑∞

P

Ç
sup
t≥0
|Mt| > λ

å
≥ 1− lim

λ↑∞

E(|M∞|)
λ

= 1,

(2.2)

from which limλ↑∞ 1{τλ=∞} = 1 follows. Combining this with (2.1) gives

lim
λ↑∞

λP

Ç
sup
t≥0
|Mt| > λ

å
= lim

λ↑∞
λP(τλ <∞)

≤ E(|M∞|)− lim
λ↑∞

E
Ä
1{τλ=∞}|M∞|

ä
= 0,

by an application of the monotone convergence theorem. In other words,
Condition (A) holds. Finally, the inequality |∆Mτλ | ≤ 2|Mτλ |, for all λ ≥ 0,
together with the fact that |M | is a uniformly integrable submartingale,
yield

lim
λ↑∞

E
Ä
1{τλ<∞}|∆Mτλ |

ä
≤ 2 lim

λ↑∞
E
Ä
1{τλ<∞}|Mτλ |

ä
≤ 2 lim

λ↑∞
E
Ä
1{τλ<∞}|M∞|

ä
= 2E

(
lim
λ↑∞

1{τλ<∞}|M∞|
)

= 0,

by virtue of the dominated convergence theorem, since (2.2) implies that
limλ↑∞ 1{τλ<∞} = 0, and E(|M∞|) < ∞. That is to say, Condition (B)
holds.
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(⇐) Suppose M ∈Mloc satisfies Conditions (A)–(C), in which case it follows
from Lemma 2.3 that the almost sure limit M∞ := M∞− exists and satisfies

lim
n↑∞

E
(∣∣∣M τλn∞ −M∞

∣∣∣) = 0,

for some increasing sequence (λn)n∈N of positive real numbers satisfying
λn ↑ ∞. Now fix t ≥ 0 and A ∈ Ft, and define

Am := A ∩ {Mt ≥ 0} ∩ {τλm > t},

for each m ∈ N. It follows that

lim
n↑∞

E
(
1Am

∣∣∣M τλn∞ −M∞
∣∣∣) = 0,

for each m ∈ N, whence

E(1AmM∞) = lim
n↑∞

E
Ä
1AmM

τλn∞
ä

= lim
n↑∞

E
Ä
1AmM

τλn
t

ä
= lim

n↑∞
E(1AmMt)

= E(1AmMt),

since M τλn ∈ M , for each n ∈ N, as a consequence of Lemma 2.1, and
1AmM

τλn
t = 1AmMt, for each n ≥ m, by the construction of Am. Combining

this with the fact that limm↑∞ τλm =∞ gives

E
Ä
1A∩{Mt≥0}M∞

ä
= lim

m↑∞
E(1AmM∞) = lim

m↑∞
E(1AmMt)

= E
Ä
1A∩{Mt≥0}Mt

ä
,

where the first equality follows from the dominated convergence theorem,
since Condition (C) implies that E(|M∞|) < ∞, while the second equality
follows from the monotone convergence theorem. A similar argument reveals
that

E
Ä
1A∩{Mt<0}M∞

ä
= E
Ä
Mt1A∩{Mt<0}

ä
.

Consequently, E(1AM∞) = E(1AMt), from which we may conclude that
M ∈M , since t ≥ 0 and A ∈ Ft were chosen arbitrarily.

3. Three Examples. In this section we construct three examples of
local martingales for which precisely one of Conditions (A)–(C) fails (a dif-
ferent one in each case), while the other two hold. In each case, Theorem 1.1
legislates that the process in question cannot be a uniformly integrable mar-
tingale. This establishes the minimality of Conditions (A)–(C).
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The first example considers a well-known family of continuous local mar-
tingales, namely the family of non-negative time-homogeneous regular dif-
fusions in natural scale. Although such processes satisfy Conditions (B) and
(C), they cannot be uniformly integrable martingales, since they do not
satisfy Condition (A).

Example 3.1 (Condition (A) fails). Let X = (Xt)t≥0 be a non-negative
time-homogeneous regular scalar diffusion in natural scale, with state-space
[0,∞) or (0,∞), depending on its behaviour at the origin. Since such a
process is continuous, it trivially satisfies Condition (B). Being in natural
scale means that the scale function for X is given by s(x) := x, for all x > 0.
This ensures that X is a non-negative Px–local martingale, for all x > 0,
and consequently also a non-negative Px–supermartingale. As a result, it
satisfies Condition (C). The fact that X is a non-negative supermartingale
imposes constraints on its behaviour at the origin. In particular, the origin
is either an absorbing boundary or a natural boundary. In the former case
the state space of X is [0,∞), while it is (0,∞) in the latter case. Either
way, we observe that

Px

Ç
sup
t≥0

Xt > λ

å
= Px(τλ <∞) = lim

l↓0
Px(τλ < τl) = lim

l↓0

s(x)− s(l)

s(λ)− s(l)
=
x

λ
,

for all x > 0 and all λ ≥ x, where Px is the probability measure under which
X0 = x.2 Consequently, we obtain

lim
λ↑∞

λPx

Ç
sup
t≥0

Xt > λ

å
= x > 0,

for all x > 0. That is to say, X is not a uniformly integrable martingale, due
to the failure of Condition (A).

Although the example above shows that non-negative time-homogeneous
diffusions in natural scale cannot satisfy Condition (A), they can satisfy
Condition (A′). In other words, non-negative time-homogeneous diffusions
in natural scale can be (non-uniformly integrable) martingales, by virtue of
Corollary 1.2. Kotani (2006) and Hulley and Platen (2011) derived purely
analytical necessary and sufficient conditions under which such processes are
martingales. Those conditions are naturally equivalent to Condition (A′), as
demonstrated formally by Hulley and Platen (2011).

2There is a slight abuse of notation here, in the sense that τλ should be interpreted as
the first-exit time (1.1) with M replaced by X, for any λ ≥ 0.
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The next example constructs a non-negative pure-jump martingale that
is not a uniformly integrable martingale, since it satisfies Conditions (A)
and (C), but not Condition (B). Starting with an initial value of one, the
process jumps only at integer-valued times, while remaining constant over
the intervening intervals. Negative jumps take it to zero, where it is absorbed,
while the sizes of successive positive jumps grow combinatorially. To ensure
that the resulting process is a martingale, the probabilities of positive jumps
decrease very quickly.

Example 3.2 (Condition (B) fails). Suppose (Ω,F ,P) supports a se-
quence (Yn)n∈Z+ of positive random variables, with Y0 = 1 and

(3.1) P(Yn ∈ dy) :=
(n+ 1)!

n
1(n!,(n+1)!](y)

1

y2
dy,

for all y ∈ R+ and each n ∈ N, as well as a sequence (ξn)n∈Z+ of Bernoulli
random variables, with ξ0 = 1 and

(3.2) P(ξn = 1 | ξ0, · · · , ξn−1, Y0, · · · , Yn−1) :=
Yn−1
E(Yn)

n−1∏
i=0

ξi,

for each n ∈ N. Furthermore, we assume that Yn is independent of ξ0, · · · , ξn
and Y0, · · · , Yn−1, for each n ∈ N. The filtration F = (Ft)t≥0 is determined
by Ft := σ(ξn, Yn | 0 ≤ n ≤ btc), for all t ≥ 0, while the process M = (Mt)t≥0
is specified by

Mt := Ybtc

btc∏
i=0

ξi,

for all t ≥ 0. It follows that M is adapted to F, while the boundedness of
Yn, for each n ∈ Z+, ensures that E(|Mt|) < ∞, for all t ≥ 0. Also note
that (3.2) implies that

∏n
i=0 ξi = ξn, for each n ∈ Z+, so that we may write

Mt = ξbtcYbtc, for all t ≥ 0. This yields the useful identities

(3.3) 1{Mn>0} = 1{ξn=1} = ξn,

for each n ∈ Z+. It also allows us to rewrite (3.2) as follows:

(3.4) P(ξn = 1 |Fn−1) =
Mn−1
E(Yn)

,

for each n ∈ N. It is now easy to see that M is a martingale, since

E(Mn |Fn−1) = E(ξnYn |Fn−1) = E
Ä
ξnE
Ä
Yn
∣∣∣σ(ξn) ∨Fn−1

ä ∣∣∣Fn−1
ä

= E(ξn |Fn−1)E(Yn)

= P(ξn = 1 |Fn−1)E(Yn) = Mn−1,
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for each n ∈ N, by virtue of (3.3), (3.4), and the fact that Yn is independent
of σ(ξn) ∨Fn−1. Moreover, since M is non-negative, Condition (C) holds a
fortiori. Next, we compute the probability that M is strictly positive at any
integer-valued time as follows:

P(Mn > 0) = P(ξn = 1) = E
Ä
P(ξn = 1 |Fn−1)

ä
= E

Ç
Mn−1
E(Yn)

å
=

1

E(Yn)
,

for each n ∈ N, with the help of (3.3), (3.4), and the fact that M is a
martingale with M0 = 1. Consequently, given n ∈ N, we obtain

P(Mn > λ) = P(ξnYn > λ) = P(ξn = 1, Yn > λ) = P(ξn = 1)P(Yn > λ)

=
P(Yn > λ)

E(Yn)
,

for all λ ≥ 0, since Yn is independent of ξn. Now, given λ > 1, let n ∈ N be
the unique positive integer such that n! < λ ≤ (n + 1)!. In that case, the
previous two identities, together with (3.1), give

λP

Ç
sup
t≥0
|Mt| > λ

å
≤ λ
Ä
P(Mn > λ) + P(Mn+1 > 0)

ä
= λ

Ç
P(Yn > λ)

E(Yn)
+

1

E(Yn+1)

å
≤ λP(Yn > λ)

E(Yn)
+

(n+ 1)!

E(Yn+1)

= λ

Ç
(n+ 1)!

n

∫ (n+1)!

λ

1

y2
dy

åÇ
(n+ 1)!

n

∫ (n+1)!

n!

1

y
dy

å−1
+ (n+ 1)!

Ç
(n+ 2)!

n+ 1

∫ (n+2)!

(n+1)!

1

y
dy

å−1
≤ λ
Ç

(n+ 1)!

n

1

λ

åÇ
(n+ 1)!

n
ln(n+ 1)

å−1
+ (n+ 1)!

Ç
(n+ 2)!

n+ 1
ln(n+ 2)

å−1
=

1

ln(n+ 1)
+

n+ 1

(n+ 2) ln(n+ 2)
<

2

ln(n+ 1)
,

by virtue of the inclusion {supt≥0Mt > λ} ⊆ {Mn > λ} ∪ {Mn+1 > 0}.
Consequently,

lim
λ↑∞

λP

Ç
sup
t≥0
|Mt| > λ

å
≤ lim

n↑∞

2

ln(n+ 1)
= 0,
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which establishes that M satisfies Condition (A). Finally, given n ∈ N, we
use the identities ξ2n+1 = ξn+1 and ξn+1ξn = ξn+1

∏n
i=0 ξi =

∏n+1
i=0 ξi = ξn+1

to get

E
Ä
1{τn!<∞}|∆Mτn! |

ä
= E
Ä
1{Mn>0}∆Mn

ä
= E(ξn∆Mn)

= E
Ä
ξn(ξnYn − ξn−1Yn−1)

ä
= E
Ä
ξn(Yn − Yn−1)

ä
= E(Mn)− E

Ä
P(ξn = 1 |Fn−1)Yn−1

ä
= 1− E

Ç
Mn−1
E(Yn)

Yn−1

å
≥ 1− E

Ç
Mn−1
E(Yn)

(n− 1)!

å
= 1− (n− 1)!

E(Yn)

= 1− (n− 1)!×
Ç

(n+ 1)!

n

∫ (n+1)!

n!

1

y
dy

å−1
= 1− (n− 1)!×

Ç
(n+ 1)!

n
ln(n+ 1)

å−1
= 1− 1

(n+ 1) ln(n+ 1)
,

with the help of (3.1), (3.3) and (3.4), and the fact that M is a martingale.
Hence,

lim
λ↑∞

E
Ä
1{τλ<∞}|∆Mτλ |

ä
≥ 1− lim

n↑∞

1

(n+ 1) ln(n+ 1)
= 1,

from which we deduce that M does not satisfy Condition (B). So M is
a non-negative martingale that satisfies Conditions (A) and (C), but not
Condition (B), and is thus not a uniformly integrable martingale.

Finally, we present an example of a continuous local martingale that sat-
isfies Conditions (A) and (B), but not Condition (C). This elaborates on an
example due to Azema et al. (1980).

Example 3.3 (Condition (C) fails). Let B be a scalar Brownian motion
on (Ω,F ,F,P), and suppose the sigma-algebra F0 accommodates a discrete
random variable Y , whose distribution is determined by

P(Y = n) :=
c

n2 ln(n+ 2)
,

for each n ∈ N, where

c :=

Ç ∞∑
i=1

1

i2 ln(i+ 2)

å−1
.

Now let
ρ := inf{t ≥ 0 | |Bt| = Y }
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denote the first hitting time of Y by |B|, and note that ρ <∞. The definition
of Y ensures that

nP(Y ≥ n) = n
∞∑
j=n

c

j2 ln(j + 2)
≤ cn

ln(n+ 2)

∞∑
j=n

1

j2
≤ cn

ln(n+ 2)

∫ ∞
n−1

1

x2
dx

=
cn

(n− 1) ln(n+ 2)

≤ 2c

ln(n+ 2)
,

for each n ∈ N. The martingale M := Bρ then satisfies Condition (A), since

lim
λ↑∞

λP

Ç
sup
t≥0
|Mt| > λ

å
= lim

λ↑∞
λP

Ç
sup
t≥0
|Bρ

t | > λ

å
= lim

λ↑∞
λP(|Bρ| > λ) = lim

n↑∞
nP(Y ≥ n) = 0.

Moreover, M satisfies Condition (B), by virtue of its continuity. Based on
these observations, Lemma 2.2 ensures that M∞ := M∞− exists and satisfies
M∞ = Bρ = ±Y . However,

E(|M∞|) = E(Y ) =
∞∑
n=1

c

n ln(n+ 2)
=∞

implies that M does not satisfy Condition (C), which implies that it cannot
be a uniformly integrable martingale.
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