
 

 

Alexander S. Jarman and Leonard A. Smith                                                                 

Quantifying the predictability of a 
predictand: demonstrating the diverse roles 
of serial dependence in the estimation of 
forecast skill 
 
Article (Accepted version) 
(Refereed) 
 
 

 
Original citation: 
Jarman, Alexander and Smith, Leonard A. (2018) Quantifying the predictability of a predictand: 
demonstrating the diverse roles of serial dependence in the estimation of forecast skill. Quarterly 
Journal of the Royal Meteorological Society. ISSN 0035-9009 
 
DOI: 10.1002/qj.3384  
 
© 2018 Royal Meteorological Society 
 
This version available at: http://eprints.lse.ac.uk/89492/ 
 
Available in LSE Research Online: November 2018 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final accepted version of the journal article. There may be 
differences between this version and the published version.  You are advised to consult the 
publisher’s version if you wish to cite from it. 
 
 
 

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=l.smith@lse.ac.uk
https://rmets.onlinelibrary.wiley.com/journal/1477870x
https://rmets.onlinelibrary.wiley.com/journal/1477870x
http://doi.org/10.1002/qj.3384
https://www.rmets.org/
http://eprints.lse.ac.uk/89492/


Quantifying the Predictability of a Predictand: Demonstrating the
Diverse Roles of Serial Dependence in the Estimation of Forecast
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Predictability varies. In geophysical systems, and related mathematical dynamical

systems, variations are often expressed as serial dependence in the skill with which

the system is, or can be, predicted. It is well known, of course, that estimation is

more complicated in cases where the time series sample in-hand does not reflect an

independent from the target population; failure to account for this results in erroneous

estimates both of the skill of the forecast system and of the statistical uncertainty in the

estimated skill. This effect need not be indicated in the time series of the predictand;

specifically: it is proven by example that linear correlation in the predictand is neither

necessary nor sufficient to identify misestimation. Wilks [Quarterly Journal of the

Royal Meteorological Society 136, 2109 (2010)] has shown that temporal correlations in

forecast skill give rise to biased estimates of skill of a forecast system, and made progress

on accounting for this effect in probability-of-precipitation forecasts. Related effects

are explored in probability density forecasts of a continuous target in three different

dynamical systems (demonstrating that linear correlation in the predictand is neither

necessary nor sufficient), and a simple procedure is presented as a straightforward, good

practice test for the effect when estimating the skill of forecast system.

Key Words: probabilistic forecasting, forecast skill, serial correlation
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1. Introduction

The standard procedure for demonstrating the skill of a forecast

system is to evaluate an out of sample sequence of forecasts

with target data, and determine whether the skill of the forecast

system is greater than that attributable to chance. Establishing

statistical confidence in forecast skill, however, is complicated

where sequential target data are not independent. In this case,

the variances of sampling distributions of the corresponding skill

estimates are altered relative to those computed with data drawn

at random, resulting in inaccurate statistical inferences of skill.

The effects of serial dependence on the sampling properties

of scoring rules have important implications for proving forecast

skill, requiring sample size corrections to obtain reliable skill

estimates, and the inter-comparison of forecast systems. In

the case of real-time forecasting applications, larger samples

of forecast evaluations, and hence longer durations of time,

are required to establish statistically significant skill where

confidence in skill has initially been overestimated. Wilks (2010)

demonstrates the effects of serial dependence on estimates of the

Brier score (BS) and Brier skill score (BSS) in a binary predictand

scenario, and how statistical inference yields overconfident

estimates of forecast skill (i.e. a higher probability of type I

errors). To compensate for this effect on skill estimation, effective

sample size (ESS) (Thiébaux and Zwiers, 1984) corrections are

proposed to achieve more accurate estimation of skill (i.e. that

made with serially independent data). Methods for accounting for

the effect of serial dependence on forecast evaluation have also

been considered in other studies (see, for example, Hamill, 1999;

Ferro, 2007; Pinson et al., 2010, and references therein).

The investigation into the effects of serial dependence on

forecast skill estimation is applied to probabilistic forecasts

of continuous predictands. Accordingly, forecast evaluation is

performed with the information-theoretical logarithmic score

referred to as ignorance (Good, 1952; Roulston and Smith, 2002).

Moreover, ignorance belongs to the class of proper scoring rules

(Bröcker and Smith, 2007; Gneiting and Raftery, 2007), ensuring

that, in the long run, no forecast system is expected to obtain

a score superior to that of the probability(s) that generated the

outcome. Wilks (2010) considered the estimates of skill for

binary probability-of-precipitation forecast systems, contrasting

skill estimated from independent events with the estimates of
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Table 1. Example systems used for demonstrating the presence or absence of linear correlation (LC) in scores

No LC in State LC in State

No LC in Score IID Gaussian AR(1) (Section 3.2)

process

LC in Score Logistic map (Section 3.3) · Linear-calibration/

beta-refinement model (Wilks, 2010)

· Lorenz63 (Section 3.1)

the same forecast system from a time series of forecasts with

serial dependence; the empirical sampling distributions differ

from those expected in the case of no serial dependence. The

current paper considers continuous target variables, and employs

a resampling technique (Efron, 1981; Wilks, 2011) to emulate

the conditions for serial independence. The inflationary effect on

the variances of the score sampling distributions and estimation

of forecast skill is illustrated and discussed. Serial dependence

in target time series need not imply linear temporal correlation

in the scores, however, and in such cases, estimates of forecast

skill may not be biased. In fact, four distinct cases of (non-

)effects of serial dependence on estimation of forecast skill are

possible. Firstly, where linear correlation in target data is present

in the scores; secondly, where linear correlation in target data

is not present in the scores; thirdly, where nonlinear correlation

is exhibited in target data, resulting in linear correlation present

in the scores; and fourthly, where there is no serial dependence

present in either the target data or scores1. It is argued here that

those evaluating forecasts should aim to distinguish between these

different cases of effects and non-effects so as to operate within a

robust statistical framework, and therefore maximise the benefit

of predictive information.

Section 2 explains the implications of serial dependence for

the sampling properties of scoring rules, and derives an analytical

expression for the variance of the sampling distribution (hereafter

sampling variance) of the ignorance score (IGN) under conditions

of serial independence, equivalent to that derived by Bradley et al.

(2008) for the Brier score, and used by Wilks (2010) to formulate

expressions for ESS corrections.

The first three of the above four distinct cases of effects/non-

effects of serial dependence on the estimation of forecast skill

are illustrated in Section 3 in the context of three different

dynamical systems: the three-dimensional Lorenz63 flow, a first-

order autoregressive process, and the logistic map. The fourth case

of serial dependence being present in neither the target data nor the

corresponding scores is demonstrable with, for example, an IID

Gaussian process, and is not discussed further in this paper. Table

1 lists the four systems as examples of whether linear correlation,

which is either present or absent in target data, is also present or

absent in the corresponding time series of a given scoring rule.

Finally, a procedure for making effective sample size (ESS)

corrections by comparing empirical estimates of the sampling

variance of the score under serial dependence and under serial

independence (using resampling) is proposed in Section 4. This

approximate method contrasts with the approach of Wilks (2010)

which requires an empirical fitting of the ratios of simulated

to analytically derived sampling variances as functions of the

system-model parameters. ESS corrections aim to provide an

1While “serial dependence” is the general term used here; the cases above are
distinguished with the terms “linear correlation” and “nonlinear correlation” .

estimate of the minimum duration of observations required to

determine the skill of a forecast system with the desired accuracy.

Very small sample sizes, of course, always present a challenge to

resampling methods which will become apparent in practice. As

with any extrapolation into the future, large unforeseen alterations

of the behaviour of the system can yield unforeseen changes in

forecast skill (if, say, a large interstellar object impacts the Earth).

2. Effects of serial dependence on sampling distributions of

scoring rules

The effect of serial dependence on the sampling distributions of

a statistic is commonly encountered in the statistical analysis of

geophysical variables, and has been examined in depth in the

literature (Leith, 1973; Jones, 1975; Albers, 1978; Trenberth,

1984; Thiébaux and Zwiers, 1984). Consider a random variable

which has a population distribution with mean µ and standard

deviation σ. An intuitive result of the Central Limit Theorem is

that the finite-time average of a sample of N independent and

identically distributed (IID) target data of the random variable

is a normal random variable with mean µ and standard error

σ/
√
N . Since geophysical phenomena are typically red processes,

samples of data may be collected at time intervals which are too

short for the assumption of independence to hold (Leith, 1973).

The sampling variance of a finite-time average computed from

serially dependent geophysical data need not scale as 1/
√
N (as

is the case for independent data i.e. a white-noise process). As

sample size increases, the rate of convergence of the sample

averages on the true mean µ can be significantly slower (or faster)

than those which are IID; referred to as inflation (or deflation)

of the sampling variance by Wilks (2011). Consequently, the

duration of time required to obtain realistic estimates of µ is

increased (or decreased). Without accounting for the effect of

serial dependence, textbook statistical inferences of an underlying

statistic which are based upon the assumption of independence

will yield biased results (Wilks, 2011). Indeed, linear correlation

need not be detectable in observations of nonlinear systems with

the autocorrelation function (Fraser and Swinney, 1986).

Figure 1 illustrates how the sampling variance of a scoring rule

is inflated under serial dependence by providing a comparison of a

time series of serially dependent scores and a series consisting of a

random resampling of the time series. The latter series represents -

by construction - an estimate of the natural measure of the system

(Ott, 2002), and the sequential scores contained within are serially

independent. The unbiased estimator for the sampling variance

of 8 subsample estimates (sample size of N = 16) of ignorance

(ÎGNe) computed from the serially dependent scores (s2
ÎGNe

=

0.15) is larger than the serially independent scores (s2
ÎGN∗

e

=

0.05). The degree of variance inflation is reduced with increase

in sample size as s2
ÎGNe

and s2
ÎGN∗

e

decrease and converge; for
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Figure 1. Time series of 27 forecast skill evaluations computed from (a) a time series of forecasts of observed states of the Lorenz63 system and (b) a random resample

from that time series. The time series scores are serially dependent (r1(ÎGNe) = 0.45) while the randomly resampled scores are serially independent by construction

(r1(ÎGN∗

e ) ≈ 0). Averages over sequential samples of size N = 16 (red lines) tend to vary more about the IGN estimate over the entire time series (ÎGNe = −5.26)

in (a) compared to (b), resulting in a sampling distribution of the averages which is larger in variance. The sampling variances of the 8 subsamples are s2
ÎGNe

= 0.15 and

s2
ÎGN∗

e

= 0.05.

example, the sampling variances for 4 subsample estimates (N =

32) are s2
ÎGNe

= 0.12 and s2
ÎGN∗

e

= 0.01. Serial dependence is

measured here (and throughout the rest of the paper) using the lag

1 sample autocorrelation function (ACF) r1.

Forecast evaluation is routinely carried out to monitor and

improve the quality of forecast systems, yet its usefulness is

limited by the frequent omission of sampling uncertainty inherent

in the estimation of forecast skill (Joliffe, 2007). The sampling

uncertainty of a scoring rule is dependent on both sample size

and the statistical characteristics of the forecasts and observations

(Bradley et al., 2008). In that sense, a scoring rule can be

considered in the same way as standard statistical inference, where

some underlying parameter or value θ is estimated, for example,

by constructing a confidence interval for an empirical estimate

θ̂ using a resampling method (Joliffe, 2007). This is a simple

approach for determining sampling uncertainty, although it is also

computationally inefficient.

An alternative approach requiring minimal computational effort

would be to find analytical solutions for the sampling uncertainty

of a scoring rule using sampling theory. Bradley et al. (2008)

derive analytical expressions for the sampling variances of the

Brier score and Brier skill score with respect to binary forecasts;

the former being an exact solution due to the unbiasedness of

the Brier score. The equivalent derivation of the ignorance score

is presented below, and could, in theory, be used, along with

empirical sampling variances under serial dependence, to measure

the degree of inflation, and to determine expressions for ESS

corrections (see Section 4).

2.1. Ignorance

The sample estimator of the ignorance score is expressed as

ÎGN(p(x),X) = − 1

N

N
∑

i=1

log2(p(Xi)), (1)

where p(Xi) is the forecast probability that observation Xi will

occur. The sampling variance of the ignorance score is then given

by2

V ar[ÎGN(p(x),X)] = V ar

[

− 1

N

N
∑

i=1

log2p(Xi)

]

=
1

N2

N
∑

i=1

V ar[log2p(Xi)]

=
1

N
V ar[log2p(x)]. (2)

The variance term on the RHS can be expanded as follows

V ar[log2p(x)] = E[log22p(x)]−E[log2p(x)]
2

= E[log22p(x)]− IGN2. (3)

Therefore,

V ar[ÎGN(p(x),X)] =
1

N
[E[log22p(x)]− IGN2], (4)

where

E[log22p(x)] =
1

N

N
∑

i=1

log22p(Xi). (5)

The derivation above is based on the assumption that the forecast-

observation pairs (pi, Xi) are independent random samples

from their joint distribution (Murphy and Winkler, 1987). This

assumption is commonly (and erroneously) made in real world

geophysical forecasting (Seaman, 1992; Seaman, Mason, and

Woodcock, 1996; Wilks, 2010), and can lead to biased estimates

of forecast skill.

In general, derivation of an exact solution of the sampling

variance (as in Eqn. (4)) is not straightforward for scoring

rules; estimates need to be evaluated with sufficient sample sizes

to produce stable results indicating they are usefully accurate

(Bradley et al., 2008; Wilks, 2010). Bradley et al. (2008) observe

that, because of the inclusion of the higher moments of the joint

distribution of the forecasts and observations in the Brier score,

relatively large sample sizes are required; at least on the order

of ∼ 102. The required size increases for lower climatological

event probability, and with a higher degree of forecast skill. Wilks

2V ar[·] and E[·] denote the sample variance and the sample mean here. The sample
variance is distinct from the sampling variance in that the sample variance is the

variance of a given sample while the sampling variance is the variance of a sample
estimator, given a series of samples.
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(2010) concludes that a sample size of N = 3000 is sufficient

when forecast skill is estimated with the Brier score. In light of

the challenge for deriving analytical score sampling variances, and

because illustration of the effects of serial dependence on forecast

evaluation does not require inordinate sample sizes, the empirical

approach for estimation of IGN and its sampling variance is used

in this study.

Wilks (2010) exploits the fact that the analytical sampling

variance of the Brier score is based on the serial independence

of the forecasts p and target data x, and that it depends only on

the moments of their joint distribution, to derive ESS corrections

in terms of the parameters of the model. Derivation of such

ESS corrections is more difficult for IGN because Eqn. (4)

depends on E[log22p(x)] rather than the moments of the joint

distribution; that derivation is beyond the scope of this paper.

An alternative method for ESS corrections is proposed here.

This approximate method consists of finding the difference

between sample sizes corresponding to a given empirical sampling

variance computed respectively from serially dependent synthetic

time series and serially independent random resamples; it is

defined in Section 4. There exist other resampling methods for this

purpose, but the method employed here is sufficient to simulate

serial independence.

3. Estimation of forecast skill under serial dependence

The results of forecast skill estimation under serial dependence are

presented and critically examined for three different dynamical

systems. A Monte-Carlo approach to generate synthetic datasets

of sequential forecast-observation pairs is employed. The statistics

of the resulting time series of scores are then compared with those

of an IID series (constructed by sampling with respect to the

natural measure of the system i.e. random resampling) to detect

and assess the magnitude of the effects of serial dependence on

forecast skill estimation. The key idea here is to simply compare

the sampling variances of the score estimates, and their rates

of convergence, over increasing sample sizes. In each case, 28

simulations have been performed for each set of parameters to

yield convergent score sampling distributions.

3.1. Case study 1: Lorenz63

The 3-dimensional Lorenz63 flow (Lorenz, 1963) is a suitable

dynamical system to illustrate the case where serial dependence

is present in both the forecast target and the corresponding

forecast skill scores (see Table 1; bottom right). The evolution

of the system state is governed by a discrete time, deterministic

nonlinear dynamical system, defined by the following set of three

ordinary differential equations (with respect to time):

ẋ = −σx+ σy

ẏ = −xz + rx− y

ż = xy − bz, (6)

where x, y, z ∈ R (see Appendix A.1 for full details of the system

configuration used in this study). The trajectory of the Lorenz63

system is recognisable by its “butterfly wings” attractor which

occupy two distinct regions of state space. Consequently, the x

state variable exhibits bimodal behaviour (see Fig. 2) which can

result in highly correlated forecast target data for sufficiently short

time steps. Hence, for the purposes of this study, it is convenient

to evaluate the forecasts solely on a scalar observation of x.

Consider the forecasts to be constructed from a perfect model3

so that the system state and model state share the same state space,

3In mathematical systems, this implies that one has access to the True probability

distribution which determines that outcome. It is sometimes useful to speak of the
True distribution even if it may not exist (Good, 1983).

500 1000 1500 2000

−
1
0

0
1
0

time

X

Figure 2. Time series of target variable x illustrating the bimodal behaviour of

the Lorenz63 attractor. The target data have a strong degree of linear correlation

(r1(x) ≈ 0.96 for a sample size N = 211 timesteps).

and state estimation is only subject to observational uncertainty

(Smith, 2001, 2006). Given a time series of observations of x,

denoted s1, . . . , st, . . . , sN , determined by the true value x̃ plus

some additive observational noise ǫ, an observation st at time t is

defined as

st = x̃t + ǫt, (7)

where ǫt
iid∼ F (· ) reflects an observational noise term where a

stochastic model F (·) is used to simulate observational noise in

the target data, taken here to be N (0, σ2). An ensemble forecast

approach has been adopted here to sample the initial conditions

s1 = s1,1, . . . , s1,M for an M member ensemble at each forecast

initialisation at time t = 1 using two different data assimilation

(DA) schemes. The more simple of the two DA schemes, referred

to as inverse noise (IN), is based on adding draws from the inverse

of the stochastic observational noise model (in this case, again a

Gaussian distribution i.e. ǫ
iid∼ N (0, σ2)) to the observation s to

assign values to the ensemble members. The other scheme, called

pseudo-orbit data assimilation (PDA) (Judd and Smith, 2004; Du

and Smith, 2012), provides maximum likelihood estimates of the

true system state using a large window of observations. The PDA

scheme provides a better approximation of the initial conditions

which are more consistent with the long term model dynamics

(Du, 2009), and hence often produces more skilful forecasts than

the IN scheme. Following the process of state estimation using

these two DA schemes, probabilistic forecasts are constructed by

kernel dressing and blending (Bröcker and Smith, 2008) the initial

conditions (see also Appendix A.1).

Figure 3 shows the sampling variances of IGN estimates

as a function of sample size for the two different forecast

systems with forecast lead time ι = 0.1LTU4, illustrating the

effect of serial dependence on the skill statistics. The PDA

forecast system produces more skilful forecasts (ÎGNe = −5.34)

than the IN forecast system (ÎGNe = −3.57) averaged over the

entire time series (N = 214). The forecasts have been evaluated

against a reference forecast constructed from the unconditional

climatological distribution, a measure referred to as empirical

ignorance, which is defined as (see Du and Smith, 2012)

ÎGNe(p(x),X) = − 1

N

N
∑

i=1

log2

[

p(Xi)

pclim(Xi)

]

. (8)

4One Lorenz Time Unit (LTU) is analogous to 1.2 hours of standard time, and

corresponds to 100 integration time steps - similar in approach to Stephenson
(2004). See Appendix A.1.
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Figure 3. Results for Lorenz63: sampling variances of 28 IGN estimates computed from forecasts with lead time ι = 0.1LTU constructed from the (a) PDA and (b) IN
models of a serially dependent time series of Lorenz63 target data (r1(s) ≈ 0.94; red circles) and an IID randomly resampled series of scores (equivalent to sampling

the data with respect to the natural measure of the system; blue circles), both with 5% − 95% bootstrap uncertainty intervals. There is a clear inflation of the sampling
variances up to at least sample size N = 26 for the PDA forecasts showing that linear correlation is exhibited by both the forecast target and corresponding ignorance

scores (r1(IGNe) ≈ 0.5 for the PDA forecasts, and r1(IGNe) ≈ 0.31 for the IN forecasts). There is a slight deflation of the IN forecast skill sampling variances overall,
reflecting their poorer skill, and that the effect of serial correlation on forecast skill estimation is minimal. The wider uncertainty intervals for the serially dependent series

reflect the poorer estimates of skill, and hence, greater variability of the sampling variances of those estimates.

A negative score indicates that the forecast system has superior

skill to the climatological forecast. A 3-D scatter plot of points

on the Lorenz attractor coloured by the IGN score of the

associated forecast (not shown, see Jarman, 2014) reveals large

scale regions of similar predictability reminiscent of similar plots

of the doubling time of infinitesimal uncertainties (Smith, 1999).

Linear correlation is present in both the target time series

(r1(s) ≈ 0.94) and corresponding ignorance scores (r1(IGNe) ≈
0.5 for the PDA forecasts, and r1(IGNe) ≈ 0.31 for the IN

forecasts)5. There is a resulting inflation of the variance s2
ÎGNe

of

the score sampling distribution with respect to that of the natural

measure s2
ÎGN∗

e

for the PDA forecasts, but a slight deflation for

the IN forecasts. This contrasting outcome occurs because the

time series of superior PDA forecasts is more likely to exhibit the

underlying correlation structure, and hence, greater variability in

skill estimates, than the poorer and more noisy (i.e. less correlated)

skill of the IN forecasts. The sampling variances of the natural

measure score series (blue points) in Fig. 3 differ because the

forecasts are constructed using two different forecast systems,

even though evaluation is performed with the same observational

dataset.

The effect of serial dependence on estimation of the skill of

the PDA forecast system is also demonstrated in Fig. 4. The

upper plot compares the probability coverage of 95% confidence

intervals for both the serially dependent and independent PDA

forecast skill series shown in Fig. 3 above. The probability

coverage is determined in a similar manner to Wilks (2010) by the

relative frequency over 28 replications of the confidence interval

containing an asymptotic estimate of the true score ÎGNe
6. The

lower plot illustrates the relationship between forecast skill and

confidence interval width. The insufficient probability coverage

of confidence intervals, particularly at smaller sample sizes, and

overconfidence in skill estimation are clearly evident in the plots.

Figure 5 shows the effects of sampling variance inflation

using ellipses with semi-major and semi-minor axes determined

5With sample size N = 214. The difference in the degrees of lag 1 autocorrelation
between the target data and scores is attributable to the fact that ignorance is a

function of the joint distribution of forecasts and target data, and this is applicable to
any scoring rule (e.g. the Brier score, see Wilks, 2010). Note that the autocorrelation

function tends to be negatively biased at small sample sizes where comparing
degrees of serial dependence for different statistics (see DeCarlo and Tyron, 1993)
6This differs to Wilks (2010) where the true score is known analytically in terms of
the model’s parameters

by s2
ÎGNe

and s2
ÎGN∗

e

, respectively, for each sample size. The

eccentricity of these ellipses is a function of the ratio of the two

sampling variances, that is, it is a measure of the convergence

of the sampling variances with increase in sample size. The

expectation is therefore that, as sample size increases, the

eccentricity of the ellipses approaches zero, that of a perfect circle.

Linear correlation in a score time series as a result of evaluating

forecasts with serially dependent target data implies that the

autocovariance of the score is expected to be non-zero. The

autocovariance R(τ ) of a score S is

R(τ ) = E[(St − E[St])(St+τ − E[St+τ ])]

= E[StSt+τ ]− E[St]E[St+τ ]

6= 0, (9)

where E[St] and E[St+τ ] are the means of the score distributions

at time t and time t+ τ (lag τ ) respectively. The non-zero result

arises under serial dependence since, only where St and St+τ are

independent, is it true that

E[StSt+τ ] = E[St]E[St+τ ]. (10)

Although the inflation of the scoring rule sampling variance

induced by serial dependence is demonstrated for probabilistic

forecasts in this section, it can easily be shown for point forecasts.

The influence of observational noise on the serial correlation of

the scores is not quantified here. The effect of serial correlation

is expected to be stronger in the absence of uncorrelated

observational noise. Of course, even the probability distributions

from a forecast system with a perfect dynamical model can be

corrupted by failure to properly account for observational noise;

this can, in turn, introduce serial dependence in cases where none

would be found given the True distribution.

3.2. Case study 2: AR(1) process

While it is straightforward to demonstrate the misleading effect

of serial dependence on forecast skill estimation, as in Section

3.1, serial dependence in forecast target data is not a sufficient

condition for the presence of serial dependence in forecast skill.

The case is now illustrated where the sampling distribution of a

scoring rule is time-independent, and hence, the scores are serially
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Figure 4. Results for Lorenz63: plot (a) shows the poorer probability coverage for the time series (red circles) compared to the IID series (blue circles) for smaller

sample sizes, but approaches that of the IID series and the correct 95% coverage (dashed line) with increasing sample size. The slightly worse probability coverage of
the confidence intervals for the IID series at smaller sample sizes reflects poorer estimates of skill, even without the presence of linear correlation. Plot (b) shows the

distribution of time series skill estimates against their corresponding confidence interval widths, and how skill estimation is less precise for smaller sample sizes and better

forecast skill. Note that the estimate for the true ignorance is ÎGNe = −5.34 with sample size N = 214 .
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Figure 5. Results for Lorenz63: ellipses with semi-major axis determined by

s2
ÎGNe

and semi-minor axis determined by s2
ÎGN∗

e

, and corresponding mean

estimates plotted at their centres (coordinates are
{

ÎGNe, ÎGN∗

e

}

; ’+’ symbols

which shrink with increase in sample size). Each ellipse represents a sample size
corresponding to Fig. 3. The black vertical and horizontal lines denote the mean

estimates ÎGNe = ÎGN∗

e = −5.34 with sample size N = 214 .

independent, even where the forecast target data are not (see Table

1; top right). Without the inflationary effect induced by serial

dependence on the sampling variance of the scoring rule, ESS

corrections are not required and statistical inference of forecast

skill can be made under the assumption of serial independence.

Consider a time series of target data st generated from a first-

order autoregressive (AR(1)) process7, first introduced by Yule

(1927) to model sunspots. An observation st at time t is given by

st = ϕst−1 + ǫt, (11)

where ǫt ∼ N (0, σ2
ǫ ) is the normally distributed random noise

component of the AR(1) process. Since the observational noise

ǫt is a Gaussian process, the target data st are also Gaussian

distributed. The model parameter ϕ controls the degree of

autocorrelation in the time series, and the process is weak-sense

stationary for values |ϕ| < 1, implying that the mean E[st] and

covariance Cov[st, st+τ ] are constant with respect to time. In that

7the results hold for AR processes of any order p. p = 1 is taken for simplicity.

case, as ϕ approaches a value of 1, the dependence of st on the

previous observation st−1 increases.

Let a 1-step ahead singleton probabilistic dynamical forecast

pt(x) of the system state at time t be constructed from an

imperfect model based on the observation st−1 so that

pt(x) =
1

√

2σ2
ǫ π

e
−

(x−ϕst−1)2

2σ2
ǫ . (12)

Random draws from the forecast PDF are, like the target

data, Gaussian distributed, and exhibit a similar degree of linear

correlation determined by the parameter ϕ.

Figure 6 shows the IGN sampling variances for the serially

dependent time series and random resampled series over

increasing sample sizes for ϕ = 0.9 and σǫ = 1.0. Also shown

are 95% uncertainty intervals constructed from IGN sampling

variances for a time series of forecast-observation pairs where

both variables are standard normal distributed and IID, implying

that they are also jointly normally distributed. Hence, the

resulting time series of scores is serially independent. The

containment of the time series and random resampled IGN

estimates within the uncertainty intervals indicates that their

respective sampling variances are statistically indistinguishable

both from the sampling variances of the standard normal forecast

IGN estimates, and from each other. Hence, the scores of both

the serially dependent forecasts and serially independent random

resampled forecasts are Gaussian distributed and independent

(IID) (i.e. the score distributions are non-time dependent). The

serial independence of the scores is reflected by the lack of

inflation of the sampling variances, and satisfies Eqn. (10). The

absence of linear correlation in the score time series is also

evident in Fig. 7 where a delay plot indicates a negligible linear

relationship between ignorance at time t− 1 and time t. To see

this precisely, note that

pt(x) ∝ e
−

(x−ϕst−1)2

(2σ2
ǫ ) , (13)

so that

IGN(pt(x),X = st) ∝ (st − ϕst−1)
2

= (ϕst−1 + ǫt−1 − ϕst−1)
2

= ǫ2t−1. (14)
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In this case, the time series of ignorance scores corresponds to

squared, independent Gaussian noise (an IID χ2 distribution),

and is thus serially independent. When the skill of the forecast

distribution is independent of the state of the system, as in the

AR(1) case, then there is no serial dependence in the sample skill

time series even if there is serial correlation in the predictand.

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

Sample size

S
a
m

p
lin

g
 v

a
ri

a
n
c
e
 o

f 
IG

N
 e

s
ti
m

a
te

2
6

2
7

2
8

2
9

2
10

2
11

Time series

Natural measure

Figure 6. Results for AR(1) process: sampling variances of 28 ignorance estimates

computed from forecasts of a serially dependent time series of AR(1) target
data (r1(s) ≈ 0.9; red circles) and an IID randomly resampled series of scores

(blue circles). All points lie within 95% uncertainty intervals constructed from

27 estimates of the sampling variance of standard normal distributed distributed
forecasts showing that there is no statistically significant difference between either

of the sampling variances and uncorrelated standard normal distributed forecasts.
Note that the red and blue circle points have been shifted left and right respectively

for clarity.
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Figure 7. Results for AR(1) process: delay plot of scores at t − 1 and t in a

single ignorance time series of sample size N = 2896 computed from serially

dependent target data (ϕ = 0.9). The lack of linear trend reflects the absence of
linear correlation in the time series (r1(IGN) ≈ 0).

This example of non-effect of serial dependence on forecast

skill estimation is now followed by a counterexample where the

serial dependence in the time series of target data and forecasts

generated under the AR(1) process is present in the corresponding

time series of scores. In the case that the forecast distribution is

independent of the state of the system (as it is when the forecast

is always climatology) while there is serial correlation in the

predictand, then there is serial dependence in the skill time series.

Consider a “perfect” climatological Gaussian forecast of the

AR(1) system state with population mean E(st) = 0, which,

expressed as a random variable, is given by

Yclim ∼ N
(

0,
σ2
ǫ

1− ϕ2

)

. (15)

Hence, the forecast distribution is state (and time) independent.

It is important to distinguish here between the climatological

forecasts and the randomly resampled forecasts since they are

constructed differently, and are effectively evaluated with two

different (i.e. serially dependent and independent) series of target

data.

The sampling variances of the IGN estimates for the time

dependent forecasts, climatological forecasts, and randomly

resampled forecasts (natural measure) over increasing sample

sizes are shown in Fig. 8. The inflationary effect on the

sampling variance of the climatological forecast skill statistics

is clearly visible, and is attributable to the fact that a time

independent forecast PDF is being evaluated with serially

dependent data, resulting in serial dependence in the score time

series (r1(IGNclim) ≈ 0.81).

Respective demonstrations of accurate (serial independence of

the time dependent forecast skill scores) and inaccurate (serial

dependence of the time independent climatological forecast skill

scores) estimates of forecast skill with a single data-generating

system highlight the importance of understanding how serial

dependence present in forecast target data may or may not be

likewise present in corresponding time series of scores. Both

the data-generating system and the forecast system should be

considered when determining whether serial dependence will have

an impact on the accuracy of forecast skill estimates.

The results in this section demonstrate that there are forecasting

scenarios where serial dependence in forecast target data does not

result in biased estimates of forecast skill. Even with an arbitrarily

high degree of lag 1 autocorrelation in the time series (illustrated

here with r1(s) ≈ 0.9), there is no significant autocorrelation

in the scoring rule time series (r1(IGN) ≈ 0), and no induced

inflation of the score sampling variance. The absence of serial

dependence in forecast skill scores, of course, can also be shown

for a nonlinear stochastic process.

0
.0

0
0
.0

4
0
.0

8
0
.1

2

Sample size

S
a
m

p
lin

g
 v

a
ri

a
n
c
e
 o

f 
IG

N
 e

s
ti
m

a
te

2
6

2
7

2
8

2
9

2
10

2
11

Time series (dynamical)

Natural measure

Time series (climatology)

Figure 8. Results for AR(1) process: sampling variances of 28 ignorance estimates

computed from dynamical (red circles) and climatological (green circles) forecasts
- both evaluated with the serially dependent time series of observations (r1(s) ≈

0.9) - and an IID randomly resampled series of scores (r1(IGN) ≈ 0; blue
circles). All sampling variances are plotted with 5% − 95% uncertainty intervals.

There is a clear inflation of the climatological forecast ignorance sampling variance

(r1(IGNclim) ≈ 0.81) which is explained by a time independent forecast PDF
being evaluated with autocorrelated observations.
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3.3. Case study 3: logistic map

The misleading impact of serial dependence on forecast skill

estimation is not restricted to scenarios where the forecast target

exhibits linear correlation. Temporal dependence in a forecast

target time series with no linear correlation can lead to linear

correlation of the corresponding scores (see Table 1; bottom left).

Establishing the statistical significance of skill estimates in such

a case is problematic given that serial dependence need not be

reflected in the autocorrelation function.

The logistic map is a 1-dimensional nonlinear dynamical

system with zero autocorrelation at all lags. It was first proposed

by Ulam (1947) as a pseudo-random number generator, and

popularised by May (1976) as an educational tool and a simple

ecological model of population dynamics. The mathematical form

of the logistic map is expressed as

xt = f(xt−1) (16)

= axt−1(1− xt−1), (17)

where x ∈ (0, 1) represents the state of the map. xt is delta

correlated in time. Consider a simple truncated noise forecast
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Figure 9. Results for the logistic map: empirical ignorance of 212 forecasts at t

and t − 1 evaluated on x (α = 4.0). The ignorance scores are lag 1 autocorrelated

(r1(IGN) ≈ 0.52) while the true values, x, are not (r1(x) ≈ 0). A linear fit is
also shown indicating a degree of linear correlation in the score time series.

system for x where state estimation, as in Section 3.1, is subject to

observational uncertainty, but the observation, or initial condition

for the forecast, at time t is a quantised approximation of the truth

xt, so that

st = ⌊xt · 102⌋/102 + 0.005. (18)

A forecast system for the logistic map using a singleton

ensemble is used8. Let a 1-step ahead singleton member

probabilistic dynamical forecast of the system state at time t be

Gaussian distributed, and defined as

pt(x) =
1

√

2σ2
f
π
e
−

(x−f(st−1))2

2σ2
f . (19)

Truncation of the true value allows an analytical approach to

forecast evaluation, constraining the target data, and increasing

linear correlation in the forecast skill scores.

8This system could no doubt be improved, but is sufficient for its purpose here.

Figure 9 shows a 1-step delay plot of IGN scores of single

iteration forecasts of the logistic map with parameter value a =

4.0 evaluated against the unconditional climatological distribution

(see Eqn. (8)), defined by the natural measure of the logistic map

as

pclim(x) =
1

π
√

x(1− x)
. (20)

The kernel width is σf = 0.04, and empirical ignorance is

evaluated here on the true value, x. The initial state is uniformly

sampled from the support of the logistic map x ∈ (0, 1), and the

transient is discarded.

Plotting the ignorance as a function of the target (that is, IGNt

vs xt) and ignorance as a function of the initial conditions (that

is IGNt as a function of xt−1) demonstrates that the points with

IGNt−1 small and IGNt large in Fig. 9 all pass near x ∼ 0.5.

This is a result of the fixed kernel width in the forecast system.

It is these points in Fig. 9 which decrease the linear correlation

of IGN scores, the serial dependence clearly remains very high.

Improving the forecast system by allowing a variable kernel width

(allowing the width to decrease in the regions where the map

is contracting) would yield a forecast system with both a lower

(better) ignorance score and higher linear correlation.

Linear correlation in the score time series is evident from the

linear fit and the lag 1 ACF value r1(IGN) ≈ 0.52 computed

from a time series of 212 iterations of the map. The effect of the

correlation is to inflate the corresponding sampling variances of

ignorance estimates computed from the zero autocorrelated time

series of the target variable with respect to the random resampled

IID series, shown in Fig. 10.

4. Effective Sample Size

An important contribution by Wilks (2010) is the derivation of

empirical effective sample size (ESS) corrections to account for

the combined inflationary effects of serial dependence, forecast

skill, and forecast calibration (and event frequency in a binary

predictand scenario) on the sampling variances of scoring rules

in one case of interest. ESS corrections are formulated from

the ratio of the analytical sampling variance to the empirical

sampling variance of the Brier score (and Brier skill score). The

analytical solutions of the sampling variances are derived under

the assumption that forecast-observation pairs are IID (Bradley et

0
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Figure 10. Results for the logistic map: sampling variances of 28 IGN estimates
computed from forecasts of a time series of logistic map (a = 4.0) target data

(r1(IGN) ≈ 0.52; red circles) and an IID randomly resampled series of scores
(r1(IGN) ≈ 0; blue circles), both with 5% − 95% uncertainty intervals. There is

a clear deflation of the sampling variances of the score time series up to at least a

sample size of 212 showing the case where there is no linear correlation in the target
data yet linear correlation in the scores.
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al., 2008), and can be used to measure inflation of the empirical

sampling variances under serial dependence. Wilks (2010) utilises

the decomposition of the Brier score sampling variance into the

moments of the joint distribution of forecasts and target data

which are expressible in terms of the parameters of the “linear-

calibration/beta-refinement” (LCBR) probability model, allowing

for derivation of analytical expressions for effective sample size

(ESS) corrections. Derivation of such analytical expressions has

not been possible in this study because neither is the IGN sampling

variance dependent on the moments of the joint distribution, nor

are these moments expressible in terms of the parameters of the

Lorenz63 system, AR(1) process, or logistic map (or, of course, in

any real-world system since the precise parameters are unknown).

In practice, a series of steps can be undertaken to determine

approximate ESS corrections, and make reliable estimates of

forecast skill and the statistical confidence of that skill. Firstly,

to detect whether serial dependence is inducing inflation of the

sampling variance, empirical estimates of the sampling variance

made from the score time series can be compared with those for a

serially independent series constructed using a random resampling

method as in Sections 3.1, 3.2, and 3.3 (see also Efron, 1981;

Wilks, 2011). These two sets of sampling variances can be plotted

for a range of sample sizes, as in Fig. 3. Secondly, the ratio

of the sample sizes of the time series and randomly resampled

series of scores which correspond to a given score sampling

variance is equal to N ′

N , and the actual ESS correction is given

by the difference N −N ′. For example, referring to Fig. 3, a

sampling variance of s2
ÎGNe

≈ 0.08 corresponds to a sample size

N ′ ≈ 25 for the time series and N ≈ 24 for the natural measure.

This indicates a required increase in sample size of ∆N ≈ 16

to achieve accurate estimation of the sampling variance, and

hence, significantly improved probability coverage of confidence

intervals.

Where reliable estimates of forecast skill are the ultimate aim,

the convergence of the sampling variance of the serially dependent

scores on that of the serially independent scores determines

the sample size required. Referring again to Fig. 3, the 5%−
95% uncertainty intervals for sampling variances of the forecast

ignorance estimates do not quite overlap sample size N = 26

so a larger sample size is required to be certain of obtaining

correct estimates under serial dependence in this case. At the point

at which the uncertainty intervals do overlap, the forecast skill

estimates under serial dependence and serial independence can be

considered to converge indicating that the estimates are accurate9.

The above procedure is summarised as follows:

1. construct independent series via random resample method

2. compare the score sampling variances from the time series

with those from independent draws as a function of sample

size

3. check for inflation of the sampling variance of the score

estimates against that of the independent series score

estimates

4. if inflation is detected, and where sample size allows,

determine which sample size is sufficient for convergence

of the score sampling variance under serial dependence

and serial independence to achieve accurate estimates of

forecast skill

5. Discussion

Serial dependence is a longstanding challenge in the estimation

of forecast skill. Inspired by Wilks (2010) demonstration of the

9To find this point of convergence, extrapolating lines could be fitted to the two
plots for example.

effect in probability of precipitation forecasting, the impact of

serial dependence has been shown to be nontrivial even in cases

where it might not have been expected, given the properties of

the predictand. This fact suggests testing for serial dependence

in every estimate of forecast skill, and a simple, straightforward

initial test has been demonstrated. Figures 3, 6, 8, and 10 illustrate

the comparison of time series estimates (red) with estimates

from independent sampling of the natural measure (blue). The

difference of these (red and blue) estimates in Figures 3 and 10

clearly signal the presence of serial dependence. Three of the

four possible cases of linear correlation either present or absent

in the target data and forecast skill scores have been illustrated

in these case studies. The results demonstrate not only how serial

dependence in an observation time series can lead to a (lesser)

degree of serial dependence in the corresponding score time

series, resulting in inflation of the score sampling variance and

misestimation of skill, but also explain how the presence of serial

dependence in target data is not a sufficient condition for the

effects to occur. The conclusions reached from the case studies

are summarised below and in Table 1.

Linear correlation in forecast target and linear correlation in

scores - Lorenz63 (Section 3.1)

The inflationary effect on the variances of the ignorance score’s

sampling distribution, previously examined by Wilks (2010), has

been emulated here with the Lorenz63 system, and shown to

increase with forecast skill. Of course, the effect materialises

for any scoring rule and for any statistic computed from serially

dependent data, but the results have demonstrated that the effects

of serial dependence on ignorance are weaker than they are on

the sample mean of the target data (for which the effective sample

size is determined by N ′ ≃ N(1− r1)/(1 + r1) under a similar

assumption about the correlation structure of the time series as

noted by Wilks (2011)). Hence, the effects on skill estimation

may not be so severe in real-world forecasting cases where the

data are not highly serially dependent. Improvements in forecast

systems over time (Bosart, 2003; Homar et al., 2006; Stuart, 2006;

Ruth, 2009; Novak et al., 2014), and hence forecast skill, may

be expected to lead to increases in the effect, however, which are

substantial enough to warrant making sample size corrections.

Linear correlation in forecast target and no linear correlation in

scores - AR(1) (Section 3.2)

A stochastic AR(1) process demonstrates how serial dependence

in forecast target time series need not imply correlation in

corresponding forecast scores. Score sampling variance inflation

and the misleading effects on forecast skill estimation do not occur

if the distribution of scores is not time-dependent. Conversely, the

inflationary effect has been shown to occur for time-independent

climatological forecast because the score realisations are only

dependent on the observation st, which are serially dependent.

No linear correlation in forecast target and linear correlation in

scores - logistic map (Section 3.3)

The misleading effect on forecast skill estimation has also been

shown to occur in the case of the logistic map where the forecast

target time series is delta correlated. In such a scenario, a

forecaster may not even be aware that their estimates of forecast

skill are inaccurate so a check for autocorrelation in the score

time series (or comparison of serially dependent and serially

independent score sampling variances) may be worthwhile.

The preceding results reveal a previously unreported complex-

ity to the effects/non-effects of serial dependence on forecast

skill estimation, and highlight how one might choose to exercise
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caution to avoid misidentifying-identifying the best forecast sys-

tem. To compensate for the effects of serial dependence, effective

sample size (ESS) corrections which are dependent on the ratio of

analytical to empirical score sampling variances can be made to

attain sufficient sample sizes for accurate skill estimation. Where

analytical solutions for score sampling variances are available,

one can employ the method of Wilks (2010) to determine ESS

corrections and which sample sizes are sufficient for accurate

estimates of forecast skill. In practice, these analytical solutions

are generally not available, however, so some ad hoc procedure

is required, such as comparing the sampling variances of score

estimates made from the time series and a randomly resampled

series. The suggestion proffered here is that, given detection of

the effect, one can compensate by applying ESS corrections, but,

without detection, one cannot be sure if there is an effect or not,

and so may choose to either increase to larger sample sizes to

detect the effect, or settle on their estimation of skill.

While the case studies presented in this paper provide new

insights into the effects of dependence in forecast target data on

forecast skill estimation, the investigations are limited to system-

model configurations with single parameter sets, and hence, time-

series structures. Future research might extend to techniques for

the assessment of the effect of both higher-order serial dependence

and spatial dependence of forecast skill estimation.

A. Dynamical Systems and Forecast Construction

A.1. Lorenz63 System

The Lorenz63 system (Lorenz, 1963) is a three dimensional

dynamical system defined by a set of three ordinary differential

equations (with respect to time) given as

ẋ = −σx+ σy (21)

ẏ = −xz + rx− y (22)

ż = xy − bz, (23)

where σ is the Prandtl number, r is the Rayleigh number, and b is

the system parameter. The standard parameter values are: σ = 10,

r = 28, and b = 8/3 (Sprott, 2003), and the initial conditions

are set to {x0 = 0, y0 = −0.01, z0 = 9}. Numerical solutions are

obtained using a fourth order Runge-Kutta time stepping scheme

(Press et al., 2007), with time step h = 10−2.

The forecasts are constructed here from a core ensemble

model using kernel dressing and blending (Bröcker and Smith,

2008). The kernel dressing approach here is to transform an

ensemble of model simulations x = x1, . . . , xM into a PDF

(y|x, σ) by assigning a linear combination of kernels centred on

each ensemble member xj . The kernel dressed PDF is given as

p̂(y|x, σ) = 1

Mσ

M
∑

j=1

K

(

y − xj
σ

)

, (24)

where σ is the strictly positive bandwidth or smoothing parameter,

and the kernel K is represented by a standard Gaussian density

K(t) =
1√
2π

e−
1
2 t

2

. (25)

Ideally, the optimal bandwidth is selected so that the divergence

of the estimate p̂ from the true p is minimised, that is d(p̂, p) =

||p̂− p|| where d(p̂, p) is some measure of the divergence.

Obviously, measuring the divergence is not possible since p is

unknown. The best alternative is to deploy an automated selection

method such as K-fold cross-validation or “plug-in” selection

(Hall, Marron, and Park, 1992). K-fold cross-validation is useful

method for fitting and validating a model where datasets are

limited in size (Picard and Cook, 1984; Hastie and Tibshirani,

2009). The data is partitioned into K roughly equal sized subsets

which are, in turn, used to validate the model which has been fitted

with the other K − 1 subsets. Leave-one-out cross-validation (i.e.

K-fold cross-validation (CV) with K = N) is preferred where

datasets are limited in size. Where larger synthetic datasets are

available, as is the case here, 2-fold cross-validation is performed.

The optimised kernel width σ̂ of the forecast PDF is obtained

by minimising some cost function, ideally a proper probabilistic

forecast scoring rule according to

(σ̂) := argmin
σ

− 1

N

N
∑

i=1

S(p̂(Yi;σ)), (26)

where a scoring rule S is evaluated over a sufficiently large

number N of target data Yi.
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