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Abstract
Wepropose a “NOVEL Integration of the Sample and Thresholded covariance” (NOV-
ELIST) estimator to estimate the large covariance (correlation) and precision matrix.
NOVELIST estimator performs shrinkage of the sample covariance (correlation)
towards its thresholded version. The sample covariance (correlation) component is
non-sparse and can be low rank in high dimensions. The thresholded sample covari-
ance (correlation) component is sparse, and its addition ensures the stable invertibility
of NOVELIST. The benefits of the NOVELIST estimator include simplicity, ease of
implementation, computational efficiency and the fact that its application avoids eige-
nanalysis. We obtain an explicit convergence rate in the operator norm over a large
class of covariance (correlation) matrices when the dimension p and the sample size
n satisfy log p/n → 0, and its improved version when p/n → 0. In empirical com-
parisons with several popular estimators, the NOVELIST estimator performs well in
estimating covariance and precision matrices over a wide range of models and sparsity
classes. Real-data applications are presented.

Keywords Covariance regularisation · High-dimensional covariance · Long
memory · Non-sparse modelling · Singular sample covariance · High dimensionality

Mathematics Subject Classification 62G05 · 62H12

1 Introduction

Estimating the covariance matrix and its inverse, also known as the concentration
or precision matrix, has always been an important part of multivariate analysis and
arises prominently, for example, in financial risk management (Markowitz 1952;
Longerstaey et al. 1996), linear discriminant analysis (Fisher 1936; Guo et al. 2007),
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principal component analysis (Pearson 1901; Croux and Haesbroeck 2000) and net-
work science (Jeong et al. 2001; Gardner et al. 2003). Naturally, this is also true of the
correlation matrix, and the following discussion applies to it, too. The sample covari-
ance matrix is a straightforward and often used estimator of the covariance matrix.
However, when the dimension p of the data is larger than the sample size n, the sample
covariance matrix is singular. Even if p is smaller than but of the same order of magni-
tude as n, the number of parameters to estimate is p(p+1)/2, which can significantly
exceed n. In this case, the sample covariance matrix is not reliable, and alternative
estimation methods are needed.

Wewould categorise themost commonly used alternative covariance estimators into
two broad classes. Estimators in the first class rely on various structural assumptions on
theunderlying true covariance.Oneprominent example is ordered covariancematrices,
often appearing in time-series analysis, spatial statistics and spatio-temporal mod-
elling; these assume that there is a metric on the variable indices. Bickel and Levina
(2008a) use banding to achieve consistent estimation in this context. Furrer andBengts-
son (2007) and Cai et al. (2010) regularise estimated ordered covariance matrices by
tapering. Cai et al. (2010) derive the optimal estimation rates for the covariance matrix
under the operator and Frobenius norms, a result which implies sub-optimality of the
convergence rate of the banding estimator of Bickel and Levina (2008a) in the operator
norm. The estimator of Cai et al. (2010) only achieves the optimal rate if the bandwidth
parameter is chosen optimally; however, the optimal bandwidth depends crucially on
the underlying unknown covariancematrix, and therefore, this estimator’s optimality is
only oracular. The banding technique is also applied to the estimated Cholesky factori-
sation of the covariance matrix (Bickel and Levina 2008a; Wu and Pourahmadi 2003).

Another important example of a structural assumption on the true covariance or
precision matrices is sparsity; it is often made, e.g. in the statistical analysis of genetic
regulatory networks (Gardner et al. 2003; Jeong et al. 2001). El Karoui (2008) and
Bickel and Levina (2008b) regularise the estimated sparse covariance matrix by uni-
versal thresholding.Adaptive thresholding, inwhich the threshold is a random function
of the data (Cai and Liu 2011; Fryzlewicz 2013), leads to more natural thresholding
rules and hence, potentially, more precise estimation. The Lasso penalty is another
popular way to regularise the covariance and precision matrices (Zou 2006; Rothman
et al. 2008; Friedman et al. 2008). Focusing on model selection rather than parameter
estimation, Meinshausen and Bühlmann (2006) propose the neighbourhood selection
method. One other commonly occurring structural assumption in covariance estima-
tion is the factor model, often used, e.g. in financial applications. Fan et al. (2008)
impose sparsity on the covariance matrix via a factor model. Fan et al. (2013) propose
the POET estimator, which assumes that the covariance matrix is the sum of a part
derived from a factor model, and a sparse part.

Estimators in the second broad class do not assume a specific structure of the covari-
ance or precision matrices, but shrink the sample eigenvalues of the sample covariance
matrix towards an assumed shrinkage target (Ledoit and Wolf 2012). A considerable
number of shrinkage estimators have been proposed along these lines. Ledoit andWolf
(2004) derive an optimal linear shrinkage formula, which imposes the same shrinkage
intensity on all sample eigenvalues but leave the sample eigenvectors unchanged. Non-
linear shrinkage is considered in Ledoit and Péché (2011) and Ledoit andWolf (2012,
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2015). Lam (2016) introduces a Nonparametric Eigenvalue-Regularised Covariance
Matrix Estimator (NERCOME) through subsampling of the data, which is asymp-
totically equivalent to the nonlinear shrinkage method of Ledoit and Wolf (2012).
Shrinkage can also be applied on the sample covariance matrix directly. Ledoit and
Wolf (2003) propose a weighted average estimator of the covariance matrix with a
single-index factor target. Schäfer and Strimmer (2005) review six different shrink-
age targets. Naturally related to the shrinkage approach is Bayesian estimation of
the covariance and precision matrices. Evans (1965), Chen (1979) and Dickey et al.
(1985) use possibly the most natural covariance matrix prior, the inverted Wishart
distribution. Other notable references include Leonard and John (2012) and Alvarez
et al. (2014).

The POET method of Fan et al. (2013) proposes to estimate the covariance matrix
as the sum of a non-sparse, low-rank matrix coming from the factor model part, and
a certain sparse matrix, added on to ensure invertibility of the resulting covariance
estimator. In this paper, we are motivated by the general idea of building a covariance
estimator as the sum of a non-sparse and a sparse part. By following this route, the
resulting estimator can be hoped to perform well in estimating both non-sparse and
sparse covariance matrices if the amount of sparsity is chosen well. At the same
time, the addition of the sparse part can guarantee stable invertibility of the estimated
covariance, a prerequisite for the successful estimation of the precision matrix. On the
other hand, we wish to move away from the heavy modelling assumptions used by the
POET estimator; indeed, our empirical results presented later suggest that POET can
underperform if the factor model assumption does not hold.

Motivated by this observation, this paper proposes a simple, practically assumption-
free estimator of the covariance and correlation matrices, termed NOVELIST
(NOVEL Integration of the Sample and Thresholded covariance/correlation estima-
tors). NOVELIST arises as the linear combination of two parts: the sample covariance
(correlation) estimator, which is always non-sparse and has low rank if p > n, and
its thresholded version, which is sparse. The inclusion of the sparse thresholded part
means that NOVELIST can always be made stably invertible. NOVELIST can be
viewed as a shrinkage estimator where the sample covariance (correlation) matrix is
shrunk towards a flexible, nonparametric, sparse target. By selecting the appropri-
ate amount of contribution of either of the two components, NOVELIST can adapt
to a wide range of underlying covariance structures, including sparse but also non-
sparse ones. In the paper, we show consistency of the NOVELIST estimator in the
operator norm uniformly under a class of covariance matrices introduced by Bickel
and Levina (2008b), as long as log p/n → 0, and offer an improved version of this
result if p/n → 0. The benefits of the NOVELIST estimator include simplicity, ease
of implementation, computational efficiency and the fact that its application avoids
eigenanalysis, which is unfamiliar to some practitioners. In our simulation studies,
NOVELIST performs well in estimating both covariance and precision matrices for a
wide range of underlying covariance structures, benefitting from the flexibility in the
selection of its shrinkage intensity and thresholding level.

The rest of the paper is organised as follows. In Sect. 2,we introduce theNOVELIST
estimator and its properties. Section 3 discusses the case where the two components
of the NOVELIST estimator are combined in a non-convex way. Section 4 describes
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the procedure for selecting its parameters. Section 5 shows empirical improvements of
NOVELIST. Section 6 exhibits practical performance of NOVELIST in comparison
with the state of the art. Section 7 presents real-data performance in portfolio optimi-
sation problems and concludes the paper, and proofs appear in “Appendix” section.
The R package “novelist” is available on CRAN.

2 Method, motivation and properties

2.1 Notation andmethod

We observe n i.i.d. p-dimensional observations X1, . . . , Xn , distributed according
to a distribution F , with E(X) = 0, Σ = {σi j } = E(XXT), and R = {ρi j } =
D−1ΣD−1, where D = (diag(Σ))1/2. In the case of heteroscedastic data, we apply
NOVELIST to the sample correlation matrix and only then obtain the corresponding
covariance estimator. The NOVELIST estimator of the correlation matrix is defined
as

R̂N (R̂, λ, δ) = (1 − δ) R̂
︸ ︷︷ ︸

non-sparse part

+ δ T (R̂, λ)
︸ ︷︷ ︸

sparse part

, (1)

and the corresponding covariance estimator is defined as Σ̂N = D̂ R̂N D̂, where Σ̂ =
{σ̂i j } and R̂ = {ρ̂i j } are the sample covariance and correlation matrices, respectively,
D̂ = (diag(Σ̂))1/2, δ is the weight or shrinkage intensity, which is usually within the
range [0, 1] but can also lie outside it, λ is the thresholding value, which is a scalar
parameter in [0, 1], and T (·, ·) is a function that applies any generalised thresholding
operator (Rothman et al. 2009) to each off-diagonal entry of its first argument, with the
threshold value equal to its second argument. The generalised thresholding operator
refers to any function satisfying the following conditions for all z ∈ R, (i) | T (z, λ) |≤|
z |; (ii) T (z, λ) = 0 for | z |≤ λ; (iii) | T (z, λ)−z |≤ λ. Typical examples of T include
soft thresholding Ts with T (z, λ) = (z − Sign(z)λ)1(| z |> λ), hard thresholding Th
with T (z, λ) = z1(| z |> λ) and SCAD (Fan and Li 2001). Note that Σ̂N can also be
written directly as a NOVELIST estimator with a p × p adaptive threshold matrix Λ,
Σ̂N = (1 − δ) Σ̂ + δ T (Σ̂,Λ), where Λ = {λσ̂i i σ̂ j j }.

NOVELIST is a shrinkage estimator, in which the shrinkage target is assumed to
be sparse. The degree of shrinkage is controlled by the δ parameter and the amount
of sparsity in the target by the λ parameter. Numerical results shown in Fig. 1 suggest
that the eigenvalues of the NOVELIST estimator arise as a certain nonlinear transfor-
mation of the eigenvalues of the sample correlation (covariance) matrix, although the
application of NOVELIST avoids explicit eigenanalysis.

2.2 Motivation: link to ridge regression

In this section, we show how the NOVELIST estimator can arise in a penalised solu-
tion to the linear regression problem, which is linked to ridge regression. For linear
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Fig. 1 Left: Illustration of NOVELIST operators for any off-diagonal entry of the correlation matrix ρ̂i j
with soft thresholding target Ts (λ = 0.5, δ = 0.1, 0.5 and 0.9). Right: ranked eigenvalues of NOVELIST
plotted versus ranked eigenvalues of the sample correlation matrix

regression Y = X̃β + ε, the traditional OLS solution (X̃
T
X̃)−1 X̃

T
Y cannot be used

if p > n because of the non-invertibility of X̃
T
X̃ . The OLS solution rewrites as

[(1 − δ)X̃
T
X̃ + δ X̃

T
X̃]−1 X̃

T
Y , where δ ∈ [0, 1]. Using this as a starting point, we

consider a regularised solution

[

(1 − δ)X̃
T
X̃ + δ f

(

X̃
T
X̃

)]−1

X̃
T
Y

.= A−1 X̃
T
Y , (2)

where f (X̃
T
X̃) is any elementwise modification of the matrix X̃

T
X̃ designed (a) to

make A invertible and (b) to ensure adequate estimation of β. The expression in (2)
is the minimiser of a generalised ridge regression criterion

(1 − δ) || Y − X̃β ||22 +δβT f

(

X̃
T
X̃

)

β, (3)

where δ acts as a tuning parameter. If f (X̃
T
X̃) = I , (3) is reduced to ridge regres-

sion and A is the shrinkage estimator with the identity matrix target. If f (X̃
T
X̃) =

T (X̃
T
X̃, λσ̂i i σ̂ j j ), A is the NOVELIST estimator of the covariance matrix.

From formula (3), NOVELIST penalises the regression coefficients in a pairwise
manner which can be interpreted as follows: for a given threshold λ, we place a penalty
on the products βiβ j of those coefficients of β for which the sample correlation
between X̃ i and X̃ j , the i th and j th column of X̃ (respectively), exceeds λ. In other
words, if the sample correlation is high, we penalise the product of the corresponding
β’s, hoping that the resulting estimated βi and β j are not simultaneously large.
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2.3 Asymptotic properties of NOVELIST

2.3.1 Consistency of the NOVELIST estimators

In this section, we establish consistency of NOVELIST in the operator norm and
derive the rates of convergence under different scenarios. Bickel and Levina (2008b)
introduce a uniformity class of covariance matrices invariant under permutations as

U(q, c0(p), M, ε0)

=
⎧

⎨

⎩

Σ : σi i ≤ M,

p
∑

j=1

| σi j |q≤ c0(p), for all i and λmin(Σ) ≥ ε0 > 0

⎫

⎬

⎭

, (4)

where 0 ≤ q < 1, c0 is a function of p, the parameters M and ε0 are constants, and
λmin() is the smallest eigenvalue operator. Analogously, we define a uniformity class
of correlation matrices as

V(q, s0(p), ε0)

=
⎧

⎨

⎩

R :
p

∑

j=1

| ρi j |q≤ s0(p), for all i and λmin(R) ≥ ε0 > 0

⎫

⎬

⎭

, (5)

where 0 ≤ q < 1 and ε0 is a constant. The parameters q and s0(p) (equiv. c0(p))
together control the permitted degree of “sparsity” of the members of the given class.
In the remainder of the paper, where it does not cause confusion, we mostly work with
s0(p) rather than c0(p), noting that these two parameterisations are equivalent.

Next, we establish consistency of the NOVELIST estimator in the operator norm,
|| A ||22= λmax(AAT), where λmax() is the largest eigenvalue operator.

Proposition 1 Let F satisfy
∫ ∞
0 exp(γ t)dG j (t) < ∞ for 0 < |γ | < γ0, where γ0 > 0

and G j is the cdf of X2
1 j . Let R = {ρi j } and Σ = {σi j } be the true correlation and

covariance matrices with 1 ≤ i, j ≤ p, and σi i ≤ M, where M > 0. Then, uniformly
on V(q, s0(p), ε0), for sufficiently large M ′, if λ = M ′√log p/n and log p/n = o(1),

|| R̂N − R || = Op((1 − δ)p
√

log p/n)
︸ ︷︷ ︸

(A)

+ Op(δs0(p)(log p/n)(1−q)/2)
︸ ︷︷ ︸

(B)

= || (R̂N )−1 − R−1 || (6)

|| Σ̂N − Σ || = Op((1 − δ)p
√

log p/n)

+ Op(δs0(p)(log p/n)(1−q)/2) = || (Σ̂N )−1 − Σ−1 || . (7)

Proposition 2 Let the length-p column vector X i satisfy the sub-Gaussian condition
P(|vTX i | > t) ≤ exp(−t2ρ/2) for a certain ρ > 0, for all t > 0 and ‖v‖2 = 1.
Let R = {ρi j } and Σ = {σi j } be the true correlation and covariance matrices with
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1 ≤ i, j ≤ p, and σi i ≤ M, where M > 0. Then, uniformly on V(q, s0(p), ε0), for
sufficiently large M ′, if λ = M ′√log p/n and p = o(n),

|| R̂N − R || = Op((1 − δ)
√

(p + log n)/n)
︸ ︷︷ ︸

(A)

+ Op(δs0(p)(log p/n)(1−q)/2)
︸ ︷︷ ︸

(B)

= || (R̂N )−1 − R−1 || (8)

|| Σ̂N − Σ || = Op((1 − δ)
√

(p + log n)/n)

+ Op(δs0(p)(log p/n)(1−q)/2) = || (Σ̂N )−1 − Σ−1 || . (9)

The proofs are given in “Appendix” section. The NOVELIST estimators of the
correlation and covariance matrices and their inverses yield the same convergence
rate.

We now discuss the optimal asymptotic δ under the settings of Propositions 1 and
2. Proposition 1 can be thought of as a “large p” setting, while Proposition 2 applies
to moderately large and small p.

2.3.2 Optimal ı and rate of convergence in Proposition 1

Proposition 1 corresponds to “large p” scenarios, in which p can be thought of as
being O(n) or larger (indeed, the case p = o(n) is covered by Proposition 2). For
such a large p, the pre-condition for the consistency of the NOVELIST estimator
is that δ → 1, i.e. that the estimator asymptotically degenerates to the thresholding
estimator. To see this, take p = n1+Δ with Δ ≥ 0. If δ 
→ 1, the error in part (A) of
formula (6) would be of order n1/2+Δ

√

log n1+Δ and therefore would not converge
to zero.

Focusing on R̂N without loss of generality, the optimal rate of convergence is
obtained by equating parts (A) and (B) in formula (6). The resulting optimal shrinkage
intensity δ̃ is

δ̃ = p(log p/n)q/2

s0(p) + p(log p/n)q/2 = (log p/n)q/2

s0(p)/p + (log p/n)q/2 . (10)

In typical scenarios, bearing in mind that p is at least of order n or larger, and that
q < 1, the term s0(p)/p will tend to zero much faster than the term (log p/n)q/2,
which will result in δ̃ → 1 and in the rate of convergence of NOVELIST being
Op(s0(p)(log p/n)(1−q)/2). Examples or such scenarios are given directly below.

Scenario 1 q = 0, s0(p) = o((n/ log p)1/2).

When q = 0, the uniformity class of correlation matrices controls the maximum
number of nonzero entries in each row. The typical example is the moving-average
(MA) autocorrelation structure in time series.
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Scenario 2 q 
= 0, s0(p) ≤ C as p → ∞.

A typical example of this scen is the auto-regressive (AR) autocorrelation structure.
We now show a scen in which NOVELIST is inconsistent, under the setting of

Proposition1.Consider the long-memory autocorrelationmatrix,ρi j ∼ | i− j |−α , 0 <

α ≤ 1, for which s0(p) = max1≤i≤p
∑p

j=1 max(1, |i − j |)−αq = O(p1−αq). Take

q 
= 0. Note a sufficient condition for δ̃ to tend to 1 is that (log p)(1/2)n−1/2 pα → ∞.
This more easily happens for larger α’s, i.e. for “less long”-memory processes. How-
ever, considering the implied rate of convergence, we have s0(p)(log p/n)(1−q)/2 =
p1−αq(log p/n)(1−q)/2, which is divergent even if α = 1.

2.3.3 Optimal ı and rate of convergence in Proposition 2

Similarly, in the setting of Proposition 2, the resulting optimal shrinkage intensity δ̃ is

δ̃ = ((p + log n)/n)1/2

((p + log n)/n)1/2 + s0(p)(log p/n)(1−q)/2
. (11)

We now highlight a few special-case scenarios.

Scenario 3 p fixed (and hence q = 0).

Note that in the case of p being fixed or bounded in n, one can take q = 0 (to obtain
as fast a rate for the thresholding part as possible) as the implied s0(p) will also be
bounded in n. In this case, we have δ̃ → 1 (and hence NOVELIST degenerates to the
thresholding estimator with its corresponding speed of convergence), but the speed at
which δ̃ approaches 1 is extremely slow (O(log−1/2 n)).

Scenario 4 p → ∞ with n, and q = 0.

In this case, the quantity {(p+ log n)/ log p}1/2 acts as a transition phase: if s0(p)
is of a larger order, then we have δ̃ → 0; if it is of a smaller order, then δ̃ → 1; if it
is of this order and if δ̃ has a limit, then its limit lies in (0, 1). Therefore, NOVELIST
will be closer to the sample covariance (correlation) if the truth is dense (i.e. if s0(p)
is large), and closer to the thresholding estimator if s0(p) is small.

Scenario 5 p → ∞ with n, and q 
= 0.

Here, the transition-phase quantity is (p+log n)1/2

(log p)
1−q
2 nq/2

and conclusions analogous to

those of the preceding Scenario can be formed.
In the context of Scenario 5, we now revisit the long-memory example from before.

The most “difficult” case still included in the setting of Proposition 2 is when p
is “almost” the size of n; therefore, we assume p = n1−Δ, with Δ being a small
positive constant. Neglecting the logarithmic factors, the transition-phase quantity

(p+log n)1/2

(log p)
1−q
2 nq/2

reduces to n
1−Δ−q

2 . We have s0(p) = O(n(1−Δ)(1−αq)), and therefore

s0(p) is of a larger order than n
1−Δ−q

2 if α <
1−Δ+q
2q(1−Δ)

; in this case, δ̃ → 0, and the
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NOVELIST estimator degenerates to the sample covariance (correlation) estimator,
which is consistent in this setting at the rate of n−Δ/2 (neglecting the log-factors).
The other case, α ≥ 1−Δ+q

2q(1−Δ)
, is impossible as we must have α ≤ 1. Therefore,

the NOVELIST estimator is consistent for the long-memory model under the setting
of Proposition 2, i.e. when p = o(n) (and degenerates to the sample covariance
estimator). This is in contrast to the setting of Proposition 1, where, as argued before,
the consistency of NOVELIST in the long-memory model cannot be shown.

3 ı outside [0, 1]
Some authors (Ledoit andWolf 2003; Schäfer and Strimmer 2005; Savic andKarlsson
2009), more or less explicitly, discuss the issue of the shrinkage intensity (for other
shrinkage estimators) falling within versus outside the interval [0, 1]. Ledoit andWolf
(2003) “expect” it to lie between zero and one, Schäfer and Strimmer (2005) truncate
it at zero or one, and Savic and Karlsson (2009) view negative shrinkage as a “useful
signal for possible model misspecification”. We are interested in the performance of
the NOVELIST estimator with δ /∈ [0, 1] and have reasons to believe that δ /∈ [0, 1]
may be a good choice in certain scenarios.

We use the diagrams below to briefly illustrate this point. When the target T is
appropriate, the “oracle” NOVELIST estimator (by which we mean one where δ is
computed with the knowledge of the true R by minimising the spectral norm distance
to R) will typically be in the convex hull of R̂ and T , i.e. δ ∈ [0, 1] as shown in
the left graph. However, the target may also be misspecified. For example, if the true
correlation matrix is highly non-sparse, the sparse target may be inappropriate, to the
extent that R will be further away from T than from R̂, as shown in the middle graph.
In that case, the optimal δ should be negative to prevent NOVELIST being close to the
target. By contrast, when the sample correlation is far from the (sparse) truth, perhaps
because of high dimensionality, the optimal delta may be larger than one (Diagram 1).

4 Empirical choices of (�,ı) and algorithm

The choices of the shrinkage intensity (for shrinkage estimators) and the thresholding
level (for thresholding estimators) are intensively studied in the literature. Bickel and

R̂ T

R

R̂N
opt

(A) δ ∈ (0, 1)
R̂ T

R

R̂N
opt

(B) δ < 0
R̂ T

R

R̂N
opt

(C) δ > 1

Diagram 1 Geometric illustration of shrinkage estimators. R is the truth, T is the target, R̂ is the sample
correlation, R̂N

opt is the “oracle” NOVELIST estimator defined as the linear combination of T and R̂ with
minimum spectral norm distance to R. LEFT: δ ∈ (0, 1) if target T is appropriate; MIDDLE: δ < 0 if target
T is misspecified; RIGHT: δ > 1 if R̂ is far from R
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Levina (2008b) propose a cross-validationmethod for choosing the threshold value for
their thresholding estimator. However, NOVELIST requires simultaneous selection of
the two parameters λ and δ, which makes straight cross-validation computationally
intensive. Ledoit and Wolf (2003) and Schäfer and Strimmer (2005) give an analytic
solution to the problem of choosing the optimal shrinkage level, under the Frobenius
norm, for any shrinkage estimator. Since NOVELIST can be viewed as a shrinkage
estimator, we borrow strength from this result and proceed by selecting the optimal
shrinkage intensity δ∗(λ) in the sense of Ledoit and Wolf (2003) for each λ, and then
perform cross-validation to select the best pair (λ′, δ∗(λ′)). This process significantly
accelerates computation.

Cai and Liu (2011) and Fryzlewicz (2013) use adaptive thresholding for covariance
matrices, in order to make thresholding insensitive to changes in the variance of the
individual variables. This, effectively, corresponds to thresholding sample correlations
rather than covariances. In the same vein, we apply NOVELIST to sample correlation
matrices. We use soft thresholding as it often exhibits better and more stable empirical
performance than hard thresholding, which is partly due to its being a continuous
operation. Let Σ̂ and R̂ be the sample covariance and correlation matrices computed
on the whole dataset, and let T = {Ti j } be the soft thresholding estimator of the
correlation matrix. The algorithm proceeds as follows.

For estimating the covariance matrix,

LW (Ledoit–Wolf) step Using all available data, for each λ ∈ (0, 1) chosen from a
uniform grid of size m, find the optimal empirical δ as

δ∗(λ) =
∑

1≤i 
= j≤n Var(R̂i j ) − Cov(R̂i j , Ti j )
∑

1≤i 
= j≤n(R̂i j − Ti j )2

=
∑

1≤i 
= j≤n Var(R̂i j )I(R̂i j < λ)
∑

1≤i 
= j≤n(R̂i j − Ti j )2
, (12)

to obtain the pair (λ, δ∗(λ)).
The first equality comes from Ledoit and Wolf (2003), and the second follows

because of the fact that our shrinkage target T is the soft thresholding estimator with
threshold λ (applied to the off-diagonal entries only).

CV (Cross-validation) step For each z = 1, . . . , Z , split the data randomly into two
equal-size parts A (training data) and B (test data), letting Σ̂

(z)
A and Σ̂

(z)
B be the sample

covariance matrices of these two datasets, and R̂(z)
A and R̂(z)

B – the sample correlation
matrices.

1. For each λ, obtain the NOVELIST estimator of the correlation matrix R̂N (z)

A (λ) =
R̂N (R̂(z)

A , λ, δ∗(λ)), and of the covariance matrix Σ̂N (z)

A (λ) = D̂A R̂N (z)

A (λ)D̂A,

where D̂A = (diag (Σ̂
(z)
A ))1/2.

2. Compute the spectral norm error Err(λ)(z) =|| Σ̂N (z)

A (λ) − Σ̂
(z)
B ||22.

3. Repeat steps 1 and 2 for each z and obtain the averaged error Err(λ) =
1
Z

∑Z
z=1 Err(λ)(z). Find λ′ = minλ Err(λ), then obtain the optimal pair (λ′, δ′) =

(λ′, δ∗(λ′)).
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4. Compute the cross-validated NOVELIST estimators of the correlation and covari-
ance matrices as

R̂N
cv = R̂N (R̂, λ

′
, δ

′
), (13)

Σ̂N
cv = D̂ R̂N

cv D̂, (14)

where D̂ = (diag(Σ̂))1/2.

For estimating the inverses of the correlation and the covariance matrices, the dif-
ference lies in step 2, where the error measure is adjusted as follows. If n > 2p (i.e. in
the case when Σ̂

(z)
B is invertible), we use the measure Err(λ)(z) = || (Σ̂N (z)

A (λ))−1 −
(Σ̂

(z)
B )−1 ||22; otherwise, use Err(λ)(z) = || (Σ̂N (z)

A (λ))−1Σ̂
(z)
B − I ||22, where I is the

identity matrix. In step 4, we compute the cross-validated NOVELIST estimators of
the inverted correlation and covariance matrices as

(R̂N
cv)

−1 = (R̂N (R̂, λ
′
, δ

′
))−1, (15)

(Σ̂N
cv)

−1 = (D̂ R̂N
cv D̂)−1. (16)

We note that a closely related procedure for choosing δ has also been described in
Lam and Feng (2017).

5 Empirical improvements of NOVELIST

5.1 Fixed parameters

As shown in the simulation study of Sect. 6.2, the performance of cross-validation
is generally adequate, except in estimating large precision matrices with highly
non-sparse covariance structures, such as in factor models and long-memory auto-
covariance structures. To remedy this problem, we suggest that fixed, rather than
cross-validated parameters be used, if the eigenanalysis of the sample correlation
matrix indicates that there are prominent principal components, when p > 2n or close.
We suggest the following rules of thumb: first, we look for the evidence of “elbows”
in the scree plot of eigenvalues, by examining if

∑p
k=1 I{γ(k) + γ(k+2) − 2γ(k+1) >

0.1p} > 0, where γ (k) is the kth principal component. If so, then we look for the
evidence of long-memory decay, by examining if the off-diagonals of the sample cor-
relation matrix follow a high-kurtosis distribution. If the sample kurtosis ≤ 3.5, this
suggests that the factor structure may be present, and we use the fixed parameters
(λ′′, δ′′) = (0.90, 0.50); if the sample kurtosis > 3.5, this may point to long memory,
and we use the fixed parameters (λ′′, δ′′) = (0.50, 0.25). The above decision proce-
dure, including all the specific parameter values, has been obtained through extensive
numerical experiments not shown in this paper. It is sketched in the following flowchart
(Flowchart 1).
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p > 2n? Prominent PCs?
High-kurtosis
off-diagonals?

Cross validation (λ′, δ′) (λ′′, δ′′) = (0.90, 0.50)

(λ′′, δ′′) = (0.50, 0.25)

no no

yes yes

no

yes

Flowchart 1 Decision procedure for using cross-validated or fixed parameters in estimating precision
matrices

5.2 Principal-component-adjusted NOVELIST

NOVELIST can further benefit from any prior knowledge about the underlying covari-
ance matrix, such as the factor model structure. If the underlying correlation matrix
follows a factor model, we can decompose the sample correlation matrix as

R̂ =
K

∑

k=1

γ̂(k)ξ̂(k)ξ̂
T
(k) + R̂rem, (17)

where γ̂(k) and ξ̂(k) are the kth eigenvalue and eigenvector of sample correlationmatrix,
K is the number up to which the principal components are considered to be “large”
and R̂rem is the sample correlation matrix after removing the first K principal compo-
nents. Instead of applying NOVELIST on R̂ directly, we keep the first K components
unchanged and only apply NOVELIST to R̂rem. Principal-component-adjusted NOV-
ELIST estimators are obtained by

R̂N
rem =

K
∑

k=1

γ̂(k)ξ̂(k)ξ̂
T
(k) + R̂N (R̂rem, λ, δ), (18)

Σ̂N
rem = D̂ R̂N

rem D̂. (19)

In the remainder of the paper, we always use the not-necessarily-optimal value K = 1.
We suggest that PC-adjusted NOVELIST should only be used with prior knowledge
or if empirical testing indicates that there are prominent principal components.

6 Simulation study

In this section, we investigate the performance of the NOVELIST estimator of covari-
ance and precision matrices based on optimal and data-driven choices of (λ, δ) for
seven different models and in comparison with five popular competitors. According
to the algorithm in Sect. 4, the NOVELIST estimator of the correlation is obtained
first; the corresponding estimator of the covariance follows by formula (13) and the
inverse of the covariance estimator is obtained by formula (16). In all simulations,
the sample size n = 100, and the dimension p ∈ {10, 100, 200, 500}. We perform
N = 50 repetitions.
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6.1 Simulationmodels

We use the following models for Σ .
(A) Identity σi j = 1I{i = j}, for 1 ≤ i, j ≤ p.
(B)MA(1) autocovariance structure

σi j =

⎧

⎪
⎨

⎪
⎩

1, if i = j;
ρ, if | i − j |= 1;
0, otherwise

(20)

for 1 ≤ i, j ≤ p. We set ρ = 0.5.
(C) AR(1) autocovariance structure

σi j = ρ|i− j |, for 1 ≤ i, j ≤ p, (21)

with ρ = 0.9.
(D) Non-sparse covariance structureWe generate a positive definite matrix as

Σ = QΛQT, (22)

where Q has iid standard normal entries and Λ is a diagonal matrix with its diagonal
entries drawn independently from the χ2

5 distribution. The resulting Σ is non-sparse
and lacks an obvious pattern.

(E) Factor model covariance structure Let Σ be the covariance matrix of X =
{X1, X2, · · ·, X p}T, which follows a three-factor model

Xp×n = Bp×3Y3×n + Ep×n, (23)

where
Y = {Y1,Y2,Y3}T is a three-dimensional factor, generated independently from the

standard normal distribution, i.e. Y ∼ N (0, I3),
B = {βi j } is the coefficient matrix, βi j

i .i .d.∼ U (0, 1), 1 ≤ i ≤ p, 1 ≤ j ≤ 3,

E = {ε1, ε2, · · ·, εp}T is p-dimensional random noise, generated independently
from the standard normal distribution, ∼ N (0, 1).

Based on this model, we have σi j =
{

∑3
k=1 β2

ik + 1 if i = j;
∑3

k=1 βikβ jk if i 
= j .
.

(F) Long-memory autocovariance structure We use the autocovariance matrix of
the fractional Gaussian noise (FGN) process, with

σi j = 1

2
[|| i − j | +1 |2H −2 | i − j |2H + || i − j | −1 |2H ] 1 ≤ i, j ≤ p.

(24)

The model is taken from Bickel and Levina (2008a), Sect. 6.1, and is non-sparse.
We take H = 0.9 in order to investigate the case with strong long memory.
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(G) Seasonal covariance structure

σi j = ρ|i− j |1{| i − j |= lZ≥0}, for 1 ≤ i, j ≤ p, (25)

where Z≥0 is the set of non-negative integers. We take l = 3 and ρ = 0.9.
The models can be broadly divided into three groups. (A)–(C) and (G) are sparse,

(D) is non-sparse, and (E) and (F) are highly non-sparse. In models (B), (C) (F) and
(G), the covariance matrix equals the correlation matrix. In order to depart from the
case of equal variances, we also work with modified versions of these models, denoted
by (B*), (C*) (F*) and (G*), in which the correlation matrix {ρi j } is generated as in
(B), (C) (F) and (G), respectively, and which have unequal variances independently
generated as σi i ∼ χ2

5 . As a result, in the “starred”models, we have σi j = ρi j
√

σi iσ j j ,
i, j ∈ (1, p).

The performance of the competing estimators is presented in two parts. In the first
part, we compare the estimatorswith optimal parameters identifiedwith the knowledge
of the true covariance matrix. These include (a) the soft thresholding estimator Ts ,
which applies the soft thresholding operator to the off-diagonal entries of R̂ only, as
described in Sect. 2.1, (b) the banding estimator B (Section 2.1 in Bickel and Levina
(2008a)), (c) the optimal NOVELIST estimator Σ̂N

opt and (d) the optimal PC-adjusted

NOVELIST estimator Σ̂N
opt.rem . In the second part, we compare the data-driven

estimators including (e) the linear shrinkage estimator S [Target D in Table 2 from
Schäfer and Strimmer (2005)], which estimates the correlation matrix by “shrinkage
of the sample correlation towards the identity matrix” and estimates the variances by
“shrinkage of the sample variances towards their median”, (f) the POET estimator
P (Fan et al. 2013), (g) the cross-validated NOVELIST estimator Σ̂N

cv , (h) the PC-
adjusted NOVELIST Σ̂N

rem and (i) the nonlinear shrinkage estimator NS (Ledoit and
Wolf 2015). The sample covariance matrix Σ̂ is also listed for reference. We use the
R package corpcor to compute S and the R package POET to compute P . In the latter,
we use k = 7 as suggested by the authors and use soft thresholding in NOVELIST and
POET as it tends to offer better empirical performance. We use Z = 50 for Σ̂N

cv and
extend the interval for δ to [−0.5, 1.5]. Σ̂N

cv with fixed parameters are only considered
for estimating precisionmatrix undermodel (E), (F) and (F*)when p = 100, 200, 500.
We use K = 1 for Σ̂N

opt.rem and Σ̂N
rem. NS is performed by using the commercial

package SNOPT for Matlab (Ledoit and Wolf 2015).

6.2 Simulation results

Performance of Σ̂N as a function of (λ, δ) Examining the results presented in Figs. 2
and 3 and Table 1, it is apparent that the performance of NOVELIST depends on the
combinations of λ and δ used. Generally speaking, the average operator norm errors
increase as sparsity decreases and dimension p increases. The positions of empirically
optimal λ∗ and δ∗ are summarised as follows.
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Fig 2 Image plots of operator norm errors of NOVELIST estimators of Σ with different λ and δ under
models (a)–(c) and (g), n = 100, p = 10 (left), 100 (middle), 200 (right), simulation times = 50. The darker
the area, the smaller the error

1. The higher the degree of sparsity, the closer δ∗ is to 1. The δ∗ parameter tends
to be close to 1 or slightly larger than 1 for the sparse group, around 0.5 for the
non-sparse group and about 0 or negative for the highly non-sparse group.

2. δ∗ moves closer to 1 as p increases. This is especially true for the sparse group.
3. Unsurprisingly, the choice of λ is less important when δ is closer to 0.
4. Occasionally, δ∗ /∈ [0, 1]. In particular, for the AR(1) and seasonal models, δ∗ ∈

(1, 1.5], while in the highly non-sparse group, δ∗ can take negative values, which
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Fig 3 Image plots of operator norm errors of NOVELIST estimators of Σ with different λ and δ under
models (d)–(f), n = 100, p = 10 (left), 100 (middle), 200 (right), simulation times = 50. The darker the
area, the smaller the error

is a reflection of the fact that Σ̂N
opt attempts to reduce the effect of the strongly

misspecified sparse target.

Performance of cross-validated choices of (λ, δ)Table 1 shows that the cross-validated
choices of the parameter (λ

′
, δ

′
) for Σ̂N

cv are close to the optimal (λ∗, δ∗) for most
models when p = 10, but there are bigger discrepancies between (λ

′
, δ

′
) and (λ∗, δ∗)

as p increases, especially for the highly non-sparse group. Again, Fig. 4, which only
includes representative models from each sparsity category, shows that the choices
of (λ

′
, δ

′
) are consistent with (λ∗, δ∗) in most of the cases. For models (A) and (C),

cross-validation works very well: the vast majority of (λ
′
, δ

′
) lead to the error lying in

the 1st decile of the possible error range, whereas for models (D) and (G) with p = 10,
in the 1st or 2nd decile.

However, as given in Tables 4 and 5, the performance of cross-validation in estimat-
ing Σ−1 with highly non-sparse covariance structures, such as in factor models and
long-memory autocovariance structures, is less good (a remedy to this was described
in Sect. 5.1).
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Table 1 Choices of (λ∗, δ∗) and (λ
′
, δ

′
) for Σ̂N (50 replications)

Σ̂N
opt Σ̂N

cv Σ̂N
opt Σ̂N

cv

λ∗ δ∗ λ
′

δ
′

λ∗ δ∗ λ
′

δ
′

p = 10, n = 100 p = 100, n = 100

(A) Identity (0.50,1.00) 1.00 0.60 1.00 (0.50,1.00) 1.00 0.60 1.00

(B) MA(1) 0.15 1.00 0.25 0.80 0.20 1.00 0.20 0.95

(B*) MA(1)* 0.15 0.95 0.30 0.65 0.15 1.00 0.30 0.90

(C) AR(1) 0.50 0.00 0.40 0.15 0.15 0.50 0.10 0.70

(C*) AR(1)* 0.50 0.05 0.40 0.00 0.30 0.60 0.30 0.85

(D) Non-sparse 0.40 0.50 0.55 0.40 0.45 0.60 0.35 0.80

(E) Factor 0.40 0.00 0.65 0.10 0.20 − 0.15 0.50 0.05

(F) FGN 0.50 − 0.05 0.50 0.00 0.30 − 0.10 0.55 0.05

(F*) FGN* 0.50 − 0.05 0.50 0.00 0.40 − 0.05 0.65 0.05

(G) Seasonal 0.15 0.75 0.15 0.70 0.10 1.30 0.05 1.50

(G*) Seasonal* 0.25 0.75 0.20 0.65 0.10 1.30 0.05 1.50

p = 200, n = 100 p = 500, n = 100

(A) Identity 0.55 1.00 0.60 1.00 0.55 1.00 0.60 1.00

(B) MA(1) 0.25 1.00 0.20 1.00 0.30 1.00 0.25 1.00

(B*) MA(1)* 0.25 1.00 0.25 0.95 0.25 1.00 0.20 1.00

(C) AR(1) 0.05 1.00 0.05 1.00 0.10 1.10 0.05 0.80

(C*) AR(1)* 0.05 1.10 0.05 1.30 0.10 0.95 0.10 1.10

(D) Non-sparse 0.30 0.65 0.55 0.40 0.40 0.75 0.40 0.90

(E) Factor 0.10 − 0.10 0.60 0.05 0.20 − 0.10 0.50 0.05

(F) FGN 0.30 0.05 0.65 0.10 0.35 0.10 0.40 0.10

(F*) FGN* 0.25 0.05 0.50 0.05 0.15 − 0.10 0.35 0.10

(G) Seasonal 0.10 1.10 0.05 1.50 0.10 1.30 0.10 1.20

(G*) Seasonal* 0.10 1.10 0.05 1.50 0.10 1.30 0.10 1.20

Comparison with competing estimators For the estimators with the optimal param-
eters (Tables 2, 3), NOVELIST performs the best for p = 10 for both Σ and Σ−1

and beats the competitors across the non-sparse and highly non-sparse model classes
when p = 100, 200 and 500. The banding estimator beats NOVELIST in covari-
ance matrix estimation in the homoscedastic sparse models by a small margin in the
higher-dimensional cases. For the identity matrix, banding, thresholding and the opti-
mal NOVELIST attain the same results. Optimal PC-adjusted NOVELIST achieves
better relative results for estimating Σ−1 than for Σ .

In the competitions based on the data-driven estimators (Tables 4, 5), when p = 10,
the cross-validation NOVELIST is the best for most of the models with heteroscedas-
tic variances and only slightly worse than linear or nonlinear shrinkage estimator for
the other models. When p = 100, 200 or 500, the cross-validation NOVELIST is the
best for most of the models in the sparse and the non-sparse groups (more so for het-
eroscedastic models) for bothΣ andΣ−1, but is beaten by POET for the factor model
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Fig 4 50 replicated cross-validation choices of (δ
′
, λ

′
) (green circles) against the background of contour

lines of operator norm distances toΣ undermodels (a), (c), (d) and (f) [equivalent to Figs. 2 and 3], n = 100,
p = 10 (Left), 100 (Middle), 200 (Right). The area inside the first contour line contains all combinations
of (λ, δ) for which ‖Σ̂N (λ, δ) − Σ‖ is in the 1st decile of [min

(λ,δ)
‖Σ̂N (λ, δ) − Σ‖, max

(λ,δ)
‖Σ̂N (λ, δ) − Σ‖]

and the FGN model by a small margin, and is slightly worse than nonlinear shrink-
age for homoscedastic sparse models. However, POET underperforms for the sparse
and non-sparse models for Σ , and nonlinear shrinkage does worse than NOVELIST
for heteroscedastic sparse models. The cases where the cross-validation NOVELIST
performs the worst are rare. NOVELIST with fixed parameters as in Flowchart 1 for
highly non-sparse cases improves the results for Σ−1. PC-adjusted NOVELIST can
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NOVELIST estimator of large correlation and covariance matrices and their inverses

further improve the results for estimating Σ−1 but not for Σ . We would argue that
NOVELIST is the overall best performer, followed by nonlinear shrinkage, linear
shrinkage and POET.

7 Portfolio selection

In this section,we apply theNOVELIST algorithmand the competingmethods to share
portfolios composed of the constituents of the FTSE 100 index. Similar competitions
were previously conducted to compare the performance of different covariance matrix
estimators (Ledoit and Wolf 2003; Lam 2016). We compare the performance for risk
minimisation purposes. The data were provided by Bloomberg.

Daily returns Our first dataset consists of p = 85 stocks of FTSE 100 (we removed
all those constituents that contained missing values) and 2606 daily returns {rt } for
the period 1 January 2005 to 31 December 2015. We use data from the first n = 120
days to estimate the initial covariance matrices of the returns based on six different
competing covariance matrix estimators and create six portfolios with weights given
by the well-known weight formula

ŵt =
{

Σ̂
(120)
t

}−1
1p

1Tp
{

Σ̂
(120)
t

}−1
1p

, (26)

where Σ̂
(120)
t is an estimator of the p× p covariancematrix of the past 120-trading-day

returns on trading day t (i.e. computed over days t − 119 to t) and 1p is the column
vector of p ones. We hold these portfolios for the next 22 trading days and compute
their out-of-sample standard deviations as (Ledoit and Wolf 2003)

STD =
{

ŵt
1

22

22
∑

i=1

rt+i r
T
t+i ŵ

T
t

}1/2

, (27)

which is a measure of risk. On the 23rd day, we liquidate the portfolios and start the
process all over again based on the past 120 trading days. The dataset is composed of
113 instances of such 22-trading-day blocks, and the average STD of each portfolio
is computed.

5-min returns The second dataset consists of p = 100 constituents of FTSE 100 and
13,770 5-min returns {yt } for the period 2 March 2015 to 4 September 2015 (135
trading days). The procedure is similar to the one above, and only the differences are
explained here. We use the first 2 days (n = 204) to estimate the initial covariance
matrices of the returns and create portfolios with weights given by

ŷt =
{

Σ̂
(204)
t

}−1
1p

1Tp
{

Σ̂
(204)
t

}−1
1p

, (28)
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Table 6 Standard deviation of minimum variance portfolios in percentage (daily and 5-min returns)

STD (daily returns) STD (5-min returns)

Sample 1.256 10.675

Linear shrinkage 0.851 7.809

Nonlinear shrinkage 0.733 7.670

POET 0.760 7.253

NOVELIST 0.709 6.987

PC-adjusted NOVELIST 0.715 8.577

where Σ̂
(204)
t is an estimator of the p× p covariance matrix of the 5-min returns over

the past 204 data points (2 days) at trading time t . We hold them for the next day and
the out-of-sample standard deviations are calculated by

STD =
{

ŵt
1

102

102
∑

i=1

rt+i r
T
t+i ŵ

T
t

}1/2

. (29)

We rebalance the portfolios every day and compute the sum of out-of-sample STD’s
over the 133 trading days.

Following the advice fromSect. 5.1,we apply fixed parameters for bothNOVELIST
and PC-adjusted NOVELIST. Table 6 shows the results. NOVELIST has the lowest
risk for both daily and 5-min portfolios, followed by PC-adjusted NOVELIST and
nonlinear shrinkage in the low-frequency case and by POET and nonlinear shrinkage
in the high-frequency case. In summary, NOVELIST offers the best option in terms
of risk minimisation.

8 Discussion

As many other covariance (correlation) matrix estimators which incorporate thresh-
olding, the NOVELIST estimator is not guaranteed to be positive definite in finite
samples. To remedy this, our advice is similar to other authors’ (e.g. Cai et al. 2010;
Fan et al. 2013; Bickel and Levina 2008b): we propose to diagonalise the NOVELIST
estimator and replace any eigenvalues that fall under a certain small positive threshold
by the value of that threshold. How to choose the threshold is, of course, an important
matter, and we do not believe there is a generally accepted solution in the literature,
partly because the value of the “best” such threshold will necessarily be problem-
dependent. Denoting the such corrected estimator by Σ̂N (ζ ) (in the covariance case)
and R̂N (ζ ) (in the correlation case), where ζ is the eigenvalue threshold, one possi-
bility would be to choose the lowest possible ζ for which the matrix Σ̂N (Σ̂N (ζ ))−1

(and analogously for the correlation case) resembles the identity matrix, in a certain
user-specified sense.

We also note that either part of the NOVELIST estimator can be replaced by a
banding-type estimator, for example, as defined by Cai et al. (2010). In this way, we
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would depart from the particular construction of the NOVELIST estimator towards
the more general idea of using convex combinations of two (or more) covariance
estimators, which is conceptually and practically appealing but lies outside the scope
of the current work.

To summarise, the flexible control of the degree of shrinkage and thresholding
offered by NOVELIST means that it is able to offer competitive performance across
most models, and in situations in which it is not the best, it tends not to be much
worse than the best performer. We recommend NOVELIST as a simple, good all-
round covariance, correlation and precision matrix estimator ready for practical use
across a variety of models and data dimensionalities.
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9 Appendix

9.1 Additional lemmas and proofs

Firstly, we briefly introduce two lemmas that will be used in the proof of Proposition 1.

Lemma 1 If F satisfies
∫ ∞
0 exp(γ t)dG j (t) < ∞, for 0 < |γ | < γ0, for some γ0 > 0,

where G j is the cdf of X2
1 j , R = {ρi j } and Σ = {σi j } are the true correlation

and covariance matrices, 1 ≤ i, j ≤ p, and σi i ≤ M, where M is a constant,
then, for sufficiently large M ′, if λ = M ′√log p/n and log p/n = o(1), we have
max

1≤i, j≤p
|ρ̂i j − ρi j | = Op(

√
log p/n), for 1 ≤ i, j ≤ p.

Proof of Lemma 1 By the sub-multiplicative norm property ‖AB‖ ≤ ‖A‖ ‖B‖ (Golub
and Loan 1989), we write

max
1≤i, j≤p

|ρ̂i j − ρi j |

= max
1≤i, j≤p

∣

∣

∣σ̂i j/(σ̂i i σ̂ j j )
1/2 − σi j/(σi iσ j j )

1/2
∣

∣

∣

≤ max
1≤i≤p

∣

∣

∣σ̂
−1/2
i i − σ

−1/2
i i

∣

∣

∣ max
1≤i, j≤p

∣

∣σ̂i j − σi j
∣

∣ max
1≤ j≤p

∣

∣

∣σ̂
−1/2
j j − σ

−1/2
j j

∣

∣

∣

+ max
1≤i≤p

∣

∣

∣σ̂
−1/2
i i − σ

−1/2
i i

∣

∣

∣ max
1≤i, j≤p

(
∣

∣σ̂i j
∣

∣

∣

∣

∣σ
−1/2
j j

∣

∣

∣ +
∣

∣

∣σ̂i i
−1/2

∣

∣

∣

∣

∣σi j
∣

∣)

+ max
1≤i, j≤p

∣

∣σ̂i j − σi j
∣

∣ max
1≤i≤p

∣

∣

∣σ̂i i
−1/2

∣

∣

∣ max
1≤i≤p

∣

∣

∣σ
−1/2
i i

∣

∣

∣

= Op(
√

log p/n). (30)
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The last equality holds as we have max
1≤i, j≤p

|σ̂i j − σi j | = Op(
√
log p/n) =

max
1≤i, j≤p

|σ̂−1
i j −σ−1

i j | (Bickel and Levina 2008b) and max
1≤i, j≤p

|σ̂i j | = Op(
√
log p/n) =

max
1≤i, j≤p

|σ̂−1
i j |, and σi i ≤ M , 1 ≤ i, j ≤ p. 
�

Lemma 2 If F satisfies
∫ ∞
0 exp(γ t)dG j (t) < ∞, for 0 < |γ | < γ0, for some γ0 > 0,

where G j is the cdf of X2
1 j , R = {ρi j } is the true correlation matrix, 1 ≤ i, j ≤ p,

then, uniformly on V(q, s0(p), ε0), for sufficiently large M ′, if λ = M ′√log p/n and
log p/n = o(1),

‖T (R̂, λ) − R‖ = Op(s0(p)(log p/n)(1−q)/2), (31)

where T is any kind of generalised thresholding estimator.
Lemma 2 is a correlation version of Theorem 1 in Rothman et al. (2009) and follows

in a straightforward way by replacing Σ̂ , Σ , U(q, c0(p), M, ε0) and c0(p) by R̂, R,
V(q, s0(p), ε0) and s0(p) in the proof of the theorem.

Proof of Proposition 1 We first show the result for R̂N . By the triangle inequality,

‖R̂N − R‖ = ‖(1 − δ)R̂ + δT (R̂, λ) − R‖
≤ (1 − δ)‖R̂ − R‖ + δ‖T (R̂, λ) − R‖
= I + I I . (32)

Using Lemma 2, we have

I I = Op

{

δs0(p)(log p/n)(1−q)/2
}

. (33)

For symmetric matrices M , Corollary 2.3.2 in Golub and Loan (1989) states that

‖M‖ ≤ (‖M‖(1,1)‖M‖(∞,∞))
1/2 = ‖M‖(1,1) = max

1≤i≤p

p
∑

j=1

|mi j |. (34)

Then by Lemma 1,

‖R̂ − R‖ ≤ max
1≤i≤p

p
∑

j=1

|R̂i j − Ri j | ≤ p max
1≤i, j≤p

|ρ̂i j − ρi j | = Op(p
√

log p/n). (35)

Thus, we have

I = (1 − δ)‖R̂ − R‖ ≤ Op((1 − δ)p
√

log p/n). (36)
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Combining formulae (33) and (36) yields the first equality. The second equality follows
because

‖(R̂N )−1 − R−1‖ � ‖R̂N − R‖ (37)

uniformly on V(q, s0(p), ε0).
For the Σ̂N estimator, recalling that T = T (R̂, λ) and D = (diag(Σ))1/2, we have

‖Σ̂N − Σ‖ = ‖D̂ R̂N D̂ − DRD‖
= ‖D̂((1 − δ)R̂ + δ T )D̂ − DRD‖
≤ (1 − δ)‖Σ̂ − Σ‖ + δ‖D̂T D̂ − DRD‖
= I I I + I V . (38)

Similarly as in 36, we obtain I I I = Op((1 − δ)p
√
log p/n). For I V , we write

‖D̂T D̂ − DRD‖
≤ ‖D̂ − D‖ ‖T − R‖ ‖D̂ − D‖ + ‖D̂ − D‖(‖T ‖ ‖D‖ + ‖D̂‖ ‖R‖)

+ ‖T − R‖ ‖D̂‖ ‖D‖
= Op((1 + s0(p)(log p/n)−q/2)

√

log p/n). (39)

The last equality holds as we have ‖T − R‖ = Op(s0(p)(log p/n)(1−q)/2), ‖D̂ −
D‖ = Op(

√
log p/n), ‖D̂‖ = Op(1) = ‖T ‖, and ‖D‖ = O(1) as σi i < M . Because

(log p/n)q/2(s0(p))−1 is bounded from above by the assumption that log p/n = o(1)
and ‖(Σ̂N )−1−Σ−1‖ � ‖Σ̂N −Σ‖ uniformly on V(q, s0(p), ε0), the result follows.


�
Proof of Proposition 2 We only need to show the rate for the sample covariance (cor-
relation) part as the arguments for the thresholding part are identical to those in
Proposition 1. We first collect the relevant arguments from the proof of Lemma 3
in Cai et al. (2010). Let ‖ · ‖ denote the spectral norm of a matrix. From the proof of
Lemma 3 in Cai et al. (2010), there exist vectors v1, v2, . . . , v5m ∈ Sm−1, where Sm−1

is the unit sphere in the Euclidean distance in Rm , such that

‖A‖ ≤ 4 sup
j≤5m

∣

∣

∣v
T
j A v j

∣

∣

∣

for all m × m symmetric matrices A.
Consider now the sample covariance matrix Σ̂ = 1

n

∑n
i=1 X iXT

i (recall that
E(X) = 0), satisfying a sub-Gaussian condition in the sense that the length-p column
vector X i satisfies

P
(∣

∣

∣v
TX i

∣

∣

∣ > t
)

≤ exp
(

−t2ρ/2
)
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for a certain ρ > 0, for all t > 0 and ‖v‖2 = 1.
Then, by the same arguments as in the proof of Lemma 3 in Cai et al. (2010), there

exists ρ1 > 0 such that

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

vT
(

X iXT
i − Σ

)

v

∣

∣

∣

∣

∣

> x

}

≤ exp(−nx2ρ1/2),

where Σ is the population covariance matrix, for all 0 < x < ρ1 and ‖v‖ = 1.
We then bound

P(‖Σ̂ − Σ‖ > x) ≤ P

(

4 sup
j≤5p

|vTj (Σ̂ − Σ)v j | > x

)

≤ 5p sup
v j

P
(

|vTj
(

Σ̂ − Σ
)

v j | > y
)

≤ 5p exp
(

−ny2ρ1/2
)

= exp
(

p log 5 − ny2ρ1/2
)

,

with y = x/4.
As ρ1 is unknown, the only “safe” y’s to consider are such that y → 0 as n → ∞,

uniformly over all permitted p. We now want

exp(p log 5 − ny2ρ1/2) ≤ C

n
= exp(log C − log n),

which leads to

y ≥
√

2(p log 5 + log n − log C)

nρ1
.

This can only converge to zero if p = o(n). Under this assumption, we therefore
indeed have

‖Σ̂ − Σ‖ = OP

(√

p + log n

n

)

,

which completes the proof. 
�
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