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Abstract We propose a “NOVEL Integration of the Sample and Thresholded covariance estimators”
(NOVELIST) to estimate the large covariance (correlation) and precision matrix. NOVELIST performs
shrinkage of the sample covariance (correlation) towards its thresholded version. The sample covariance
(correlation) component is non-sparse and can be low-rank in high dimensions. The thresholded sample
covariance (correlation) component is sparse, and its addition ensures the stable invertibility of NOVEL-
IST. The benefits of the NOVELIST estimator include simplicity, ease of implementation, computational
efficiency and the fact that its application avoids eigenanalysis. We obtain an explicit convergence rate in
the operator norm over a large class of covariance (correlation) matrices when the dimension p and the
sample size n satisfy log p/n → 0, and its improved version when p/n → 0. In empirical comparisons
with several popular estimators, the NOVELIST estimator performs well in estimating covariance and
precision matrices over a wide range of models and sparsity classes. Real data applications are presented.

Keywords covariance regularisation · high-dimensional covariance · long memory · non-sparse
modelling · singular sample covariance · high dimensionality.

1 Introduction

Estimating the covariance matrix and its inverse, also known as the concentration or precision matrix, has
always been an important part of multivariate analysis, and arises prominently, for example, in financial
risk management (Markowitz, 1952; Longerstaey et al., 1996), linear discriminant analysis (Fisher, 1936;
Guo et al., 2007), principal component analysis (Pearson, 1901; Croux & Haesbroeck, 2000) and network
science (Jeong et al., 2001; Gardner et al., 2003). Naturally, this is also true of the correlation matrix, and
the following discussion applies to it, too. The sample covariance matrix is a straightforward and often
used estimator of the covariance matrix. However, when the dimension p of the data is larger than the
sample size n, the sample covariance matrix is singular. Even if p is smaller than but of the same order of
magnitude as n, the number of parameters to estimate is p(p+1)/2, which can significantly exceed n. In
this case, the sample covariance matrix is not reliable, and alternative estimation methods are needed.
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We would categorise the most commonly used alternative covariance estimators into two broad classes.
Estimators in the first class rely on various structural assumptions on the underlying true covariance. One
prominent example is ordered covariance matrices, often appearing in time series analysis, spatial statis-
tics and spatio-temporal modelling; these assume that there is a metric on the variable indices. Bickel &
Levina (2008a) use banding to achieve consistent estimation in this context. Furrer & Bengtsson (2007)
and Cai et al. (2010) regularise estimated ordered covariance matrices by tapering. Cai et al. (2010) derive
the optimal estimation rates for the covariance matrix under the operator and Frobenius norms, a result
which implies sub-optimality of the convergence rate of the banding estimator of Bickel & Levina (2008a)
in the operator norm. The estimator of Cai et al. (2010) only achieves the optimal rate if the bandwidth
parameter is chosen optimally; however, the optimal bandwidth depends crucially on the underlying un-
known covariance matrix and therefore this estimator’s optimality is only oracular. The banding technique
is also applied to the estimated Cholesky factorisation of the covariance matrix (Bickel & Levina, 2008a;
Wu & Pourahmadi, 2003).

Another important example of a structural assumption on the true covariance or precision matrices
is sparsity; it is often made e.g. in the statistical analysis of genetic regulatory networks (Gardner et al.,
2003; Jeong et al., 2001). El Karoui (2008) and Bickel & Levina (2008b) regularise the estimated sparse
covariance matrix by universal thresholding. Adaptive thresholding, in which the threshold is a random
function of the data (Cai & Liu, 2011; Fryzlewicz, 2013), leads to more natural thresholding rules and
hence, potentially, more precise estimation. The Lasso penalty is another popular way to regularise the
covariance and precision matrices (Zou, 2006; Rothman et al., 2008; Friedman et al., 2008). Focusing on
model selection rather than parameter estimation, Meinshausen & Bühlmann (2006) propose the neigh-
bourhood selection method. One other commonly occurring structural assumption in covariance estima-
tion is the factor model, often used e.g. in financial applications. Fan, Fan & Lv (2008) impose sparsity on
the covariance matrix via a factor model. Fan et al. (2013) propose the POET estimator, which assumes
that the covariance matrix is the sum of a part derived from a factor model, and a sparse part.

Estimators in the second broad class do not assume a specific structure of the covariance or precision
matrices, but shrink the sample eigenvalues of the sample covariance matrix towards an assumed shrink-
age target (Ledoit & Wolf, 2012). A considerable number of shrinkage estimators have been proposed
along these lines. Ledoit & Wolf (2004) derive an optimal linear shrinkage formula, which imposes the
same shrinkage intensity on all sample eigenvalues but leave the sample eigenvectors unchanged. Non-
linear shrinkage is considered in Ledoit & Péché (2011) and Ledoit & Wolf (2012, 2015). Lam (2016)
introduces a Nonparametric Eigenvalue-Regularized Covariance Matrix Estimator (NERCOME) through
subsampling of the data, which is asymptotically equivalent to the nonlinear shrinkage method of Ledoit
& Wolf (2012). Shrinkage can also be applied on the sample covariance matrix directly. Ledoit & Wolf
(2003) propose a weighted average estimator of the covariance matrix with a single-index factor tar-
get. Schäfer & Strimmer (2005) review six different shrinkage targets. Naturally related to the shrinkage
approach is Bayesian estimation of the covariance and precision matrices. Evans (1965), Chen (1979),
and Dickey et al. (1985) use possibly the most natural covariance matrix prior, the inverted Wishart dis-
tribution. Other notable references include Leonard & John (2012) and Alvarez et al. (2014).

The POET method of Fan et al. (2013) proposes to estimate the covariance matrix as the sum of a
non-sparse, low-rank matrix coming from the factor model part, and a certain sparse matrix, added on to
ensure invertibility of the resulting covariance estimator. In this paper, we are motivated by the general
idea of building a covariance estimator as the sum of a non-sparse and a sparse part. By following this
route, the resulting estimator can be hoped to perform well in estimating both non-sparse and sparse co-
variance matrices if the amount of sparsity is chosen well. At the same time, the addition of the sparse
part can guarantee stable invertibility of the estimated covariance, a pre-requisite for the successful es-
timation of the precision matrix. On the other hand, we wish to move away from the heavy modelling
assumptions used by the POET estimator: indeed, our empirical results presented later suggest that POET
can underperform if the factor model assumption does not hold.



NOVELIST estimator of large correlation and covariance matrices and their inverses 3

Motivated by this observation, this paper proposes a simple, practically assumption-free estimator
of the covariance and correlation matrices, termed NOVELIST (NOVEL Integration of the Sample and
Thresholded covariance/correlation estimators). NOVELIST arises as the linear combination of two parts:
the sample covariance (correlation) estimator, which is always non-sparse and has low rank if p > n, and
its thresholded version, which is sparse. The inclusion of the sparse thresholded part means that NOVEL-
IST can always be made stably invertible. NOVELIST can be viewed as a shrinkage estimator where the
sample covariance (correlation) matrix is shrunk towards a flexible, non-parametric, sparse target. By se-
lecting the appropriate amount of contribution of either of the two components, NOVELIST can adapt to
a wide range of underlying covariance structures, including sparse but also non-sparse ones. In the paper,
we show consistency of the NOVELIST estimator in the operator norm uniformly under a class of covari-
ance matrices introduced by Bickel & Levina (2008b), as long as log p/n → 0, and offer an improved
version of this result if p/n → 0. The benefits of the NOVELIST estimator include simplicity, ease of
implementation, computational efficiency and the fact that its application avoids eigenanalysis, which is
unfamiliar to some practitioners. In our simulation studies, NOVELIST performs well in estimating both
covariance and precision matrices for a wide range of underlying covariance structures, benefitting from
the flexibility in the selection of its shrinkage intensity and thresholding level.

The rest of the paper is organised as follows. In Section 2 we introduce the NOVELIST estimator and
its properties. Section 3 discusses the case where the two components of the NOVELIST estimator are
combined in a non-convex way. Section 4 describes the procedure for selecting its parameters. Section 5
shows empirical improvements of NOVELIST. Section 6 exhibits practical performance of NOVELIST
in comparison with the state of the art. Section 7 presents real-data performance in portfolio optimisa-
tion problems and concludes the paper, and proofs appear in the appendix. The R package “novelist” is
available on CRAN.

2 Method, motivation and properties

2.1 Notation and Method

We observe n i.i.d. p-dimensional observations X1, . . . ,Xn, distributed according to a distribution F ,
with E(X) = 0, Σ = {σij} = E(XXT ), and R = {ρij} = D−1ΣD−1, where D = (diag(Σ))1/2.
In the case of heteroscedastic data, we apply NOVELIST to the sample correlation matrix and only then
obtain the corresponding covariance estimator. The NOVELIST estimator of the correlation matrix is
defined as

R̂N (R̂, λ, δ) = (1− δ) R̂︸ ︷︷ ︸
non-sparse part

+ δ T (R̂, λ)︸ ︷︷ ︸
sparse part

, (1)

and the corresponding covariance estimator is defined as Σ̂N = D̂R̂N D̂, where Σ̂ = {σ̂ij} and
R̂ = {ρ̂ij} are the sample covariance and correlation matrices respectively, D̂ = (diag(Σ̂))1/2, δ is
the weight or shrinkage intensity, which is usually within the range [0, 1] but can also lie outside it,
λ is the thresholding value, which is a scalar parameter in [0, 1], and T (·, ·) is a function that applies
any generalised thresholding operator (Rothman et al., 2009) to each off-diagonal entry of its first ar-
gument, with the threshold value equal to its second argument. The generalised thresholding operator
refers to any function satisfying the following conditions for all z ∈ R, (i) | T (z, λ) |≤| z |; (ii)
T (z, λ) = 0 for | z |≤ λ; (iii) | T (z, λ) − z |≤ λ. Typical examples of T include soft thresholding
Ts with T (z, λ) = (z − Sign(z)λ)1(| z |> λ), hard thresholding Th with T (z, λ) = z1(| z |> λ), and
SCAD (Fan and Li, 2001). Note that Σ̂N can also be written directly as a NOVELIST estimator with a
p× p adaptive threshold matrix Λ, Σ̂N = (1− δ) Σ̂ + δ T (Σ̂, Λ), where Λ = {λσ̂iiσ̂jj}.
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Fig. 1 Left: Illustration of NOVELIST operators for any off-diagonal entry of the correlation matrix ρ̂ij with soft thresholding
target Ts (λ = 0.5, δ = 0.1, 0.5 and 0.9). Right: ranked eigenvalues of NOVELIST plotted versus ranked eigenvalues of the
sample correlation matrix.

NOVELIST is a shrinkage estimator, in which the shrinkage target is assumed to be sparse. The
degree of shrinkage is controlled by the δ parameter, and the amount of sparsity in the target by the λ
parameter. Numerical results shown in Figure 1 suggest that the eigenvalues of the NOVELIST estimator
arise as a certain non-linear transformation of the eigenvalues of the sample correlation (covariance)
matrix, although the application of NOVELIST avoids explicit eigenanalysis.

2.2 Motivation: link to ridge regression

In this section, we show how the NOVELIST estimator can arise in a penalised solution to the linear
regression problem, which is linked to ridge regression. For linear regression Y = X̃β+ε, the traditional
OLS solution (X̃T X̃)−1X̃TY cannot be used if p > n because of the non-invertibility of X̃T X̃ . The
OLS solution rewrites as [(1 − δ)X̃T X̃ + δX̃T X̃]−1X̃TY , where δ ∈ [0, 1]. Using this as a starting
point, we consider a regularised solution

[(1− δ)X̃T X̃ + δf(X̃T X̃)]−1X̃TY
.
= A−1X̃TY (2)

where f(X̃T X̃) is any elementwise modification of the matrix X̃T X̃ designed (a) to make A invertible
and (b) to ensure adequate estimation of β. The expression in (2) is the minimiser of a generalised ridge
regression criterion

(1− δ) || Y − X̃β ||22 +δβT f(X̃T X̃)β, (3)

where δ acts as a tuning parameter. If f(X̃T X̃) = I , (3) is reduced to ridge regression and A is the
shrinkage estimator with the identity matrix target. If f(X̃T X̃) = T (X̃T X̃, λσ̂iiσ̂jj), A is the NOV-
ELIST estimator of the covariance matrix.

From formula (3), NOVELIST penalises the regression coefficients in a pairwise manner which can
be interpreted as follows: for a given threshold λ, we place a penalty on the products βiβj of those
coefficients of β for which the sample correlation between X̃i and X̃j , the ith and jth column of X̃
(respectively), exceeds λ. In other words, if the sample correlation is high, we penalise the product of the
corresponding β’s, hoping that the resulting estimated βi and βj are not simultaneously large.
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2.3 Asymptotic properties of NOVELIST

2.3.1 Consistency of the NOVELIST estimators. In this section, we establish consistency of NOVEL-
IST in the operator norm and derive the rates of convergence under different scenarios. Bickel & Levina
(2008b) introduce a uniformity class of covariance matrices invariant under permutations as

U(q, c0(p),M, ε0) =

Σ : σii ≤M,

p∑
j=1

| σij |q≤ c0(p), for all i and λmin(Σ) ≥ ε0 > 0

 , (4)

where 0 ≤ q < 1, c0 is a function of p, the parameters M and ε0 are constants, and λmin() is the smallest
eigenvalue operator. Analogously, we define a uniformity class of correlation matrices as

V(q, s0(p), ε0) =

R :

p∑
j=1

| ρij |q≤ s0(p), for all i and λmin(R) ≥ ε0 > 0

 , (5)

where 0 ≤ q < 1 and ε0 is a constant. The parameters q and s0(p) (equiv. c0(p)) together control
the permitted degree of “sparsity” of the members of the given class. In the remainder of the paper,
where it does not cause confusion, we mostly work with s0(p) rather than c0(p), noting that these two
parameterisations are equivalent.

Next, we establish consistency of the NOVELIST estimator in the operator norm, || A ||22= λmax(AA
T ),

where λmax() is the largest eigenvalue operator.

Proposition 1 Let F satisfy
∫∞
0

exp(γt)dGj(t) < ∞ for 0 < |γ| < γ0, where γ0 > 0 and Gj is
the cdf of X2

1j . Let R = {ρij} and Σ = {σij} be the true correlation and covariance matrices with
1 ≤ i, j ≤ p, and σii ≤ M , where M > 0. Then, uniformly on V(q, s0(p), ε0), for sufficiently large M ′,
if λ =M ′

√
log p/n and log p/n = o(1),

|| R̂N −R || = Op((1− δ)p
√

log p/n)︸ ︷︷ ︸
(A)

+Op(δs0(p)(log p/n)
(1−q)/2)︸ ︷︷ ︸

(B)

=|| (R̂N )−1 −R−1 || (6)

|| Σ̂N −Σ || = Op((1− δ)p
√

log p/n) +Op(δs0(p)(log p/n)
(1−q)/2) =|| (Σ̂N )−1 −Σ−1 || . (7)

Proposition 2 Let the length-p column vector Xi satisfy the sub-Gaussian condition P (|vTXi| > t) ≤
exp(−t2ρ/2) for a certain ρ > 0, for all t > 0 and ‖v‖2 = 1. Let R = {ρij} and Σ = {σij} be the true
correlation and covariance matrices with 1 ≤ i, j ≤ p, and σii ≤M , where M > 0. Then, uniformly on
V(q, s0(p), ε0), for sufficiently large M ′, if λ =M ′

√
log p/n and p = o(n),

|| R̂N −R || = Op((1− δ)
√

(p+ logn)/n)︸ ︷︷ ︸
(A)

+Op(δs0(p)(log p/n)
(1−q)/2)︸ ︷︷ ︸

(B)

=|| (R̂N )−1 −R−1 || (8)

|| Σ̂N −Σ || = Op((1− δ)
√

(p+ logn)/n) +Op(δs0(p)(log p/n)
(1−q)/2) =|| (Σ̂N )−1 −Σ−1 || . (9)

The proofs are given in the Appendix. The NOVELIST estimators of the correlation and covariance
matrices and their inverses yield the same convergence rate.

We now discuss the optimal asymptotic δ under the settings of Propositions 1 and 2. Proposition 1
can be thought of as a “large p” setting, while Proposition 2 applies to moderately large and small p.

2.3.2 Optimal δ and rate of convergence in Proposition 1. Proposition 1 corresponds to “large p”
scenarios, in which p can be thought of as being O(n) or larger (indeed, the case p = o(n) is covered
by Proposition 2). For such a large p, the pre-condition for the consistency of the NOVELIST estimator
is that δ → 1, i.e. that the estimator asymptotically degenerates to the thresholding estimator. To see
this, take p = n1+∆ with ∆ ≥ 0. If δ 6→ 1, the error in part (A) of formula (6) would be of order
n1/2+∆

√
log n1+∆ and therefore would not converge to zero.
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Focusing on R̂N without loss of generality, the optimal rate of convergence is obtained by equating
parts (A) and (B) in formula (6). The resulting optimal shrinkage intensity δ̃ is

δ̃ =
p(log p/n)q/2

s0(p) + p(log p/n)q/2
=

(log p/n)q/2

s0(p)/p+ (log p/n)q/2
. (10)

In typical scenarios, bearing in mind that p is at least of order n or larger, and that q < 1, the term
s0(p)/p will tend to zero much faster than the term (log p/n)q/2, which will result in δ̃ → 1 and in the
rate of convergence of NOVELIST being Op(s0(p)(log p/n)(1−q)/2). Examples or such scenarios are
given directly below.

Scenario 1 q = 0, s0(p) = o((n/ log p)1/2).

When q = 0, the uniformity class of correlation matrices controls the maximum number of non-zero
entries in each row. The typical example is the moving-average (MA) autocorrelation structure in time
series.

Scenario 2 q 6= 0, s0(p) ≤ C as p→∞.

A typical example of this scenario is the auto-regressive (AR) autocorrelation structure.

We now show a scenario in which NOVELIST is inconsistent, under the setting of Proposition 1.
Consider the long-memory autocorrelation matrix, ρij ∼ | i − j |−α, 0 < α ≤ 1, for which s0(p) =

max1≤i≤p
∑p
j=1 max(1, |i−j|)−αq = O(p1−αq). Take q 6= 0. Note a sufficient condition for δ̃ to tend to

1 is that (log p)(1/2)n−1/2pα →∞. This more easily happens for larger α’s, i.e. for “less long”-memory
processes. However, considering the implied rate of convergence, we have s0(p)(log p/n)(1−q)/2 =
p1−αq(log p/n)(1−q)/2, which is divergent even if α = 1.

2.3.3 Optimal δ and rate of convergence in Proposition 2. Similarly, in the setting of Proposition
2, the resulting optimal shrinkage intensity δ̃ is

δ̃ =
((p+ log n)/n)1/2

((p+ log n)/n)1/2 + s0(p)(log p/n)(1−q)/2
. (11)

We now highlight a few special-case scenarios.

Scenario 3 p fixed (and hence q = 0).

Note that in the case of p being fixed or bounded in n, one can take q = 0 (to obtain as fast a rate for
the thresholding part as possible) as the implied s0(p) will also be bounded in n. In this case, we have
δ̃ → 1 (and hence NOVELIST degenerates to the thresholding estimator with its corresponding speed of
convergence), but the speed at which δ̃ approaches 1 is extremely slow (O(log−1/2 n)).

Scenario 4 p→∞ with n, and q = 0.

In this case, the quantity {(p + log n)/ log p}1/2 acts as a transition phase: if s0(p) is of a larger
order, then we have δ̃ → 0; if it is of a smaller order, then δ̃ → 1; if it is of this order and if δ̃ has a limit,
then its limit lies in (0, 1). Therefore NOVELIST will be closer to the sample covariance (correlation) if
the truth is dense (i.e. if s0(p) is large), and closer to the thresholding estimator if s0(p) is small.

Scenario 5 p→∞ with n, and q 6= 0.
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Here, the transition phase quantity is (p+log n)1/2

(log p)
1−q
2 nq/2

and conclusions analogous to those of the pre-

ceding Scenario can be formed.

In the context of Scenario 5, we now revisit the long-memory example from before. The most “dif-
ficult” case still included in the setting of Proposition 2 is when p is “almost” the size of n; therefore,
we assume p = n1−∆, with ∆ being a small positive constant. Neglecting the logarithmic factors, the
transition-phase quantity (p+log n)1/2

(log p)
1−q
2 nq/2

reduces to n
1−∆−q

2 . We have s0(p) = O(n(1−∆)(1−αq)), and

therefore s0(p) is of a larger order than n
1−∆−q

2 if α < 1−∆+q
2q(1−∆) ; in this case, δ̃ → 0, and the NOVELIST

estimator degenerates to the sample covariance (correlation) estimator, which is consistent in this setting
at the rate of n−∆/2 (neglecting the log-factors). The other case, α ≥ 1−∆+q

2q(1−∆) , is impossible as we must
have α ≤ 1. Therefore, the NOVELIST estimator is consistent for the long-memory model under the
setting of Proposition 2, i.e. when p = o(n) (and degenerates to the sample covariance estimator). This is
in contrast to the setting of Proposition 1, where, as argued before, the consistency of NOVELIST in the
long-memory model cannot be shown.

3 δ outside [0, 1]

Some authors (Ledoit & Wolf, 2003; Schäfer & Strimmer, 2005; Savic & Karlsson, 2009), more or
less explicitly, discuss the issue of the shrinkage intensity (for other shrinkage estimators) falling within
versus outside the interval [0, 1]. Ledoit & Wolf (2003) “expect” it to lie between zero and one, Schäfer
& Strimmer (2005) truncate it at zero or one, and Savic & Karlsson (2009) view negative shrinkage
as a “useful signal for possible model misspecification”. We are interested in the performance of the
NOVELIST estimator with δ 6∈ [0, 1], and have reasons to believe that δ 6∈ [0, 1] may be a good choice in
certain scenarios.

We use the diagrams below to briefly illustrate this point. When the target T is appropriate, the “ora-
cle” NOVELIST estimator (by which we mean one where δ is computed with the knowledge of the true
R by minimising the spectral norm distance to R) will typically be in the convex hull of R̂ and T , i.e.
δ ∈ [0, 1] as shown in the left graph. However, the target may also be misspecified. For example, if the
true correlation matrix is highly non-sparse, the sparse target may be inappropriate, to the extent that R
will be further away from T than from R̂, as shown in the middle graph. In that case, the optimal δ should
be negative to prevent NOVELIST being close to the target. By contrast, when the sample correlation is
far from the (sparse) truth, perhaps because of high dimensionality, the optimal delta may be larger than
one.

R̂ T

R

R̂Nopt

(A) δ ∈ (0, 1)

R̂ T

R

R̂Nopt
(B) δ < 0

R̂ T

R

R̂Nopt
(C) δ > 1

Diagram 1: Geometric illustration of shrinkage estimators. R is the truth, T is the target, R̂ is the
sample correlation, R̂Nopt is the “oracle” NOVELIST estimator defined as the linear combination of T and
R̂ with minimum spectral norm distance to R. LEFT: δ ∈ (0, 1) if target T is appropriate; MIDDLE:
δ < 0 if target T is misspecified; RIGHT: δ > 1 if R̂ is far from R.



8 Na Huang, Piotr Fryzlewicz

4 Empirical choices of (λ, δ) and algorithm

The choices of the shrinkage intensity (for shrinkage estimators) and the thresholding level (for thresh-
olding estimators) are intensively studied in the literature. Bickel & Levina (2008b) propose a cross-
validation method for choosing the threshold value for their thresholding estimator. However, NOVEL-
IST requires simultaneous selection of the two parameters λ and δ, which makes straight cross-validation
computationally intensive. Ledoit & Wolf (2003), and Schäfer & Strimmer (2005) give an analytic solu-
tion to the problem of choosing the optimal shrinkage level, under the Frobenius norm, for any shrinkage
estimator. Since NOVELIST can be viewed as a shrinkage estimator, we borrow strength from this result
and proceed by selecting the optimal shrinkage intensity δ∗(λ) in the sense of Ledoit & Wolf (2003) for
each λ, and then perform cross-validation to select the best pair (λ′, δ∗(λ′)). This process significantly
accelerates computation.

Cai & Liu (2011) and Fryzlewicz (2013) use adaptive thresholding for covariance matrices, in order
to make thresholding insensitive to changes in the variance of the individual variables. This, effectively,
corresponds to thresholding sample correlations rather than covariances. In the same vein, we apply NOV-
ELIST to sample correlation matrices. We use soft thresholding as it often exhibits better and more stable
empirical performance than hard thresholding, which is partly due to its being a continuous operation.
Let Σ̂ and R̂ be the sample covariance and correlation matrices computed on the whole dataset, and
let T = {Tij} be the soft-thresholding estimator of the correlation matrix. The algorithm proceeds as
follows.

For estimating the covariance matrix,
LW (Ledoit-Wolf) step: Using all available data, for each λ ∈ (0, 1) chosen from a uniform grid of

size m, find the optimal empirical δ as

δ∗(λ) =

∑
1≤i 6=j≤n Var(R̂ij)− Cov(R̂ij , Tij)∑

1≤i 6=j≤n(R̂ij − Tij)2
=

∑
1≤i 6=j≤n Var(R̂ij)I(R̂ij < λ)∑

1≤i6=j≤n(R̂ij − Tij)2
, (12)

to obtain the pair (λ, δ∗(λ)).
The first equality comes from Ledoit & Wolf (2003), and the second follows because of the fact that

our shrinkage target T is the soft-thresholding estimator with threshold λ (applied to the off-diagonal
entries only).

CV (Cross-Validation) step: For each z = 1, . . . , Z, split the data randomly into two equal-size parts
A (training data) and B (test data), letting Σ̂(z)

A and Σ̂(z)
B be the sample covariance matrices of these two

datasets, and R̂(z)
A and R̂(z)

B – the sample correlation matrices.
1. For each λ, obtain the NOVELIST estimator of the correlation matrix R̂N

(z)

A (λ) = R̂N (R̂
(z)
A , λ, δ∗(λ)),

and of the covariance matrix Σ̂N(z)

A (λ) = D̂AR̂
N(z)

A (λ)D̂A, where D̂A = (diag (Σ̂
(z)
A ))1/2.

2. Compute the spectral norm error Err(λ)(z) =|| Σ̂N(z)

A (λ)− Σ̂(z)
B ||22.

3. Repeat steps 1 and 2 for each z and obtain the averaged error Err(λ) = 1
Z

∑Z
z=1Err(λ)

(z). Find
λ′ = minλErr(λ), then obtain the optimal pair (λ′, δ′) = (λ′, δ∗(λ′)).

4. Compute the cross-validated NOVELIST estimators of the correlation and covariance matrices as

R̂Ncv = R̂N (R̂, λ
′
, δ
′
), (13)

Σ̂N
cv = D̂R̂NcvD̂, (14)

where D̂ = (diag(Σ̂))1/2.
For estimating the inverses of the correlation and the covariance matrices, the difference lies in step

2, where the error measure is adjusted as follows. If n > 2p (i.e. in the case when Σ̂
(z)
B is invert-

ible), we use the measure Err(λ)(z) =|| (Σ̂N(z)

A (λ))−1 − (Σ̂
(z)
B )−1 ||22; otherwise, use Err(λ)(z) =||
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(Σ̂N(z)

A (λ))−1Σ̂
(z)
B − I ||22, where I is the identity matrix. In step 4, we compute the cross-validated

NOVELIST estimators of the inverted correlation and covariance matrices as

(R̂Ncv)
−1 = (R̂N (R̂, λ

′
, δ
′
))−1, (15)

(Σ̂N
cv)
−1 = (D̂R̂NcvD̂)−1. (16)

We note that a closely related procedure for choosing δ has also been described in Lam & Feng (2017).

5 Empirical improvements of NOVELIST

5.1 Fixed parameters

As shown in the simulation study of Section 6.2, the performance of cross validation is generally ade-
quate, except in estimating large precision matrices with highly non-sparse covariance structures, such as
in factor models and long-memory autocovariance structures. To remedy this problem, we suggest that
fixed, rather than cross-validated parameters be used, if the eigenanalysis of the sample correlation matrix
indicates that there are prominent principal components, when p > 2n or close. We suggest the following
rules of thumb: first, we look for the evidence of “elbows” in the scree plot of eigenvalues, by examining
if
∑p
k=1 I{γ(k) + γ(k+2) − 2γ(k+1) > 0.1p} > 0, where γ(k) is the kth principal component. If so,

then we look for the evidence of long-memory decay, by examining if the off-diagonals of the sample
correlation matrix follow a high-kurtosis distribution. If the sample kurtosis ≤ 3.5, this suggests that the
factor structure may be present, and we use the fixed parameters (λ′′, δ′′) = (0.90, 0.50); if the sample
kurtosis > 3.5, this may point to long memory, and we use the fixed parameters (λ′′, δ′′) = (0.50, 0.25).
The above decision procedure, including all the specific parameter values, has been obtained through
extensive numerical experiments not shown in this paper. It is sketched in the following flowchart.

p > 2n? Prominent PCs?
High-kurtosis
off-diagonals?

Cross validation (λ′, δ′) (λ′′, δ′′) = (0.90, 0.50)

(λ′′, δ′′) = (0.50, 0.25)

no
no

yes yes

no

yes

Flowchart 1: Decision procedure for using cross-validated or fixed parameters in estimating precision
matrices.

5.2 Principal-component-adjusted NOVELIST

NOVELIST can further benefit from any prior knowledge about the underlying covariance matrix, such as
the factor model structure. If the underlying correlation matrix follows a factor model, we can decompose
the sample correlation matrix as

R̂ =

K∑
k=1

γ̂(k)ξ̂(k)ξ̂
T
(k) + R̂rem, (17)

where γ̂(k) and ξ̂(k) are the kth eigenvalue and eigenvector of sample correlation matrix, K is the number
up to which the principal components are considered to be “large”, and R̂rem is the sample correlation
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matrix after removing the first K principal components. Instead of applying NOVELIST on R̂ directly,
we keep the first K components unchanged and only apply NOVELIST to R̂rem. Principal-component-
adjusted NOVELIST estimators are obtained by

R̂Nrem =

K∑
k=1

γ̂(k)ξ̂(k)ξ̂
T
(k) + R̂N (R̂rem, λ, δ), (18)

Σ̂N
rem = D̂R̂NremD̂. (19)

In the remainder of the paper, we always use the not-necessarily-optimal value K = 1. We suggest that
PC-adjusted NOVELIST should only be used with prior knowledge or if empirical testing indicates that
there are prominent principal components.

6 Simulation study

In this section, we investigate the performance of the NOVELIST estimator of covariance and precision
matrices based on optimal and data-driven choices of (λ, δ) for seven different models and in comparison
with five popular competitors. According to the algorithm in Section 4, the NOVELIST estimator of the
correlation is obtained first; the corresponding estimator of the covariance follows by formula (14) and
the inverse of the covariance estimator is obtained by formula (16). In all simulations, the sample size
n = 100, and the dimension p ∈ {10, 100, 200, 500}. We perform N = 50 repetitions.

6.1 Simulation models

We use the following models for Σ.
(A) Identity. σij = 1I{i = j}, for 1 ≤ i, j ≤ p.
(B) MA(1) autocovariance structure.

σij =


1, if i = j;

ρ, if | i− j |= 1;

0, otherwise
(20)

for 1 ≤ i, j ≤ p. We set ρ = 0.5.
(C) AR(1) autocovariance structure.

σij = ρ|i−j|, for 1 ≤ i, j ≤ p, (21)

with ρ = 0.9.
(D) Non-sparse covariance structure. We generate a positive-definite matrix as

Σ = QΛQT , (22)

where Q has iid standard normal entries and Λ is a diagonal matrix with its diagonal entries drawn
independently from the χ2

5 distribution. The resulting Σ is non-sparse and lacks an obvious pattern.
(E) Factor model covariance structure. Let Σ be the covariance matrix of X = {X1, X2, · · ·, Xp}T ,

which follows a 3-factor model

Xp×n = Bp×3Y3×n +Ep×n, (23)

where
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Y = {Y1, Y2, Y3}T is a 3-dimensional factor, generated independently from the standard normal
distribution, i.e. Y ∼ N (0, I3),

B = {βij} is the coefficient matrix, βij
i.i.d.∼ U(0, 1), 1 ≤ i ≤ p, 1 ≤ j ≤ 3,

E = {ε1, ε2, · · ·, εp}T is p-dimensional random noise, generated independently from the standard
normal distribution, ε ∼ N (0,1).

Based on this model, we have σij =

{∑3
k=1 β

2
ik + 1 if i = j;∑3

k=1 βikβjk if i 6= j.
.

(F) Long-memory autocovariance structure. We use the autocovariance matrix of the Fractional Gaus-
sian Noise (FGN) process, with

σij =
1

2
[|| i− j | +1 |2H −2 | i− j |2H + || i− j | −1 |2H ] 1 ≤ i, j ≤ p. (24)

The model is taken from Bickel & Levina (2008a), Section 6.1, and is non-sparse. We take H = 0.9
in order to investigate the case with strong long memory.

(G) Seasonal covariance structure.

σij = ρ|i−j|1{| i− j |= lZ≥0}, for 1 ≤ i, j ≤ p, (25)

where Z≥0 is the set of non-negative integers. We take l = 3 and ρ = 0.9.
The models can be broadly divided into 3 groups. (A)-(C) and (G) are sparse, (D) is non-sparse,

and (E) and (F) are highly non-sparse. In models (B), (C) (F) and (G), the covariance matrix equals
the correlation matrix. In order to depart from the case of equal variances, we also work with modified
versions of these models, denoted by (B*), (C*) (F*) and (G*), in which the correlation matrix {ρij}
is generated as in (B), (C) (F) and (G), respectively, and which have unequal variances independently
generated as σii ∼ χ2

5. As a result, in the ‘starred’ models, we have σij = ρij
√
σiiσjj , i, j ∈ (1, p).

The performance of the competing estimators is presented in two parts. In the first part, we compare
the estimators with optimal parameters identified with the knowledge of the true covariance matrix. These
include (a) the soft thresholding estimator Ts, which applies the soft thresholding operator to the off-
diagonal entries of R̂ only, as described in Section 2.1, (b) the banding estimator B (Section 2.1 in
Bickel & Levina (2008a)), (c) the optimal NOVELIST estimator Σ̂N

opt and (d) the optimal PC-adjusted
NOVELIST estimator Σ̂N

opt.rem . In the second part, we compare the data-driven estimators including (e)
the linear shrinkage estimator S (Target D in Table 2 from Schäfer & Strimmer (2005)), which estimates
the correlation matrix by “shrinkage of the sample correlation towards the identity matrix” and estimates
the variances by “shrinkage of the sample variances towards their median”, (f) the POET estimator P
(Fan et al., 2013), (g) the cross-validated NOVELIST estimator Σ̂N

cv , (h) the PC-adjusted NOVELIST
Σ̂N
rem, and (i) the nonlinear shrinkage estimator NS (Ledoit & Wolf, 2015). The sample covariance

matrix Σ̂ is also listed for reference. We use the R package corpcor to compute S, and the R package
POET to compute P . In the latter, we use k = 7 as suggested by the authors, and use soft thresholding
in NOVELIST and POET as it tends to offer better empirical performance. We use Z = 50 for Σ̂N

cv ,
and extend the interval for δ to [−0.5, 1.5]. Σ̂N

cv with fixed parameters are only considered for estimating
precision matrix under model (E), (F) and (F*) when p = 100, 200, 500. We use K = 1 for Σ̂N

opt.rem and
Σ̂N
rem. NS is performed by using the commercial package SNOPT for Matlab (Ledoit & Wolf, 2015).

6.2 Simulation results

Performance of Σ̂N as a function of (λ, δ). Examining the results presented in Figures 2 and 3 and
Table 1, it is apparent that the performance of NOVELIST depends on the combinations of λ and δ used.
Generally speaking, the average operator norm errors increase as sparsity decreases and dimension p
increases. The positions of empirically optimal λ∗ and δ∗ are summarised below.
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Fig. 2 Image plots of operator norm errors of NOVELIST estimators of Σ with different λ and δ under Models (A)-(C) and (G),
n = 100, p = 10 (Left), 100 (Middle), 200 (Right), simulation times=50. The darker the area, the smaller the error.

1. The higher the degree of sparsity, the closer δ∗ is to 1. The δ∗ parameter tends to be close to 1
or slightly larger than 1 for the sparse group, around 0.5 for the non-sparse group, and about 0 or
negative for the highly non-sparse group.

2. δ∗ moves closer to 1 as p increases. This is especially true for the sparse group.
3. Unsurprisingly, the choice of λ is less important when δ is closer to 0.
4. Occasionally, δ∗ 6∈ [0, 1]. In particular, for the AR(1) and seasonal models, δ∗ ∈ (1, 1.5], while in

the highly non-sparse group, δ∗ can take negative values, which is a reflection of the fact that Σ̂N
opt

attempts to reduce the effect of the strongly misspecified sparse target.

Performance of cross-validated choices of (λ, δ). Table 1 shows that the cross-validated choices
of the parameter (λ

′
, δ
′
) for Σ̂N

cv are close to the optimal (λ∗, δ∗) for most models when p = 10, but there
are bigger discrepancies between (λ

′
, δ
′
) and (λ∗, δ∗) as p increases, especially for the highly non-sparse

group. Again, Figure 4, which only includes representative models from each sparsity category, shows
that the choices of (λ

′
, δ
′
) are consistent with (λ∗, δ∗) in most of the cases. For models (A) and (C), cross
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Fig. 3 Image plots of operator norm errors of NOVELIST estimators of Σ with different λ and δ under Models (D)-(F), n = 100,
p = 10 (Left), 100 (Middle), 200 (Right), simulation times=50. The darker the area, the smaller the error.

validation works very well: the vast majority of (λ
′
, δ
′
) lead to the error lying in the 1st decile of the

possible error range, whereas for models (D) and (G) with p = 10, in the 1st or 2nd decile.
However, as shown in Tables 3 and 5, the performance of cross validation in estimating Σ−1 with

highly non-sparse covariance structures, such as in factor models and long-memory autocovariance struc-
tures, is less good (a remedy to this was described in Section 5.1).

Comparison with competing estimators. For the estimators with the optimal parameters, NOVEL-
IST performs the best for p = 10 for bothΣ andΣ−1, and beats the competitors across the non-sparse and
highly non-sparse model classes when p = 100, 200 and 500. The banding estimator beats NOVELIST
in covariance matrix estimation in the homoscedastic sparse models by a small margin in the higher-
dimensional cases. For the identity matrix, banding, thresholding and the optimal NOVELIST attain the
same results. Optimal PC-adjusted NOVELIST achieves better relative results for estimating Σ−1 than
for Σ.

In the competitions based on the data-driven estimators, when p = 10, the cross-validation NOVEL-
IST is the best for most of the models with heteroscedastic variances, and only slightly worse than linear
or nonlinear shrinkage estimator for the other models. When p = 100, 200 or 500, the cross-validation
NOVELIST is the best for most of the models in the sparse and the non-sparse groups (more so for het-
eroscedastic models) for both Σ and Σ−1, but is beaten by POET for the factor model and the FGN
model by a small margin, and is slightly worse than nonlinear shrinkage for homoscedastic sparse mod-
els. However, POET underperforms for the sparse and non-sparse models for Σ, and nonlinear shrinkage
does worse than NOVELIST for heteroscedastic sparse models. The cases where the cross-validation
NOVELIST performs the worst are rare. NOVELIST with fixed parameters as in Flowchart 1 for highly
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Table 1 Choices of (λ∗, δ∗) and (λ
′
, δ
′
) for Σ̂N (50 replications).

Σ̂Nopt Σ̂Ncv Σ̂Nopt Σ̂Ncv
λ∗ δ∗ λ

′
δ
′

λ∗ δ∗ λ
′

δ
′

p=10, n=100 p=100, n=100
(A) Identity (0.50, 1.00) 1.00 0.60 1.00 (0.50, 1.00) 1.00 0.60 1.00
(B) MA(1) 0.15 1.00 0.25 0.80 0.20 1.00 0.20 0.95

(B*) MA(1)* 0.15 0.95 0.30 0.65 0.15 1.00 0.30 0.90
(C) AR(1) 0.50 0.00 0.40 0.15 0.15 0.50 0.10 0.70

(C*) AR(1)* 0.50 0.05 0.40 0.00 0.30 0.60 0.30 0.85
(D) Non-sparse 0.40 0.50 0.55 0.40 0.45 0.60 0.35 0.80

(E) Factor 0.40 0.00 0.65 0.10 0.20 −0.15 0.50 0.05
(F) FGN 0.50 −0.05 0.50 0.00 0.30 −0.10 0.55 0.05

(F*) FGN* 0.50 −0.05 0.50 0.00 0.40 −0.05 0.65 0.05
(G) Seasonal 0.15 0.75 0.15 0.70 0.10 1.30 0.05 1.50

(G*) Seasonal* 0.25 0.75 0.20 0.65 0.10 1.30 0.05 1.50

p=200, n=100 p=500, n=100
(A) Identity 0.55 1.00 0.60 1.00 0.55 1.00 0.60 1.00
(B) MA(1) 0.25 1.00 0.20 1.00 0.30 1.00 0.25 1.00

(B*) MA(1)* 0.25 1.00 0.25 0.95 0.25 1.00 0.20 1.00
(C) AR(1) 0.05 1.00 0.05 1.00 0.10 1.10 0.05 0.80

(C*) AR(1)* 0.05 1.10 0.05 1.30 0.10 0.95 0.10 1.10
(D) Non-sparse 0.30 0.65 0.55 0.40 0.40 0.75 0.40 0.90

(E) Factor 0.10 −0.10 0.60 0.05 0.20 −0.10 0.50 0.05
(F) FGN 0.30 0.05 0.65 0.10 0.35 0.10 0.40 0.10

(F*) FGN* 0.25 0.05 0.50 0.05 0.15 −0.10 0.35 0.10
(G) Seasonal 0.10 1.10 0.05 1.50 0.10 1.30 0.10 1.20

(G*) Seasonal* 0.10 1.10 0.05 1.50 0.10 1.30 0.10 1.20

non-sparse cases improves the results for Σ−1. PC-adjusted NOVELIST can further improve the results
for estimatingΣ−1 but not forΣ. We would argue that NOVELIST is the overall best performer, followed
by nonlinear shrinkage, linear shrinkage and POET.

7 Portfolio selection

In this section, we apply the NOVELIST algorithm and the competing methods to share portfolios com-
posed of the constituents of the FTSE 100 index. Similar competitions were previously conducted to
compare the performance of different covariance matrix estimators (Ledoit & Wolf, 2003; Lam, 2016).
We compare the performance for risk minimisation purposes. The data were provided by Bloomberg.

Daily returns. Our first dataset consists of p = 85 stocks of FTSE 100 (we removed all those
constituents that contained missing values) and 2606 daily returns {rt} for the period January 1st 2005 to
December 31st 2015. We use data from the first n = 120 days to estimate the initial covariance matrices
of the returns based on 6 different competing covariance matrix estimators, and create 6 portfolios with
weights given by the well known weight formula

ŵt =
{Σ̂(120)

t }−11p
1Tp {Σ̂

(120)
t }−11p

, (26)

where Σ̂(120)
t is an estimator of the p×p covariance matrix of the past 120-trading-day returns on trading

day t (i.e. computed over days t − 119 to t) and 1p is the column vector of p ones. We hold these
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Fig. 4 50 replicated cross validation choices of (δ
′
, λ
′
) (green circles) against the background of contour lines of operator norm dis-

tances to Σ under model (A), (C), (D) and (F) [equivalent to Figures 2 and 3], n = 100, p = 10 (Left), 100 (Middle), 200 (Right).
The area inside the first contour line contains all combinations of (λ, δ) for which ||Σ̂N (λ, δ) − Σ|| is in the 1st decile of
[ min
(λ,δ)
||Σ̂N (λ, δ)−Σ||, max

(λ,δ)
||Σ̂N (λ, δ)−Σ||].

portfolios for the next 22 trading days and compute their out-of-sample standard deviations as (Ledoit &
Wolf, 2003)

STD = {ŵt
1

22

22∑
i=1

rt+ir
T
t+iŵ

T
t }1/2, (27)

which is a measure of risk. On the 23rd day, we liquidate the portfolios and start the process all over
again based on the past 120 trading days. The dataset is composed of 113 instances of such 22-trading-
day blocks and the average STD of each portfolio is computed.

5-minute returns. The second dataset consists of p = 100 constituents of FTSE 100 and 13770
five-minute returns {yt} for the period March 2nd 2015 to September 4th 2015 (135 trading days). The
procedure is similar to the one above and only the differences are explained here. We use the first 2 days
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Table 2 Average operator norm error toΣ for competing estimators with optimal parameters (50 replications). The best results and
those up to 5% worse than the best are boxed. The worst results are in bold.

Σ̂ Ts B Σ̂Nopt Σ̂Nopt.rem Σ̂ Ts B Σ̂Nopt Σ̂Nopt.rem
p=10, n=100 p=100, n=100

(A) Identity 0.578 0.246 0.246 0.246 — 2.946 0.436 0.436 0.436 —

(B) MA(1) 0.623 0.447 0.361 0.435 — 3.055 0.670 0.554 0.668 —

(B*) MA(1)* 1.400 1.008 0.871 0.988 — 6.458 1.890 1.370 1.800 —

(C) AR(1) 1.148 0.762 1.072 0.475 — 6.112 4.977 3.999 4.703 —

(C*) AR(1)* 2.010 1.707 2.004 1.020 — 16.338 8.353 8.786 7.992 —

(D) Non-sparse 3.483 2.954 3.127 2.812 — 25.844 11.302 11.539 10.717 —

(E) Factor 1.811 1.462 1.742 1.120 1.221 14.350 13.675 13.993 9.881 9.921

(F) FGN 1.110 0.751 0.970 0.527 0.711 7.824 6.777 7.478 5.135 7.033

(F*) FGN* 2.239 1.617 2.108 1.129 1.683 15.666 13.383 15.147 10.878 13.782

(G) Seasonal 0.850 0.564 0.797 0.527 — 4.290 2.493 2.205 2.460 —

(G*) Seasonal* 1.664 1.228 1.594 1.158 — 6.694 3.028 2.362 2.959 —
p=200, n=100 p=500, n=100

(A) Identity 4.661 0.440 0.440 0.440 — 9.321 0.467 0.467 0.467 —

(B) MA(1) 4.886 0.717 0.626 0.716 — 9.828 0.761 0.729 0.761 —

(B*) MA(1)* 10.727 1.884 1.545 1.881 — 21.233 2.041 1.775 2.041 —

(C) AR(1) 10.291 6.922 4.898 6.768 — 17.877 9.311 5.584 9.261 —

(C*) AR(1)* 20.277 14.691 14.943 14.426 — 39.241 18.780 11.738 18.728 —

(D) Non-sparse 26.729 10.990 11.240 10.322 — 50.915 13.917 13.284 12.913 —

(E) Factor 31.183 28.053 29.819 20.463 20.432 82.451 65.234 73.807 48.104 48.928

(F) FGN 14.732 12.729 13.877 9.906 15.881 35.041 30.201 31.272 23.939 30.782

(F*) FGN* 32.370 26.692 29.862 20.357 28.983 68.154 66.833 66.320 49.853 55.998

(G) Seasonal 6.913 2.961 2.418 2.930 — 13.157 3.582 2.499 3.460 —

(G*) Seasonal* 14.709 6.427 5.171 6.350 — 27.627 7.873 5.660 7.538 —

Note: The results of Σ̂Nopt.rem are only presented for the highly non-sparse group, i.e. Models (E), (F) and (F*).

(n = 204) to estimate the initial covariance matrices of the returns and create portfolios with weights
given by

ŷt =
{Σ̂(204)

t }−11p
1Tp {Σ̂

(204)
t }−11p

, (28)

where Σ̂(204)
t is an estimator of the p×p covariance matrix of the 5-minute returns over the past 204 data

points (2 days) at trading time t. We hold them for the next day and the out-of-sample standard deviations
are calculated by

STD = {ŵt
1

102

102∑
i=1

rt+ir
T
t+iŵ

T
t }1/2. (29)

We rebalance the portfolios every day and compute the sum of out-of-sample STD’s over the 133 trading
days.

Following the advice from Section 5.1, we apply fixed parameters for both NOVELIST and PC-
adjusted NOVELIST. Table 6 shows the results. NOVELIST has the lowest risk for both daily and 5-
minute portfolios, followed by PC-adjusted NOVELIST and nonlinear shrinkage in the low-frequency
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Table 3 Average operator norm error to Σ for competing estimators with data-driven parameters (50 replications). The best results
and those up to 5% worse than the best are boxed. The worst results are in bold.

Σ̂ S P Σ̂Ncv Σ̂Nrem NS Σ̂ S P Σ̂Ncv Σ̂Nrem NS

p=10, n=100 p=100, n=100

(A) Identity 0.578 0.084 0.823 0.263 — 0.116 2.946 0.088 3.657 0.446 — 0.087

(B) MA(1) 0.623 0.444 0.732 0.493 — 0.481 3.055 0.670 3.730 0.704 — 0.694

(B*) MA(1)* 1.400 1.165 1.546 1.159 — 1.191 6.458 1.985 8.015 1.877 — 2.449

(C) AR(1) 1.148 1.013 1.135 1.153 — 1.017 6.112 5.423 6.257 5.390 — 5.892

(C*) AR(1)* 2.010 2.190 2.291 2.114 — 2.190 16.338 8.878 19.468 8.446 — 12.095

(D) Non-sparse 3.483 3.120 3.860 3.046 — 2.934 25.844 12.453 29.355 11.739 — 11.730

(E) Factor 1.811 1.793 1.866 1.741 1.763 1.537 14.350 17.681 14.304 16.497 16.438 15.285

(F) FGN 1.110 0.849 1.020 1.021 1.024 0.980 7.824 6.628 7.798 7.799 7.732 7.554

(F*) FGN* 2.239 2.218 2.221 2.222 2.227 1.960 15.666 14.795 15.611 15.225 15.254 16.561

(G) Seasonal 0.850 0.666 0.852 0.687 — 0.659 4.290 3.200 4.826 2.534 — 3.098

(G*) Seasonal* 1.664 1.647 1.652 1.452 — 1.480 6.694 4.268 7.171 3.016 — 6.979

p=200, n=100 p=500, n=100

(A) Identity 4.661 0.058 5.414 0.443 — 0.067 9.321 0.064 10.076 0.468 — 0.047

(B) MA(1) 4.886 0.658 5.615 0.744 — 0.694 9.828 0.645 10.566 0.819 — 0.683

(B*) MA(1)* 10.727 2.094 12.458 1.956 — 2.729 21.233 2.060 23.034 2.116 — 3.004

(C) AR(1) 10.291 8.123 11.446 8.217 — 7.759 17.877 12.785 18.496 12.484 — 12.036

(C*) AR(1)* 20.277 18.172 23.721 16.251 — 18.751 39.241 26.571 40.903 18.903 — 24.581

(D) Non-sparse 26.729 11.920 30.108 11.220 — 10.993 50.915 13.758 54.462 13.636 — 12.996

(E) Factor 31.183 34.237 31.064 33.224 33.194 31.020 82.451 83.101 81.489 81.697 81.382 80.852

(F) FGN 14.732 12.961 14.376 14.640 14.593 14.125 35.041 26.672 34.344 31.296 30.992 36.299

(F*) FGN* 32.370 31.165 30.263 31.470 31.042 32.188 68.154 84.958 69.133 75.546 75.377 74.432

(G) Seasonal 6.913 4.126 7.403 2.972 — 4.016 13.157 4.994 13.722 3.471 — 4.949

(G*) Seasonal* 14.709 9.225 15.855 6.494 — 9.064 27.627 11.030 28.949 7.561 — 11.132

Note: For Σ̂Nrem, (λ′′, δ′′) is fixed to be (0.10, 0.30) in (E), and (0.30, 0.50) in (F) and (F*).

case, and by POET and nonlinear shrinkage in the high-frequency case. In summary, NOVELIST offers
the best option in terms of risk minimisation.

8 Discussion

As many other covariance (correlation) matrix estimators which incorporate thresholding, the NOVELIST
estimator is not guaranteed to be positive-definite in finite samples. To remedy this, our advice is similar
to other authors’ (e.g. Cai et al. (2010), Fan et al. (2013), Bickel & Levina (2008b)): we propose to di-
agonalise the NOVELIST estimator and replace any eigenvalues that fall under a certain small positive
threshold by the value of that threshold. How to choose the threshold is, of course, an important matter,
and we do not believe there is a generally accepted solution in the literature, partly because the value of the
“best” such threshold will necessarily be problem-dependent. Denoting the such-corrected estimator by
Σ̂N (ζ) (in the covariance case) and R̂N (ζ) (in the correlation case), where ζ is the eigenvalue-threshold,
one possibility would be to choose the lowest possible ζ for which the matrix Σ̂N (Σ̂N (ζ))−1 (and anal-
ogously for the correlation case) resembles the identity matrix, in a certain user-specified sense.

We also note that either part of the NOVELIST estimator can be replaced by a banding-type estimator,
for example as defined by Cai et al. (2010). In this way, we would depart from the particular construction
of the NOVELIST estimator towards the more general idea of using convex combinations of two (or
more) covariance estimators, which is conceptually and practically appealing but lies outside the scope
of the current work.
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Table 4 Average operator norm error to Σ−1 for competing estimators with optimal parameters (50 replications). The best results
and those up to 5% worse than the best are boxed. The worst results are in bold.

Σ̂ Ts B Σ̂Nopt Σ̂Nopt.rem Σ̂ Ts B Σ̂Nopt Σ̂Nopt.rem
p=10, n=100 p=100, n=100

(A) Identity 0.917 0.281 0.281 0.281 — — 0.469 0.469 0.469 —

(B) MA(1) 1.177 0.681 0.656 0.605 — — 1.244 1.300 1.166 —

(B*) MA(1)* 0.626 0.489 0.732 0.442 — — 0.846 0.779 0.745 —

(C) AR(1) 9.078 7.751 9.078 5.502 — — 14.313 18.064 10.792 —

(C*) AR(1)* 4.491 2.736 4.491 2.339 — — 8.915 7.298 6.001 —

(D) Non-sparse 0.378 0.256 0.297 0.210 — — 2.670 2.775 1.793 —

(E) Factor 0.846 0.403 0.610 0.370 0.400 — 0.712 0.715 0.653 0.518

(F) FGN 2.995 1.727 2.980 1.560 1.535 — 3.585 4.650 3.112 2.734

(F*) FGN* 1.571 1.193 1.212 1.001 1.018 — 2.029 2.038 1.948 1.761

(G) Seasonal 2.688 1.538 2.685 1.302 — — 3.806 5.444 3.260 —

(G*) Seasonal* 1.340 1.091 1.726 0.827 — — 2.526 4.345 1.971 —
p=200, n=100 p=500, n=100

(A) Identity — 0.527 0.527 0.527 — — 0.599 0.599 0.599 —

(B) MA(1) — 1.358 1.530 1.258 — — 1.405 1.562 1.377 —

(B*) MA(1)* — 1.100 0.795 0.850 — — 1.040 1.145 0.962 —

(C) AR(1) — 15.023 18.122 11.469 — — 15.622 18.136 11.064 —

(C*) AR(1)* — 14.509 20.358 7.362 — — 18.392 23.740 7.155 —

(D) Non-sparse — 2.460 2.016 1.459 — — 5.986 5.896 4.289 —

(E) Factor — 0.711 0.711 0.677 0.537 — 0.744 0.744 0.730 0.557

(F) FGN — 3.972 4.658 3.317 3.024 — 4.267 4.737 3.527 3.306

(F*) FGN* — 2.974 4.096 2.083 1.849 — 4.426 5.674 2.250 2.083

(G) Seasonal — 4.029 5.469 3.538 — — 4.188 5.477 3.673 —

(G*) Seasonal* — 3.328 4.885 2.259 — — 3.726 5.479 2.358 —

Note: The results of Σ̂Nopt.rem are only presented for the highly non-sparse group, i.e. Models (E), (F) and (F*). The worst results for model (A) with

p = 100, 200 and 500 are not labelled, as T ,B and Σ̂Nopt obtain exactly the same results.

To summarise, the flexible control of the degree of shrinkage and thresholding offered by NOVELIST
means that it is able to offer competitive performance across most models, and in situations in which it
is not the best, it tends not to be much worse than the best performer. We recommend NOVELIST as
a simple, good all-round covariance, correlation and precision matrix estimator ready for practical use
across a variety of models and data dimensionalities.

9 Appendix

9.1 Additional lemmas and proofs

Firstly, we briefly introduce two lemmas that will be used in the proof of Proposition 1.

Lemma 1 If F satisfies
∫∞
0
exp(γt)dGj(t) <∞, for 0 < |γ| < γ0, for some γ0 > 0, whereGj is the cdf

of X2
1j , R = {ρij} and Σ = {σij} are the true correlation and covariance matrices, 1 ≤ i, j ≤ p, and

σii ≤M , whereM is a constant, then, for sufficiently largeM ′, if λ =M ′
√
log p/n and log p/n = o(1),

we have max
1≤i,j≤p

|ρ̂ij − ρij | = Op(
√

log p/n), for 1 ≤ i, j ≤ p.
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Table 5 Average operator norm error to Σ−1 for competing estimators with data-driven parameters (50 replications). The best
results and those up to 5% worse than the best are boxed. The worst results are in bold.

Σ̂ S P Σ̂Ncv Σ̂Nrem NS Σ̂ S P Σ̂Ncv Σ̂Nrem NS

p=10, n=100 p=100, n=100

(A) Identity 0.917 0.090 4.472 0.469 — 0.146 — 0.045 0.882 0.472 — 0.109

(B) MA(1) 1.123 0.799 6.474 0.824 — 0.780 — 1.273 1.403 1.439 — 1.405

(B*) MA(1)* 0.626 0.526 4.892 0.448 — 0.440 — 1.358 0.993 0.935 — 1.748

(C) AR(1) 9.078 7.309 40.142 8.574 — 5.396 — 13.410 15.704 12.605 — 12.272

(C*) AR(1)* 4.941 5.390 27.593 4.841 — 3.264 — 12.508 13.649 10.167 — 13.446

(D) Non-sparse 0.378 0.500 1.705 0.328 — 0.340 — 2.937 2.916 2.910 — 2.979

(E) Factor 0.846 1.142 1.806 0.864 — 0.296 — 2.603 0.893 1.608 — 0.343

(0.854) (0.695) (0.526)

(F) FGN 2.995 1.864 16.530 2.097 — 1.701 — 4.565 3.060 4.212 — 3.122

(2.081) (3.159) (2.773 )

(F*) FGN* 1.571 1.174 10.284 2.017 — 1.101 — 4.474 2.965 3.431 — 4.432

(2.001) (2.075) (1.843)

(G) Seasonal 2.688 1.897 13.175 2.103 2.115 1.687 — 4.229 4.721 3.839 — 3.947

(G*) Seasonal* 1.340 1.284 8.436 1.143 — 1.219 — 3.510 3.799 2.743 — 4.538
p=200, n=100 p=500, n=100

(A) Identity — 0.046 0.930 0.529 — 0.136 — 0.078 0.923 0.601 — 0.139

(B) MA(1) — 1.449 1.371 1.401 — 1.463 — 1.473 1.445 1.540 — 1.487

(B*) MA(1)* — 1.293 1.256 1.169 — 1.906 — 1.914 1.140 1.221 — 2.463

(C) AR(1) — 15.066 17.128 14.125 — 13.907 — 16.526 17.700 16.025 — 15.924

(C*) AR(1)* — 17.480 18.286 13.201 — 19.037 — 22.833 23.053 19.169 — 23.740

(D) Non-sparse — 2.602 2.842 2.563 — 3.206 — 5.998 6.171 5.994 — 5.660

(E) Factor — 3.701 0.892 1.450 — 0.348 — 5.672 0.962 4.106 — 0.347

(0.710) (0.546) (0.937) (0.558)
(F) FGN — 9.397 3.552 5.670 — 3.434 — 8.621 3.933 6.652 — 3.752

(3.582) (3.045) (4.364) (3.326)

(F*) FGN* — 6.649 2.765 4.024 — 5.519 — 6.241 3.083 5.442 — 6.519

(2.589) (2.199) (3.002) (2.887)

(G) Seasonal — 4.676 5.019 4.176 — 4.526 — 5.045 5.256 4.548 — 5.001

(G*) Seasonal* — 4.540 4.643 3.514 — 6.068 — 5.632 5.254 4.489 — 6.988

Note: For models (E), (F) and (F*), results by both cross validation and fixed parameters (in brackets) are presented for NOVELIST when n < 2p.
For Σ̂Ncv , fixed parameters (λ′′, δ′′) are (0.90, 0.50) for Model (E), and (0.50, 0.25) for Models (F) and (F*). For Σ̂Nrem, (λ′′, δ′′) is fixed to
be (0.50, 0.90) for (E), and (0.25, 0.65) for (F) and (F*).

Proof of Lemma 1: By the sub-multiplicative norm property ||AB|| ≤ ||A|| ||B|| (Golub & Van Loan,
1989), we write

max
1≤i,j≤p

|ρ̂ij − ρij |

= max
1≤i,j≤p

|σ̂ij/(σ̂iiσ̂jj)1/2 − σij/(σiiσjj)1/2|

≤ max
1≤i≤p

|σ̂−1/2ii − σ−1/2ii | max
1≤i,j≤p

|σ̂ij − σij | max
1≤j≤p

|σ̂−1/2jj − σ−1/2jj |

+ max
1≤i≤p

|σ̂−1/2ii − σ−1/2ii | max
1≤i,j≤p

(|σ̂ij ||σ−1/2jj |+ |σ̂ii−1/2||σij |)

+ max
1≤i,j≤p

|σ̂ij − σij | max
1≤i≤p

|σ̂ii−1/2| max
1≤i≤p

|σ−1/2ii |

=Op(
√

log p/n) (30)

Table 6 Standard deviation of minimum variance portfolios in percentage (daily and 5-minute returns).

STD (Daily returns) STD (5-min returns)
Sample 1.256 10.675
Linear shrinkage 0.851 7.809
Nonlinear shrinkage 0.733 7.670
POET 0.760 7.253
NOVELIST 0.709 6.987
PC-adjusted NOVELIST 0.715 8.577
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The last equality holds as we have max
1≤i,j≤p

|σ̂ij−σij | = Op(
√

log p/n) = max
1≤i,j≤p

|σ̂−1ij −σ
−1
ij | (Bickel

& Levina, 2008b), and max
1≤i,j≤p

|σ̂ij | = Op(
√

log p/n) = max
1≤i,j≤p

|σ̂−1ij |, and σii ≤M , 1 ≤ i, j ≤ p. �

Lemma 2 If F satisfies
∫∞
0
exp(γt)dGj(t) < ∞, for 0 < |γ| < γ0, for some γ0 > 0, where Gj is the

cdf of X2
1j , R = {ρij} is the true correlation matrix, 1 ≤ i, j ≤ p, then, uniformly on V(q, s0(p), ε0), for

sufficiently large M ′, if λ =M ′
√
log p/n and log p/n = o(1),

||T (R̂, λ)−R|| = Op(s0(p)(log p/n)
(1−q)/2). (31)

where T is any kind of generalised thresholding estimator.
Lemma 2 is a correlation version of Theorem 1 in Rothman et al. (2009) and follows in a straight-

forward way by replacing Σ̂, Σ, U(q, c0(p),M, ε0) and c0(p) by R̂, R, V(q, s0(p), ε0) and s0(p) in the
proof of the theorem.

Proof of Proposition 1:
We first show the result for R̂N . By the triangle inequality,

||R̂N −R|| = ||(1− δ)R̂+ δT (R̂, λ)−R||
≤ (1− δ)||R̂−R||+ δ||T (R̂, λ)−R||
= I + II. (32)

Using Lemma 2, we have

II = Op{δs0(p)(log p/n)(1−q)/2}. (33)

For symmetric matrices M , Corollary 2.3.2 in Golub & Van Loan (1989) states that

||M || ≤ (||M ||(1,1)||M ||(∞,∞))
1/2 = ||M ||(1,1) = max

1≤i≤p

p∑
j=1

|mij |. (34)

Then by Lemma 1,

||R̂−R|| ≤ max
1≤i≤p

p∑
j=1

|R̂ij −Rij | ≤ p max
1≤i,j≤p

|ρ̂ij − ρij | = Op(p
√
log p/n). (35)

Thus, we have

I = (1− δ)||R̂−R|| ≤ Op((1− δ)p
√
log p/n). (36)

Combining formulae (33) and (36) yields the first equality. The second equality follows because

||(R̂N )−1 −R−1|| � ||R̂N −R|| (37)

uniformly on V(q, s0(p), ε0).
For the Σ̂N estimator, recalling that T = T (R̂, λ) and D = (diag(Σ))

1/2, we have

||Σ̂N −Σ|| = ||D̂R̂N D̂ −DRD||
= ||D̂((1− δ)R̂+ δ T )D̂ −DRD||
≤ (1− δ)||Σ̂ −Σ||+ δ||D̂T D̂ −DRD||
= III + IV. (38)
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Similarly as in 36, we obtain III = Op((1− δ)p
√

log p/n). For IV , we write

||D̂T D̂ −DRD||
≤||D̂ −D|| ||T −R|| ||D̂ −D||+ ||D̂ −D||(||T || ||D||+ ||D̂|| ||R||)
+||T −R|| ||D̂|| ||D||

=Op((1 + s0(p)(log p/n)
−q/2

)
√
log p/n). (39)

The last equality holds as we have ||T−R|| = Op(s0(p)(log p/n)
(1−q)/2), ||D̂−D|| = Op(

√
log p/n),

||D̂|| = Op(1) = ||T ||, and ||D|| = O(1) as σii < M . Because (log p/n)q/2(s0(p))
−1 is bounded from

above by the assumption that log p/n = o(1) and ||(Σ̂N )−1 − Σ−1|| � ||Σ̂N − Σ|| uniformly on
V(q, s0(p), ε0), the result follows. �

Proof of Proposition 2:
We only need to show the rate for the sample covariance (correlation) part as the arguments for the

thresholding part are identical to those in Proposition 1. We first collect the relevant arguments from the
proof of Lemma 3 in Cai et al. (2010). Let ‖ · ‖ denote the spectral norm of a matrix. From the proof of
Lemma 3 in Cai et al. (2010), there exist vectors v1, v2, . . . , v5m ∈ Sm−1, where Sm−1 is the unit sphere
in the Euclidean distance in Rm, such that

‖A‖ ≤ 4 sup
j≤5m

|vTj Avj |

for all m×m symmetric matrices A.
Consider now the sample covariance matrix Σ̂ = 1

n

∑n
i=1XiX

T
i (recall that E(X) = 0), satisfying

a sub-Gaussian condition in the sense that the length-p column vectorXi satisfies

P (|vTXi| > t) ≤ exp(−t2ρ/2)

for a certain ρ > 0, for all t > 0 and ‖v‖2 = 1.
Then, by the same arguments as in the proof of Lemma 3 in Cai et al. (2010), there exists ρ1 > 0 such

that

P

{∣∣∣∣∣ 1n
n∑
i=1

vT (XiX
T
i −Σ)v

∣∣∣∣∣ > x

}
≤ exp(−nx2ρ1/2),

where Σ is the population covariance matrix, for all 0 < x < ρ1 and ‖v‖ = 1.
We then bound

P (‖Σ̂ −Σ‖ > x) ≤ P (4 sup
j≤5p
|vTj (Σ̂ −Σ)vj | > x)

≤ 5p sup
vj

P (|vTj (Σ̂ −Σ)vj | > y)

≤ 5p exp(−ny2ρ1/2)
= exp(p log 5− ny2ρ1/2).

with y = x/4.
As ρ1 is unknown, the only “safe” y’s to consider are such that y → 0 as n →∞, uniformly over all

permitted p. We now want

exp(p log 5− ny2ρ1/2) ≤
C

n
= exp(log C − log n),
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which leads to

y ≥

√
2(p log 5 + log n− log C)

nρ1
.

This can only converge to zero if p = o(n). Under this assumption, we therefore indeed have

‖Σ̂ −Σ‖ = OP

(√
p+ log n

n

)
,

which completes the proof. �
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