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Abstract

Self-reported social mixing patterns are commonly used in mathematical models of in-

fectious diseases. It is particularly important to quantify patterns for school-age children

given their disproportionate role in transmission, but it remains unclear how the structure

of such social interactions changes over time. By integrating data collection into a public

engagement programme, we examined self-reported contact networks in year 7 groups in

four UK secondary schools. We collected data from 460 unique participants across four

rounds of data collection conducted between January and June 2015, with 7,315 identi-

fiable contacts reported in total. Although individual-level contacts varied over the study

period, we were able to obtain out-of-sample accuracies of more than 90% and F-scores

of 0.49–0.84 when predicting the presence or absence of social contacts between specific

individuals across rounds of data collection. Network properties such as clustering and

number of communities were broadly consistent within schools between survey rounds,

but varied significantly between schools. Networks were assortative according to gender,

and to a lesser extent school class, with the estimated clustering coefficient larger among

males in all surveyed co-educational schools. Our results demonstrate that it is feasible

to collect longitudinal self-reported social contact data from school children and that key

properties of these data are consistent between rounds of data collection.
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Introduction

Age-specific social mixing patterns are important in shaping the spread of infectious dis-

ease, from pandemic influenza [1, 2] to varicella and parvovirus [3]. As well as mea-

suring contacts using proximity sensors such as radio-frequency identification (RFID)

tags [4, 5, 6], self reported social contacts can be collected via routine questionnaires

in different settings [7, 8]. Such data is commonly used to parameterise mathematical

models of infectious diseases [9].

Mixing patterns of children are recognized as particularly important for understanding

how disease spreads, with children often representing a key risk group [10, 11, 12]. They

have limited acquired immunity to many pathogens, making them susceptible to infec-

tion [13, 3]. They also tend to make more social contacts than adults, and the majority

of these social contacts are with other immunologically naive children [8], increasing the

potential for transmission. As a primary location for children’s interactions, schools can

therefore play an important role in the spread of infectious disease [1, 14, 15, 16, 17].

Surveys of social contacts depend on the subjective judgement of the participants

and thus may be subject to recall and subconscious biases related to how the question is

framed [18, 19, 20, 21]. Although one study repeatedly measured contact networks among

49 university staff and students over 14 non consecutive days, [22], most previous studies

of self-reported contact networks have typically surveyed individuals on a particular day

and have not quantified how individuals’ reported contacts change over time [23, 24].

In particular, it has been difficult to establish how robust network structures are over

time and how accurately these network structures represent regular interactions between

children [25, 26]. A key concept in social network analysis is that social networks are

dynamic and peer groups will change over time [27], yet this dynamic nature is rarely

taken into consideration when considering how diseases spread between children.

To understand the shape and consistency of self-reported social interactions between

children over time, we analysed social contact patterns in four secondary schools over

a period of five months. Building on a previous project, which collected similar social

contact data at a single point in time [23], we integrated data collection into a public

engagement programme designed to teaching students how to conduct academic research

and learn about disease dynamics, to quantify how year 7 students (aged 11-12) interacted

within their classes and year-groups, as well as outside school. Further, we explored the

robustness of self-reported contact surveys by repeating the same questionnaire at several

points within the school year to identify how social networks changed over time.
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Methods

Study design

In collaboration with the Millennium Mathematics Project, an educational and outreach

project based at University of Cambridge, we recruited four schools to participate in our

public engagement and research project in spring 2014. From the applications received, 4

schools were selected in a purposive sample to include a range of geographical and socioe-

conomic settings (north/south, rural/urban, single-sex/co-educational, fee paying/non-fee

paying). For context, 83% of the UK population live in urban areas [28], 4% of schools

in England are single-sex [29] and around 7% of children in Britain attend fee paying

schools [30].

In the four schools, we worked with year 10 (i.e. 14-15 years old) students on the

study design and logistics. Year 7 students (aged 11-12) within each school were the

target population for data collection. As with previous projects [23, 31], we used public

engagement with schools to facilitate data collection as part of a wider programme of

curriculum-relevant scientific activities [32]. We did this using a combination of two

school visits per school and six joint video conferences. These video conferences were

particularly useful in enabling interaction between the four school classes involved in the

project. In particular, all four schools collaborated to design the final questionnaire, obtain

consent from study participants, data collection, and analysis and discussion of findings.

This provided students with first hand experience of working on a research project from

hypothesis to conclusion.

The final survey aimed to ascertain which people year 7 students spent the most time

with on a given day. We used a process of peer nomination as a method for data collec-

tion [33]: students were asked, via the research questionnaire, to list the six other students

in year 7 at their school that they spend the most time with. The choice of six for the num-

ber of named contacts follows from a previous study [23], which selected six to balance

the risk of right-censoring (i.e. if students had more than six contacts) with the potential

for deliberate over-reporting of contacts if there was no upper limit (i.e. as a result of

‘competitive naming’ via peer pressure). Students were also asked to report their gender,

school class, as well as non-year group contacts. The specific question asked was ‘how

many people not in your year group (including family and teachers) did you have a con-

versation with yesterday?’ The respondent could select one of five possible categories:

0-5 people; 6-10; 11-15; 16-20; 21 or more.

Collecting data in schools can be challenging for external researchers; we tried to

mitigate these logistical constrains by having the students in year 10 administer paper
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questionnaires to year 7 students at regular intervals throughout the second half of the

academic year 2014-15 (Table 1). This allowed the questionnaires to be carried out at suit-

able times based on student researcher’s knowledge of the school, but also attempted to

mitigate external intervention in participant decision making. We encouraged the school

participants to carry out the surveys at similar time periods (i.e. at monthly intervals) but

there was some variation in timing of survey between schools, based on student avail-

ability linked to term times, exam periods, and timetabled registration sessions (Table

1).

Two types of informed consent were required for each of the year 7 participants com-

pleting the questionnaires. First, their parents or guardians were invited to sign a written

consent form to allow their child to participate in the study. Second, the students them-

selves were asked to verbally consent to undertake the questionnaire each time. The

project was approved by the LSHTM observational research ethics committee (ref 8769).

Data cleaning and processing

Once the survey forms were completed, the data were digitised and cleaned (Support-

ing Data S1). We compiled a clean list of unique participants and contacts by using the

stringdist R package [34] to match each reported name in the survey database to names

in a year group list. We matched names using a ranking based on the Jaro-Winkler dis-

tances between first name and surnames in the two lists. This measures the minimum

number of single-character transpositions needed to convert one word into the other. We

ranked potential matches based on the combined distance between first name (d1) and

surname (d2), with first names given a larger weighting: dboth =
√
(5d1)2 + (2d2)2. This

criteria was obtained following several rounds of manual validation, with an additional

round of validation performed after names were matched to identify erroneous matches.

If dboth > 2, or the best match could not be validated manually, the participant or con-

tact was not included in the analysis. Once the reported names had been cleaned and

validated, all subsequent analysis was carried out on anonymised data, with each student

name replaced by a unique code. Our analysis focused on two types of contacts. For each

pair of participants in a specific round of data collection, a single link was defined if either

one of the participants reported a contact between the pair (i.e. there was at least one uni-

directional link, in either direction); a mutual link was defined if both participants reported

contact with each other (i.e. a bi-directional link). Code and data required to reproduce

all the analysis are available at: https://github.com/adamkucharski/schools-networks-15
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Network metrics

We used the igraph R package [35] to visualise the contact networks and examine five spe-

cific network metrics. These captured key aspects of network structure, as also examined

in previous studies of contact patterns within schools [4, 23, 36]. The global clustering

coefficient, which ranges from 0 to 1, is defined as the number of closed triplets in the

network divided by number of connected trios of nodes, whether closed or not. Highly

clustered networks have a coefficient value near one. The clustering coefficient for a spe-

cific round of data collection was calculated using all uni-directional links in the directed

network generated from that round. The diameter of a network for a specific round was

calculated from the shortest distance between the two nodes that are most distant, where

the network included all uni-directional links. Given a categorical variable associated

with each node, such as gender or school class, nominal assortativity measures how much

nodes with the same categorical value are connected with one another [37]. Nominal

assortativity, denoted r, is defined as:

r =

∑
i eii −

∑
i

(∑
j eij

∑
j eji

)
1−

∑
i

(∑
j eij

∑
j eji

) (0.1)

where eij is the proportion of edges that connect nodes of category i and j. Again, this

was calculated using all uni-directional links in the network.

We also estimated how individuals were grouped within the network. We used two

different community metrics. The first of these was the common benchmark method of

community detection based on edge betweenness, which uses the Girvan–Newman algo-

rithm [38]. This works by defining the ‘edge betweenness score’ for each edge in the

network (i.e. the number of shortest paths between nodes in the network that pass through

this edge), then the edge with the highest score is iteratively removed until a rooted tree

remains, with each clade representing a community. As a sensitivity analysis, we also

considered community detection based on propagating labels [39]. In this algorithm,

a unique label is attributed to each node at the start, then each node iteratively adopts

whichever label the majority of its neighbours have, until the labelling converges to iden-

tify communities.

Bootstrap sampling

To assess the consistency of the network metrics for each school over time, we used boot-

strap sampling [40]. In each iteration, we randomly sampled a subset m of participants

from the full set of unique participants, where m is the mean number of participants across
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the four rounds (Table S1). For each sampled participant, we then randomly selected one

of the rounds they participated in, and used this round as their reported contacts. This gen-

erated a bootstrap network from which we could calculate the relevant network statistics.

The variation in these network statistics reflected the level of consistency in responses

between rounds. If student participation and responses were identical across rounds, we

would have obtained exactly the same network in each bootstrap sample. We performed

10,000 iterations of bootstrap sampling to estimate the median and 95% confidence inter-

val for each network metric.

Out-of-sample prediction

Collecting social contact data can be extremely time consuming. It would therefore be

useful to establish whether multiple rounds of data collection generate a more consistent

estimate of which individuals are linked. To examine how closely networks based on

data collected in each round of surveys could predict the networks generated from data

in subsequent rounds, we used an out-of-sample prediction approach. We focused on

individuals who had participated in all four rounds of data collection. For each round,

we calculated whether each possible pair of individuals were connected by a single link

(i.e. at least one uni-directional link) in that round. We analysed single links rather than

mutual links because we had already heavily thinned the networks by focusing only on

participants who appeared in all rounds. We generated predictions using networks con-

structed from one or more rounds of training data; if a single link was present between

two individuals in the training dataset, we predicted it would exist in later rounds. We then

compared our predictions with test datasets, i.e. networks generated from later rounds of

data collection. In the case where there was disagreement in the training datasets (e.g. a

single link was present in two rounds of training data, but absent in the third), we defined

the probability of this pair being connected by a single according to the proportion of

training rounds that included a link. This make it possible to calculate expected numbers

of true positives (TP) and true negatives (TN) and false positives (FP) and false negatives
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(FN). Specifically, these numbers were defined as:

E(TP ) =
∑
i,j

pijsij

E(TN) =
∑
i,j

(1− pij)(1− sij)

E(FP ) =
∑
i,j

pij(1− sij)

E(FN) =
∑
i,j

(1− pij)sij

where pij is the proportion of training sets that have a single link between i and j, and

sij = 1 if there is a single link between i and j in the test network. For example, in the

situation where a single link is present in 2/3 of the training rounds, it would predict a

single link in the test data with probability 2/3; if the single link had been present in all

training rounds, it would have probability 1 of being predicted in the test data. Using the

expected values of TP, TN, FP and FN, we calculated precision ( TP
TP+FP

), recall ( TP
TP+FN

),

accuracy ( TP+FP
TP+TN+FP+FN

) and F-score (2× precision×recall
precision+recall).

As well as comparing network links, we measured the consistency of individual-level

indegree across rounds. For each participant, we calculated their indegree in the training

round, compared these predictions with the test data, then calculated the mean difference

across all participants. If there were multiple training rounds, the mean was used. Suppose

two rounds of training data were used and a participant had indegree 3 and indegree 4 in

the training rounds and indegree 6 in the test round. In this case, the absolute difference

was calculated to be |3.5 − 6| = 2.5). We used the same approach to calculate the mean

difference in reported contacts outside the year group between training and test rounds.

Results

In total, 460 unique year 7 participants completed 1,254 surveys over four rounds of data

collection between January and June 2015, with 7,315 contacts reported in total (Table 1).

In three schools, over 80% of the year group participated in at least one round of data

collection; one school had considerably less participants in the dataset, the result of a low

response rate in parental consent. Plotting all uni-directional links reported in each round

of data collection, we found noticeable variation in contact links and active participants

over time (Figure 1). In all rounds, however, we observed a clear gender divide in the

year groups in the three co-educational schools (the other school was single-sex).

We used several metrics to assess consistency in network structure over time. First

we calculated the indegree distributions for each set of networks, and found that these fol-
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lowed a qualitatively similar pattern over time for each school, with considerable variation

between schools (Figures 2A–D). Despite individual-level variation in contact reporting

between surveys, network clustering within each school, as measured by the clustering

coefficient, was relatively consistent over time, with estimates of 0.4 (95% bootstrap CI:

0.34-0.46) for school 1, 0.35 (0.31-0.39) for school 2, and 0.18 (0.13-0.25) for school

3 (Table S1). School 3 had a significantly lower clustering coefficient than the other

schools, suggesting less localised network structure. This reflects school timetabling: in

this school, all students were set by ability in every subject, and set composition varied

widely depending on the subject. Uncertainty was greater for school 4, which had low

numbers of participants; the clustering coefficient was estimated to be 0.38 (0.24-0.51).

When we calculated clustering coefficients for the other school networks with either males

or females only included, we obtained larger clustering coefficients for males in all co-

educational schools, with a statistically significant difference for school 2, which had the

most participants (Table S1). To examine connectivity across networks consisting of all

single links, we calculated the diameter of each network, which measures the shortest

distance between the two nodes that are most distant. This varied across schools and

across rounds (Table S1). In schools 1–3, which had most of the year group participating,

median network diameter ranged between 11 and 14.

Based on network assortativity, we found strong evidence of gender associated contact

patterns in schools 1 and 2 (Table S1), as observed qualitatively in Figure 1. It was not

possible to examine gender assortativity for school 3, which was single-sex. For school

1, there was also moderate assortativity based on the school class individuals were in,

with positive but lower assortativity in schools 2 and 3. These associations are visible

when single links from all four rounds of data collection are plotted together (Figure 3),

and particularly prominent when only mutual links are plotted (Figure 3B). In addition,

the largest components for schools 1 and 2 were dominated by females, whereas males

tended to form smaller, less connected social groupings when mutual links were consid-

ered. Further, we used two community detection methods – edge betweenness and label

propagation – to measure how many subgroups exist within the networks. The estimates

based on the edge betweenness method varied between rounds suggested 7–12 commu-

nities within a year group for the three schools with high participation rates (Table S1);

the label propagation method suggested the existence of 14–15 communities. Based on

the numbers of participants in each school, this suggests each community contains 6–8

individuals.

Because social contact surveys can require considerable effort to conduct, we also

assessed the predictive power of single or multiple rounds of data collection. Using data
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only for participants that were present in all four rounds of data collection, we constructed

networks of single links using either the first one, two or three consecutive rounds of data

(as specified in Table 1), then compared these networks with the remaining test dataset(s).

We assessed predictions about whether a single link existed between two specific partic-

ipants by calculating the number of true and false positives and negatives (Table 3). We

then calculated the precision, recall, F-score and accuracy of our out-of-sample predic-

tions. We found that overall prediction accuracies ranged between 90–98%, but did not

improve with the number of rounds of training data used (Figure 4A). Corresponding F-

scores ranged between 0.49–0.84; again, these did not improve with the number of rounds

of training data used (Figure 4B).

As well as considering pairwise single links, we also measured the mean individual

indegree of each participant across the training rounds, and compared this with the inde-

gree in a test data set. We used the same combinations of test and training data as for the

network links (Table 3). Results were pooled based on the number of rounds included

(i.e. 1, 2, or 3), and a mean and confidence interval estimated. Regardless of number

of rounds used in the training data, the mean difference in indegree was in the range of

0.7–2 (Figure 4C). We also found no significant improvements in the predictions of mean

indegree when more rounds were included in the training data. Finally, we examined re-

ported contacts outside the school year-group, which were reported categorically in five

bands (Figure 4D). Here, having multiple rounds of training data did significantly reduce

prediction error, as measured by the mean absolute difference between the numbers of the

categories reported, for two schools when two rounds of data collection were included

rather than one. However, these differences were not significant when a Bonferroni cor-

rection was applied to account for multiple comparisons. Even with a single round of

training data, the values were clustered near to 1, suggesting that participant responses

were consistent enough to on average report contacts within two adjacent categories.

Discussion

We assessed key features and structural characteristics of social networks in four UK sec-

ondary schools, and how these varied over time. As in previous studies [23, 31], the

research was embedded within a public engagement project, with students and teachers in

participating schools contributing to the study design and data collection. We found that

although individual contacts within the year 7 group studied varied over the five month

study period, out-of-sample prediction accuracy of contacts was over 90%. Further, many

aspects of the overall network structure, such as extent of clustering and number of com-
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munities, remained relatively stable between rounds of data collection.

Children are key epidemiological group for many directly transmitted infectious dis-

eases [10, 11, 12]. Our results show that it is feasible to collect longitudinal self-reported

data from a group of year 7 children, and that data collected is reasonably consistent

between rounds, which should increase confidence in cross-sectional studies examining

self-reported contacts in this age group. We also observed considerable variation in net-

work structure between the schools, indicating that while key network properties may be

relatively robust within a school, there may be substantial differences depending on where

a study is conducted. The small differences in individual-level indegree across rounds

(Figure 4C) suggests that highly or weakly connected individuals remain so over time.

However, we did not examine within or between classroom contact patterns in detail,

given the low assortativity for classroom mixing within most schools. In future studies, it

would be interesting to examine how the physical structure of buildings and timetabling

influences social contacts [14], given that the school in our study that set students for all

subjects had lower clustering than other schools.

There are some additional limitations to our study. To ensure the questionnaire was

straightforward to complete, students were asked to list the names of the six students they

spend the most time with. The data may therefore be right censored: if the true number

of contacts exceed the limit of six named students, the network will not represent all po-

tential interactions. Moreover, single links may represent peers an individual would like

to be friends with, rather than actual contacts. However, similar contact groupings can be

observed in the networks with single and mutual links (Figure 3), suggesting that consis-

tent contact patterns were being captured. In self-reported questionnaires there is also the

issue of recall bias [26], but it has been shown that children are capable of achieving simi-

lar levels of accuracy to adults for simple objective questions [18], and that links between

school classes in networks inferred from surveys are consistent with networks measured

using wearable sensors [36]. Although we worked closely with the schools to ensure

questionnaires were conducted as consistently as possible, the times between rounds of

data collection also fluctuated based on logistical constraints, such as term dates. Given

that the ‘true’ contact network was never observed, only measured contacts in each round,

our analysis of out-of-sample predictions reflects consistency between rounds, rather than

comparison to a known baseline network. There was also a low response rate from some

classes, mostly as a result of parents either not receiving, completing or returning a con-

sent form. A one off survey may have been more effective in terms of response rate [23],

but it would not have been possible to analyse the longitudinal patterns we were interested

in. One option for future work would be to extend the data collection period over a year or
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two, rather than over five months we considered, to see whether the consistency in contact

patterns held over multiple school years. Although this would be provide longer term in-

sights, it would also potentially introduce further practical challenges both for researchers

and school staff.

We focused on close social contacts in this study, as it has been suggested that these

play a key role in transmission of respiratory infections [2, 41]. However, there may other

important routes of transmission that are not captured by self-reported social mixing pat-

terns, such as fomites and aerosols [42, 43]. An outstanding challenge for such infections

is how to measure social contacts at the time of infection, and hence link transmission

events with the interactions that generated them. Bacterial infections, for which there

can be high rates of nasopharyngeal carriage, may therefore be a good target for future

research into this question [41].
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School Location Y7 size Round 1 Round 2 Round 3 Round 4 Unique participants Total contacts

1 London (U,C,F) ≈120 28/01/15 03/03/15 21/04/15 26/06/15 99 1734

2 West Sussex (U,C,N) 153 05/02/15 05/03/15 23/04/15 09/07/15 147 2816

3 London (U,S,N) 204 03/02/15 04/03/15 18/03/15 20/04/15 188 2077

4 Cumbria (R,C,N) 91 16/01/15 27/02/15 23/04/15 12/06/15 26 688

Table 1: Summary of survey data from the four schools. Additional characteristics are

given in parentheses: R=rural, U=urban; S=single-sex, C=co-educational; F=fee paying,

N=non-fee paying. Unique participants denotes the number of uniquely identifiable stu-

dents who completed the survey across all rounds. Total contacts gives the number of

identifiable contacts reported across all participants.

Variable School 1 School 2 School 3 School 4

Mean participants 77 121 92 24

Diameter 14 (10-21) 11 (9-15) 14 (11-20) 7 (5-11)

Clustering coefficient 0.4 (0.34-0.46) 0.35 (0.31-0.39) 0.18 (0.13-0.25) 0.38 (0.24-0.51)

Clustering coefficient (male only) 0.44 (0.33-0.54) 0.43 (0.37-0.49) 0.18 (0.13-0.25) 0.6 (0-1)

Clustering coefficient (female only) 0.41 (0.33-0.49) 0.35 (0.3-0.4) – 0.37 (0.14-0.57)

Assortativity by gender 0.92 (0.85-0.97) 0.81 (0.74-0.87) – 0.48 (0.3-0.68)

Assortativity by class 0.35 (0.27-0.44) 0.12 (0.076-0.16) 0.13 (0.071-0.2) 0.11 (-0.033-0.24)

Communities (EB) 11 (8-15) 10 (7-13) 11 (8-16) 7 (5-9)

Communities (LP) 14 (11-18) 15 (12-18) 14 (7-19) 7 (5-10)

Participants per community (EB) 7 (5.1-9.6) 12 (9.3-17) 8.4 (5.8-12) 3.4 (2.7-4.8)

Participants per community (LP) 5.5 (4.3-7) 8.1 (6.7-10) 6.6 (4.8-13) 3.4 (2.4-4.8)

Table 2: Variation in network statistics for each school. Clustering coefficients are shown

for the full network, as well as for networks with males or females only. Community size

estimates were obtained using edge betweenness (EB) and label propagation (LB). 10,000

bootstrap samples were used to obtain the estimates. Median values for each metric are

shown, with 95% CIs in parentheses.
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School Train Test No link Ambiguous Link Precision Recall F-score Accuracy Potential links

1 1 2 962 0 73 0.82 0.85 0.83 0.98 1035

1 1 3 962 0 73 0.71 0.78 0.74 0.97 1035

1 1 4 962 0 73 0.73 0.74 0.73 0.96 1035

1 2 3 951 24 60 0.75 0.81 0.78 0.97 1035

1 2 4 951 24 60 0.73 0.73 0.73 0.96 1035

1 3 4 943 0 49 0.74 0.73 0.74 0.96 1035

2 1 2 677 0 64 0.84 0.83 0.84 0.97 741

2 1 3 677 0 64 0.72 0.73 0.72 0.95 741

2 1 4 677 0 64 0.73 0.68 0.71 0.95 741

2 2 3 666 21 54 0.74 0.75 0.75 0.96 741

2 2 4 666 21 54 0.74 0.7 0.72 0.95 741

2 3 4 653 0 45 0.75 0.7 0.72 0.95 741

3 1 2 324 0 27 0.48 0.5 0.49 0.92 351

3 1 3 324 0 27 0.52 0.67 0.58 0.94 351

3 1 4 324 0 27 0.52 0.56 0.54 0.93 351

3 2 3 311 27 13 0.53 0.67 0.59 0.94 351

3 2 4 311 27 13 0.49 0.52 0.5 0.93 351

3 3 4 307 0 11 0.54 0.53 0.54 0.93 351

4 1 2 117 0 19 0.58 0.65 0.61 0.9 136

4 1 3 117 0 19 0.74 0.78 0.76 0.93 136

4 1 4 117 0 19 0.63 0.67 0.65 0.9 136

4 2 3 111 14 11 0.75 0.75 0.75 0.93 136

4 2 4 111 14 11 0.64 0.64 0.64 0.9 136

4 3 4 109 0 11 0.67 0.67 0.67 0.91 136

Table 3: Predictive power of surveys across rounds. Table shows which round(s) of data

were used to train the network (i.e. identify which students are connected by a single link

and not), and which round of data this network was tested against. ‘No link’ and ‘link’

indicates how many students are connected by a single link in the training data. When two

training sets are used, students are sometimes linked in one and not linked in the other;

these are classed as ‘ambiguous’. Potential links gives the total number of possible single

links that could exist between nodes in that network. The ability of a training dataset to

predict links in a test dataset is assessed using precision, recall, F-score and accuracy (see

Methods).
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Figure 1: Reported social contacts in four schools over four months. (A–D) Co-

educational school in London. All uni-directional links between study participants are

shown, with nodes fixed in same position if participants were surveyed in multiple rounds

and each arrow pointing toward the participant who was named. Grey squares show fe-

males, white circles show males. (E–H) Co-educational school in West Sussex. (I–L)

Single-sex school in London. (M–P) Co-educational school in Cumbria.
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Figure 2: Distribution of contacts and clustering coefficient in each school, based on all

single links in each of the four rounds of data collection. (A) Co-educational school in

London. (B) Co-educational school in West Sussex. (C) Single-sex school in London.

(D) Co-educational school in Cumbria.
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Figure 3: Structure of social contacts in the four schools across all sampling periods.

(A–B) Co-educational school in London. Reported school classes are grouped by colour

(white indicates no data); squares show females, circles show males. Left column shows

all reported uni-direction links across all four rounds (i.e. maximum of eight possible links

between each pair); right column shows only mutually reported (i.e. bi-directional) links

across the found rounds (i.e. maximum of four possible links). (C–D) Co-educational

school in West Sussex. (E–F) Single-sex school in London. (G–H) Co-educational school

in Cumbria.
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Figure 4: Predictive power of contact surveys. (A) Accuracy of predicting single links

in the network when one, two or three rounds of data collection are used to make out-of-

sample predictions, corresponding to values shown in Table 3. (B) F-scores when different

numbers of rounds of data collection are used to make out-of-sample predictions (C) Mean

absolute difference in degree across all participants. (D) Consistency of individual-level

categorical responses (i.e. mean absolute difference between value of category reported in

training rounds and reported in test round). Question was ‘How many people not in your

year group (including family and teachers) did you have a conversation with yesterday?’

(1: 0-5, 2: 6-10, 3: 11-15, 4: 16-20, 5: 20+).
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School Round Unique participants Male participants Female participants Total contacts

1 1 61 26 35 352

2 83 30 53 470

3 92 36 56 525

4 70 28 42 387

2 1 134 57 77 786

2 121 52 69 699

3 141 55 86 826

4 85 33 52 505

3 1 91 91 0 525

2 67 67 0 377

3 67 67 0 381

4 143 143 0 794

4 1 25 11 14 142

2 26 9 17 144

3 25 7 18 138

4 21 7 14 122

Table S1: Summary of survey data from the four schools in each round of data collection

(Table 1).
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