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Some causal effects of an industrial policy 

Chiara Criscuolo, Ralf Martin, Henry G. Overman and John Van Reenen* 

   

Abstract 

We exploit changes in the area-specific eligibility criteria for a program to support jobs through 

investment subsidies. European rules determine whether an area is eligible for subsidies, and we 

construct instrumental variables for area eligibility based on parameters of these rule changes. 

Areas eligible for higher subsidies significantly increased jobs and reduced unemployment. A 

ten-percentage point increase in the maximum investment subsidy stimulates a 10% increase in 

manufacturing employment. This effect exists solely for small firms – large companies accept 

subsidies without increasing activity. There are positive effects on investment and employment 

for incumbent firms but not Total Factor Productivity.  
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The Great Recession brought industrial policy back into fashion.
1
  Governments around the 

world granted huge subsidies to private firms - most dramatically in financial services - but also 

in other sectors like autos. Business support policies are not new, however. Most governments 

offer subsidies that claim to protect jobs, reduce unemployment and foster productivity, 

particularly in disadvantaged geographical areas. For example, the US spends around $40 to 

$50bn per annum on local development policies (Moretti, 2011). Increasing geographical 

polarization has fostered social and political pressure for more place-specific policies. However, 

despite the ubiquity of such schemes, rigorous micro-econometric evaluations of the causal 

effects of these policies are rare.  This is unfortunate given the mounting evidence on the 

persistent effect of negative economic shocks on local communities and the social and political 

implications of these pockets of disadvantage (e.g. Autor, Hansen and Dorn, 2016). 

A major concern is that these programs might simply finance activities that firms would 

have undertaken anyway. The consensus among economists is that industrial policy usually fails, 

but the econometric evidence is surprisingly sparse. As Rodrik (2007) emphasizes, many of these 

policies are targeted on firms and industries that would be in difficulties even in the absence of 

the program, so naïve OLS estimates may miss any positive effects.
2
  

We tackle the identification problem by exploiting a policy experiment that induced 

exogenous changes in the eligibility criteria governing whether plants in economically 

disadvantaged areas could receive investment subsidies from a major investment subsidy 

program in the UK.  This program was called “Regional Selective Assistance” (RSA), but 

similar support programs exist in other European Union (EU) countries. Crucially for our 

identification strategy, there are rules governing the geographical areas that are eligible to 

receive aid from the UK government that are determined by the EU. This is different from the 

US where the Federal government cannot prevent states from offering such business 

inducements (e.g. Felix and Hines, 2013). We focus on a major policy change in the formula 

driven rules in the year 2000 because we have detailed administrative and institutional data 

before and after the change. Holding area characteristics fixed in the pre-policy change period 

we exploit only the change in the EU policy parameters - the “weights” given to the different 

observable factors (e.g. unemployment and per capita GDP) determining which geographical 

areas were defined to be more economically disadvantaged. This enables us to estimate the 

                                                 
1
 Here, we are using the term “industrial policy” in its broad sense, but our focus in the rest of the paper is on one 

important component of that policy that directs investment subsidies to private sector firms in an attempt to 

revitalize disadvantaged geographical areas. 
2
 For examples see Krueger and Tuncer (1982), Beason and Weinstein (1996) and Lawrence and Weinstein (2001).  
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causal effect of the program on employment and unemployment (and also plant net entry, 

investment, and productivity). Our data set is constructed by linking rich administrative panel 

data on the population of UK establishments and the population of RSA program participants. 

We reach four substantive conclusions. First, there is an economically large and statistically 

significant program effect - a 10 percentage point increase in an area’s rate of maximum 

investment subsidy causes about a 10% increase in manufacturing employment and a 4% 

decrease in aggregate unemployment. These effects are underestimated if endogeneity is ignored, 

as the areas that become eligible for the program are those which, on average, experience 

negative shocks and whose establishments would otherwise perform badly, even in the absence 

of the policy. This conclusion is robust to many controls including other place-based policies 

such as EU Structural Funds (for which we also develop a rules based IV). Second, we show that 

these positive effects are not purely due to substitution of jobs towards eligible areas and away 

from neighboring (ineligible) areas. Third, we find that the positive treatment effect is confined 

to establishments in smaller firms (e.g. with under 50 workers). We suggest that this is due to 

larger firms being more able to “game” the system and take the subsidy without changing their 

level of economic activity. Finally, there appear to be no additional effects on productivity after 

controlling for the program’s positive investment effects.  

Our paper contributes to an emerging literature on the causal impact of place-based policies, 

see Kline and Moretti (2014a) for a survey and Kline and Moretti (2014b) on long-run effects on 

manufacturing jobs from the Tennessee Valley Authority policy. US Empowerment Zones - 

neighborhoods receiving substantial Federal assistance in the form of tax breaks and job 

subsidies - have been examined by Busso, Gregory and Kline (2013) who identify strong 

positive employment and wage effects, with only moderate deadweight losses.
3
 Towards the end 

of the paper (subsection VI.D) we provide explicit comparisons of the size of our effects to those 

in the place-based policy literature and show that the larger magnitudes we find are likely to be 

rooted in methodological and program differences. 

We also relate to a broader literature concerning evaluations of business support policies and 

place-based interventions (see Neumark and Simpson, 2014 for a review). Several papers 

                                                 
3
 Holmes (1998), Albouy (2009) and Wilson (2009) consider other place-based tax policies, while Wren and Taylor 

(1999), Bronzini and de Blasio (2006), Martin et al. (2011) and Becker et al. (2010, 2012a, b) provide evidence for 

regional policy in Europe. Gibbons, Overman and Sarvimaki (2011), and Einio and Overman (2015) discuss similar 

place based schemes in the UK, while Gobillon et al. (2012) and Mayer et al. (2017) provide estimates for France 

and Cerqua and Pellegrini (2014) for Italy. In contrast to RSA, which targets specific firms within eligible areas, 

these schemes are generally not discretionary (i.e. subject to the firm meeting some basic requirements). In addition 

to this substantive difference in the nature of the scheme, our paper is also unique in using exogenously imposed 

changes in area eligibility rules to identify the causal effects of the policy.   
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consider direct research subsidies to industrial R&D. Unlike the generally positive assessments 

of R&D tax credits (e.g. Fowkes et al., 2015), the evidence on these direct subsidies is mixed 

(e.g. the survey in Jaffe and Le, 2015).
4
 Several recent studies have used Regression 

Discontinuity designs to assess the causal effects of direct grants. For example, both Howell 

(2017) on the US Small Business Innovation Research program and Bronzini and Iachini (2014) 

on Italian data use a proposal’s application score by an independent committee as the running 

variable when analyzing the effects of receiving R&D subsidies. Interestingly, these studies are 

consistent with us in that they uncover much larger positive program effects on investment for 

small firms.  

Our paper is not the first to look at the impact of the RSA program. Unfortunately, most of 

the previous evaluation studies are based on “industrial survey” techniques where senior 

managers at a sample of assisted firms are asked to give their subjective assessment of what the 

counterfactual situation would have been had they not received the grant (e.g. see National Audit 

Office, 2003, for a survey). In contrast to the OLS approaches discussed above that are likely to 

underestimate positive policy effects, these survey techniques typically over-estimate program 

impacts since firms receiving money are likely to exaggerate the scheme’s benefits. Some other 

studies have also used firm-level econometric techniques to evaluate the direct impact of RSA.
5
  

Relative to existing studies our contribution is to exploit a policy rules change experiment on the 

population of plants to identify causal effects.  

Finally, there is a large literature on the impact of capital and labor taxes (e.g. Mirrlees, 

2010).
6
 Unlike our RSA program, however, these general tax rules tend to be available nation-

wide rather than place based, and automatic rather than at the discretion of an agency. They are 

also more likely to engender general equilibrium effects than the RSA policy that amounts to less 

than 0.1% of aggregate UK investment. 

The structure of the paper is as follows. Section I describes the policy in more detail and 

outlines how eligibility changes over time. Section II sets out a simple theoretical framework to 

help interpret the results and Section III describes the econometric modelling strategy. Section 

                                                 
4
 See Takalo et al. (2013) or Einio (2014) for recent contributions. 

5
 For example, Devereux et al. (2007) look at Greenfield investments by foreign-owned multinationals and UK-

owned multi-plant groups using the largest RSA grant offers. They find positive, but quantitatively tiny effects on 

multinational location decisions. Hart et al. (2008) also focus on multinationals using a Heckman selection model. 

Jones and Wren (2004) and Harris and Robinson (2005) look at differences in survival between RSA recipients and 

non-recipients.  
6
 A recent example is Zwick and Mahon (2017) who find substantial effects of temporary tax incentives on 

investment using shifts in accelerated depreciation. Interestingly, the results are especially large for smaller firms, 

which is broadly consistent with our findings as reported below. 
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IV describes the data, Section V reports our results at the area level and Section VI at the plant 

and firm level. Section VII provides conclusions. In the Online Appendices we report more 

details on the RSA policy (Appendix A), the changes in EU rules (Appendix B), data details 

(Appendix C), aggregation issues (Appendix D), other regional policies (Appendix E), further 

econometric results (Appendix F) and cost per job estimates (Appendix G). 

 

I. INSTITUTIONAL FRAMEWORK: DESCRIPTION OF THE REGIONAL 

SELECTIVE ASSISTANCE (RSA) PROGRAM 

I.A Overview  

Regional Selective Assistance started in 1972 and from the early 1980s was the main business 

support scheme in the UK. The program provided discretionary grants to firms in disadvantaged 

areas characterized by low levels of per capita GDP and high unemployment (“Assisted Areas”). 

It was designed to “create and safeguard employment” in the manufacturing sector. Firms 

applied to the government with investment projects they wished to finance such as building a 

new plant or modernizing an existing one. If successful, the government financed up to 35% of 

the cost of an investment project.
7
 

Because RSA had the potential to distort competition and trade, it had to comply with 

European Union state aid legislation. European law, except in certain cases, prohibits this type of 

assistance. In particular, Article 87(3) of the Treaty of Amsterdam allows for state aid only in 

support of the EU’s regional development objectives. The guidelines designate very 

disadvantaged “Development (subsequently called Tier 1) Areas” in which higher rates of 

investment subsidy can be offered, and somewhat less disadvantaged “Intermediate (Tier 2) 

Areas” where lower subsidy rates were offered. There was an upper threshold to the investment 

subsidy called Net Grant Equivalent (NGE)
8
, which sets a maximum proportion of a firm’s 

investment that can be subsidized by the government. These EU determined maximum NGE 

rates differed over time and across geographical areas. 

Since the formula that determines which areas were eligible (and at which NGE rate) was set 

about every seven years by the European Commission for the whole of the EU and not by the 

UK government, this mitigates concern of policy endogeneity. Although the overall budget for 

                                                 
7
 Although the structure of RSA is largely the same at time of writing, it has been rebranded several times after the 

end of our sample period (e.g. as the “Selective Finance for Investment Scheme” in 2004) so we refer to it in the 

past tense. In Wales and Scotland it retains the name of RSA. 
8 

The Net Grant Equivalent (NGE) of aid is the benefit accruing to the recipient from the grant after payment of 

taxes on company profits. RSA grants must be entered in the accounts as income and are made subject to tax. 

Details for calculations of NGEs are available in EU Official Journal C74/19 10.03.1998. 
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RSA is determined by the UK and not the EU, the UK had to conform to EU rules when 

deciding which areas are eligible to receive RSA. Changes to area-level eligibility are driven by 

EU wide policy parameters and are therefore the key form of identification in our paper. 

I.B Changes in eligibility over time 

We focus on the change in the map of the areas eligible for RSA in 2000 using the period 

between 1997 and 2004, before and after the policy change. Although there have been changes in 

the area maps in 1984, 1993, 2000 and 2006 our access to program participation data does not 

extend beyond 2004 and we were unable to obtain precise information on the criteria for being 

an assisted area before 1993, so we cannot construct the rules change IV for the 1993 changes. 

Since there are also changes in the collection of total employment data before 1997 (see 

Appendix A), we mainly use 1997 as the first year (although we present OLS estimates of 

manufacturing employment in all years from 1986 onwards in a robustness exercise).  

Figure 1 shows the maps of assistance in the pre-2000 period (left hand side) and post 2000 

period (right hand side). There was considerable change in the areas that could receive assistance 

and the level of subsidy they were able to receive. Whether an area is eligible for any RSA is 

determined by a series of quantitative indicators of disadvantage which changed over time but 

always included per capita GDP and unemployment. For the 2000 change, the data used to 

determine which areas were eligible dated from 1998 and earlier. Although the EU publishes 

which indicators it uses, it does not give the exact policy parameters (the weights) on these 

indicators which determine eligibility, but we can estimate these parameters econometrically (see 

Section III).  

This institutional set-up implies that an area can switch eligibility status for at least three 

reasons. First, there may be a change over time in the indicators used or the relative importance 

(weights) of each indicator. Second, changes in the average EU GDP per capita can push areas in 

or out of eligibility even if nothing changes in the area itself. For example, when the formerly 

Communist states in Eastern Europe joined the EU, average EU GDP per capita fell, meaning 

some poorer UK areas were no longer eligible for subsidies from the RSA program. Third, the 

economic position of an area changes over time even for a fixed set of rules.  The first two 

reasons for eligibility changes are clearly exogenous to area unobservables, but the third is not. It 

helps that the information determining eligibility is pre-determined as it is lagged at least two 

(and up to ten) years before the policy change and therefore many years prior to current 

outcomes. However, there may be unobservable area trends that are correlated with eligibility 

status and outcomes. Areas which are in long-run decline are more likely to have falling 
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employment and output and are therefore more likely to become eligible for the program, 

generating a downward bias on a difference-in-differences estimate of the program effect on 

jobs. Alternatively, there could be a temporary negative shock. This would increase the 

probability of an area becoming eligible, but it would also generate an upward bias on the 

treatment effect as the area mean reverts (an “Ashenfelter Dip” problem). To deal with 

endogeneity we focus on using only changes in the cross EU policy rules to construct 

instrumental variables for program participation and ignore all changes in area characteristics. As 

described more formally in Section III, we fix the area characteristics relevant for eligibility prior 

to the policy change and interact these with the changes in the EU wide policy parameters. 

I.C Formal criteria for receipt of RSA investment subsidies 

RSA was heavily targeted at the manufacturing sector – less than 10% of RSA spending was to 

non-manufacturing firms. The grants were discretionary, and firms could only receive grants if 

the supported project was undertaken in an “Assisted Area” and involved capital expenditure on 

property, plant or machinery. These were the most clearly verifiable aspects. In addition, the 

formal criteria stipulated that the project: (a) should be expected to lead to the creation of new 

employment or directly protect jobs of existing workers which would otherwise be lost and (b) 

would not have occurred in the absence of the government funding (“additionality”). Location, 

which forms the basis for our instrumental variable, is objective, clearly defined and enforceable. 

The other criteria are more subjective and are based on the government’s ability to assess the 

counterfactual situation of what would have happened in the absence of government support. For 

example, a firm could cut jobs but claim that it would have reduced employment by even more 

without support. It is difficult for bureaucrats to make such an assessment of this claim with 

accuracy. The ability of a firm to “game” the system may be particularly high for larger firms 

who can increase employment at subsidized plants at the expense of employment in unsubsidized 

plants that did not receive RSA. 

 

II. MODELLING THE EFFECTS OF AN INVESTMENT SUBSIDY 

II.A Effects of the RSA policy on Capital investment 

What are the likely effects of RSA on investment and employment in an eligible area? Initially 

we consider the effects of a firm receiving RSA in a world without financial frictions. The 

investment grant ( ) reduces the cost of capital facing the firm. To calculate the magnitude of 

this effect we can use the Hall-Jorgenson cost of capital framework (e.g. King, 1974). We 

consider the effects of a perturbation in the path of a firm’s capital stock. If the firm is behaving 
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optimally, then the change in after tax profits resulting from a one unit change in the capital 

stock will equal the unit cost of capital. Under RSA, depreciation allowances are granted on total 

investment, so we can write the cost of capital,  , as (e.g. Ruane, 1982): 

(1)                                                                      
(1 )

1

r  
 



 
 


                                                                           

where   is the depreciation rate,  is the statutory corporate tax rate, r is the interest rate and   

is the depreciation allowance. It is clear from equation (1) that the cost of capital is falling in the 

generosity of the investment grant (
1

r

 


 

 
 < 0). Panel A of Figure 2 illustrates the possible 

program effect by assuming that the level of the capital stock of a firm is determined from the 

intersection of capital demand (a downward sloping marginal revenue productivity of capital 

curve, MRPK) and a horizontal tax-adjusted user cost of capital (the supply of funds curve). 

Without any subsidy, the cost of capital is ρ1 and a firm’s capital stock is K1. The RSA program 

reduces the effective cost of capital to ρ2 and capital rises to K2.  

As discussed above, RSA attempts to target marginal investments. If only marginal 

capital projects obtain funding, the change in the capital stock is ΔK = K2 - K1 at a taxpayer cost 

of (K2 - K1) (ρ1 - ρ2). More realistically, the government has imperfect monitoring ability and so 

will achieve a lower increase in capital as some of the costs are diverted to funding infra-

marginal investments that the firm would have made even in the absence of government 

intervention. The extreme case is where the government has zero monitoring ability and the firm 

simply accepts the subsidy without making any additional investment. The level of capital stays 

the same, but there is a direct transfer of funds from the taxpayer to shareholders. The firm will 

not voluntarily make investments that earn a rate of return below the outside market cost of 

capital
9
 and can effectively lend out any excess subsidies at this market rate. It is likely that the 

government’s monitoring problem is particularly severe for large firms which will typically be 

conducting many different types of investments, and an outside agency will have difficulty in 

assessing whether any grant is truly additional or not.  

Now consider a world with imperfect capital markets such that we have a hierarchy of 

finance model (e.g. Bond and Van Reenen, 2007). Here a firm may be financially constrained if 

it must externally finance investment from debt or equity rather than relying on internal funds. In 

this case, the cost of capital/supply of funds curve is not horizontal as in Panel A, but becomes 

                                                 

9
  MRPK<

(1 )

1

r 








, i.e. the value of  in equation (1) when   = 0. 
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upward sloping when firms need external finance. This is illustrated in Panel B of Figure 2 

where we consider two firms indicated by different MRPK curves. A financially unconstrained 

firm has a schedule “MRPK (unconstrained)” which intersects the flat part of the supply of funds 

curve, and can finance all investments from internal funds. By contrast, a financially constrained 

firm has schedule “MRPK (constrained)” and has to rely in part on more expensive external 

funds. An identical subsidy will generate more investment from the financially constrained firm 

than from the unconstrained firm.
10

 This is illustrated in Panel B of Figure 2 (ΔK’ > ΔK) and can 

be seen from considering the cross partial derivative of equation (1): 

2 1

1r



 


 

  
 < 0. For 

firms facing an effective interest rate (r) higher than the risk free rate due to financing 

constraints, the marginal effect of a subsidy on the cost of capital is greater and so the effect on 

investment is larger. If small firms are more likely to be financially constrained, this is a second 

reason over and above lower monitoring difficulties why the program may have a larger 

treatment effect on small firms. As with the case of perfect financial markets, if the government 

cannot target marginal investments there will be zero effect on the financially unconstrained 

firms. 

 

II.B Effects of the RSA policy on labor 

One of the objectives of the program is to raise employment. Consider as a benchmark a constant 

returns to scale production function F(K, L) where K  = capital and L = labor with perfect 

competition in all markets. The Marshallian conditions for derived demand are (e.g. see 

Hamermesh, 1990): 

( )L Ks     

Where   =  is the elasticity of labor with respect to the user cost of capital,  = the 

elasticity of substitution between labor and capital, Ks  = the share of capital in total costs and η is 

the (absolute) price elasticity of product demand. The sign of the effect will depend on whether 

the scale effect (determined by η) is larger than the substitution effect (determined by ). The 

marginal effect of the investment subsidy is:  

                                                 
10

 Note that the program is not simply directed lending which will only have an effect on financially constrained 

firms (e.g. Banerjee and Duflo, 2014), but rather a directed subsidy which in general will also have effects on 

financially unconstrained firms. 

L
ln

ln



 L



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ln ln
( )K

L
s


 

 

 
 

 
 

This shows that, in general, the subsidy could have a negative effect on employment, even if it 

increases capital. If    an increase in the investment subsidy will reduce labor. On the other 

hand, if    there is a positive effect on employment and the magnitude of this effect will be 

larger if capital is more important (high Ks ). This is something we will examine empirically. 

Finally, the formal rules of receiving RSA require that jobs must be created or 

safeguarded.  In terms of the theory, this involves firms trying to convince government that they 

will not simply recycle funds (as discussed above) and that capital is a complement for labor (i.e. 

sigma is less than eta). Of course, the ability of the government to assess, monitor and enforce 

this might be doubted. Firms could still cut jobs but claim that employment would have fallen by 

even more in the absence of the subsidy 

 

IIC. General Equilibrium effects 

Total expenditure on RSA was about £164m per year in our sample period, which constitutes 

only a tiny fraction (0.065%) of total UK investment.
11

 Consequently, although there may be 

general equilibrium effects on asset prices and wages (e.g. Glaeser and Gottlieb, 2008) these are 

unlikely to be large. Nevertheless, since there may be some equilibrium price effects in local 

areas we also examine the effect of the program on wages and population density. We find these 

effects to be insignificantly different from zero.  

 

IID. Summary of Model 

We take several predictions from the theory to the data. First, the investment subsidy should 

have positive effects on investment. Second, in the model the investment subsidy will have a 

positive effect on employment if scale effects are sufficiently large and the magnitude of any 

positive employment effect will be larger when the capital share is higher. Third, we may expect 

that the policy has a larger effect on small firms because: (i) big firms can more easily “game” 

the system by using RSA for investment they would have done anyhow; and (ii) smaller firms 

are more likely to be financially constrained. We find support for all of these predictions in the 

data. 

                                                 
11

 For example, RSA expenditure as 0.065% of total investment in 2004. Online Appendix Table A1 contains some 

descriptive statistics including the fact that total RSA grants were £149m in 2004 compared to £227bn spent in gross 

fixed capital formation (ONS, 2014).  
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III. ECONOMETRIC MODELLING STRATEGY 

Our basic approach is to estimate the policy effects in a small-scale geographical area (“wards” 

that are similar in population size to a US zip code). We also present results at both a higher 

level of aggregation – travel to work areas (TTWAs) to assess spillovers (do jobs just get 

displaced from other areas?) and lower levels of aggregation (plant and firm-level) to assess 

issues around intensive vs. extensive margins of adjustment and heterogeneity of the treatment 

effects by firm size. There are 10,737 wards and 322 TTWAs in our dataset covering the whole 

of Great Britain (England, Wales and Scotland). Since the eligibility varies at the ward level and 

the number of wards is stable over time, the ward is a natural unit of observation to focus on. We 

write the relationship of interest as: 

(2)                                                  , 1 , ,r t r t r t r ty NGE v                                                            

Where ,r tNGE  (Net Grant Equivalent) is the key policy variable and is defined as the maximum 

investment subsidy available in ward area r in year t and ranges from zero to 35%. The main 

outcome, ,r ty , we examine is employment – a variable which is available at all levels of 

aggregation. However, we also examine unemployment and various other outcomes (e.g. 

investment, output, productivity and entry/exit).
12

 Unemployment is useful to examine as we can 

assess whether increased employment is coming from drawing in people who were previously 

not working. The r  is an area fixed effect, t  are time dummies and ,r tv  is an error term. 

A concern with estimating equation (2) is that ,r tNGE could be endogenous if areas are 

selected into the policy because they have experienced negative shocks. The wards which 

experienced a change in eligibility may have done so because of unobserved contemporaneous 

changes in the area that are correlated with our outcome variables. But, as discussed in Section I, 

eligibility and the level of maximum investment subsidy in an area also depend on EU-wide 

rules so changes in the parameters of these policy rules can be used to construct instrumental 

variables.  

To examine this formally, denote eligibility in 2000 (and afterwards) as a discrete variable 

Sr,00 and similarly eligibility for the 1993-2000 period as Sr,93 . So ,rS   = 1 if the area is eligible 

in period {93,00}  and zero otherwise. The EU rules are explicit that eligibility in 2000 

depends on a vector of area characteristics such as unemployment and per capita GDP relative to 

                                                 
12

 Unlike the US, the UK Office for National Statistics does not collect data on productivity, investment and wages 

at the plant level. The surveys are conducted at the firm (“reporting unit”) level, including for multi-plant firms. This 

means that we cannot accurately calculate productivity measures at very detailed geographical level (e.g. ward). 
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the EU average. The EU also explicitly gives the period over which these data are dated which is 

from 1998 and earlier due to lags in data collection. Similarly, the policy states the (lagged) 

characteristics used to define eligibility in 1993 (which were dated 1991 and earlier). Some of 

the characteristics determining 1993 eligibility were the same as 2000 and some were not (see 

Online Appendix Table A2). We define the superset of all the area characteristics relevant in 

1993 and 2000 as ,r tX . Therefore, the propensity of an area to be eligible in 2000 can be written 

as: 

(3)                                                     𝑆𝑟,00
∗ = 𝜃00𝑋𝑟,00 

The characteristics (𝑋𝑟,00) are area-specific but the policy parameters (𝜃00) are EU wide. 

Similarly, propensity to be eligible in 1993 is: 

(4)                                                        
93 ,93

*

,93 rrS X                                                               

Now consider the change in the propensity to be eligible:  

 

(5)  

00 ,00 93 ,93 00 93 ,93 ,00

* *

,93 93 00 93 ,00 ,93,00 ,93 ( ) ( ) ( )( )r r r r r rr rrS X X X X X XS X                 

                           

The change in eligibility will depend on the changes in the policy parameters 00 93( )  and 

changes in area characteristics, ,00 ,93( )r rX X . An obvious concern is that those areas that were 

declining may be more likely to become eligible for the policy and hence more likely to have 

worse outcomes. Consequently, we construct instrumental variables based solely on 

, 00 93 ,93z ( )r t rX    , the leading term in equation (5) instead of the actual change in eligibility 

which is a function of ,00 ,93( )r rX X . These are “synthetic instrumental variables” in the spirit 

of Gruber and Saez (2002) that should be purged of any suspected bias as they are constructed 

based solely on the rule changes and not changes in area characteristics.  

We present many tests of the validity of the IV strategy including running placebos on pre-

policy periods (see in particular subsection V.D). Our preferred estimation technique is to 

estimate equation (2) by IV in long-differences, but then condition on all the lagged levels of 

variables in the vector ,93rX  so that the IV treatment effect is identified purely from the 

interaction terms. An alternative, less parametric, approach to identification would be to 

implement a fuzzy Regression Discontinuity Design (e.g. Dell, 2010) using the policy rule 

measures as running variables. We discuss our implementation of these RD approaches in 
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subsection V.D and Appendix F. They produce qualitatively similar results to our preferred IV 

approach, but with less precise estimates. Essentially, the RD approach is harder to implement in 

our context because of the high dimensionality of the policy rules and measurement error in the 

running variable.  

There are several practical issues in implementing this IV strategy (see Appendix B for more 

details). First, although the EU reveals what is in the X vector, it does not reveal the exact 

weights in  that determine eligibility. That is, we know whether a particular element of X has a 

weight of zero, but not the exact value of the non-zero weights. Nevertheless, we can empirically 

recover the weights by estimating a regression equivalent of equations (3) and (4) from our data. 

With the estimated ˆ
   we can assign changes to maximum subsidy rates (NGEs) to areas based 

on 00 93 ,93
ˆ ˆ( ) rX   rather than any (potentially endogenous) changes in characteristics. Also, 

recall that ,93rX  is based on variables dated no later than 1991, so we are effectively using 

information from 1991 (and earlier) to construct instruments for the 1997-2004 period. The 

identification is from a non-linear interaction between these long pre-determined characteristics 

and the change in the policy parameters. Moreover, to allow for potential correlation between 

current variables and pre-1991 statistics we include ,93rX as additional set of controls. 

A second issue is that the maximum subsidy rate varies across the eligible areas (see Figure 

1). For example, pre-2000 there were Tier 1 areas with an NGE of 30% and Tier 2 areas with an 

NGE of 20%.  To deal with this, we estimate the policy parameters by performing ordered probit 

models
13

 separately for 1993 (three grouped outcomes) and 2000 (six grouped outcomes
14

). We 

use the ,93rX  observables for both ordered probits. From the ˆ
 we calculate the probability that 

an area will be in each subsidy regime in both pre and post 2000 periods. We then multiply these 

probabilities by the NGE in each regime to calculate an expected maximum subsidy level for an 

area based on pre-1993 characteristics and the policy parameters. This is the IV used which 

varies by area and across the policy change solely due to the policy parameters. Estimating by 

ordered probit also means that all probabilities are bounded between zero and one, which is not 

the case for OLS regression versions of (3) and (4). 

                                                 
13

 Nothing hinges on the particular distributional assumptions of the ordered probit. We have qualitatively similar 

results using ordered logits, OLS, etc. Appendix B discusses these alternatives. 
14

 The six maximum subsidy rates after 2000 are 0 for ineligible areas, 10%, 15%, 20% and 30% for “Tier 2” areas 

and 35% for “Tier 1” areas. Pre-2000 the rates were zero, 20% and 30%. 


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Continuing our simplified discussion from above, we implement equation (2) by 

differencing out the area fixed effect: 

(6)                                    , 1 , ,93 ,r t r t r t r ty NGE X t v                                                             

where , , ,97r t r t ry y y   , for t > 1997, as 1997 is the first year of our sample.
15

 We identify 

equation (6) by 2SLS using , 00 93 ,93z ( )r t rX     as an instrument for ,r tNGE . We also 

present OLS, reduced forms and first stages. The dependent variables are estimated in natural 

logarithms, so we add one to the small number of observations where the outcome value is 

zero.
16

 

Although the maximum investment subsidy rate (NGE) is an attractive treatment variable as 

it is the main EU-determined policy variable, an alternative specification to equation (6) is to use 

the subsidies actually paid out to firms in the area. The advantage of using the actual RSA 

subsidy is that it is more easily interpreted as “increasing the amount of dollar subsidies by 10% 

is associated with an increase in employment of y%”. The disadvantage of using the RSA 

subsidy is that we do not know the exact timing of when the subsidies are paid after the first year 

of receipt, so we have to define RSA subsidy as the amount of subsidy (in thousands of pounds 

sterling) that an area receives on average per year. For these reasons, we present results using 

both NGE eligibility and RSA subsidies as treatment indicators. 

The 2000 map of eligibility was based on Census wards. Our eligibility instrument is 

defined, therefore, at the ward level and in our baseline panel regressions our unit of analysis is 

at this level. As an extension, we also estimate our model at a higher level (TTWA) to 

investigate cross-area spillover effects and disaggregate to the plant/firm level to look at 

treatment heterogeneity. Similarly, in the baseline specification we cluster the standard errors at 

the ward level but show alternative treatments that allow for spatial autocorrelation (e.g. by 

clustering at the TTWA level or higher in subsection V.D). We discuss many additional 

econometric issues when we come to these results. 

IV. DATA AND ESTIMATING POLICY RULES 

                                                 
15

 As discussed in Appendix A, we start our base period in 1997 because (i) unemployment statistics are only 

available on a spatially consistent basis from this year and (ii) the electronic business register (IDBR) began in 1994 

and had some reliability issues issue in the first few years. We show robustness to starting in alternative years 

below. 
16

 For example, when we are looking at employment, L, as an outcome the dependent variable is y = ln(1+L). 100 of 

our 10,737 areas have zero manufacturing employment in all years (0.9% of the sample) and 21 areas have no 

unemployed in all years (0.2% of the sample). Our results are robust to dropping all areas with zeros in any year or 

all wards which had a zero in any year. We also obtain near identical results using the Inverse Hyperbolic Sign 

transformation where we use ln[L+√(1+L
2
)] as the dependent variable (see Card and Della Vigna, 2017).  
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IV.A Datasets 

Details on the data are in Appendix C, but we summarize the most important features here. We 

combine administrative data on program participants with official business performance data 

from the UK Census Bureau (Office of National Statistics, ONS). Specifically, we match the 

Selective Assistance Management Information System (SAMIS) database, the Interdepartmental 

Business Register (IDBR) and the Annual Respondents Database (ARD).
17

 The IDBR is the 

population business register containing every establishment’s employment, location and 

industry. We use this to construct jobs by area, our primary dependent variable, distinguishing 

between manufacturing jobs (where RSA is targeted) and non-manufacturing jobs. We match in 

unemployment from the local areas labor market statistics through the ONS Nomis service.  

SAMIS is the administrative database used to monitor RSA projects. It contains information 

on all program applications (almost 25,000) since the inception of RSA in 1972, and includes 

information on the name and address of the applicant, a project description, the amount applied 

for and the date of application. For successful applications, it provides the amount of subsidy and 

first date of payment.
18

 We match program participants with data from the population in the 

IDBR that includes addresses, industry, ownership and employment. The lowest level of data is 

at the business site level. The lowest level of aggregation we consider are all business sites of a 

particular firm in a ward that we refer to as a “plant”. This is because the unique business site 

identifier at the more disaggregated level is not always reliable.  

We matched 82% of all the RSA applicants between 1997 and 2004. The most common 

reason for non-matches is that the information on the SAMIS database is inadequately detailed to 

form a reliable match to the IDBR. To check for selection we conducted a detailed comparison 

of the characteristics of projects and project participants of matched with non-matched firms. All 

observable characteristics were balanced between the samples including application amounts, 

headquarter location, firm size and administrative location of agency analyzing the application 

(see Criscuolo et al., 2006). 

The ONS draws a stratified random sample of firms from the population of firms in the 

IDBR to form the ARD (Annual Respondents Database) from the Annual Business Inquiry 

(ABI) which is a mandatory survey. From the ARD we obtain information on investment, wages, 

                                                 
17

 The IDBR is the equivalent of the US Economic Census but has less data fields: it is a business register. The 

manufacturing part of the ARD is similar in structure to the US Annual Survey of Manufacturing. 
18

 Around 90% of applications were granted. There is information on applications not granted and we considered 

using these as part of our empirical design, but legal restrictions prevent us from matching these projects into the 

administrative data. 
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and productivity of firms. For multi-plant firms, the ARD reports this information only at the 

aggregate firm level rather than the plant level available in the IDBR. Overall, 80% of firms are 

single-plant and located at a single mailing address. The ARD does not consist of the complete 

population of all UK manufacturing firms, since the sample is stratified with smaller businesses 

sampled randomly. However, it does contain the population of larger businesses, which cover 

90% of total UK manufacturing employment.  

 

IV.B Descriptive Statistics 

Table 1 reports the number of wards broken down by the initial level of NGE 1993-1999 and the 

new post-policy change NGE after-2000. Before 2000 column (1) shows that 3,428 out of 

Britain’s 10,737 areas were eligible for some investment subsidy (2,012 areas had a maximum 

subsidy rate of 20% and 1,416 areas had a maximum rate of 30%). After the policy change, row 

(1) shows that 486 areas (summing columns (3) through (7)) which were previously ineligible 

for any subsidy became eligible and 1,106 areas which used to be eligible became ineligible 

(summing 841 and 265 in column (2)).  The total number of ineligible areas rose from 7,309 to 

7,929. There were also a large number of areas that were eligible in both periods, but still 

switched their level of NGE. For example, row (3) shows that of the areas which, pre-2000, were 

eligible for up to a 30% subsidy rate, 388 became eligible for up to a 35% subsidy, while 717 

saw their NGE fall to 20%, 30 to 15%, 16 to 10% and 265 to zero. Unsurprisingly, the majority 

of areas were ineligible for subsidies in all periods (6,823 areas out of a total of 10,737). 

 Aggregate expenditure on the program was about £164m per year over our sample 

period, and since 2001 has been generally declining over time. On average, 28% of all British 

wards are eligible for RSA accounting for 39% of manufacturing employment and 30% of 

manufacturing plants. Although, on average, only 3% of plants in eligible areas receive a new 

RSA grant in a given year, 18% of manufacturing employees have worked in a plant who 

received RSA at some point over our sample.  

We report some more descriptive statistics in Table 2. Areas eligible for subsidies (Panel 

B) have higher unemployment and more manufacturing workers than other areas. For example, 

in the 1997-1999 period the average ward has 267 manufacturing workers (Panel A) compared to 

351 in those areas eligible for RSA (Panel B). The average subsidy of a plant receiving a grant is 

just over £56,000 per year in the late 1990s and just under £36,000 in the 2000s (Panel B). In 

2000-2004, an average plant has 20 employees (Panel C), although plants in eligible areas tend 

to be larger (27 employees). Panel D compares firms in eligible areas who receive subsidies with 
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those who do not. Recipient firms are larger (87 vs. 31 workers), have 2.7% (= 0.042 - 0.015) 

lower TFP and 14% lower labor productivity (£38,600 vs. £44,900 value added per worker). As 

discussed in the Introduction, since the RSA program targets larger and less productive firms, 

naïve OLS analyses are likely to underestimate any potential positive effects.  

 

IV.C Estimating the Policy Rules 

The estimates used to construct the policy rule are presented in columns (1) and (2) of Table 3.
19

 

As discussed in Section III, these results are from ordered probit estimates of the area support 

levels (NGE). Note that three of the variables used as indicators in 2000 by policy-makers were 

not used in 1993 (the employment rate, the ILO unemployment rate and the share of 

manufacturing workers), so we drop these variables from the regressions in column (1), i.e. 

setting the coefficients on these variables to be zero. Similarly, there were two indicators that 

were used in 1993 but not in 2000 (the business start-up rate and the long-duration 

unemployment rate). Similarly, we set the coefficients on these variables to be zero in column 

(2).  

Looking across Table 3, the signs are generally intuitive. Areas with higher GDP per 

capita, higher population density, more skilled workers, higher business start-up rates, lower 

structural unemployment rates, higher activity rates and higher employment rates are all 

significantly less likely to be eligible for higher investment subsidies. The only surprises are that 

the claimant count unemployment rate (in 1993) and the ILO unemployment rate (in 2000) take 

counter-intuitive negative signs. This seems to be due to collinearity among the many 

unemployment measures. In 1993 (2000) there are four (five) labor market indicators that are all 

highly correlated. We illustrate the collinearity issue by estimating similar regressions with fewer 

unemployment variables. For 1993, when we drop structural unemployment, the results in 

column (3) show that the coefficient on the current unemployment rate takes its expected 

positive sign. For the period from 2000 onwards, column (4) shows that the coefficient on ILO 

unemployment reduces in absolute size and is no longer significant when we drop the claimant 

count and structural unemployment rate.
20

 

                                                 
19

 Online Appendix Table A2 has definitions and descriptive statistics. 
20

 We checked that these collinearity issues are not spuriously driving our key findings. We constructed the rule 

change instruments dropping some of the potentially collinear variables and found that our results are robust. For 

example, using the estimates from the last two columns of Table 3 (instead of our baseline estimates using the first 

two columns) generated a coefficient (standard error) on the IV estimates in the employment equation of 

0.653(0.322) compared to 0.953(0.260) in the baseline estimates of column (4) in Table 4, Panel A.  
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As discussed in Section III we use the results from columns (1) and (2) to construct our 

IV for the policy: the change in the predicted level of maximum investment subsidy based on 

pre-1993 area characteristics. The distribution of the level of the IV (
, ,93zr t rX ) is shown in 

Panel A of Online Appendix Figure A1, and the change (which we use as our IV, 

, 00 93 ,93z ( )r t rX    ) is in Panel B. There is a mass point close to zero in both levels and 

changes as most areas have a very low probability of being treated and this does not change over 

time (as in the actual data). However, the IV has positive mass over the entire support of the 

NGE distribution both in levels and in changes. Panel B shows an asymmetry with more areas 

predicted to lose eligibility than gain it, consistent with the actual changes in eligibility for 

investment subsidies reported in Table 1. 

 

V. AREA LEVEL ANALYSIS  

V.A Main Results 

We turn first to the area level results, focusing mainly on those at the ward level. Recall that our 

identification strategy uses exogenous policy rule changes that determine which wards are 

“randomized in” to be eligible (or ineligible) for support.  

Figure 3 shows changes in employment for areas whose support levels were predicted to 

increase because of the policy rule change in 2000 – i.e. a discrete version of our instrumental 

variable - compared to areas where support levels were predicted to decrease.
21

 Since this is for 

manufacturing, a sector in long-run decline, both lines are on a downward trend, but there is no 

sign of significant differential trends prior to the 2000 policy change. The figure clearly suggests 

that manufacturing employment fell significantly less in areas where predicted eligibility for 

investment subsidies increased after 2000 compared to those areas where predicted eligibility 

fell. 

Figure 4 reports the same results for unemployment. The 1997-2004 period was one of 

strong growth in the UK economy and unemployment was falling across the country. It is clear 

that there is a significantly faster fall in unemployment in the areas which where exogenously 

more likely to become eligible for investment subsidies after 2000 (dashed line).  By 2004, these 

                                                 
21

 Recall that our instrument is derived from the change (due to rule changes) in predicted support levels. There are 

no areas where predicted support levels stay precisely constant because the probabilities are continuous. 
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areas enjoyed falls in unemployment about 7% higher than elsewhere. By contrast, prior to 2000 

the falls in unemployment were statistically identical across the two groups of areas.
22

  

Table 4 reports first area-level regression results. Panel A contains results for 

manufacturing employment. In column (1), we report regressions using the change in the area’s 

maximum investment subsidy rate (NGE) as the main explanatory variable. There is a positive 

correlation with employment, but it is only significant at the 10 percent level and is small in 

magnitude: increasing the available investment subsidy by 10 percentage points is associated 

with a 1.2% increase in employment. Column (2) presents the reduced form using our policy rule 

instrumental variable constructed from exogenous changes in subsidy eligibility using the change 

in EU wide policy parameters. The coefficient on the IV is positive and significant as suggested 

by Figure 3. Column (3) reports the first stage regression with NGE changes as the outcome and 

shows that this is strongly predicted by our IV. The final column reports the IV results 

suggesting that the causal effect of RSA is over seven times as large as the OLS estimate of 

column (1). A 10 percentage point increase in the maximum investment subsidy (e.g. an increase 

in NGE from 0 to 0.1) leads to a 10% (= exp(0.0953x0.1) – 1)x100) increase in jobs. This OLS 

bias is consistent with what we would expect: a positive shock to an area decreases the 

probability of it becoming eligible for investment subsidies, so OLS underestimates the 

employment increasing effects of the policy.
23

 

As noted above, RSA is focused on the manufacturing sector. Consequently, the increase 

in manufacturing employment in Panel A of Table 4 could come from decreases in jobs in non-

manufacturing sectors. To assess this, we do two things. First, in Panel B we estimate identical 

specifications to Panel A, but instead use ln(unemployment) as a dependent variable to see if 

joblessness falls in eligible areas. Second, in Panel C we directly examine non-manufacturing 

employment. Panel B shows that unemployment falls significantly in areas that become eligible 

                                                 
22

 We also reproduced Figures 3 and 4 using the actual changes in areas eligible for RSA rather than the predicted 

changes. Consistent with our concern over endogeneity there is evidence of pre-trends in the expected direction 

using the actual changes. For example, areas that were ineligible for RSA, but became eligible after 2000 had larger 

average falls in employment than areas which did not change their eligibility status (or lost it). 
23

 All results are robust to using the level instead of the logarithm of the dependent variable. For example, in levels 

the coefficient on NGE in the IV employment equation of column (4) of Panel A is 644.6 with a standard error of 

112.9. This implies a ten percentage point increase in NGE increases the number of manufacturing jobs in a ward by 

64 or 18% at the mean level of employment (351 in Panel B of Table 2). This larger effect is driven by outliers 

which are dampened by the log transformation. For example, if we winsorize the upper and lower 5% of the 

employment distribution and re-estimate in levels the coefficient on NGE becomes 303.9 with a standard error of 

34.4, which for a 10 percentage point NGE increase implies a 9% rise in employment, much closer to our baseline 

results. Similarly, other transformations such as using the Inverse Hyperbolic Sign gave similar results. For 

example, the IV coefficient (standard error) was 0.968 (0.286) in a specification like column (4) of Panel A  
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for higher levels of investment subsidy. Just like manufacturing employment, the beneficial 

effects of the policy on unemployment is underestimated by the OLS estimates in column (1) 

compared to the IV estimates. A 10 percentage point increase in NGE causes a 4.2% fall in 

unemployment in column (4). By contrast, there appears to be no significant effect of NGE on 

non-manufacturing employment in Panel C. For example, the coefficient in column (4) is 0.177 

with a standard error of 0.161 (compared to 0.953 for manufacturing). Consequently, NGE 

increases the share of manufacturing jobs as well as the total number of jobs in an area.
24

 

Table 5 reports the same set of regressions as Table 4 but uses the amount of subsidy that 

an area receives on average per year as the main right hand side variable (rather than grant 

eligibility). Hence, we can interpret the estimated coefficient as the elasticity of the labor market 

outcome with respect to subsidy payments. We obtain qualitatively similar results to Table 4. For 

example, the final column suggests that a 10% increase in subsidy spending leads to a 2.9% 

increase in manufacturing jobs and a 1.3% fall in area unemployment and no effect on non-

manufacturing jobs.
25

  

V.B Other Policies 

An important concern with our findings so far is whether there are other policies 

correlated with changes in RSA that could confound our results. For such a policy to bias the IV 

results, the omitted policy change would not only have to be effective in affecting jobs, but also 

be correlated with our rule change instrument (the interaction of the RSA policy parameters and 

the lagged area characteristics). To consider this issue we undertook a detailed investigation of 

all area-based policies we could find that changed in our sample period as documented in 

Appendix E. From this, we conclude that the only policy that causes material concerns are the 

EU “Structural Funds” (SF), which support infrastructure projects in roads and energy as well as 

initiatives for economic and social regeneration of urban areas.
26

 As with RSA, the map of EU 

supported areas focused on disadvantaged areas and also changed in 2000. Fortunately, the areas 

that saw a change in their eligibility for Structural Funds are not all the same as those that saw a 

change in their eligibility for RSA. In fact, there is considerable variation in the areas that 
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 Using the share of manufacturing jobs as the dependent variable and estimating column (4) leads to a coefficient 

(standard error) of 0.137(0.033) on NGE. Using the ln(total number of jobs) has a coefficient (standard error) of 

0.353(0.144) on NGE in this IV specification. 
25

 Since some of the subsidies (and their effects) could persist for longer periods of time after an area becomes 

eligible we may be underestimating the longer-term effect as our dataset ends in 2004. 
26

 The structural funds are the financial tools the EU uses to implement regional policy (see 

http://ec.europa.eu/regional_policy/en/funding/). Past evaluations report mixed results for the effect of structural 

funds. Recently Becker et al. (2010, 2012a,b) have a more positive assessment especially for regions with higher 

absorptive capacity (those that are richer and hence closer to the cut-off point for EU funding). 

http://ec.europa.eu/regional_policy/en/funding/
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switched in and out of RSA and Structural Funds eligibility (see Online Appendix Table A3). 

Total SF spending is higher than RSA, although the direct SF grants to business are an order of 

magnitude smaller than RSA. For example in 1997 the total amount of RSA grants accepted was 

£158.3 million while the total amount of Structural Regional Development Funds was £621 

million (House of Commons, 2000), only £15.6 million of this amount was paid as business 

grants (1997 Annual Report of the Industrial Development Act).  

 As with RSA, changes in Structural Fund eligibility are unlikely to be exogenous to local 

shocks as the Structural Funds are designed to provide support for declining areas. Consequently, 

we implement the same methodology used for RSA to develop an IV for Structural Funds based 

on the criteria that the EU used in determining whether an area is eligible for Structural Fund 

support. Despite considerable overlap with the variables used to determine RSA eligibility there 

are sufficient differences in the EU criteria to make this strategy viable. For example, local crime 

rates were a criterion for Structural Funds (but not RSA), and the start-up rate and activity rates 

were criteria for RSA (but not Structural Funds). We exploit these differences when estimating 

the Structural Fund policy rules.
27

 From the estimated weights on the Structural Funds criteria 

and lagged characteristics we construct a policy rule change IV for EU Structural Funds and re-

estimate our main specifications augmented to include these new variables.  

Results accounting for SF are reported in Table 6 and should be compared to those 

reported in Table 4. Although our instruments are powerful in predicting eligibility for Structural 

Funds (see column (4)), the results are somewhat mixed on the policy itself. The coefficients 

generally suggest beneficial labor market effects of Structural Funds (except for the employment 

IV in column (5) of Panel A), but are significant only for unemployment (in the OLS and 

reduced form of columns (1) and (2)). More importantly, there remains a positive and significant 

effect of investment subsidies (NGE) in the IV regressions of column (5) and the reduced forms 

of column (2) for employment (and significant beneficial effects on unemployment) even after 

conditioning on Structural Funds. In our preferred IV specifications the coefficient on NGE rises 

from 0.953 to 0.999 for employment and changes from -0.414 to -0.409 for unemployment. 

Hence, although there is some evidence that Structural Funds may have some benefits, 

accounting for this policy does nothing to materially change our conclusions on the positive 

effects of the RSA program. 

                                                 
27

 See Online Appendix Table A4 (the analog to Table 3).  
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As noted above, we also considered a wide range of other place-based policies. We 

identified six other place-based policies that changed in our sample period: Employment Zones, 

Coalfields Regeneration Scheme, Regional Venture Capital Funds, Enterprise Grants, the New 

Deal for Communities and Devolution to Scotland and Wales. The details of each of these are 

discussed more in Appendix E. These policies do not have an explicit set of EU rules that we can 

use to construct the same instruments as RSA and Structural Funds. Therefore, to control for the 

effect of these policies we simply include a dummy variable which switches on when an area 

becomes eligible for the policy. Table 7 displays the results for employment reduced forms 

(Panel A) and IV regressions (Panel B) with specifications based on those of columns (2) and (4) 

of Table 4 Panel A.
28

 We include each policy variable one by one in columns (1) through (6), 

and then all together in column (7). As is clear from the table, the effect of RSA is robust to the 

inclusion of all these other policy controls, remaining statistically significant with a very similar 

coefficient throughout (the coefficient in the reduced form is now 0.815 compared to 0.839 in the 

baseline Table 4 results and for IV is now 0.966 compared to 0.953 in the baseline). As for the 

other policies, some appear to have perverse negative and significant coefficients on jobs (e.g. 

New Deal for Communities and Devolution to Scotland and Wales) whereas others have 

generally positive coefficients (e.g. Regional Venture Capital Fund). Given that we do not have 

instruments for these policies, we should not read too much into the coefficients. Finally, column 

(8) also adds in Structural Funds to the specification of column (7), treated endogenously as in 

Table 6). The SF coefficient is significant in the reduced form of Panel A, but insignificant for 

the IV specification of Panel B.
29

 More importantly for us, the RSA treatment effect remains 

significant.  

The main message from both Tables 6 and 7 is that our estimates of the effects of RSA 

appear robust to a variety of ways of controlling for potentially confounding policies. 

 

V.C Higher levels of aggregation (TTWA) 

In this subsection we compare the policy effects at the ward level to the more aggregate “Travel 

to Work Area” (TTWA) level in order to examine spillover effects across areas.
30

 When an area 

becomes eligible for investment subsidies firms may relocate jobs from neighboring ineligible 
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 Equivalent results for unemployment are contained in Online Appendix Table A5.  
29

 The Structural Funds coefficient is significant for both specifications in Online Appendix Table A5 when we use 

unemployment as the dependent variable. 
30

 A TTWA is similar to a US Commuting Zone. There is variation within a TTWA in ward eligibility. Post-2000, in 

a TTWA with at least one eligible ward only 31.5% of wards had positive NGE. Pre-2000 the number was 35%. 
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areas. For example, consider a ward, r  and its neighbor r’, in a single TTWA (the example is 

easily generalized to r = 1, 2,... , R contiguous wards). The ward employment regression (in long 

differences) can take the form: 

Δ𝑦𝑟,𝑡 = 𝜆1Δ𝑁𝐺𝐸𝑟,𝑡 − 𝜒Δ𝑁𝐺𝐸𝑟′,𝑡 + 𝜈𝑟,𝑡 

 

Where the “spillover” coefficient   reflects the fact that a neighboring area that becomes 

eligible for RSA may cause employment to relocate away from ward r.  Below we estimate 

higher-level TTWA (subscript a) equations of the form: 

(7)                                                   Δ𝑦𝑎,𝑡 = 𝜇Δ𝑁𝐺𝐸𝑎,𝑡 + 𝑣𝑎,𝑡                                                       
 

Where  𝑦𝑎,𝑡 is the log of TTWA employment and ,a tNGE  is the average NGE change in the two 

wards weighted by the lagged ward-level employment levels; i.e. Δ𝑁𝐺𝐸𝑎,𝑡 = 𝑤𝑟Δ𝑁𝐺𝐸𝑟,𝑡 + (1 −

𝑤𝑟)Δ𝑁𝐺𝐸𝑟′,𝑡  where 𝑤𝑟 =
𝐿𝑟,0

𝐿𝑟,0+𝐿𝑟′,0
  is the share of employment in region r in the base year 0.

31
 

In Appendix D we show that if there are no spillovers (i.e. 𝜒 = 0) we would expect to see that 

𝜇 ≈ 𝜆1.  If there are negative spillovers we would expect 𝜇 < 𝜆1.  In the extreme case where the 

program simply causes shifting between areas (as Wilson, 2009, suggests for R&D tax credits 

across American states) the coefficient of NGE in equation (7) will be zero ( =0). 

We replicate the results from Panels A and B of Table 4 at the TTWA level in Table 8. The 

qualitative results are similar and there is no evidence of the earlier results over-estimating the 

treatment effects. For example, the policy effect is 1.006 in the employment IV regressions in 

Panel A compared to 0.953 in the baseline results (and -0.806 for unemployment vs. -0.414 in 

the baseline). This is inconsistent with large negative spillover effects on neighboring areas. The 

unemployment results suggest that revitalizing one area may actually strengthen neighbors, 

although given the size of the standard errors, we should be cautious about concluding there are 

positive spillovers.
32

 

 

V.D Other Area level Robustness Tests  

We conducted a large number of other robustness tests, some of which we sketch here with 

details in Appendix F. First, our baseline regression results in Table 4 control for the levels of all 

variables in Table 3 that enter the policy rules (the ,93rX ). We checked the robustness of the 

                                                 
31

 The weights are based on 1996 employment levels to mitigate endogeneity concerns. 
32

 We are assuming that displacement is most likely to occur across neighboring areas. It is possible that 

displacement occurs from other areas of the UK, but it is likely that local displacement would be strongest. 
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results to using higher order polynomial functions of the ,93rX  (quadratic and interaction terms), 

dropping them completely or adding in the predicted probabilities from the ordered probits (see 

Online Appendix Table A6). The results were robust to these experiments.  

Second, although Figures 3 and 4 do not suggest any spurious differential pre-2000 trends 

we also ran placebo tests where we introduced “pseudo policies” of the same form as RSA in the 

pre-2000 period. These were always insignificant. For example, we estimated the employment 

reduced form on the 1995-2000 data but used the post-2000 policy instruments as if they were 

introduced in 1997 (see Online Appendix Table A7). The reduced form has a coefficient 

(standard error) of 0.162(0.163) compared to 0.839(0.228) in the main specification in column 

(2) of Table 4 Panel A.
33

  

Third, we were concerned that we may have under-estimated the standard errors by 

clustering just at the ward level as there may be more spatial autocorrelation across areas as 

suggested by the fact that contiguous wards tend to have similar levels of NGE. Online 

Appendix F.1 discusses this in more detail, but in short we addressed this issue by clustering the 

standard errors at higher geographical levels such as (i) the TTWA (322 clusters); (ii) alternative 

clusters based on areas that had the same levels of NGE and shared, contiguous borders (102 

clusters) or (iii) clusters based on areas that had the same levels of NGE and borders within 1km 

(80 clusters) and (iv) the NUTS2 regional level (34 clusters). Regardless of the approach, the 

coefficient on NGE remained significant in the employment regressions at the 5% level or 

greater in all specifications. The same was true when we used unemployment as the dependent 

variable with the sole exception of using the most conservative approach of clustering by the 34 

NUTS2 areas.
34

 

Fourth, we considered Regression Discontinuity designs (see Online Appendix F.2-F.4). In 

principle, since we know the variables underlying the rules, conditioning on polynomials of the 

rules should remove the correlation of NGE with unobservable influences on our outcomes. 

Implementing this design is empirically challenging in our context as we do not directly observe 

the running variable, the threshold is unknown and the variables underlying the policy rules are 

high dimensional (e.g. 8 indicators pre-2000 and 9 thereafter) and are likely measured with error. 

                                                 
33

 We use 1997 as the base year rather than 1995 as the unemployment series has a break in 1996. If we use 1995 as 

the base year for the employment regressions, our results are very similar. For example the coefficient (standard 

error) on NGE in the IV regression is 1.295(0.325). 
34

 Another issue is that since the instruments are generated regressors (from Table 3), formally we should allow for 

this in the calculation of the variance-covariance matrix. Doing so, however, made very little difference to the 

results as shown, for example, in Online Appendix Table A8. 
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However, for one indicator, GDP per capita, we do know the cut-off for eligibility (75% of the 

EU average GDP per capita in the NUT2 region). We implement a RD Design using this 

threshold and find a significant effect of the cut-off on NGE as well as treatment effects that are 

larger than our main estimates, although very imprecisely estimated (see Online Appendix Table 

A9). For example, a ten percentage point increase in NGE causes an (insignificant) 19% increase 

in employment compared to 10% in our baseline.
35

  

Finally, we conducted a large number of other robustness tests such as using a longer time 

period (from 1986 onwards instead of 1997; examining general equilibrium effects on factor 

prices -wages- and using matching estimators. Our results are robust to these tests.
36

 

 

VI. MICRO-ANALYSIS AT FIRM AND PLANT LEVEL AND OVERALL 

MAGNITUDES 

Having established that there appears to be a causal effect of increasing jobs (and reducing 

unemployment) in those areas that became eligible for higher rates of RSA subsidy, we now turn 

to the micro-economic impact of RSA at the plant and firm level. 

 

VI.A Extensive vs. Intensive Margins: Number of Plants as an outcome 

The area level employment effects could come from incumbents expanding (the intensive 

margin), higher net entry (the extensive margin of less exit or more entry) or a mixture of both. 

To address this we re-estimate the main specifications, but use the ln(number of manufacturing 

plants) as the dependent variable. Panel A of Table 9 reports the baseline results for the 

specifications of Table 4 where the treatment variable is NGE, Panel B has those for Table 5 

(RSA subsidy amounts), Panel C has Table 6 (NGE and inclusion of Structural Funds) and Panel 

D has the analog of Table 8 (NGE at higher Travel to Work Areas). The policy does appear to 

have positive effects on the extensive margin, although the IV coefficients are insignificant in all 

panels except Panel A. We conclude from this table that the primary effect of the policy must be 

on the intensive margin, increasing jobs in incumbent firms, which we now turn to analyze 

explicitly. 

                                                 
35

 Another reason for the higher point estimates is the 75% of per capita GDP is also the threshold for receipt of 

Objective One structural Funds. Online Appendix F discusses various other RD Designs. For example, we also 

considered an alternative approach involving conditioning on polynomials of all the rules pre and post 2000. These 

produce significant and correctly signed coefficients on the policy variables that are larger in magnitude than the 

OLS estimates, but smaller than our preferred IV results (see Online Appendix Table A10).  
36

 Details in in Online Appendix Table A11 and Online Appendix F5. 
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VI.B Heterogeneous policy effects by firm size 

 Table 10 presents ln(employment) regressions where the treatment variable continues to 

be the maximum investment subsidy available in the area where a plant is located (NGE). The IV 

results of column (4) of Panel A implies that an increase of NGE by 10 percentage points leads 

to a 4.7% increase in plant level employment. We also find a large difference between the OLS 

and IV coefficients that is consistent with strong selection effects at the plant level. 

The discussion in Section II implied that the treatment effects could be more pronounced for 

smaller firms, so we examine size as one observable source of heterogeneous treatment effects. 

We use lagged firm employment as a measure of size when splitting the plant sample as credit 

constraints or the gaming of the system depends on the size of the firm, not the plant per se (e.g. 

a ten-worker factory owned by General Electric still benefits from GE’s deep financial pockets). 

In addition, to mitigate endogeneity biases we measure size using the firm’s employment level in 

1996 - the year before the start of our estimation period (for firms born after 1996 we use size in 

the first year and drop this observation from the regressions).  

  We report plant level employment regressions separately for small firms (firm 

employment under 50) and large firms (over 50 employees) in Panels B and C respectively in 

Table 10. The first stages are strong for both types of firms with a near identical coefficient (0.68 

vs. 0.64). However, the IV effect is positive and significant for plants in small firms but 

insignificant and around a sixth of the size for plants in big firms.
37

 Similarly, there is a large and 

significant reduced form effect in column (2) for small firms but a small and insignificant effect 

for large firms.
38

  This implies that plants that are part of small firms drove the aggregate area 

effect identified in the previous section.  

There could be at least two different reasons for the heterogeneity of the policy effect by 

firm size. Firstly, although large firms are often based in areas that receive support – hence the 

highly significant first stage in column (3) – the size of their grants could be relatively less 

generous. An alternative story is that they are equally well supported, but the subsidies generate 

less jobs. We explored this by examining regressions of employment on actual RSA support.
39

  

Regardless of whether we use a dummy or a continuous treatment indicator there is a large and 

significant positive effect of receiving investment subsidies when estimated by IV for small 
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 In Online Appendix Table A12 we vary the exact definition of a “small” firm and show our results are robust to 

varying the exact size threshold. 
38

 The effects are also significantly different at the 5% level for large firms vs. small firms (see Online Appendix 

Table A13 column (1)). 
39

 Online Appendix Table A14 is the analog of Table 5. 
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firms, but not for large firms. Hence, these results reject the hypothesis that the absence of a 

large firm effect is because they simply obtain less subsidies, but it is rather that small firms 

create more jobs from the subsidies they receive compared to big firms.
40

  

What could explain the different treatment effects between small and large firms? One 

possibility is that small firms might be (more) financially constrained than larger ones. With 

asymmetric information between borrower and lender, young firms will be at a disadvantage 

because credit markets will have less time to observe their performance. Recent evidence, 

however, stresses that although there is a correlation between youth and size, many small firms 

are not young (Haltiwanger et al., 2013). A simple test of the credit constraint hypothesis is to 

interact the treatment effects with firm age since younger firms are more likely to be subject to 

credit constraints. We ran IV employment regressions where we include interactions between 

NGE support level with both indicators capturing (i) whether the firm is small and (ii) whether 

the firm is young (using different definitions for young).
41

 We instrument these treatment 

variables by including the equivalent interactions between the rule change instrument and the 

respective indicators. The interaction between the support level (NGE) and (small) size is always 

significant and positive whereas the interaction between NGE and being young is insignificant 

(and actually negative) and this finding is robust to the exact measure of being young.  Since 

young firms respond less to the policy, the bigger program effect for small firms does not seem 

consistent with a simple financial constraints story. 

An alternative explanation of these results is that large firms might have more scope to 

“game” the system; i.e. receive the subsidy without actually being constrained by the 

requirements of the program to create jobs. For instance, they might have more scope to pretend 

to create jobs while actually reducing employment in another location of the business.
42

 

Although we do not have direct evidence of this, this explanation is consistent with the pattern of 

results described above. 

                                                 
40

 An objection is that the relevant quantity is not the elasticity of employment with respect to a subsidies for large 

vs. small firms, but rather the marginal effect on the absolute number of jobs created with respect to a $1 increase in 

subsidy.  Online Appendix Table A15 conducts this analysis and shows that a $1 of subsidy to a small firm still 

creates over eight times as many jobs as $1 of subsidy to a large firm according to our estimates.  
41

 See Online Appendix Table A13. 

42
 Recall from Section II that absent the requirement to create or safeguard jobs the RSA is effectively a subsidy to 

capital and might reduce the firm’s choice of employment depending on the elasticity of substitution between labor 

and capital. 
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VI.C Firm level Results: Employment, Capital and Productivity  

We report regressions at the firm level in Table 11, motivated by two considerations. First, it 

could be the case that the nationwide effect is zero if multi-plant firms are simply switching jobs 

within the firm across eligible and ineligible areas. Secondly, there are richer data at the firm 

level from official production surveys (the ARD) including output, capital and materials for a 

stratified random subsample of firms.  

In the UK, data on investment, output and materials are reported at the firm level rather than 

the plant-level.
43

 For most firms the firm and plant-level coincide - on average 80% of our 

observations are single plant firms. Employment, our main outcome of interest, is always 

available at the plant level in the IDBR data and we know the location of all plants within multi-

plant firms. To examine firm-level outcomes (such as investment) which are unavailable at the 

plant level, we simply aggregate NGE across all plants using lagged plant employment shares 

within the firm as weights.  

Panel A of Table 11 reports employment regressions at the firm level using the IDBR 

population. These are very similar to the plant level results, suggesting that within firm re-

allocation across plants in response to the policy is not a major issue. In the other panels we use 

the ARD data  that has information on other outcomes such as investment. In Panel B we report 

results for employment estimated using the ARD sub-sample and confirm our earlier finding of a 

positive causal impact on jobs. In Panel C we find larger impacts on capital investment than we 

did for employment consistent with the simple theory model in Section II. Panel D shows that 

there is also an impact on output. Finally, Panel E uses a Solow residual based TFP measure (for 

more details on the calculation see Online Appendix C) and finds no significant effect of the 

policy. We looked at a variety of other methods of calculating TFP, but in no case do we find a 

significant impact on productivity (see Online Appendix Table A16). There were also no 

significant program effects on wages.
44

  

Motivated by the theory in Section II – suggesting that more capital-intensive firms are more 

responsive to the policy - we interacted the treatment effects with a dummy for whether the firm 

had a high level of capital costs in revenues prior to the 2000 policy change. Consistent with the 

model, firms where the capital share was high (big Ks ) had stronger positive employment effects. 

                                                 
43

  We call this the firm level, j, but there could be many reporting units in one large firm.  
44

 For example, when we replaced the dependent variable by wages in the reduced form of column (2) the 

coefficient on the policy rule IV was 0.287 with a standard error of 0.877. This is consistent with the absence of an 

area level wage effect of NGE (see Appendix F.5). 
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The interaction of the rule change IV and a dummy for high capital share firms had a coefficient 

(standard error) of 0.525(0.200) in the employment reduced form.
45

 

 

VI.D Magnitudes 

To consider the overall magnitude of the impact of RSA we consider what would have happened 

if, instead of re-drawing the map in 2000, the program had simply been abolished. Appendix G 

gives details of the calculations. We start with the IV coefficient from column (4) of Table 4 

Panel A of 0.953 (indicating that a 10 percentage point NGE investment subsidy would increase 

area-level manufacturing employment by 10%) and consider the area by area change in NGE (to 

zero) given employment levels. This calculation suggests a loss of just under 156,000 jobs. The 

nominal average annual cost of RSA was about £164m. Using official estimates of 

administrative costs (17% of the aggregate grant value)
46

 and a deadweight cost of taxation of 

50%, this implies a total annual cost of £288m. This leads to a “cost per job” of £1,846 

(=288/0.156), or $3,541 (at 2010 prices). If we took the more conservative OLS estimates from 

column (1) which has a treatment effect of 0.124, we get smaller job effects of just under 22,400 

and the cost per job would be £12,857 (or $24,662). Since there do not appear to be large 

substitution effects from neighboring non-eligible areas, these do not need to be scaled down.  

In Appendix G we provide figures for the limited number of studies that report cost per job 

for similar policies to those we examine here. Two methodological differences help partly 

explain our lower cost per job numbers. First, three area-based studies (Busso and Kline, 2008; 

Busso et al., 2010 and Freedman, 2012) do not use IV.
47

 As noted already, we find much larger 

effects correcting for endogeneity using IV. Second, the three other studies only have estimates 

at the firm level. When we take into account that we find zero effects of RSA on large firms, we 

obtain a cost per job of $26,572, higher than the US figure in Brown and Earle (2017), but lower 

than the two Italian studies (Pellegrini and Muccigrosso, 2017, and Cerqua and Pellegrini, 2014). 

In addition to these methodological differences, the RSA program is different from the other 

studies in that it subsidises capital and not labor, and the government agency selects firms who 
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 See Online Appendix Table A17 (a generalization of column (2) in Table 11 Panel B).   
46

 We use the administrative reports of the grants awarded averaging £164m and add to this the estimations from the 

National Audit Office (2003) that there were 10% spent in government administration costs for RSA, and an average 

7% cost to firms in application and management costs. Note that our implied jobs effects are much larger than those 

found in the existing evaluations of the RSA policy surveyed National Audit Office (2003) and Wren (2005). We 

believe this is because no other study has exploited the exogenous changes in RSA eligibility to deal with the 

downward endogeneity bias. 
47

 Cost per job figures for Busso and Kline (2008) are reported in Bartik (2010) and for Busso et al. (2010) in 

Glaeser and Gottlieb (2008). 
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can show evidence of job additionality rather than providing subsidies for all eligible firms that 

locate in supported areas.  

The cost per job is, of course, far from a welfare calculation, as we are not factoring in other 

distortions such as the dampening effect on aggregate productivity of keeping open less 

productive firms and the usual static deadweight losses from capital subsidies. On the other 

hand, there are likely to be first-order benefits from the fact that RSA significantly reduces 

unemployment by reducing job losses in the manufacturing sector. So overall, these calculations 

suggest a more positive assessment of this selective place-based industrial policy than the 

existing literature. 

 

VI.E “Big Push”: Asymmetries of subsidy removal?  

Recent work on place-based policies have emphasized that their long-run success depends 

on whether there are big dynamic effects (e.g. Kline and Moretti, 2014a). Is continued support 

needed in order to achieve lasting gains in employment or can a “big push” move an area into a 

new equilibrium were employment gains continue even after the subsidy has been removed? We 

can find no evidence for the big push hypothesis in our data for manufacturing employment or 

unemployment. For example, in one experiment, we defined a series of dummy variable for the 

NGE amount and length of time that an area had received RSA support and interacted these with 

our treatment effects, but there was no significant heterogeneity in this dimension.
48

  

We also tried differentiating between areas that experienced an increase compared to a 

decrease in investment subsidies in 2000. The big push story suggests that areas losing subsidies 

should have less of a negative jobs effect than the positive effect of places gaining subsidies. We 

found that areas which lost subsidies had just as much of a negative effect (if not more) than 

areas which became eligible for subsidies.
49

 

The absence of dynamic effects could be because the RSA policy is much less intense than 

the Tennessee Value Authority studied by Kline and Moretti (2014b) - it does not include 

                                                 
48

 For example, we created a dummy variable equal to one if an area received the maximum investment subsidy rate 

(NGE=30%) continuously between 1986 and 1999 (and zero otherwise) and interacted this with support level 

treatment. When included in the employment regression of column (4) of Table 4 (alongside the linear dummy), this 

interaction variable had an insignificant coefficient (standard error) of 0.121 (0.390). As an instrument for the 

interaction we use the interaction between rule change instrument and the 30% NGE indicator.  
49

 For example, we ran our standard IV regressions of the form: 𝛥 ln 𝑦𝑟,𝑡 = 𝛽1 [𝐼{𝛥𝑁𝐺𝐸𝑟,𝑡 ≤ 0} × 𝛥𝑁𝐺𝐸𝑟,𝑡] +

𝛽2[(1 − 𝐼{𝛥𝑁𝐺𝐸𝑟,𝑡 ≤ 0}) × 𝛥𝑁𝐺𝐸𝑟,𝑡] + 𝛼𝑡 + 𝜖𝑟,𝑡 where, 𝐼{𝛥𝑁𝐺𝐸𝑟,𝑡 ≤ 0} is an indicator variable equal to one if 

NGE falls in value. We instrumented these with the usual rule change instrument interacted with whether it 

increased or decreased. For both employment and unemployment as an outcome, areas which lost subsidies had 

significantly lower jobs (and higher unemployment). These coefficients where not significantly smaller than for the 

areas which gained subsidies. 
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infrastructure, for example. Nevertheless, our evidence does not seem supportive of the view that 

support of regions through this type of policies is likely to be transformational. 

VII. CONCLUSIONS 

There are surprisingly few micro-econometric analyses of the causal effects of industrial 

policies, despite their ubiquity across the world. In this paper, we have examined one business 

support policy – Regional Selective Assistance (RSA). We use exogenous changes in the 

eligibility of areas to receive investment subsidies driven by EU rule changes determining which 

areas were eligible for investment subsidies. When we correct for endogeneity we find evidence 

for a positive treatment effect on jobs in the eligible areas and on employment. We also find that 

the program effects are strong for smaller firms but effectively zero for larger firms. This is 

consistent with large firms being able to “game” the system and/or financial constraints being 

unimportant for these firms (although we do not find much evidence for this latter hypothesis). 

Interestingly, this stronger effect of business support policies on smaller firms is found in many 

other studies.
50

 The fact that the treatment effect is confined to smaller firms strengthens 

arguments for restricting subsidies that go to larger enterprises, although one must be careful that 

this does not create strong disincentives for firms to grow (as they may forfeit such size related 

subsidies – see Garicano et al. 2016).  

At the area level we also find that the program reduced unemployment and raised 

manufacturing employment mainly in the intensive margin (rather than the number of firms – the 

extensive margin). The positive effects on participants’ employment was not due to equal and 

offsetting falls in employment in non-participants, non-eligible neighboring areas or sectors who 

were not covered by the scheme. Finally, we find no effects on (total factor) productivity. From a 

policy perspective, the fact that the subsidies were effective in raising employment and 

investment in these deprived areas at a modest “cost per job” should be regarded as a positive 

outcome.  Although measured aggregate productivity falls as the RSA supported firms were on 

average less productive (creating a distortion through misallocation, as in Hsieh and Klenow, 

2009, for example), this probably carries a modest welfare cost compared to the counterfactual 

where these employees enter unemployment (rather than being reallocated to firms that are more 

productive). Given the severe economic stress affecting some local communities with formerly 

                                                 
50

 For example, Howell (2017), Zwick and Mahon (2017) and Wallsten (2000) for the US, Gorg and Strobl (2007) 

for Ireland, Lach (2002) for Israel, Bronzini and Iachini (2014) for Italy, González et al. (2005) for Spain and 

Dechezlepretre et al. (2018) for the UK. 
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large manufacturing sectors (and the political implications of this), understanding the impact of 

the type of policy we have examined here is, in our view, very important. 

 

 

REFERENCES 
Albouy, David (2009) “The Unequal Geographic Burden of Federal Taxation” Journal of 

Political Economy, 117(4):635-667. 

Angrist, Joshua (2004) “Treatment effect heterogeneity in theory and practice” Economic 

Journal, 114(494), C52-C83. 

Autor, David, Gordon Hansen and David Dorn (2016) “The China Shock: Learning from Labor 

Market Adjustment to Large Changes in Trade” Annual Review of Economics, 8(1) 

Banerjee, Abhijit and Esther Duflo (2008) “Do firms want to borrow more? Testing credit 

constraints using a directed lending program” The Review of Economic Studies, 81(2), 572–

607. 

 Bartik, Timothy (2010) “Estimating the Costs per Job Created of Employer Subsidy Programs”, 

Presented at Upjohn Institute conference on “Labor Markets in Recession and Recovery” 

October 22-23, Kalamazoo, MI.  

Beason, Richard and David Weinstein (1996) “Growth, Economies of Scale and Targeting in 

Japan (1955-1990)”, Review of Economics and Statistics, 78(2), 286-295. 

Becker, Sascha O., Peter Egger and Maximilian von Ehrlich, M. (2010), “Going NUTS: The 

Effect of EU Structural Funds on Regional Performance”, Journal of Public Economics 94 

(9–10): 578–90. 

Becker, Sascha O., Peter Egger and Maximilian von Ehrlich, M. (2012a), “Absorptive Capacity 

and the Growth Effects of Regional Transfers: a Regression Discontinuity Design with 

Heterogeneous Treatment Effects”, American Economic Journal: Economic Policy, 5(4): 29-

77. 

Becker, Sascha O., Peter Egger and Maximilian von Ehrlich, M. (2012b) “Too Much of a Good 

Thing? On the Growth Effects of the EU’s Regional Policy”, European Economic Review 56 

(4): 648–68. 

Black, Dan, Jeffrey Smith, Mark Berger and Brett Noel (2003) “Is the Threat of Reemployment 

Services More Effective Than the Services Themselves? Evidence from Random Assignment 

in the UI System” American Economic Review, 93(4), 1313-1327. 

Blundell, Richard, Monica Costa Dias, Costas Meghir and John Van Reenen (2004) “Evaluating 

the Employment Impact of a Mandatory Job Search Program” Journal of the European 

Economic Association, 2(4),  569-606. 

Bond, Steve and John Van Reenen (2007) “Micro-econometric models of investment and 

employment” Chapter 65 in Heckman, James and Edward Leamer (eds) Handbook of 

Econometrics Volume 6A 4417-4498. 

Bronzini, Raffello and Guido de Blasio (2006) “Evaluating the Impact of Investment Incentives: 

The Case of Italy's Law 488/1992” Journal of Urban Economics 60(2): 327-349. 

Bronzini, Raffaello and Eleonora Iachini (2014) “Are Incentives for R&D Effective? Evidence 

from a Regression Discontinuity Approach” American Economic Journal: Economic Policy, 

6(4), 100-134. 

Brown, J. David, and John S. Earle (2017) “Finance and Growth at the Firm Level: Evidence 

from SBA Loans”, The Journal of Finance, 72: 1039–1080. 

Busso, Matias and Kline, Patrick (2008) “Do Local Economic Development Programs Work? 

Evidence from the Federal Empowerment Zone Program”, Yale Economics Department 

Working Paper No. 36.  

http://ideas.repec.org/a/ecj/econjl/v114y2004i494pc52-c83.html
http://ideas.repec.org/s/ecj/econjl.html
http://ideas.repec.org/s/ecj/econjl.html
http://dx.doi.org/10.1016/j.jpubeco.2010.06.006
http://dx.doi.org/10.1016/j.jpubeco.2010.06.006
http://www2.warwick.ac.uk/fac/soc/economics/research/centres/cage/research/wpfeed/89.2012_becker.pdf
http://www2.warwick.ac.uk/fac/soc/economics/research/centres/cage/research/wpfeed/89.2012_becker.pdf
http://www2.warwick.ac.uk/fac/soc/economics/research/centres/cage/research/wpfeed/89.2012_becker.pdf
http://t.co/cEJfoSQ9
http://t.co/cEJfoSQ9
https://ideas.repec.org/a/aea/aejpol/v6y2014i4p100-134.html
https://ideas.repec.org/a/aea/aejpol/v6y2014i4p100-134.html
https://ideas.repec.org/s/aea/aejpol.html


33 

 

Busso, Mattias, Jesse Gregory and Patrick Kline (2013) “Do Local empowerment programs 

work? Evidence from the Federal Empowerment Zone program”, American Economic 

Review, 103, 897-947. 

Card, David and Stefano Della Vigna (2017) “What do Editors Maximize? Evidence from Four 

Economics Journals” UC Berkeley mimeo. 

Cerqua, Augusto and Pellegrini, Guido (2014) “Do subsidies to private capital boost firms' 

growth? A multiple regression discontinuity design approach”, Journal of Public Economics, 

109(C), 114-126. 

Criscuolo, Chiara, Jonathan Haskel and Ralf Martin, (2003) “Building the evidence base for 

productivity policy using business data linking”, Economic Trends 600. 

Criscuolo, Chiara, Ralf Martin, Henry Overman and John Van Reenen (2006) “Longitudinal 

Micro Data Study of Selected BERR Business Support Programmes”, BIS Report, 

http://cep.lse.ac.uk/textonly/_new/research/productivity/finalreportxxElseDTIs2.pdf 

David, Paul, Bronwyn Hall and Andrew Toole (2000) “Is public R&D a complement or 

substitute for private R&D? A review of the econometric evidence” Research Policy, 29(4-5), 

497-529. 

Dell, Melissa (2010) “The Persistent Effects of Peru’s Mining Mita.” Econometrica 78(6), 1863–

1903. 

Department of Business, Innovation and Skills (various years), Industrial Development Reports, 

London: HMSO. 

Dechezlepretre, Antoine, Elias Einio, Ralf Martin, Kieu-Trang Nguyen and John Van Reenen 

(2018), “Do Fiscal Incentives increase innovation? A RD Design for R&D” Centre for 

Economic Performance Discussion Paper 1413. 

Devereux, Michael, Rachel Griffith and Helen Simpson (2007) “Firm location decisions, 

regional grants and agglomeration externalities” Journal of Public Economics, 91(3-4), 413-

435. 

Einio, Elias and Henry Overman (2015) “The (Displacement) Effects of Spatially Targeted 

Enterprise Initiatives: Evidence from UK LEGI”, mimeo LSE. 

Einio, Elias (2014) “R&D subsidies and company performance” Review of Economics and 

Statistics, 96(4), 710-728. 

Felix, R. Alison and James Hines (2013) “Who offers tax-based development incentives?” 

Journal of Urban Economics, 75(C), 80-91. 

Fowkes, Rigmor, Joao Sousa, and Neil Duncan (2015). “Evaluation of research and development 

tax credit.” HMRC Working Paper No. 17. 

Freedman, Matthew (2012) “Teaching new markets old tricks: The effects of subsidized 

investment on low-income neighborhoods”, Journal of Public Economics, 96(11), 1000-1014. 

Garicano, Luis, Claire Lelarge and John Van Reenen (2016) “Firm Size Distortions and the 

Productivity Distribution: Evidence from France” American Economic Review 106(11) 3439-

79. 

Gibbons, Stephen, Henry Overman and Matti Sarvimaki (2011) “The impact of subsidizing 

commercial space in deprived neighbourhoods”, mimeo LSE. 

Glaeser, Edward and Joshua Gottlieb (2008) “The Economics of Place-Making Policies”, 

Brookings Papers on Economic Activity, 39(1) 155-253.  

Gobillon, Laurent, Thierry Magnac and Harris Selod (2012) “Do Unemployed Workers Benefit 

from Enterprise Zones: the French experience” Journal of Public Economics, 96(9-10), 881-

892. 

González, Xulia, Jordi Jamandreu, and Consuelo Pazó (2005) “Barriers to innovation and 

subsidy effectiveness”, RAND Journal of Economics, 36, 930-50. 

Goolsbee, Austan (1998) “Does Government R&D Policy Mainly Benefit Scientists and 

Engineers?” American Economic Review, 88(2), 298-302. 

http://cep.lse.ac.uk/textonly/_new/research/productivity/finalreportxxElseDTIs2.pdf
http://ideas.repec.org/a/eee/respol/v29y2000i4-5p497-529.html
http://ideas.repec.org/a/eee/respol/v29y2000i4-5p497-529.html
http://ideas.repec.org/s/eee/respol.html
http://www.cepr.org/pubs/new-dps/dplist.asp?dpno=8084
http://www.cepr.org/pubs/new-dps/dplist.asp?dpno=8084
https://ideas.repec.org/s/eee/pubeco.html
http://ideas.repec.org/a/aea/aecrev/v88y1998i2p298-302.html
http://ideas.repec.org/a/aea/aecrev/v88y1998i2p298-302.html
http://ideas.repec.org/s/aea/aecrev.html


34 

 

Gorg, Holger and Eric Strobl (2007) “The effect of R&D subsidies on private R&D” Economica, 

74(294), 215-234. 

Gruber, Jonathan and Emmanuel Saez (2002) “The elasticity of taxable income: evidence and 

implications” Journal of Public Economics, 84, 1-32. 

Haltiwanger, John, Ron Jarmin and Javier Miranda (2013) “Who Creates Jobs? Small vs. Large 

vs. Young” Review of Economics and Statistics 95(2), 347-361. 

Hamermesh, Daniel (1990) Labor Demand, Princeton: Princeton University Press. 

Harris, Richard and Chris Robinson (2005) “The Impact of Regional Selective Assistance on 

Sources of Productivity Growth: Plant Level Evidence from UK Manufacturing 1990-1998”, 

Regional Studies, 39(6), 751-765.  

Hart, Mark, Nigel Driffield, Stephen Roper and Kevin Mole (2008) “Evaluation of Regional 

Selective Assistance (RSA) and its successor, Selective Finance for Investment in England 

(SFIE)” BERR Occasional Paper No. 2. 

Heckman, James, Hidehiko Ichimura and Petra Todd (1997) “Matching as an Econometric 

Evaluation Estimator: Evidence from Evaluating a Job Training Program”, Review of 

Economic Studies, 64, 605-654. 

Holmes, Thomas (1998) “The Effects of State Policies on the Location of Industry: Evidence 

from State Borders,” Journal of Political Economy 106(4), 667-705. 

Howell, Sabrina (2017) “Financing Constraints as a Barrier to Innovation”, American Economic 

Review, 107(4) 1136-1164 

Hsieh Chang-Tai and Peter Klenow (2009) “Misallocation and Manufacturing TFP in China and 

India”, Quarterly Journal of Economics, CXXIV (4). 

Imbens, Guido and Joshua D. Angrist (1994) “Identification and Estimation of Local Average 

Treatment Effects” Econometrica, 62(2), 467-75. 

Irwin, Douglas and Peter Klenow (1996) “High-tech R&D subsidies: estimating the effects of 

Sematech” Journal of International Economics, 40, 323-44. 

Jaffe, Adam and Trinh Le (2015) “The Impact of an R&D subsidy on innovation: A study of 

New Zealand firms” NBER Working Paper 21479. 

Jones, Jonathan and Colin Wren (2004) “Inward Foreign Direct Investment and Employment: A 

Project-Based Analysis in North-East England” Journal of Economic Geography 4(5), 517-

44. 

King, Mervyn (1974) “Taxation and the cost of capital”, Review of Economic Studies, 41, 21-36 

Kline, Pat and Enrico Moretti (2014a) “People, Places, and Public Policy: Some Simple Welfare 

Economics of Local Economic Development Policies” Annual Review of Economics, 6, 629-

662. 

Kline, Pat and Enrico Moretti (2014b) “Local Economic Development, Agglomeration 

Economies, and the Big Push: 100 Years of Evidence from the Tennessee Valley Authority 

Quarterly Journal of Economics, 129, 275-331. 

Koopman, Jan-Gert (2011) “State aid priorities:  Rescuing and restructuring banks and 

preventing subsidy races”, Presentation at CRA conference on Competition Policy, Brussels 

7
th

 December 2011. 

Krueger, Ann O. and Baran Tuncer (1982) “An empirical test of the Infant Industry Argument”, 

American Economic Review 72(5), 1142-1152.  

Lach, Saul (2002) “Do R&D subsidies stimulate or displace private R&D? Evidence from Israel” 

Journal of Industrial Economics, 50, 369-90. 

Lawrence, Robert Z. and David E. Weinstein (2001) “Trade and Growth: Import Led or Export 

Led? Evidence from Japan and Korea” in Joseph E. Stiglitz and Shahid Yusuf (eds.), 

Rethinking the East Asia Miracle, Oxford: Oxford University Press. 

http://ideas.repec.org/a/ecm/emetrp/v62y1994i2p467-75.html
http://ideas.repec.org/a/ecm/emetrp/v62y1994i2p467-75.html
http://ideas.repec.org/s/ecm/emetrp.html
http://www.ncl.ac.uk/nubs/research/publications/publication/21143
http://www.ncl.ac.uk/nubs/research/publications/publication/21143
http://arjournals.annualreviews.org/eprint/ciEnNiHDfb5JWSznTRGa/full/10.1146/annurev-economics-080213-041024
http://arjournals.annualreviews.org/eprint/ciEnNiHDfb5JWSznTRGa/full/10.1146/annurev-economics-080213-041024
http://eml.berkeley.edu/~pkline/papers/TVA_web.pdf
http://eml.berkeley.edu/~pkline/papers/TVA_web.pdf


35 

 

Martin, Philippe, Thierry Mayer and Florian Mayneris (2011) “Public support to clusters: A firm 

level study of French Local Productive Systems” Regional Science and Urban Economics, 

41(2), 108-123.  

Mayer, Thierry, Florian Mayneris and L. Py (2017) “The impact of Urban Enterprise Zones on 

establishment location decisions and labor market outcomes: evidence from France” Journal 

of Economic Geography, 17(4), 709-752.  

Mirrlees, James (2010) Mirrlees Review of Taxation, London: Institute for Fiscal Studies. 

Moretti, Enrico (2011) “Local Labor Markets” Chapter 14 in Orley Ashenfelter and David Card 

(eds) Handbook of Labor Economics Volume 4B, Amsterdam: North Holland. 

National Audit Office (2003) Regional Grants in England, MHSO: London.   

Neumark, David and Helen Simpson (2014) “Place-Based Policies”, NBER Working Paper 

20049. 

ONS (2014) “Investment - impact analysis of changes to the estimation of gross fixed capital 

formation and business investment for Blue Book 2014”, London: HMSO. 

Office for National Statistics, Annual Respondents Database, 1973-2008: Secure Data Service 

Access [computer file]. Colchester, Essex: UK Data Archive [distributor], March 2011. SN: 

6644 , http://dx.doi.org/10.5255/UKDA-SN-6644-1  

Pellegrini, Guido, and Teo Muccigrosso (2017) “Do subsidized new firms survive longer? 

Evidence from a counterfactual approach”, Regional Studies, 51(10), 1483-1493. 

Rodrik, Dani (2007) One Economics, Many Recipes, Princeton: Princeton University Press. 

Ruane, Frances (1982) “Corporate Income Tax, Investment grants and the cost of capital”, 

Journal of Public Economics, 17, 103-109. 

Tuomas Takalo, Tanja Tanayama and Otto Toivanen (2013) “Estimating the Benefits of 

Targeted R&D Subsidies” Review of Economics and Statistics, 95(1), 255-272. 

Wallsten, Scott (2000) “The effects of government-industry R&D programs on private R&D: the 

case of the Small Business Innovation Research program” RAND Journal of Economics, 31, 

82-100. 

Wilson, Daniel. (2009) “Beggar thy Neighbor? The In-State, Out-of-State and Aggregate Effects 

of R&D Tax Credits” Review of Economics and Statistics, 91(2), 431-436. 

Wren, Colin (2005) “Regional Grants: Are They worth It?” Fiscal Studies, 26(2), 245-75. 

Wren, Colin and J. Taylor (1999) “Industrial Restructuring and Regional Policy” Oxford 

Economic Papers, 51, 487-516. 

Zwick, Eric and James Mahon (2017) “Tax Policy and Heterogeneous Investment Behavior” 

American Economic Review, 107(1), 217-248. 

 

http://ideas.repec.org/a/eee/regeco/v41y2011i2p108-123.html
http://ideas.repec.org/a/eee/regeco/v41y2011i2p108-123.html
http://ideas.repec.org/s/eee/regeco.html
https://ideas.repec.org/a/oup/jecgeo/v17y2017i4p709-752..html
https://ideas.repec.org/a/oup/jecgeo/v17y2017i4p709-752..html
https://ideas.repec.org/s/oup/jecgeo.html
https://ideas.repec.org/s/oup/jecgeo.html
https://ideas.repec.org/a/tpr/restat/v95y2013i1p255-272.html
https://ideas.repec.org/a/tpr/restat/v95y2013i1p255-272.html
https://ideas.repec.org/s/tpr/restat.html
http://www.ncl.ac.uk/nubs/research/publications/publication/28976
http://www.ncl.ac.uk/nubs/research/publications/publication/9515


 36 

Figure 1:  The Change in the level of maximum investment subsidy (NGE) between 1993 (left hand side) and 2000 (right hand side)  

  

Notes: The shaded areas are those that are eligible for some Regional Selective Assistance. In the 1993-1999 period, the dark shaded areas are the very deprived areas eligible 

for an investment subsidy of up to 30% NGE (the maximum investment subsidy, Net Grant Equivalent). The light shaded areas are eligible for up to 20% NGE. After 2000 

Tier 1 areas had 35% NGE and Tier 2 areas ranged between 10% and 30%. 

Source: Department of Business, Innovation and Skills “Industrial Development Reports”, various years. 
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Figure 2: Effects of the RSA policy on capital 
Panel A – Perfect Capital Markets 

 

Panel B – Imperfect Capital Markets 

 

 

Notes: These figures examine the theoretical effect of the RSA policy reducing the cost of capital with perfect 

capital markets (Panel A) and imperfect capital markets (Panel B). For affected firms this is likely to raise 

capital, but the extent to which it does so will depend on a variety of factors such as whether a firm is financially 

constrained or more closely monitored (see text). 
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Figure 3: Changes in manufacturing employment in areas with increasing 

vs. decreasing support probability   

 

Notes: Average changes relative to base year of 1997 in ln(employed) in a geographical area (“ward”). The 

dashed line shows average employment in wards that had an increase in support (as predicted by our policy rule 

IV). The solid line is average manufacturing employment in wards that had a decrease in support (as predicted 

by our policy rule IV).  95% confidence bands also shown. The vertical line in 2000 shows when the change in 

policy occurred. 

 

Figure 4: Changes in unemployment in areas with increasing vs. 

decreasing support probability   

 

Notes: Average changes relative to base year of 1997 in ln(number of unemployed) in a geographical area 

(“ward”). The dashed line shows average unemployment in wards that had an increase in support (as predicted 

by our policy rule IV). The solid line is average unemployment in wards that had a decrease in support (as 

predicted by our policy rule IV). 95% confidence bands also shown. Unemployment is measured by those 

claiming Unemployment Insurance (Job Seekers Allowance). The vertical line in 2000 shows when the change 

in policy occurred.  
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Table 1: Number of areas (wards) eligible for different maximum investment subsidies (NGE) pre and post policy change in 2000  

  (1) (2) (3) (4) (5) (6) (7) 

   Rate after 2000 

 Rate in 1993-99 Total 0% 10% 15% 20% 30% 35% 

(1) 0% 7,309 6,823 26 192 72 15 181 

(2) 20% 2,012 841 102 539 33 118 379 

(3) 30% 1,416 265 16 30 717 0 388 

 Total 10,737 7,929 144 761 822 133 948 

 

Notes: Table shows the numbers of wards in different regimes before and after the 2000 policy change. For example, it illustrates that of the 1,416 wards who were eligible 

for the maximum investment subsidy of 30% pre-2000 (column (1)), 388 became eligible for the maximum subsidy of 35% after 2000 (column (7)) and 265 lost their 

eligibility for subsidies completely (column (2)). 



 40 

 

Table 2: Descriptive Statistics 

 

 

Years Mean 
Std. 

Dev. 
Obs. #Units 

Panel A. All areas       

NGE (Maximum Investment Subsidy 

%) 
97-99 0.1 0.1 32,211 10,737 

 

00-04 0.1 0.1 53,685 10,737 

Average RSA Payment (£) 
97-99 18,265.2 

197,95

5 
32,211 10,737 

 

00-04 9,837.1 
134,03

6 
53,685 10,737 

Total Unemployment (claimant count) 97-99 113.5 150.6 32,211 10,737 

 

00-04 80.9 112.5 53,685 10,737 

Manufacturing Employment 97-99 267.4 626.2 32,211 10,737 

 

00-04 233.0 535.9 53,685 10,737 

Panel B. Areas Eligible for RSA subsidies  

NGE (Maximum Investment Subsidy 

%) 97-99 0.2413 0.0492 10,284 

 

3,428 

 00-04 0.2367 

0.0889

6 14,040 

2,808 

Average RSA Payment (£) 97-99 56,132.2 

346,82

7 10,284 

3,428 

 00-04 35,712.8 

260,03

9 14,040 

2,808 

Total Unemployment (claimant count) 97-99 161.85 179.04 10,284 3,428 

 00-04 123.85 147.95 14,040 2,808 

Manufacturing Employment 97-99 350.96 823.91 10,284 3,428 

 00-04 338.10 745.40 14,040 2,808 

Panel C. Plant –Level      

Plant employment across all areas 97-99 21.2 102.30 406,615 167,415 

 00-04 19.8 91.90 631,089 183,061 

Plant employment across eligible areas 97-99 27.4 139.00 131,431 53,575 

 00-04 26.8 125.85 176,902 50,926 

Panel D. Characteristics of recipients and non-recipients in eligible areas (£), Firms 

Employment of recipients  97-04 87.2 323.4 16,413 4,550 

Employment of non- recipients  97-04 31.3 199.6 188,899 39,308 

Investment of recipients  97-04 1,717.0 

105,68

6 3048 

1,488 

Investment of non- recipients  97-04 953.3 8,001 15,314 7,449 

(Value added/ worker) - recipients   97-04 38.6 

25

.8 3048 

1,488 

(Value added/worker) non recipients 97-04 44.9 231.51 15,314 7,449 

TFP of recipients (Indexed to industry × 

year average in logs) 
  97-04 -0.042 0.371 3,048 1,488 

TFP of non- recipients (Indexed to 

industry × year average in logs) 
97-04 

      -0.015 

       

0.414 
15,314 7,449 

      

Notes: TFP is computed using a Solow residual “factor share” method and relative to an industry × year average 

(see Appendix C).  
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Table 3: Estimates of parameters on eligibility rule changes 

 

 

(1) (2) (3) (4) 

 Main specification Restricted variables  

 Year 1993 2000 1993 2000 

Dependent Variable: level of NGE ordered variable   

GDP per capita  -0.022 -0.040 -0.034 -0.055 

 

(0.002) (0.002) (0.002) (0.002) 

Population density  -0.028 -0.034 -0.043 -0.015 

 (0.002) (0.002) (0.002) (0.002) 

Share of high skilled workers -0.584 -1.438 -0.904 -2.268 

 (0.129) (0.149) (0.125) (0.142) 

Business Start-up  rate  -2.414  -0.490  

 (0.240)  (0.183)  

Structural  unemployment rate  83.251 32.681   

 

(2.483) (2.315)   

Activity rate  -1.147 -1.934 -1.235 -1.879 

 (0.250) (0.263) (0.237) (0.252) 

Employment rate  -8.201  -11.259 

  (0.462)  (0.444) 

Current unemployment rate  -9.148 18.276 84.330  

(claimant count) (3.240) (3.565) (1.846)  

ILO unemployment  rate   -5.682  -0.122 

  (0.824)  (0.760) 

Long-duration unemployment  0.472  5.501  

Rate (1.216)  (1.163)  

Share of manufacturing workers   -1.122  -1.870 

 

 (0.202)  (0.196) 

Observations (wards) 10,737 10,737 10,737 10,737 

Cut-off 10% 
0.000 -9.503 -0.579 -14.697 

 
(0.220) (0.420) (0.210) (0.377) 

Cut-off 15%     

 1.202 -9.426 0.478 -14.629 

Cut-off 20% (0.221) (0.420) (0.210) (0.377) 

     

Cut-off 30%  -8.938  -14.201 

  (0.419)  (0.375) 

Cut-off 35%     

  -8.272  -13.600 

Log Likelihood -5525.405 -6879.521 -6126.595 -7325.151 

Notes: Coefficients (robust standard errors) from Ordered Probits of NGE maximum support categories for 

1993 and 2000. Dependent variable in columns (1) and (3) takes values of 1 to 3 depending on the level of NGE 

(zero, 20% and 30%) and in columns (2) and (4) a value of 1 to 6 (zero, 10%, 15%, 20%, 30% and 35%). See 

Online Appendix Table A2 for variable definitions. “Restricted variables” drops (collinear) structural 

unemployment in columns (3) and (4) and claimant unemployment in column (4). 
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Table 4: Area Level regressions – Instrumenting Maximum Investment 

Subsidies (NGE) with Rule change  
 

 (1) (2) (3) (4) 

Method OLS Reduced Form First Stage IV 

A. Dependent variable: ln(Manufacturing Employment) 

Maximum investment subsidy 0.124   0.953 

NGE (0.070)   (0.260) 

Policy Rule Instrument  0.839 0.881  

  (0.228) (0.033)  

B. Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.137   -0.414 

NGE (0.024)   (0.078) 

Policy Rule Instrument  -0.365 0.881  

  (0.069) (0.033)  

C. Dependent variable: ln(Non-Manufacturing  Employment) 

Maximum investment subsidy 0.006   0.177 

NGE (0.044)   (0.161) 

Policy Rule Instrument  0.156 0.881  

  (0.141) (0.033)  

Number of areas (wards) 10,737 10,737 10,737 10,737 

Observations 85,896 85,896 85,896 85,896 

Notes: Standard errors (in parentheses below coefficients) are clustered at the area (ward) level.  NGE (“Net 

Grant Equivalent”) is the level of the maximum investment subsidy in the area. All columns include a full set of 

linear (lagged) characteristics used to define eligibility in 1993 (
,93rX ). The time period is 1997-2004. Policy 

Rule instrument is described in text. All variables are in differences relative to the base year of 1997.  
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Table 5: Area Level – Instrumenting amount of subsidy with Rule change 
 (1) (2) (3) (4) 

Method OLS Reduced Form First Stage IV 

A. Dependent variable: ln(Manufacturing Employment) 

ln(RSA subsidy) 0.012   0.288 

 (0.002)   (0.134) 

Policy Rule Instrument  0.839 2.909  

  (0.228) (1.140)  

B. Dependent variable: ln(Unemployment) 

ln(RSA subsidy) -0.002   -0.125 

RSA (0.001)   (0.053) 

Policy Rule Instrument  -0.365 2.909  

  (0.069) (1.140)  

C. Dependent variable: ln(Non-Manufacturing  Employment) 

ln(RSA subsidy) 0.001   0.054 

RSA (0.002)   (0.052) 

Policy Rule Instrument  0.156 2.909  

  (0.141) (1.140)  

Number of areas (wards) 10,737 10,737 10,737 10,737 

Observations 85,896 85,896 85,896 85,896 

 

Notes: Standard errors (in parentheses below coefficients) are clustered at the area (ward) level. RSA subsidy is 

the amount of subsidy (in thousands of pounds) that an area receives on average per year; i.e. for every area and 

for the post- and pre-2000 period we sum the subsidy amount and divide by the number of years in the period. 

All columns include a full set of linear (lagged) characteristics used to define eligibility in 1993 (𝑋𝑟,93). The 

time period is 1997-2004. Policy Rule instrument is described in text. All variables are in differences relative to 

the base year of 1997. 

 

 



 44 

Table 6: Area Level regressions accounting for Structural Funds (SF)  

 
 (1) (2) (3) (4) (5) 

Method OLS 
Reduced 

Form 

First Stage 

NGE 

First Stage 

SF 
IV 

A. Dependent variable: ln(Manufacturing Employment)  

Maximum investment  0.098    0.999 

Subsidy, NGE (0.081)    (0.328) 

Structural Fund, SF 0.038    -0.029 

 (0.037)    (0.079) 

NGE IV  0.792 0.816 0.805  

  (0.224) (0.034) (0.067)  

Structural Fund IV  0.094 0.124 1.029  

  (0.059) (0.011) (0.026)  

B. Dependent variable: ln(Unemployment)  

Maximum investment  -0.099    -0.409 

subsidy, NGE (0.027)    (0.098) 

Structural Fund -0.061    -0.050 

 (0.012)    (0.027) 

NGE IV  -0.374 0.816 0.805  

  (0.066) (0.034) (0.067)  

Structural Fund IV  -0.103 0.124 1.029  

  (0.021) (0.011) (0.026)  

Number of areas (wards) 10,737 10,737 10,737 10,737 10,737 

Observations 85,896 85,896 85,896 85,896 85,896 

 

Notes: Standard errors (in parentheses below coefficients) are clustered at the area (ward) level. NGE (“Net 

Grant Equivalent”) is the level of the maximum investment subsidy in the area. SF (“Structural Funds”) is a 

dummy variable equal to 1 if an area is eligible for SF support. NGE IV is the policy rule change instrument we 

introduced before. Structural Funds IV is a rule change instrument that is computed in a similar way as NGE IV, 

except that rather than NGE eligibility we use SF eligibility (see text). All columns include a full set of linear 

(lagged) characteristics used to define eligibility in 1993. The time period is 1997-2004. All variables are in 

differences relative to the base year of 1997. 
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Table 7: Controlling for Other policies (in Employment Regressions) 

 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent variable: Ln(Manufacturing Employment)  

A. Reduced Form      

Policy Rule IV 0.900 0.824 0.840 0.837 0.813 0.831 0.815 0.768 

 (0.228) (0.228) (0.228) (0.228) (0.229) (0.228) (0.231) (0.232) 

Employment  -0.037      -0.024 -0.029 

Zones (0.025)      (0.025) (0.025) 

Coalfield  -0.052     -0.057 -0.058 

Regeneration 

Trust 

 (0.021)     (0.020) (0.020) 

Regional Venture    0.031    0.023 0.026 

Capital Funds   (0.018)    (0.018) (0.018) 

Enterprise Grants    -0.003   -0.009 -0.012 

    (0.015)   (0.016) (0.016) 

New Deal for      -0.046  -0.057 -0.051 

Communities     (0.023)  (0.023) (0.023) 

Devolution to      -0.029 -0.041 -0.055 

Wales & Scotland      (0.020) (0.021) (0.022) 

Structural Fund          0.134 

IV        (0.063) 

B. IV      

NGE 1.090 0.943 0.954 0.972 0.914 0.931 0.966 0.895 

 (0.277) (0.262) (0.260) (0.266) (0.259) (0.255) (0.274) (0.319) 

Employment  -0.074      -0.048 -0.053 

Zones (0.028)      (0.027) (0.028) 

Coalfield  -0.03     -0.040 -0.040 

Regeneration 

Trust 

 (0.022)     (0.021) (0.021) 

Regional Venture    0.044    0.032 0.034 

Capital Funds   (0.018)    (0.018) (0.018) 

Enterprise Grants    0.033   0.018 0.019 

    (0.019)   (0.018) (0.018) 

New Deal for      -0.059  -0.080 -0.077 

Communities     (0.023)  (0.023) (0.024) 

Devolution to      -0.072 -0.075 -0.076 

Wales & Scotland      (0.023) (0.023) (0.022) 

Structural Fund        0.055 

        (0.075) 

Number of areas 10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

Observations 85,896 85,896 85,896 85,896 85,896 85,896 85,896 85,896 

 

Notes: Standard errors (in parentheses below coefficients) are clustered at the area (ward) level. NGE (“Net 

Grant Equivalent”) is the level of the maximum investment subsidy in the area. The time period is 1997-2004. 

NGE Policy Rule IV is described in text. Panel A has a specification identical to column (2) in Panel A of Table 

4 except additional policy variables have been included (see text). Panel B has a specification identical to 

column (4) in Panel A of Table 4 except additional policy variables have been included (see text). All variables 

are in differences relative to the base year of 1997. 
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Table 8: Higher level of aggregation - Travel to Work Area (TTWA) 
 

 (1) (2) (3) (4) 

Method OLS Reduced Form First Stage IV 

A. Dependent variable: ln(Manufacturing Employment) 

Maximum investment subsidy 0.538   1.006 

NGE (0.114)   (0.319) 

Policy Rule Instrument  1.053 1.047  

  (0.362) (0.222)  

B. Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.263   -0.803 

NGE (0.062)   (0.265) 

Policy Rule Instrument  -0.840 1.047  

  (0.249) (0.222)  

Number of areas (TTWAs) 322 322 322 322 

Observations 2,576 2,576 2,576 2,576 

 

Notes: Standard errors (in parentheses below coefficients) are clustered at the TTWA.  NGE (“Net Grant 

Equivalent”) is the level of the employment weighted average maximum investment subsidy rate in the area. 

Standard errors below coefficients are clustered by area (TTWA level) in all columns. All columns include a full 

set of linear (lagged) characteristics used to define eligibility in 1993. The time period is 1997-2004. Policy Rule 

instrument is described in text. All variables are in differences relative to the base year of 1997. 
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Table 9: Number of Manufacturing Plants as an outcome 
 

 (1) (2) (3) (4) 

Dependent Variable: Ln(Number of manufacturing Plants) 

Method: OLS 

Reduced 

Form First Stage IV 

 

A. Baseline 

Maximum investment subsidy -0.025   0.209 

NGE (0.033)   (0.106) 

Policy Rule Instrument  0.184 0.881  

  (0.094) (0.033)  

B. RSA subsidy levels 

ln(RSA subsidy) 0.003   0.063 

 (0.001)   (0.039) 

Policy Rule Instrument  0.184 2.909  

  (0.094) (1.140)  

Number of areas (wards) 10,737 10,737 10,737 10,737 

Observations 85,896 85,896 85,896 85,896 

C. Including Structural Funds in baseline First Stage  

   NGE SF  

Maximum investment  -0.062    0.097 

Subsidy, NGE (0.036)    (0.135) 

Structural Fund 0.037    0.047 

 (0.017)    (0.034) 

NGE IV  0.117 0.816 0.805  

  (0.093) (0.034) (0.067)  

Structural Fund IV  0.060 0.124 1.029  

  (0.026) (0.011) (0.026)  

Number of areas (wards) 10,737           10,737 10,737 10,737 

Observations 85,896           85,896 85,896 85,896 

D. Travel to Work Area 

Max. investment subsidy,  -0.036   0.029 

NGE IV (0.053)   (0.126) 

Policy Rule Instrument  0.030 1.047  

  (0.132) (0.222)  

Number of areas (wards) 322 322 322 322 

Observations 2,576 2,576 2,576 2,576 

 

Notes: NGE (“Net Grant Equivalent”) is the level of the maximum investment subsidy in the area. The time 

period is 1997-2004. Policy Rule IV is described in text. Panel A has a specification identical to Panel A of 

Table 4 except the dependent variable is the ln(Number of manufacturing plants in area+1). Panel B corresponds 

to Table 5, Panel C to Table 6 and Panel D to Table 8. All variables are in differences relative to the base year of 

1997. 
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Table 10: Plant Level employment regressions, splits by firm size  
 

 (1) (2) (3) (4) 

Dependent variable: ln(Manufacturing Employment) 

Method OLS 

Reduced 

Form First Stage IV 

A. Pooled across all plants, 653,385 observations on 96,768 plants; 9,975 wards 

Maximum investment subsidy 
0.011   0.463 

NGE 
(0.025)   (0.089) 

Policy Rule Instrument 
 0.312 0.675  

 
 (0.058) (0.040)  

B. Small (Plants in Firm with under 50 employees), 594,356 observations on 87,728 plants; 9,883 

wards 

Maximum investment subsidy 
0.006   0.441 

NGE 
(0.026)   (0.095) 

Policy Rule Instrument 
 0.299 0.678  

 
 (0.063) (0.040)  

C. Large (Plants in Firms with over 50 employees), 59,025 observations on 9,036 plants; 3,708 

wards 

Maximum investment subsidy 
0.027   0.070 

NGE 
(0.055)   (0.203) 

Policy Rule Instrument 
 0.045 0.642  

  (0.130) (0.050)  

Notes: NGE (“Net Grant Equivalent”) is the level of the maximum investment subsidy in the area.  Standard 

errors below coefficients are clustered by area (ward level) in all columns. All columns include a full set of 

linear (lagged) characteristics used to define eligibility in 1993. The time period is 1997-2004. Policy Rule 

instrument is described in text. All variables are in differences relative to the base year of 1997. 
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Table 11: Firm Level – Effects on jobs, investment, output and TFP. 

Instrumenting maximum investment subsidy with Rule change  
 

 (1) (2) (3) (4) 

Method OLS Reduced Form First Stage IV 

A. Dependent variable: ln(Employment),Full Sample (449,514 observations, 91,546 firms) 

NGE 0.039   0.670 

 (0.024)   (0.078) 

Policy Rule Instrument  0.493 0.735  

  (0.057) (0.011)  

B. Dependent variable: ln(Employment), ARD sub-sample (45,511 observations, 21,389 firms) 

NGE 0.163   0.564 

 (0.057)   (0.168) 

Policy Rule Instrument  0.444 0.787  

  (0.132) (0.032)  

C. Dependent variable: ln(Capital Investment), ARD sub-sample (45,511 observations, 21,389 

firms) 

NGE 0.249   1.668 

 (0.304)   (0.750) 

Policy Rule Instrument  1.313 0.787  

  (0.588) (0.032)  

D. Dependent variable: ln(Output), ARD sub-sample (45511 observations, 21389 firms) 

NGE 0.031   0.399 

 (0.065)   (0.182) 

Policy Rule Instrument  0.314 0.787  

  (0.143) (0.032)  

E. Dependent variable: ln(TFP), ARD sub-sample (45,511 observations, 21,389 firms) 

NGE -0.034   -0.071 

 (0.043)   (0.099) 

Policy Rule Instrument  -0.056 0.787  

  (0.078) (0.032)  

Notes: Standard errors below coefficients are clustered by area (ward level) in all columns. Policy Rule 

instrument is described in text. The time period is 1997-2004. TFP is computed using a “factor share” method 

and relative to an industry × year average (see Appendix C). All columns include a full set of linear (lagged) 

characteristics used to define eligibility in 1993. All variables are in differences relative to the base year of 

1997. 
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ONLINE APPENDIX TO
1
  

“Some causal effects of an industrial policy” by Chiara Criscuolo, Ralf 

Martin, Henry G. Overman and  John Van Reenen 

 

 

APPENDIX A: MORE DETAILS OF THE RSA POLICY 
 

During the period of our study, Regional Selective Assistance (RSA) was the main business support scheme in 

the UK.
2
 Since the early 1970s, RSA provided discretionary investment grants to firms in disadvantaged regions 

typically characterized by relatively low levels of per capita GDP, high unemployment and general labor market 

weaknesses (“Assisted Areas”).
3
 It was designed to “create and safeguard employment”. Assistance could be 

provided to establish a new business, to expand, modernize or rationalize an existing business, to set up research 

and development facilities or to move from development to production. 

Because RSA had the potential to distort competition and trade between European countries, it had to 

comply with European Union (EU) legislation concerning state aid. Except in certain cases European law 

prohibits this type of assistance. Article 87(3) of the Treaty of Amsterdam (formerly Article 92(3) of the Treaty 

of Rome) allows for state aid in support of the EU’s regional development objectives. The guidelines designate 

very deprived “Tier 1 Areas” (formerly, “Development Areas”) in which higher rates of grant can be offered 

and somewhat less deprived “Tier 2 Areas” (formerly, “Intermediate Areas”) where lower rates of investment 

subsidy were offered.
4
 There is an upper threshold of support called maximum Net Grant Equivalent (NGE)

5
 

that essentially sets a maximum proportion of the firm’s investment that can be subsidized by the government.  

Since the main formulae that determine eligibility are decided periodically at the European level, and 

not at the Member State level, this mitigates concerns of endogeneity of policy decisions to a local area. In 

addition, although the UK government has latitude to decide the overall amount of the annual budget for RSA, it 

must stick to the EU rules when deciding which areas are eligible to receive RSA. Thus, changes to area-level 

eligibility are the key form of identification in our paper. 

A.1 Changes in eligibility over time 

The map of the areas eligible for RSA changes about once every seven years.
6
 The maps were changed in 1984, 

1993, 2000 and 2006. In the paper, we focus on the 2000 change because we could not (despite extensive 

investigation) discover the exact variables used in determining area eligibility in 1984 and previous years. 

Without this, we could not construct the rules change IV for the 1993 change, although we do show OLS results 

over the longer 1986-2004 period for manufacturing employment. There were changes in the way that the 

                                                 
1
 All notation is consistent within Appendices, but some Greek symbols are used to refer to different objects 

between Appendices. 
2
 We discuss our choice of study period below. According to Harris and Robinson (2005), in 1998/9 RSA 

represented 19% of the UK’s industrial policy spending.  
3
 In April 2004, in England, the RSA scheme was rebranded as the “Selective Finance for Investment Scheme” 

and then “Grants for Business Investment”. It is still called RSA in Scotland and Wales. Productivity became an 

official objective with the move from RSA to Selective Finance for Investment and remains an objective of 

Grant for Business Investment. 
4 

Article 87 of the Treaty of Amsterdam supersedes Article 93 of the Treaty of Rome which had previously 

governed State Aid. Article 87(3) of the Treaty of Amsterdam defines conditions where State aid may be 

compatible with EU laws. Article 87(3) (a) allows for “aid to promote the economic development of areas where 

the standard of living is abnormally low or where there is serious underemployment” [Tier 1 or Development 

Areas] and Article 87(3) (c) allows for: “aid to facilitate the development of economic activities or of certain 

economic areas, where such aid does not adversely affect trading conditions to an extent contrary to the 

common interest.” [Tier 2 or Intermediate Areas] Additional restrictions apply to sectors with over-capacity: 

motor vehicles, synthetic fibres and yarns, iron and steel, coal, fishery and agricultural products. 
5 

The Net Grant Equivalent (NGE) of aid is the benefit accruing to the recipient from the grant after payment of 

taxes on company profits. RSA grants must be entered in the accounts as income and are made subject to tax. 

Details for calculations of NGEs are available in the Commission’s Official Journal C74/19 10.03.1998. 
6
 Note that this happens in conjunction with the periodic revision of the Structural Funds, the EU’s main policy 

for supporting economic development in less prosperous regions. Although the maps are different for RSA and 

Structural Funds, it is a potentially confounding influence that we consider carefully as discussed in the main 

text (subsection V.B) 
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SAMIS administrative data were gathered after 2004, so we end our sample period in 2004 and cannot easily 

use the 2006 change. We begin the regression analysis in 1997 for two reasons. First, unemployment data is 

unavailable on a consistent basis at the ward level before this year. Second, the electronic business register (the 

IDBR administrative data – see Online Appendix C and main text) was introduced in 1994 and the first few 

years have reliability concerns. The data is comprehensive since 1997. Nevertheless, our results are broadly 

robust to beginning the analysis in earlier years than 1997 (for example, see Online Appendix Tables A7 and 

A11). 

The map of the eligible areas is determined by using a series of quantitative indicators. The level of 

GDP per capita, unemployment and population density are key indicators that have been used in all years. A 

series of additional indicators is also used, and the EU determines what these are and what years are used for 

their values – these are detailed in Online Appendix Table A2. The eligibility criteria are outlined in guidelines 

that are published before the implementation of the map (in our case 1998). The UK government will then 

gather quantitative information on indicators at the relevant area level and will propose a new map that has to be 

approved by the EU. The changes before and after 2000 is shown in Figure 1 and Criscuolo et al (2006) shows 

the map changes at other points in time. 

(a) The 1993 change 

The assisted area map for RSA was re-drawn in 1993 based on the 1988 guidelines using “Travel to Work 

Areas” as the underlying spatial units.
7
 The Assisted Areas fell into two categories: (a) Development Areas 

(later called Tier 1) where aid could be granted up to a maximum of 30% NGE (Net Grant Equivalent - see 

above) and (b) Intermediate Areas (later called Tier 2) where aid was limited to 20% NGE. The new 1993 maps 

implied a net reduction in the number of assisted areas with Development Areas covering 17%, and Intermediate 

Areas covering 19%, of the total UK population.  

(b) The change in 2000 

The EU Commission introduced new guidelines for State Aid in 1998, and the UK responded to that with the 

introduction of a new Assisted Area map in 2000. The number of indicators rose from eight in 1993 to nine in 

2000. The most disadvantaged areas were re-named “Tier 1” - Cornwall and the Isles of Scilly, Merseyside, 

South Yorkshire and West Wales and the Valleys. The maximum investment subsidy allowed in these areas was 

35% NGE. “Tier 2” areas were more scattered and were constructed based on groups of electoral wards.
8
 Within 

Tier 2 areas, the map identified four sub-tier areas eligible for different level of maximum NGE: 30%, 20%, 

15% or 10%.  

A.2 Formal criteria for receipt of RSA 

During our study period (1997-2004), RSA targeted manufacturing sectors. The grants were discretionary, and 

firms could only apply if the supported project satisfied the following criteria. (a) Location: The project had to 

be undertaken in an Assisted Area. (b) Investment: It had to involve capital expenditure on property, plant or 

machinery; (c) Jobs: It should normally have been expected to lead to the creation of new employment or 

directly protect jobs of existing workers which would otherwise have been lost; (d) Viability: The project should 

be viable and should help the business become more competitive; (e) Need: The applicant had to demonstrate 

that assistance was necessary for the project to proceed as envisaged in terms of nature, scale, timing or 

location;
9
 (f) Prior Commitments: As RSA could only be offered when the project could not proceed without it, 

the Department of Business (BIS)  must have completed its appraisal and issued a formal offer of assistance 

before the applicant entered into any commitment to proceed with the project; (g) Other Funding: The greater 

part of the funding for the project should be met by the applicant or other sources in the private sector. Note that 

location, which forms the basis for our instrumental variables, is objective, clearly defined and enforceable. 

The process for application was as follows. Firms completed an application form, in which they needed 

to prove additionality, to provide business plans, accounts and reasons for wanting the grant. They then 

submitted this to the local office of the Department of Business. During the period analyzed, the lag between 

submission and decision was normally between 35 and 60 days for standard grants, and 100 days or more for 

                                                 
7
 Travel to Work Areas (TTWA) are defined by the UK Office for National Statistics. The fundamental criterion 

is that, of the resident economically active population, at least 75% work in the area, and that of everyone 

working in the area; at least 75% live in the area. 
8
 The data used for the boundaries come from the 1991 Census of Population. A detailed list of the assisted 

wards by local authority within regions and the NGEs to which they are eligible is available upon request.  
9
 This may be to meet a funding gap, to reduce the risks associated with the project, or to influence the choice of 

location of a mobile project. It might also be to obtain parent company approval by meeting established 

investment criteria; or for some other acceptable reason. Each case is considered on its own merits. 
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grants above £2 million. The lag depended on the amount applied for, the time needed to ensure that all the 

criteria were met and on negotiations between the government agency and the firm. If the application was 

successful, the firm was paid the minimum necessary to get the project going. Additional payments started only 

after jobs were created/safeguarded and capital expenditure defrayed and were based on agreed targets. The 

payments were given in instalments – between two and seven and usually spread across more than one financial 

year. The government agency monitored the project with visits (normally one per year, but more frequently for 

risky projects). 

 

APPENDIX B: THE ROLE OF CHANGES IN THE CRITERIA IN 

DETERMINING ELIGIBILITY FOR RSA  

 
As noted in the main text, to deal with the issue that areas may be endogenously selected into being eligible for 

investment subsidies we use an instrument based on the probability that an area is assigned, based solely on the 

EU wide rule changes rather than changing area characteristics. There are two practical issues in implementing 

this IV. First, although the elements of the X vector determining eligibility for different subsidy levels are 

known, the exact policy parameters that determine eligibility are not. A second issue is that the maximum 

subsidy differs in the eligible areas according to the severity of disadvantage. For example, after 2000 an area 

could fall into several categories with a maximum support share of 10%, 15%, 20%, 30% or 35% percent. 

Before 2000, there were two maximum support categories: 20% and 30%.  
We proceed by defining a latent variable 𝑠𝑟,𝜏

∗   for area 𝑟 and the two time-periods τ which captures how the 

European Commission determines how disadvantaged an area is. The threshold cut-offs will determine which of 

the different maximum support level categories (NGEs) an area is to be placed in. In 2000 and after there are six 

bins (including zero) and before 2000, there were three bins. We keep to the same notation as in the main text in 

Section III, even though for simplicity there we discussed this issue in terms of a binary outcome, whereas now 

we are using the fact that we have multiple categories. 

To construct instruments that are only driven by changes in the rules rather than changes in area conditions 

during the period we run two ordered probit regressions for the pre and post 2000 periods. Our vector of area 

characteristics 𝑋𝑟,93 includes all variables that were used by the EU for deciding about support status in the pre-

2000 and post-2000 periods. However, we only estimate using values of the X variables dated prior to 1993 as 

used in 1993 rule change (in fact, given the lag structure used by the EU, the most recently date considered is 

1991 – see Online Appendix Table A2). This is because using values dated after 1993 could potentially be 

endogenous (recall equation (5) in the main text). This makes the estimates of the policy rule less precise, but so 

long as there is sufficient power in the first stage then the instruments will be valid.  

Formally, the model is: 

 

*

, ,93 ,r r rs X       where  τ = {93,00} 

 

Where 𝑠𝑟,𝜏
∗   are the latent variables of “disadvantage” in area r at time τ; and there are threshold parameters, 

𝜇𝑗(𝜏),𝜏that will determine which subsidy regime j an area falls into. For example, in 1993, the ordered probit 

structure is that the observed ,93 0rs   if 
*

,93 0,93rs  , ,93 1rs   if  
*

0,93 ,93 1,93rs   , and ,93 2rs   if 

*

,93 1,93rs  . The observed bins correspond to different levels of maximum subsidy, 
,jc 

  where j = 1,…, J is 

an indicator for a bin. So in 1993 
0,93 1,930, 0.2c c   and 

2,93 0.3c  . Denote the full parameter vector 

1, ,{ , }j     ,which are the “weights” and the “thresholds” respectively. 

We report results from the estimation of the ordered probits in Table 3. The signs generally look broadly 

sensible (with the caveat that these are not marginal effects). For example, areas with higher GDP per person, 

lower labor force activity rates, lower population densities and higher long-duration unemployment are more 

likely to be high investment subsidy areas. 

From these ordered probit estimates we obtain the predicted probabilities 𝑃̂𝑗,𝑟,𝜏 of falling into each bin in 

each year for each area given their observables 𝑋𝑟,93 and the estimated parameters 𝜃̂𝜏 . We then create the 

predicted level of subsidy as: 
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𝑧𝑟,  =

{
 
 

 
 ,00 , ,00

ˆ
j j r

j

c P  𝑖𝑓 𝜏 =  2000

,93 , ,93
ˆ

j j r

j

c P   𝑖𝑓 𝜏 = 1993

 

This specification has the advantage that we can interpret reduced form coefficients in a similar way as 

regressions of the actual support status (NGE). The IV we use in our baseline specifications is the change in this, 

∆𝑧𝑟,  , the change in the predicted level of the maximum investment subsidy in the area. The distribution of the 

levels and changes of 𝑧𝑟,   are in Figures A1 and A2. 

We experimented with many other ways of constructing the IV to make sure that nothing hinges on 

modelling details and our results are robust. For example, in Online Appendix Table A18 we report our main 

results using instruments constructed from predictions of a linear probability model of the NGE values rather 

than the ordered probit of NGE categories. We also estimated models using ordered logit as well as simple logit 

and probit specifications on the binary event of a non-zero NGE value in an area.  

 

APPENDIX C: MORE DETAILS ON DATA, MATCHING AND 

PRODUCTIVITY CALCULATION 
C.1 The Datasets  

We use administrative data on RSA program participants (SAMIS) with data from the Interdepartmental 

Business Register (IDBR), which contains both the names of the businesses and the identification numbers used 

by the Office for National Statistics (ONS) to conduct the Annual Business Inquiry (ABI).
10

 The IDBR is a list 

of all businesses in the UK, their addresses, type of activity and ownership structure. The list is compiled using a 

combination of tax records, accounting information (every UK firm must lodge some information at Companies 

House). The smallest unit in the IDBR is a site that contains name, address and information on the number of 

employees and industry. We also know the enterprise (firm) that owns the site and whether this is part of a 

larger group (“enterprise group”). Investigation showed that some of the most micro-units (the sites identifiers) 

are not reliable over time; we grouped all sites of a firm in a Ward into a single “local unit” which we refer to as 

a “plant” in the text. 

A stratified random sample of enterprises is drawn every year from the IDBR to form the sampling 

frame for the ABI (Annual Business Inquiry), the mandatory annual survey of UK businesses. Data from the 

ABI is made available to researchers in the form of the ARD (Annual Respondents Database), which provides 

information on output, investment, intermediate inputs, employment, wages, etc.
11

 The ARD is similar to the US 

Annual Survey of Manufacturing (ASM) with the caveat it covers all sectors (not just manufacturing) and is at a 

higher level of aggregation than the plant-level ASM. Not only is the ARD a sub-sample of the population 

IDBR, but the information is reported at a more aggregated level across the entire firm (“reporting unit”), rather 

than at the plant (“local unit”) level. For example, a firm with two 10 workers plants in two different wards will 

have only total employment reported in the ARD (20 workers), whereas the IDBR will identify both local units. 

Note that in about 80% of all cases a firm is single plant and located entirely at a single address.  

The upshot is that whereas employment can be matched exactly to an area, so we can analyze at 

whatever level we like (e.g. plant, firm or ward); the analysis of investment and productivity for a representative 

sample can only be accurately conducted at the firm level, and not a lower level. Note that the ARD contains the 

population of larger businesses (those over 100 or 250 employees depending on the exact year) and accounts for 

around 90% of total UK manufacturing employment. 

 

C2. Matching Datasets 

Since the performance data comes from sources unrelated to program participation, several problems arise in 

matching.  The Department of Business uses name and postcodes from its administrative SAMIS data to match 

a list of participants and applicants to the population IDBR.  This matching may occur at the plant-level or the 

firm level. Often a firm will apply for funding; so that we cannot know for sure whether a plant has benefitted 

from RSA receipt (although for the 80% of single-firm plants there is never an ambiguity). Thus, one measure 

of program participation is simply whether a plant was in a firm that received any RSA (which we can always 

                                                 
10

 The IDBR was introduced between 1994 and 1995. Previously, that sampling was based on a Business 

Register maintained by the Office of National Statistics. 
11

 Stratification is broadly based on industry affiliation, regional location and size. For details, see Criscuolo et 

al. (2003). 
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define precisely). For a small number of cases, the same SAMIS identifier could match to multiple IDBR firms. 

In these cases we aggregated the IDBR firms together, but we checked the results were robust to dropping these 

few cases (they were). The ARD is a strict sub-set of the IDBR, so the issues discussed above apply in the same 

way to this dataset. 

The SAMIS database has information on 54,322 program applications and whether the application was 

successful. Applicant numbers declined in the 2000s as the total budget for RSA fell. Using name, postcode and 

CRN numbers, the information in BIS files was linked to the IDBR over the whole period. The matching rate 

was 82% over the sample period (1997-2004).  

There is a variety of reasons for non-matches. The most common reason is that the information on the 

SAMIS database of RSA participants is inadequately detailed to form a reliable match to the IDBR. It is also 

possible that the IDBR misses some of the smaller and shorter-lived firms who receive RSA. To check biases 

arising from matching we conducted a detailed comparison of the characteristics of projects and project 

participants of firms that BIS matched with IDBR relative to all the projects in the SAMIS database. The 

analysis shows that the set of “IDBR matches” do not significantly differ from the rest of the projects in the 

database on observed characteristics, and this is the case for both unsuccessful and successful applications. The 

variables we considered in the regression were application amounts; headquarter location, a dichotomous 

variable that is one if the application was handled by the London office of BIS, foreign owned, and a BIS code 

that seeks to identify “internationally mobile” jobs. More details are available from the authors and in Criscuolo 

et al (2006). 

The area level average subsidy rates used in Table 5 are generated from aggregating up all subsidies 

granted to plants in ward in the two periods (1997-1999 and 2000-2004) and then dividing by the number of 

years in each sub-period.  

C.3 Firm Size Definition 

In some of the analysis, we split by firm size (e.g. Table 10). To mitigate endogeneity concerns we use firm size 

as measured by employment in a base period, for which we choose 1996, the year before our estimation period. 

For all plants belonging to a firm who were not alive in 1996 we use the year of birth to determine the size class 

and exclude data from the first year in our regressions of employment. We also experimented with dropping 

post-1996 entrants, which led to very similar results.  

C.4 TFP (Total Factor Productivity) measures 

There are numerous ways to obtain a TFP measure, a subject of ongoing debate in the literature (see inter alia 

Olley and Pakes, 1996 and Ackerberg et al, 2015). The results in Panel E of Table 11 are based on a simple 

“factor share” method and relative to an industry by year average. We define 𝑇𝐹𝑃𝑖𝑡 = 𝜏𝑖𝑡 − 𝜏𝐼̅(𝑖)𝑡 where  

𝜏𝑖𝑡 = 𝑟𝑖𝑡 − 𝑆𝑀̅𝐼(𝑖)𝑡𝑚𝑖𝑡 − 𝑆𝐿̅𝐼(𝑖)𝑡𝑙𝑖𝑡 − (1 − 𝑆𝑀̅𝐼(𝑖)𝑡 − 𝑆𝐿̅𝐼(𝑖)𝑡)𝑘𝑖𝑡  . In this expression 𝑟𝑖𝑡   is ln(firm revenue) for firm 

𝑖 in period 𝑡, 𝑚𝑖𝑡 is ln(materials), 𝑙𝑖𝑡 is ln(employment) and 𝑘𝑖𝑡 is ln(capital). 𝑆𝑀̅𝐼(𝑖)𝑡 is the share of materials in 

revenues in the four-digit industry and 𝑆𝐿̅𝐼(𝑖)𝑡  is the share of labor costs in revenues at the industry level. 𝜏𝐼̅(𝑖)𝑡 is 

the average value for 𝜏𝑖𝑡 in year 𝑡 in the four digit industry. 

We also considered alternative ways of computing TFP (see Online Appendix Table A16). Firstly, we 

consider a “regression-based” method where we use ln(revenues) as the dependent variables and include on the 

right-hand side in addition to treatment controls ln(labor), ln(materials) and ln(capital). Secondly, we consider a 

more structural production function estimation approach as proposed in Martin (2012) which takes into account 

firm specific variation in market power when computing TFP. This requires running the following (first stage) 

regression: Ξ𝑖𝑡 = 𝛽𝑘𝑘𝑖𝑡 + 𝜌(Ξ𝑖𝑡−1 − 𝛽𝑘𝑘𝑖𝑡−1 ) + 𝜈𝑖𝑡 where Ξ𝑖𝑡 =
𝑟𝑖𝑡−𝑆𝑀𝑖𝑡(𝑚𝑖𝑡−𝑘𝑖𝑡) −𝑆𝐿𝑖𝑡(𝑙𝑖𝑡−𝑘𝑖𝑡)

𝑆𝑀𝑖𝑡
 and 𝑆𝑀𝑖𝑡 , 𝑆𝐿𝑖𝑡  are 

the variable factor shares at the firm level. From this we can estimate a productivity index as 𝑇𝐹𝑃𝑀𝑈𝑂𝑀𝐸𝐺𝐴 =
Ξ𝑖𝑡−𝛽̂𝑘𝑘𝑖𝑡

𝛽̂𝑘
. 

 

APPENDIX D: AGGREGATING ACROSS SPATIAL UNITS 
 We consider the aggregation from lower (wards) to higher levels area (Travel to Work Areas) as 

discussed in subsection V.C. For simplicity consider the set-up of a single Travel to Work Area (TTWA, 

denoted a, consisting of two wards r and r’ and consider two periods t = 0 and t = 1. It is straightforward to 

generalize this to multiple-ward TTWAs (we do this in the empirical application). Suppose we know that as a 

consequence of the program in period 1, ward r experiences a change of employment of 𝛼𝑟 log points whereas 

ward r’ experiences a change of 𝛼𝑟′ log points; i.e. ln 𝐿𝑟,1 − ln 𝐿𝑟,0 = 𝛼𝑟 and similarly for ward r’. 
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We are interested in what will be the effect of the policy on total employment at the higher TTWA 

level. We can write TTWA employment as the sum of the two wards: 𝐿𝑎,𝑡 = 𝐿𝑟,𝑡 + 𝐿𝑟′,𝑡. Hence the logarithmic 

change in employment is: 

 

 

ln 𝐿𝑎,1 − ln 𝐿𝑎,0 = ln[𝑒
𝛼𝑟𝑤𝑟 + 𝑒

𝛼𝑟′(1 − 𝑤𝑟)] 
 

(D1) 

 

where 𝑤𝑟 =
𝐿𝑟,0

𝐿𝑟,0+𝐿𝑟′,0
  is the share of employment in Ward 1 in period 0. Re-write equation (D1) as:  

 

 

ln[𝑒𝛼𝑟𝑤𝑟 + 𝑒
𝛼𝑟′(1 − 𝑤𝑟)] = 𝛼𝑟′ + ln[(𝑒

𝛼𝑟−𝛼𝑟′ − 1)𝑤𝑟 + 1] = 𝜈1 + 𝛼𝑟′ + (𝑒
𝛼𝑟−𝛼𝑟′ − 1)𝑤𝑟 

 

Where 𝜈1 is an approximation error that is small for values of  (𝑒𝛼𝑟−𝛼𝑟′ − 1)𝑤𝑟   close to zero. Similarly note 

that (𝑒𝛼𝑟−𝛼𝑟′ − 1) = 𝜈2 + ln[(𝑒
𝛼𝑟−𝛼𝑟′  − 1) + 1] = 𝜈2 + 𝛼𝑟 − 𝛼𝑟′  for (𝑒𝛼𝑟−𝛼𝑟′ − 1)  close to zero and where 

𝜈2 is another approximation error.
12

 Consequently, we can write the change in TTWA employment as: 

 

ln 𝐿𝑎,1 − ln 𝐿𝑎,1 ≈ 𝛼𝑟′ + (𝛼𝑟 − 𝛼𝑟′)𝑤𝑟 = 𝑤𝑟𝛼𝑟 + (1 − 𝑤𝑟)𝛼𝑟′ 
 

(D2) 

In other words: the percentage TTWA level change is approximately the percentage change in each ward 

weighed with the employment share of each ward.  

This allows us to examine the case of negative spillovers as well. Suppose region r experiences an 

increase in support Δ𝑁𝐺𝐸𝑟 > 0 but there is no change in  ward r’. This leads to a positive effect of 𝛼𝑟 =
𝛽Δ𝑁𝐺𝐸𝑟  in region r at the expense of a possible negative spillover of 𝛼𝑟 = −𝜒Δ𝑁𝐺𝐸𝑟  in region r’. For the 

aggregate TTWA we would consequently expect the effect on employment to be: 

 

𝛼𝑎 = 𝑤𝑟 𝜆1Δ𝑁𝐺𝐸𝑟 − (1 − 𝑤𝑟)𝜒Δ𝑁𝐺𝐸𝑟  
 

Indeed, in the case where the policy simply shifts jobs from one ward region to the other we would expect  

 

𝜒 = 𝜆1
𝑤𝑟

1 − 𝑤𝑟
 

 

i.e. if r’ is smaller than r, 𝜒 would be bigger than 𝛽. On the other hand, if we assume that there are no spillovers 

equation (D2) becomes 

 

ln 𝐿𝑎,1 − ln 𝐿𝑎,0 ≈ 𝛼𝑎 = 𝜆1Δ𝑁𝐺𝐸𝑎  (D3) 

 

where 𝑁𝐺𝐸𝑎 = ∑ 𝑤𝑟𝑁𝐺𝐸𝑟𝑟 . This implies that if we regress (changes) in TTWA ln(employment) on the 

employment weighted share of area level NGE changes we would expect to recover comparable impact 

estimates as we did when running ward level regressions on (changes) in NGE. By contrast, if there are negative 

spillovers we expect a coefficient smaller than 𝜆1 when running a regression as implied in equation (D3). We 

would also expect some bias towards zero because of the approximation error implied in equation (D3). In our 

empirical estimates at the TTWA level in Table 8, we find treatment effects that look (if anything) larger than 

the ward level 𝛽 estimates in Table 4. This leads us to the conclusion that negative spillovers are not a major 

issue of concern in our application. 

 

 

APPENDIX E: OTHER PLACE-BASED POLICIES 

Our identification strategy uses exogenous policy rule changes that determine which wards are “randomized in” 

to be eligible (or ineligible) for RSA support. The exogenous policy rule change that we use stems from the 

change in the UK assisted area map drawn up to comply with revised EU regulation. One potential threat to 

                                                 
12

 Note that the two errors go in opposite directions with the first one overestimating and the second one 

underestimating the true figure. The second error is also likely larger so that on net we are underestimating the 

true figure. Simulations of the errors suggest that these are under 5%. 
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identification is the existence of other regional policies that use geographical areas to determine eligibility and 

experience similar changes in eligibility at around the same time as the rules for RSA eligibility change. If such 

policies exist, then they may cause us to over-estimate the effect of RSA eligibility if these other policies 

positively affect RSA-eligible areas. In this Appendix, we consider a wide range of place-based policies and 

discuss whether they raise concerns and, if so, how we address these in the paper. Broadly, there appears to be 

only one policy – the Regional Development Fund aspects of EU Structural Funds – that is potentially 

problematic as it has both cross-area variation and rules that changed at the same time as RSA.
13

 

E.I EU Structural Funds (SF) 

The change in the Assisted Areas map for RSA in 2000 coincides with several changes to the EU 

“Structural Funds (SF).” SF are important instruments for delivering EU regional policy mainly through 

infrastructure spending. Total SF spending is higher than RSA, although the direct SF grants to business are an 

order of magnitude smaller than RSA. For example, in 1997 the total amount of RSA grants accepted was 

£158.3 million while the total amount of SF Regional Development was £621 million (House of Commons, 

2000), only £15.6 million of this were Funds for business grants (1997 Annual Report of the Industrial 

Development Act).  

Our data cover two program periods 1997-1999 and 2000-2004. In the earlier period, the EU Structural 

Funds were organized around “objectives.” Broadly, only Objectives 1 and 2 really matter for us.
14

 Objective 1 

is targeted at the poorest regions. Objective 2 regions are less poor but suffer from high unemployment and/or 

have high shares of employment in declining industries. Objective 1 accounts for about 70% of all SF spending, 

whereas Objective 2 accounts for only 11%.  
The rules for eligibility for Objective 1 were very similar in both periods - a region must have a GDP per 

capita that is below 75% of the EU average.
15

 Objective 1 is defined on the NUTS2 geographical areas whereas 

Objective 2 is defined on smaller units.
 16

 A number of criteria were used to determine eligibility for Objective 2 

that were similar to RSA such as the unemployment rate, the percentage share of manufacturing jobs; falls in 

employment and the fraction of skilled workers. The reference year for which these were taken were sometimes 

different from RSA, however.
17

 One factor determining eligibility for Objective 2 SF that did not determine 

RSA were local crime rates, and we include these variables (robberies, burglaries and drug crimes) when 

predicting which areas were eligible for SF.  

Since the maps for SF and RSA eligibility change at the same time and both are aimed at disadvantaged 

areas, a concern is that the RSA effect may be confounded by the effects of SF. We can observe the maps of 

eligibility for SF and RSA and, in fact there are many differences. There are several reasons for these 

differences. First, the exact weights given to different variables in the policy rule are not the same for RSA and 

SF. Second, the “reference year” used to define the variables is different. Third, the level of aggregation used to 

determine eligibility also differs. Fourth, and perhaps most importantly, the variables that enter the policy rules 

for RSA and SF are not all the same. Crime rates enter the policy rule for SF but not RSA. Similarly, although 

the structural unemployment, the activity rate, the long-term unemployment rate and the start-up rate of new 

businesses affect whether an area is eligible for RSA at various points of time, they are never in the list of 

variables that determine SF eligibility. 

For example, GDP per capita is a key component for eligibility to Objective 1 SF support and the highest 

investment subsidy rates of RSA (i.e. a “Development Area” or Tier 1 area). Indeed, the maps for eligibility are 

identical 2000-2006 (NUTS2 areas of Cornwall and the Isles of Scilly; Merseyside; South Yorkshire; West 

Wales and the Welsh Valleys). However, in the 1993-99 period the two maps differ significantly. The RSA 

Development Areas comprise 123 Travel-To-Work Areas (TTWAs) or parts of such areas. In addition, the only 

                                                 
13

 The bulk of EU transfers to the UK are towards agriculture via the Common Agricultural Policy. Structural 

Funds also include an Agricultural Guidance Fund and a Social Fund (that does not have an explicit regional 

component). Since these are not very relevant for a place-based industrial policy like RSA, we simply refer to 

the Regional Development Fund aspect of SF as “Structural Funds” for brevity in what follows.  
14

 Objectives 3 and 4 were not spatially targeted at particular types of region so are not a threat to identification 

of RSA. Objective 5 was subsumed into Objective 2 after 2000. 
15

 Calculations are based on three-year averages: 1989-1991 for the early period and 1994-1996 for the post-

2000 period. 
16

 To give a better idea of the size of these territorial units consider that in the UK there are 37 NUTS 2, each 

covering between 800,000 and 3,000,000 inhabitants and 133 NUTS 3, each covering between 150,000 and 

800,000 inhabitants. The equivalent in the US could be municipalities or city/county/authorities. Note that the 

geography used for eligibility to RSA are “wards” (NUTS 5) with an average population of about 6,600 people. 
17

 For example, for manufacturing share the reference year was 1975 for the 1993-1999 period and 1985 for the 

2000-2006 period.  
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two regions eligible to Objective 1 support over this period were Merseyside and the Highlands and Islands.
18

 

This is mainly because of a different level of aggregation used to determine RSA compared to SF. 

Online Appendix Table A3 presents the degree of overlap in eligibility for RSA and SF over time to 

illustrate the amounts of non-overlap. Row 1 shows that out of 10,737 wards, 2,424 (22.6%) were eligible for 

both SF and RSA over the 1993-99 period. Of these, 1,743 (71.9%) continued to be eligible for both policies 

after 2000. 681 wards (28.1%) lost eligibility for RSA but maintained eligibility for SF (none of these wards lost 

eligibility for SF or lost eligibility for both types of support). Similarly, rows 2 and 3 look at changes in 

eligibility over time of wards that pre-2000 were eligible for only one type of support (RSA in row 2 and SF in 

row 3). The last row shows that most wards (6,602 or 61.5% of the population) were ineligible for both policies 

pre-2000. Of these 3% subsequently became eligible for both types of support; and 2% for RSA only with the 

majority (95%) remaining ineligible for both.  

Since there may be unobservables that determine whether an area becomes eligible for SF this can create 

endogeneity issues. We can exploit the same identification strategies we use for RSA for SF to deal with this 

problem. Although some of the criteria determining SF are the same as RSA, many are different. For example, 

crime variables affect whether an area is eligible for SF, they do not appear in the criteria determining RSA 

eligibility. Similarly, structural unemployment, the activity rate, the long-term unemployment rate and the start-

up rate of new businesses affect whether an area is eligible for RSA, they are not in the list of variables that 

determine SF eligibility. Hence, analogously to Table 3 we estimate a model where the dependent variable is 

whether an area is eligible for SF in Online Appendix Table A4 separately for the earlier period (1993) and later 

period (2000). The coefficients generally look sensibly signed: areas with lower GDP per capita, less population 

density, more manufacturing and worse job markets are more likely to be eligible for SF. Additionally, five of 

the six crime coefficients suggest that places with more crime are significantly more likely to be eligible for 

structural funds (the only exception is drug crime in 1993). 

Analogously to our strategy for RSA, we use the estimates in Online Appendix Table A4 to build up a “SF 

rules change IV” and enter this alongside our standard specifications in Table 6. We show there that although 

there is a little evidence of beneficial effects of structural funds on unemployment in the reduced forms, the SF 

treatment variable is not significant at the 5% level in the IV specifications for either employment or 

unemployment. More importantly for our purposes, the effect of the RSA policy is robust to inclusion of the SF 

variable (see discussion in subsection V.B in main text).  

 

E.2 Enterprise Grant (EG) Scheme 

Another change that happened in 2000 was a revision in the way Regional Selective Assistance was 

administered to small and medium sized enterprises (SMEs) and for smaller projects. These smaller grants were 

renamed as “Enterprise Grants” (EG). In England and Scotland, EG’s began in January 2000. They were a 

simplified scheme for SMEs in RSA eligible areas. The scheme replaced small-scale RSA grants and provided 

funding up to a maximum of 15% of investment.  

In England (but not Scotland) EGs also became available in “Tier 3” areas (see Figure 4 in 

http://www.tandfonline.com/doi/pdf/10.1080/00343400123609). These Tier 3 areas were outside those eligible 

for assistance under RSA. Small firms (under 50 employees) could receive up to 15% investment subsidies and 

medium sized firms (between 50 and 249 employees) could receive up to 7.5% in Tier 3. In Wales, EGs were 

not introduced until 2002 and then were available throughout the country.  

The aggregate spending on EGs was low compared to RSA. For example, in Scotland in 2001 only £3m 

was spent on EGs, under 3% of the total RSA budget.  

Following our strategy for other area-based policies (see next subsection) we can include a dummy 

variable equal to one when an area becomes eligible for EGs. Although these are generally the same as RSA, the 

introduction of Tier 3 in England in 2000 and the delayed introduction until 2002 in Wales, enables us to 

separately identify their effect.
19

  

This does, however, raise the concern that the larger effect of RSA on plants belonging to small firms 

could be due to EGs. The results in Online Appendix Table A14 cast doubt on this. Here we use the actual 

subsidy amounts (effectively RSA plus EG) and do not find that the results are due to smaller firms receiving 

relatively large grants. However, a data issue is that the Scottish and Welsh (after 2002) subsidies exclude EG, 

                                                 
18

 For example, while Cornwall was not eligible to Objective 1 status; TTWAs such as Penzance and St. Ives or 

Newquay were Development Areas. Similarly, no part of Wales was eligible to Objective 1 aside from part of 

Blaenau Gwent and Abergavenny; Thanet and South Pembrokeshire are Development Areas.  
19

 Note that we have access to the subsidy amounts of EG in England, but not in Scotland or Wales. Since EGs 

were effectively part of the RSA treatment before and after 2000 we consider the reduced form estimates a 

reflection of the “RSA and EG bundle.” However, since we showed in Table 7 that EG had no effect on the 

RSA policy effect; that the EG coefficient itself is small and considering also the aggregate amount spend on 

EG was also relatively small, it is reasonable to assume that our overall estimates are due to RSA. 

http://www.tandfonline.com/doi/pdf/10.1080/00343400123609
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so could be generating this effect. To check this, we allowed the coefficient on the RSA treatment effect to be 

different in England from in the rest of the sample (Wales and Scotland). If the result were driven by 

measurement error in the subsidy amount, we would expect that the coefficient should be significantly different. 

We found that the interaction terms were not significant (-0.402 with a standard error of 0.625) suggesting that 

this is not a first order issue. 

E.3 Other Area Policies 

Online Appendix Table A19 considers many regional and active labor market policies that operated during 

our estimation period. The Table provides information on the timing of the policy and basic information on area 

eligibility. The clear majority of policies (10 out of 14) are purely national in nature and do not have specific 

local area eligibility.
20

 Thus, the time dummies will control for them.  

Apart from Structural Funds and Enterprise Grants discussed above, there are five other potential policies 

with a geographical area component: Employment Zones, Coalfields Regeneration Trust, New Deal for 

Communities and Regional Venture Capital Funds.  

 

(a) Employment Zones were designated areas of high long-term unemployment where a package of policies 

was delivered aimed at improving the chances of those on long-term unemployment insurance getting back 

into work. The Job Center assessed whether extra training, job subsidies, more intense work search, etc. 

were needed and delivered these with the threat of benefit sanctions. These started in April 2000 and we 

code the 15 designated areas with a dummy equal 1 after 2000 and zero otherwise. The areas are: 

Birmingham, Brent, Brighton and Hove, Doncaster, Glasgow, Haringey, Liverpool and Sefton, Merthyr 

Tydfil (including Caerphilly and Blaenau Gwent), Middlesbrough (including Redcar and Cleveland), 

Newham, North West Wales (Conwy, Denbighshire, Anglesey, Wrexham, Caernarfonshire and 

Merionethshire), Nottingham, Plymouth, Southwark and Tower Hamlets. 

 

(b) The Coalfields Regeneration Trust (http://www.coalfields-regen.org.uk/) contains a set of initiatives 

designed to support areas historically dependent on Coalfields. This includes help on skills, setting up new 

businesses and finding new jobs. This program began in 1999, so the affected areas were coded to be 1 

from 2000 onwards and zero otherwise. The coal-field districts were: Allerdale, Alnwick, Amber Valley, 

Ashfield, Bassetlaw Barnsley, Blaenau Gwent, Blyth Valley, Bolsover, Broxtowe, Caerphilly, Cannock 

Chase, Canterbury, Castle Morpeth, Chesterfield, Chester-le-Street, Clackmannanshire, Copeland, 

Derwentside, Doncaster, Dover, Durham, East Ayrshire, Easington ,Erewash, Fife, Forest of Dean, Gedling, 

Hinckley and Bosworth, Kirklees, Knowsley, Leeds, Lichfield, Mansfield, Melton, Merthyr Tydfil, 

Midlothian, Moorlands, North Lanarkshire, North Warwickshire, North-East Derbyshire, Neath PT, 

Newark and Sherwood, Newcastle-under-Lyme, North Tyneside, Nottingham, Nuneaton and Bedworth, 

NW Leicestershire, Rhondda CT, Rotherham, Rushcliffe, South Derbyshire, South Lanarkshire, Salford, 

Sedgefield, Selby, Sheffield, South Staffordshire, South Tyneside, St Helens, Staffordshire, Stoke-on-Trent, 

Sunderland, Tamworth, Torfaen, Wakefield, Wansbeck, Wear Valley and Wigan. 

   

(c) The New Deal for Communities was targeted at the most deprived areas of England. These were usually very 

small localities, generally on public housing projects, suffering from low employment, high crime and health 

problems. Local public services across different agencies (welfare benefits, housing, health and social care) tried 

to offer “joined up” interventions. The program started in 1998 in 17 areas (ending in 2008), and then another 22 

were added in 1999 (ending in 2011). As usual, we have a dummy that turns on in these years for the relevant 

areas. The communities targeted in round 1 (1998) include: 

Local authority Area wards/estates/communities 

Birmingham Kings Norton  

Bradford Little Horton, Marshfield and West Bowling 

Brighton East Brighton  

Bristol Barton Hill 

Hackney Shoreditch 

Hull Preston Road  

Leicester Braunstone 

Liverpool Kensington  

Manchester Beswick and Openshaw  

                                                 
20

 Some of the policies have small local area pilot schemes. See, for example, Blundell et al (2004) on the New 

Deal for Young People or Koenig et al (2018) on Job Centre Plus. 

http://www.coalfields-regen.org.uk/
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Middlesbrough West Middlesbrough   

Newcastle Upon Tyne Arthur's Hill, Cruddas Park, Rye Hill and Elswick  

Newham West Ham and Plaistow 

Norwich North Earlham, Larkman and Marlpit 

Nottingham Radford and Hyson Green 

Sandwell Greets Green 

Southwark Aylesbury Estate) 

Tower Hamlets Ocean Estate 

 

In Round 2 (1998) the following communities were targeted: 

Local authority Area wards/estates/communities 

Birmingham Aston 

Brent South Kilburn 

Coventry Wood End, Henley Green and Manor Farm 

Derby Derwent 

Doncaster Central Doncaster 

Hammersmith and Fulham North Fulham 

Haringey Seven Sisters  

Hartlepool West Central Hartlepool 

Islington Finsbury 

Knowsley Huyton 

Lambeth Clapham Park 

Lewisham New Cross Gate 

Luton Marsh Farm 

Oldham Hathershaw and Fitton Hill 

Plymouth Devonport 

Rochdale Heywood 

Salford Charlestown and Lower Kersal 

Sheffield Burngreave 

Southampton Thornhill 

Sunderland East End and Hendon 

Walsall Blakenhall 

Wolverhampton All Saints and Blakenhall Community Development  

 

 

 

(d) Regional Venture Capital Funds was national from 2003 but affected two regions (West Midlands and East 

of England) from 2002. The program provided small-scale equity (under £500,000) to firms with “growth 

potential”. We included a dummy which switches on for these two regions in 2002 (the national program is 

in the time dummies).  

 

(e) Devolution to Scotland and Wales. Following successful Referenda, in 1999 greater powers were delegated 

from central government in London to Wales (Government of Wales Act 1998) and Scotland (Scotland Act 

1998). Although the budget allocated to RSA and the administration of the scheme was (partially) 

decentralized, the EU driven determination of eligible and ineligible areas was not changed, so the 

identification scheme we are using is unaffected by these changes. Nevertheless, we included a dummy for 

Wales and Scotland in 1999 and thereafter to control for any effects.
21

  

 

E.4 Summary on “Other Policies” 

 

Table 7 (where the dependent variable is manufacturing employment) and Online Appendix Table A5 (where 

the dependent variable is unemployment) in the main text shows that our RSA effects are robust to all these 

“other policy” controls (including adding in Structural Funds). 

                                                 
21

 Note that in 1999 there were also greater powers to the nine Regional Development Agencies that covered 

contiguous areas in England (Statutory Instrument 1999/672). Any effect from this would be captured by the 

time dummies in the regression with post 1999 Scotland and Wales controls. 

https://en.wikipedia.org/wiki/London_Borough_of_Haringey
https://en.wikipedia.org/wiki/Wolverhampton
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APPENDIX F: FURTHER RESULTS  

F.1 Spatial Clustering of the Standard Errors 

 

Our main results rely on clustering the standard errors at the ward-level because this is the level where NGE 

eligibility is determined. In the language of Abadie et al (2017) our experimental design delivers quasi-random 

variation at the ward-level, so this is ex ante the appropriate level for clustering. The data underlying the policy 

variables are at a mixture of levels of aggregation (some at the wide NUTS2 level, but others as low as the ward 

level).  

 

 

If treatment eligibility was determined solely by factors at a geographically higher level than the ward level our 

approach could underestimate the correct standard errors. In this section, we explore several more conservative 

clustering approaches. These include: 

 

1. Clusters based on TTWAs (Travel to Work Area)  

2. Clusters based on contiguous neighboring wards receiving identical support levels.  

3. Clusters based on “close” neighboring wards receiving identical support levels 

4. NUTS-2 level clustering 

 

Online Appendix Table A20 reports versions of our main results in Table 4 with errors clustered at these 

different levels. Irrespective of the precise level of clustering we find that our treatment effects are significant at 

5% level or greater for the employment regressions. For unemployment, we lose significance at conventional 

levels only when clustering at the extremely conservative NUTS-2 level (34 clusters). 

In Panel A of Online Appendix Table A20 we simply cluster at the level of the TTWA (322 clusters), 

the least conservative approach in the Table (but more conservative than in Table 4 where clustering is at the 

ward level). In Panel D we cluster at the level of the NUTS2 region (34 clusters), the most conservative 

approach. We also investigated more sophisticated approaches where we created clusters of areas that were 

“close” to each other and had the same level of NGE support in both the pre and post 2000 period. We tried 

several alternatives, two of which we report in the paper. The first of these defined “close” as contiguous wards 

– i.e. we aggregated all wards having a shared boundary and the same level of NGE support in the two periods. 

We use NUTS 2 boundaries to define clusters for wards that receive no support. This gave us 102 clusters in 

total: 70 clusters of wards with positive NGE and another 32 clusters with zero NGE (i.e. no support). Our 

second approach defined “close” as being within 1km of another ward (rather than strictly contiguous) with the 

same NGE. Once again, we used NUTS 2 boundaries to define clusters for wards that receive no support. This 

gave us 80 clusters in total: 48 clusters of wards with positive NGE and another 32 with zero NGE. Both 

approaches are illustrated in Online Appendix Figure A3. Regression results are reported in Panels B and C of 

Online Appendix Table A20. 

In short, our core results appear broadly robust to various ways of dealing with spatial autocorrelation. 

 

F.2 Relationship of Regression Discontinuity Designs to our baseline IV approach 

 

We explore the impact of different levels of support (NGE) on various area r level outcomes at time t. Recall 

our basic model is: 

𝑦𝑟,𝑡 = 𝜆1 𝑁𝐺𝐸𝑟,𝑡 + 𝜖𝑟,𝑡 
 

where 𝜖𝑟,𝑡 = 𝜂𝑟 + 𝜈𝑟,𝑡. To deal with area fixed effects that are potentially correlated with treatment our basic 

approach involves identifying 𝜆1 from differences 

 

𝛥𝑦𝑟,𝑡 = 𝜆1𝛥𝑁𝐺𝐸𝑟,𝑡 + 𝛥𝜈𝑟,𝑡 
(F1) 

Where 𝛥𝑦𝑟,𝑡 = 𝑦𝑟,𝑡 − 𝑦𝑟,1997 and there was a change in NGE after 2000. 

While differencing eliminates the fixed effect there is concern that differential trends in the outcome 

variables could affect treatment so that 𝐸{𝛥𝜈𝑟,𝑡|𝛥𝑁𝐺𝐸𝑟,𝑡} ≠ 0 . This could be because an area that does more 

poorly in the period leading up to 2000 would be more likely considered in need of support so that 
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𝐸{𝛥𝜈𝑟,𝑡|𝛥𝑁𝐺𝐸𝑟,𝑡} < 0. Indeed, the mechanism that leads to this is that the European Commission deems areas 

as disadvantaged and therefore in need of support based on a set of area level characteristics at certain points in 

time. This rule can be described as:  

 

𝑁𝐺𝐸𝑖𝑡 = {
𝑓93(𝑋𝑟,93) if 𝑡 < 2000

𝑓00(𝑋𝑟,00)if 𝑡 ≥ 2000
 

(F2) 

where X is a vector of area characteristics, i.e. support levels of NGE are a mapping of local area characteristics. 

For the period between 1993 and 2000 the area characteristics are based on some point in time before 1993, for 

the period from 2000 onwards NGE is based on area characteristics at some point between 1993 and 2000 (see 

Online Appendix Table A2). These include weightings of the different characteristics (including a weight of 

zero for some characteristics in some periods) as well as a variety of thresholds. 

As consequence of this,  

 

𝐸{𝜈𝑟,𝑡|𝑋𝑟,93, 𝑁𝐺𝐸𝑟,𝑡} = 𝐸{𝜈𝑟,𝑡|𝑋𝑟,93} for 𝑡 < 2000 

(F3a) 

and 

 

𝐸{𝜈𝑟,𝑡|𝑋𝑟,00, 𝑁𝐺𝐸𝑟,𝑡} = 𝐸{𝜈𝑟,𝑡|𝑋𝑟,00} for 𝑡 ≥ 2000 

(F3b) 

 

i.e. NGE is correlated with the error term only because it is in part driven by 𝑋𝑟,00 and 𝑋𝑟,93.  

This in turn implies that if we could observe 𝐸{𝜈𝑟,𝑡|𝑋𝑟,𝑝} – where period 𝑝 ∈ {93,00} – we could 

obtain an unbiased estimate of 𝜆 from a regression of 

 

𝛥𝑦𝑟,𝑡 = 𝜆1𝛥𝑁𝐺𝐸𝑟,𝑡 + 𝐸{𝛥𝜈𝑟,𝑡|𝑋𝑟,00, 𝑋𝑟,93} + 𝛥𝜉𝑟,𝑡 
 

where 𝛥𝜉𝑟𝑡 = 𝛥𝜈𝑟,𝑡 −  𝐸{𝛥𝜈𝑟,𝑡|𝑋𝑟,00, 𝑋𝑟,93} 
 

Of course, we have no way of observing 𝐸{𝛥𝜈𝑟,𝑡|𝑋𝑟,00, 𝑋𝑟,93}, directly but since it is driven entirely by 

observables we can use a non-parametric approach to estimate it; i.e. we can run a regression of  

 

𝛥𝑦𝑟,𝑡 = 𝜆1𝛥𝑁𝐺𝐸𝑟,𝑡 + 𝜙(𝑋𝑟,00, 𝑋𝑟,93) + 𝛥𝜉𝑟,𝑡 
(F4) 

 

where 𝜙(𝑋𝑟,00, 𝑋𝑟,93) is approximated by a series expansion or similar non-parametric method. Note that 𝜆1 and 

𝜙(𝑋𝑟,00, 𝑋𝑟,93) are separately identifiable because 𝛥𝑁𝐺𝐸 is determined by both X variables and EU rules that 

change over time. This is very similar to a regression discontinuity approach where we control for the 

(unknown) running variable 𝜙(𝑋𝑟,00, 𝑋𝑟,93).  
We provide results using this approach in Online Appendix Table A10 for both employment and 

unemployment. The estimates are significant and larger in absolute magnitude than the OLS estimates in Table 

4 column (1). However, they are smaller than our preferred IV results in column (4) of Table 4. 

One reason for this difference could be measurement error in the running variable in equation (F4). The 

measurement error could be simply that the variables we use are not exactly the ones used to determine 

eligibility of an area, because for example at the time the information might have come from an older vintage of 

data than the ones that we are using.  

As is well-known even classical measurement error can create serious biases in RD Designs. This is 

because continuous measurement error smooths over the discontinuity (see Battistin et al, 2009). In many non-

RD design approaches like matching, estimators do converge at a standard rate to a biased value with classical 

measurement error (e.g. Battistin and Cheshire, 2014) and will be negligible for sufficiently small variance of 

the measurement error. By contrast, Davezies and Le Barbanchon (2017) show that in RD Designs even a small 

amount of classical measurement error results in inconsistency of the usual estimator. They show that this seems 

to be important not just in theory, but also in their Monte Carlo evidence and empirical application. The 

standard methods to deal with measurement error in the running variable are not applicable to our context where 

we know neither the true value of the running variable (even for a subset of the data) nor the cut-off (e.g. 

Battistin et al, 2009; Porter and Yu, 2015).  
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The advantage of the IV strategy we pursue in the main part of the paper is that the instrument may 

contain classical measurement error, but it will not cause bias so long as the instruments are not weak. And we 

showed the strength of instruments through standard techniques such as F-statistic in the first stage. 

 

F.3 A RD Design in Levels? 

 

Although we have described a potential RD Design in terms of differences in equation (F4), one could also 

imagine an RD Design using levels of the variables as in equation (F2). Consider the model in the period before 

the 2000 policy change (the same issues arise for post-2000): 

 

𝑦𝑟,𝑡 = 𝜆1𝑁𝐺𝐸𝑟,𝑡 + 𝑓( 𝑋𝑟,93) + 𝑣𝑟,𝑡 
 

Moment condition (F3a) implies that we can consistently identify 𝜆 under the usual RD assumptions. If we 

considered NGE as a discrete dummy (eligibility vs. non-eligibility), then the RD is considering areas “just 

above” the surface 𝑓( 𝑋𝑟,93)  where an area becomes eligible to areas “just below” the surface. The problem 

however is that we observe neither the running variable nor the cut-off. But we do observe all the elements of 

the running variable  𝑋𝑟,93. Thus, one might think the cut-off for the surface could be identified empirically from 

the data.  

Unfortunately, the complexity of the rules (plus potentially measurement error in the X’s) did not 

enable us to do this in a convincing way. The basic issue is that there are many indicators underlying the running 

variable (8 before 2000 and 9 afterwards) and these could be combined in a huge number of non-linear 

combinations. In addition, there are multiple NGE levels, so we are not just looking along the eligibility/non-

ineligibility boundary, but also at different levels of NGE. The only aspect of the rules where we could identify 

a clear difference was by using ex ante information for the cut-off for GDP per capita (see below). Here we were 

able to implement an RD design in levels, and although the results are qualitatively similar to our main results 

they are noisy. 

We also considered applying spatial discontinuity methods as first used in the paper by Dell (2010). 

Here the running variable is a function of geography (such as latitude and longitude). Unlike our context, 

however, the cut-off is known (it’s when you cross the boundary) and the number of dimensions underlying the 

running variable is smaller (two compared to 8 or 9).  

 

F.4 An RD Design in levels using a known cut-off for one of the elements of RSA rules  

 

While we know which area level statistics have been used to determine if an area is eligible for treatment, we do 

not know the exact threshold(s) that were used to classify areas. One exception is the GDP per capita relative to 

the EU wide average criteria. Only areas with a relative per capita GDP of below 75% are eligible for the 

maximum amount of support (“Tier 1” status).  

We consider using this threshold to generate a fuzzy Regression Discontinuity (RD) design. Note that 

in our main results we exploit many other criteria for eligibility that are based on the ward level. The 75% 

threshold, by contrast is based on the NUTS2 level of aggregation. There are over 10,000 wards but only 34 

NUTS2 levels in Great Britain, which severely reduces the variation in the source of identification. Furthermore, 

only four NUTS2 areas are below the 75% over the 1997 to 2004 period.  

This caveat notwithstanding Online Appendix Table A9 details the RD results. We estimate  𝑙𝑛𝑌 =
𝛽1𝐷 + 𝛽2(𝑅 − 75) + 𝛽3 [𝐷 × (𝑅 − 75)] + 𝜖𝑅𝐹  where R is the running variable (i.e. GDP per capital relative to 

EU average of the NUTS 2 region), D is a dummy variable equal to 1 if an area’s running variable is below 75% 

and 𝜖𝑅𝐹 is the error term. Similarly, our IV estimates are 𝑙𝑛𝑌 = 𝛽1,𝑁𝐺𝐸𝑁𝐺𝐸 + 𝛽2,𝑁𝐺𝐸(𝑅 − 75) + 𝛽3,𝑁𝐺𝐸  [𝐷 ∗
(𝑅 − 75)] + 𝜖𝑁𝐺𝐸 where we instrument NGE by D. 

In column (1) of Online Appendix Table A9 the dependent variable is simply the value of NGE. The 

coefficient on the threshold in this “first stage” is positive and significant, suggesting a 9 percentage point 

increase in NGE from crossing the threshold. This is consistent with an increased level of NGE from 18% to 

27% when crossing the threshold on average. In column (2) we present the reduced form for employment and in 

column (3) we present the IV result. In both cases the effect of the policy appears to be positive. Similarly, both 

reduced form and IV for unemployment (columns (4) and (5)) suggest that the policy reduces unemployment. 

Using the IV estimates a 10 percentage point in NGE causes a 19% increase in employment and a 14% 

reduction in unemployment. These are larger than our main estimates in the text. 

Although these implied effects are larger than our baseline estimates, they are very imprecisely 

estimated: neither is significant at conventional levels. This is unsurprising given the fuzziness of the design: the 

corresponding F-statistic on the first stage is only 7.3. The fuzziness of the RD design can also be seen in Online 

Appendix Figure A2. The break at the threshold is hard to see clearly due to the small number of observations. It 

is most visible for the NGE first stage but is much noisier for the labor market outcomes. 
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We also looked at empirically identifying cut-offs for all other variables in Online Appendix A2 that 

made up the policy rules as well as combinations of them. Although sometimes thresholds could be seen in the 

data for NGE and these policy variables (like GDP per capita), they were quite noisy. When using these 

thresholds in a RD Design like that for GDP per capita, we generally found that the point estimates suggested 

improved labor market outcomes, but with statistically insignificant effects (like Online Appendix Table A9).  

Hence, although it is reassuring that the RD design delivers point estimates that are not very different 

from our main results, they are imprecise. Our baseline IV approach that use the other criteria does help us 

obtain more precision in the results albeit at the expense of a more parametric specification. 

 

 

F.5 Other General Robustness tests: GE effects; longer time-period and matching 

 

We have conducted many other robustness tests, especially on the core baseline results of Table 4.  

First, we look to see if there are general equilibrium effects on wages by using average ln(wages) as an 

outcome variable in equivalent specifications to Tables 4 and 6. As argued in subsection II.C it is unlikely that 

there are substantive GE effects from the RSA policy given the magnitude of the sums spent and the nature of 

the policy. As expected, we never found significant effects (e.g. in the equivalent of column (4), Panel A of 

Table 4 NGE has a coefficient of 0.287 with a standard error of 0.877). Although the RSA policy also has no 

significant effect on wages in Table 6, we did find evidence of some equilibrium effects of SF. In the equivalent 

of column (5) of Table 6 SF has a coefficient (standard error) of 0.933(0.333). So, there may be some impact of 

this wider policy, even though we have shown it does not confound the RSA impact we identify. 

Second, we estimated the regressions over a longer time-period (from 1986 to 2004) which includes the 

policy change in 1993 as well as the one we use in 2000. Unfortunately, detailed information on the construction 

of the policy rules for the period before 1993 is not available so we cannot construct the rule change 

instruments. Hence, we only run regressions of outcome variables on actual NGE support levels.
22

 As noted 

above, data on unemployment and non-manufacturing employment is not available on a consistent basis pre-

1997 (and even the manufacturing series has some concerns in these earlier years). Nevertheless, putting these 

concerns aside, we find coefficients implying that an increase of support intensity by 10 percentage points leads 

to a growth of 2.8% more jobs (see Online Appendix Table A11, column (2)). This is somewhat higher, but not 

significantly different from the results in column (1) which just uses the 1997-2004 period. 

Third, we examined trimming the sample on a common support; i.e. we exclude observations that fall 

into the extremes of the distribution of employment and unemployment across wards. We successively drop 

larger bands from the edges of the distribution (1%, 5%, and 10%). None of this has much effect on the 

estimates (see last six columns of Online Appendix Table A11). 

 

 

APPENDIX G: RSA COSTS PER JOB AND A COMPARISON WITH OTHER 

ESTIMATES IN THE LITERATURE 

 
G.1 Calculating additional jobs in our study 

 

We work out the cost per job by looking at the reduction in jobs that would arise if, instead of redrawing the 

map in 2000, the government had abolished the policy, i.e. had set NGE to zero in all areas. Note that while our 

model is specified using logs of employment we cannot use the approximation that the resulting estimates 

represent percentage changes because this only holds for relatively small changes. However, in our case we 

have changes in NGE which can be up to 35%. Hence, we calculate counterfactual employment levels when 

support is withdrawn in an area r as: 

 

ln 𝐸𝑀𝑃𝑟
𝐶𝐹 = ln𝐸𝑀𝑃𝑟 − 𝜆̂1𝑁𝐺𝐸𝑟 

 

Where 𝐸𝑀𝑃𝑟
𝐶𝐹 is the counterfactual employment level in the absence of the policy, EMPr is the current level 

of employment and 𝛽 is the estimated coefficient on NGE. Consequently, the reduction in jobs in area r 

becomes  

 

                                                 
22

 Another limitation is that there is no consistent series of ward level unemployment for the period before 1996 

so we just focus on employment.   
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∆𝐸𝑀𝑃𝑟
𝐶𝐹 ≡ 𝐸𝑀𝑃𝑟

𝐶𝐹 − 𝐸𝑀𝑃𝑟 = (
1

exp(𝛽̂𝑁𝐺𝐸𝑟)
− 1)𝐸𝑀𝑃𝑟 

 

We calculate this counterfactual employment for each area using the area average level of employment from 

2000-2004 (to smooth out any yearly variation) and the area level of NGE pre-2000.  

In the main text, we do this calculation using the area level IV coefficient of 0.953. Using this 

coefficient we estimate that 156,000 jobs would have been lost if the policy had been abolished in 2000. With 

costs of £288 million, calculated as reported in the text, this gives us a cost per job of £1,846. Taking the more 

conservative OLS coefficients of 0.124 we get smaller job effects of just under 22,400 and a correspondingly 

higher cost per job of £12,857, again as reported in the text. 

For the purposes of comparing to other studies, it is also useful to have an estimate from the firm level 

regressions. As the effect on large firms is insignificant from zero, we use the IV coefficient for small firms of 

0.441 and calculate as before, but now using area level employment in supported small firms as the basis for the 

area level calculation. This gives an estimate of 20,790 jobs and a cost per job of £13,852. 

 

 

G.2 Comparing the magnitude of our effects with other Place-Based Policies 

 

We provide information on several other cost-per job estimates that have been published for similar area-based 

policies. To identify these studies, we started with the What Works Centre for Local Economic Growth (2016a, 

b) reviews which report results from a systematic review of the evaluation evidence. Systematic search terms 

were developed and applied on multiple platforms covering published research, working papers and government 

reports (e.g. EconPapers, Google Scholar, Gov.co.uk and OECD.org). The results were sifted based on 

relevance (area-based policy evaluations, OECD focus, and English language reports) and robustness of method 

according to the Maryland Scientific Methods Scale (Sherman et al. 1998). The What Works Centre uses a 

methodological cut-off point which requires a before and after comparison for treated and a suitable control 

group.
23

 The review reports that the initial search found more than 2,100 policy evaluations and that sifting left 

58 evaluations that met this minimum criterion. From these, we took the three studies that provided cost per job 

estimates.   

We supplemented these three studies with additional cost per job estimates from more recently 

published evaluations of area-based policies identified using additional searches on Google Scholar. These 

additional searches mainly focused on identifying evaluations of area-based policies (although we also included 

one study that provided loans rather than grants to small businesses) published in the leading peer reviewed 

journals and other journals in the relevant field (which we judged to be “Urban Economics” given the nature of 

the intervention).  

Ultimately, we found six cost-per job estimates for area-based policies that are reported in Online 

Appendix Table A21 (these are drawn from eight separate papers and we include our own estimates in this 

paper for comparison). We report the name of the program (column (1)), the country where the program was 

implemented (column (2)), a brief description of the intervention (column (3)), the econometric methodology 

(column (4)), the unit of analysis (column (5)), the cost per job estimate (column (6)) in 2010 US$, and the 

source articles (column (7)). We converted to US dollars using the original currency to dollar exchange rate in 

the price base year for reported costs. For example, if program costs were originally reported in £2003, then the 

£-$ exchange rate for 2003 would have been used. Historical yearly average exchange rates were taken from 

www.ofx.com. Finally, we adjusted to 2010 constant prices using a consumer price index for the US taken from 

the World Bank at https://data.worldbank.org/.  

This exercise also identified several studies which provided less direct estimates of the cost per job – 

either modelling these from evaluations for other outputs (e.g. productivity), undertaking calculations using 

additional ad-hoc assumptions (e.g. imposing additionality or multiplier assumptions), or reporting ex-ante 

appraisal estimates. Figures for these studies are available on request. The range of costs is similar to those 

reported in Online Appendix Table A21. 

Our own cost per job estimates of RSA in row 1 of Online Appendix Table A21 of $3,541 looks much 

lower than those reported in the other studies. Two methodological differences help explain our lower cost per 

job numbers. First, two of the three area-based studies reported in rows 4 and 5 use OLS rather than IV. If we 

use our OLS coefficients we derive a cost per job of $24,662 (reported in row 2), which is within the range of 

these two studies ($18,295 and $63,100).  

Second, results for the three firm-based studies (rows 7 through 9 of Online Appendix Table A21) 

should be based on cost per job estimates derived using coefficients from our firm-level regressions. Here, we 

                                                 
23

 In practice, this means any study that uses an identification strategy based on a minimum Conditional 

Independence Assumption on observables such as propensity score matching or regression. 

http://www.ofx.com/
https://data.worldbank.org/
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need to account for the fact that the effect of RSA on large firms is zero. Doing this by using data on small firms 

and the coefficient from the small firm only regressions gives a cost per job of $26,572 (row 3). This is higher 

than the US figure (row 7), but lower than the two Italian studies (rows 8 and 9). This suggest that ignoring (in 

our case positive) area level multipliers over-estimates the cost per job. It is also important to restrict job 

calculations to those firms for whom estimated effects are positive (in our case, small firms). 

The comparisons in Online Appendix Table A21 highlight two ways in which our cost per job 

estimates improve on existing studies. But it is also important to note that aspects of RSA policy design also 

help explain some of the differences that persist even after making these methodological adjustments. RSA is 

selective and targeted at manufacturing firms who can provide evidence that they require support and that they 

do not serve just the local geographical market. By contrast, most of the area-based policies in Online Appendix 

Table A19 are non-selective providing support to all firms within the target area regardless of whether they can 

provide evidence that the subsidies are likely to create additional jobs. To the extent that RSA procedures better 

identify firms generating additionality we would expect less deadweight for RSA than for these other non-

selective schemes (see the model discussion in Section II in the main text).  
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Figure A1: Distribution of the level of the policy rule instrumental variable 

Panel A: Level of the instrument 

 
Panel B: Change in the value of the instrumental variable 

 
Notes: Histograms of the policy rule instrument based on 10,737 wards. Panel B is 

,r tz  which is the actual IV 

used and Panel A is 
,r tz  constructed from the expected probability of being in each subsidy regime multiplied 

by the level of subsidy in that regime. It is constructed form the ordered probits in Table 3 from which we can 

calculate the probability that an area falls into a subsidy regime in all years and the actual level of NGE. See 

Appendix B for further details. 
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Figure A2: Regression discontinuity at 75% GDP per capita relative to EU average 

threshold 

NGE 

 

ln(Employment/Population) 

 

Ln(Unemployment/Population) 

 

 

 

Notes: The running variable on the horizontal axis is GDP per capita of the NUTS2 area 

relative to the EU wide average level. The diamonds show the mean value (across wards) of 

the dependent variable at a particular value of the running variable. Shaded areas are 95% 

confidence intervals. 
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Figure A3: Alternative approaches to spatial clustering 

Immediate neighbors 

 

Close Neighbors 

 

Notes: The Figure illustrates our two spatial clustering approaches based on similar support levels in 

neighboring clusters. The colored areas show common clusters based on the same support level in both the pre 

and post 2000 period for neighboring areas (wards). Non-treated wards are grouped based on NUTS2 areas 

shown in white. On the left, neighboring is defined as two wards having a common contiguous border leading to 

70 treated and 32 non-treated clusters. On the right, neighboring it is defined as being no further than 1km away 

leading to 48 treated and 32 non-treated clusters. The corresponding regression results are reported in Online 

Appendix Table A20 Panels B and C, respectively. 
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Table A1: Descriptive statistics across areas (Wards), Manufacturing 

 
  (1) (2) (3) (4) (5) (6) (7) (8) 

  

Aggregate 

expenditure 

on RSA 

(£m) 

Average 

NGE 

(maximum 

investment 

subsidy)  

rate in 

eligible 

wards 

Eligible 

Wards (as 

% of all 

Wards) 

Jobs in 

eligible 

areas 

(millions) 

Plants in 

Eligible 

Areas 

Jobs in 

eligible 

areas (as 

% of all 

jobs) 

% plants 

in eligible 

areas 

% plants 

in eligible 

areas 

receiving 

support 

1997 158.27 0.241 31.9 1.230 44,755 42.1 32.4            4.4 

1998 115.32 0.241 31.9 1.211 43,575 41.9 32.3 3.1 

1999 91.76 0.241 31.9 1.168 43,101 41.7 32.3 2.8 

2000 185.68 0.237 26.1 1.041 36,557 38.6  28.0 3.4 

2001 219.69 0.237 26.1 1.002 35,837 37.9 28.0 3.1 

2002 192.71 0.237 26.1 0.939 35,274 37.6 28.0 3.0 

2003 197.26 0.237 26.1 0.900 34,797 37.7 28.1 3.1 

2004 148.58 0.237 26.1 0.866 34,437 37.9 28.0 3.0 

Average 163.66 0.238 28.3 1.045 38,542 39.4 29.6 3.1 

 

Notes: Column (1) is total expenditure on RSA. Column (2) is the average NGE across eligible wards. Column 

(3) is the share of wards that are eligible for RSA. Column (4) are the number of jobs in eligible areas. Column 

(5) is the number of plants in eligible areas. Column (6) reports the jobs in eligible areas as a fraction of all jobs. 

Column (7) reports the plants in eligible areas as a fraction of all plants. Column (8) is the fraction of plants in 

eligible areas that receive support. All data refer to manufacturing sector. 

 

Source: Industrial Development Reports (various years) and authors’ calculation using the IDBR, ARD and 

SAMIS matched data. 

  



21 

 

Table A2 - Variables that define Rules for eligibility 

Variable 

 

Definition Timing of data 

used by EU for 

eligibility 

 

Source 

 

 

 

 

Used in which 

years for rules 

GDP per capita 

 

Value added in the area per person 

(NUTS2) 

1991 (for 1993);  

1994-96 average 

(for 2000) 

Eurostat 1993 and  

2000 

Population Density  

 

Number of inhabitants per square 

km (district) 

1981 (for 1993) 

1991 (for 2000) 

Census 

 

1993 and 2000  

Share of high 

Skilled workers  

 

 

Share of working residents aged 

over 16 in high skilled (SOC 

Groups 1 to 3) occupation (ward) 

1991 (for both) 

 

 

 

Census 

 

 

 

1993 and 2000 

Start-Up rate 

 

 

Annualized net percentage rate of 

growth of company VAT 

registrations (except retail and 

agriculture); i.e. total registrations 

minus de-registrations (district) 

1987-1991  

 

 

 

 

ONS Business 

Register 

 

 

1993  

Structural 

Unemployment rate  

Average annual unemployment 

(based on ILO definition) rate 5-

year average (district) 

1986-90 (for 1993); 

1992-96 (for 2000) 

 

 

ONS  

 

 

1993 and 2000 

Activity rate  

 

 

 

Fraction of working age population 

who are economically active. For 

men: 16-64; for women: 16-59. 

(ward) 

1991 (for both) 

 

 

 

Census 

 

 

 

1993 and 2000 

 

Employment Rate  

 

 

Residents in employment divided 

by population of working age 

(district) 

1992 

 

 

Labor Force Survey 2000 

Current 

Unemployment rate 

(Claimant Count) 

Average monthly unemployment 

rate over year. Based on residents 

claiming unemployment insurance 

divided by labor force (district) 

1991 (for 1993);  

1998 (for 2000) 

 

ONS 

 

 

1993 and 2000 

ILO Unemployment 

Rate  

Proportion of residential labor 

force who are “ILO” unemployed 

(district) 

1992 

 

 

Labor Force Survey 2000 

Long-duration 

Unemployment rate  

Number claiming unemployed 

insurance for more than a year as a 

fraction of the labor force (ward) 

1991 

 

 

 

Census 

 

 

 

1993 

Share of 

manufacturing 

workers 

Number of manufacturing 

employee jobs divided by total jobs 

(ward) 

1991 

 

 

Census 

 

 

2000 

Notes: These are the definitions of variables used by the EU to determine whether an area is eligible for RSA and if so, at what level 

of support. The definitions column also gives the level of aggregation that the data is defined at (in parentheses). ILO unemployed 

are defined as individuals who are (i) without a job, want a job, have actively sought work in the last four weeks and are available to 

start work in the next two weeks, or (ii) are out of work, have found a job and are waiting to start it in the next two weeks. People 

who are not claimants can appear among ILO unemployed if they are not entitled to unemployment related benefits. Similarly, 

unemployment claimants may not appear in the LFS measure of unemployment if they state that they are not seeking, or are not 

available, to start work. The average district in our data contains 25 wards and the average NUT2 contains 15 districts. 

Source: Official Journal of the European Communities (1998), OJ C 74, 10.3; and OJ C 88/C 212/02, 12.8.1988; 

Department of Trade and Industry (1999) “The UK Government’s proposals for new Objective 2 areas” Official letter 

SG(2000) D/ 106293; Department of Trade and Industry (1993), “Review of the assisted areas of Great Britain. Background 

document on the new assisted areas map.”  
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Table A3: Changes in area eligibility for Structural Funds (SF) and RSA before and after 2000 

  (1) (2) (3) (4) (5) 

  Total 

Eligible for RSA and 

eligible for SF in 2000 

onwards 

Eligible for RSA and 

not eligible for SF 2000 

onwards 

Non-eligible for RSA 

and eligible for SF 2000 

onwards 

Non-eligible for RSA 

and non-eligible for SF 

2000 onwards  

1. Eligible for RSA 

and eligible for 

SF in 1993-99 

2,424 

(22.58% of total wards) 
1,743 0 681 0 

 % of row 100% 71.91% 0.00% 28.09% 0.00% 

2. Eligible for RSA 

and not eligible 

for SF in 1993-99 

1,004 

(9.35% of total wards) 
384 195 0 425 

  % of row 100% 38.25% 19.42% 0.00% 42.33% 

3. Non-eligible for 

RSA and eligible 

for SF in 1993-99 

703 

(6.55% of total wards) 
175 0 528 0 

  % of row 100% 24.89% 0.00% 75.11% 0.00% 

4. Non-eligible for 

RSA and non-

eligible for SF in 

1993-99 

6,606 

(61.53% of total wards) 
177 134 0 6,295 

  % of row 100% 2.68% 2.03% 0.00% 95.29% 

Total 10,737 2,479 329 1,209 6,720 

Notes: This is the transition matrix showing numbers of wards before and after the policy change in 2000 (for RSA and SF). For example, column (1) of the first row details 

that there were 2,424 areas eligible for both RSA and SF pre-2000 (22.58% of total wards as noted in parentheses below the figure). The next 4 rows show how these rows 

transitioned into different RSA and SF regimes. For example, column (2) shows 1,743 (71.91%) remained eligible for both RSA and SF after 2000 whereas column (4) shows 

681 (28.09%) lost access to RSA but not SF. 
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Table A4: Estimates of parameters on eligibility rule changes for Structural Fund (SF) IV 

 

 Year 1993 2000 

Dependent Variable: Eligibility for Structural Funds 

GDP per capita  -0.046 -0.057 

 

(0.002) (0.002) 

Population density  -0.029 -0.046 

 (0.002) (0.003) 

Share of high skilled workers -0.501 -0.406 

 (0.149) (0.155) 

Employment rate -2.955 -6.703 

 (0.376) (0.524) 

Current unemployment rate  33.835 52.296 

(claimant count) (2.479) (2.600) 

ILO unemployment  rate  4.274 0.162 

 (0.793) (0.912) 

Share of manufacturing workers  3.028 2.127 

 

(0.215) (0.218) 

Robberies 263.371 265.231 

 (19.781) (21.382) 

Drug Crimes -87.770 12.598 

 (6.250) (2.013) 

Burglaries 35.245 7.093 

 (0.046) (0.057) 

Log Likelihood -4,261.914 -3,900.468 

Number of areas (wards) 10,737 10,737 
Notes:  denotes significance at the 1% level, 5% level and 10% level. The table reports the regressions we perform to derive instruments for structural fund eligibility of an 

area. For that we regress in column (1) a dummy indicating structural fund eligibility pre-2000 on various area level statistics evaluated before 1993. The second column 

performs the same regression on a dummy indicating SF eligibility post-2000 (with the same control variables). Standard errors (in parentheses below coefficients) are 

clustered at the area (ward) level.    
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Table A5: Controlling for Other policies – Unemployment as an outcome 

 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent variable: Ln(Unemployment)  

A. Reduced Form      

Rule change IV -0.336 -0.367 -0.363 -0.399 -0.350 -0.346 -0.292 -0.253 

 (0.069) (0.069) (0.069) (0.069) (0.069) (0.068) (0.069) (0.069) 

Employment 

Zones 

-0.017      -0.032 -0.028 

 (0.008)      (0.008) (0.008) 

Coalfield  -0.009     0.004 0.004 

Regeneration 

Trust 

 (0.006)     (0.006) (0.006) 

Regional Venture    0.036    0.041 0.039 

Capital Funds   (0.008)    (0.008) (0.008) 

Enterprise Grants    -0.066   -0.053 -0.050 

    (0.006)   (0.007) (0.007) 

New Deal for      0.025  0.050 0.045 

Communities     (0.007)  (0.007) (0.007) 

Devolution to      0.068 0.062 0.073 

Wales and 

Scotland 

     (0.007) (0.007) (0.007) 

Structural Fund         -0.108 

IV        (0.023) 

B. IV      

NGE -0.407 -0.420 -0.413 -0.463 -0.394 -0.388 -0.346 -0.234 

 (0.084) (0.079) (0.078) (0.081) (0.078) (0.076) (0.082) (0.096) 

Employment 

Zones 

-0.004      -0.024 -0.016 

 (0.009)      (0.009) (0.009) 

Coalfield  -0.019     -0.002 -0.001 

Regeneration 

Trust 

 (0.006)     (0.006) (0.006) 

Regional Venture    0.031    0.038 0.036 

Capital Funds   (0.008)    (0.008) (0.008) 

Enterprise Grants    -0.083   -0.062 -0.064 

    (0.007)   (0.007) (0.007) 

New Deal for      0.031  0.058 0.054 

Communities     (0.007)  (0.007) (0.007) 

Devolution to      0.086 0.074 0.077 

Wales and 

Scotland 

     (0.007) (0.007) (0.007) 

Structural Fund        -0.087 

        (0.026) 

Number of areas 

(wards) 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

10,737 

 

 

Observations 85,896 85,896 85,896 85,896 85,896 85,896 85,896  
Notes:  denotes significance at the 1% level, 5% level and 10% level. This is the same specification as Table 7 

except with ln(unemployment) instead of ln(manufacturing employment) as the dependent variable. Standard 

errors (in parentheses below coefficients) are clustered at the area (ward) level.  NGE (“Net Grant Equivalent”) 

is the level of the maximum investment subsidy in the area. The time-period is 1997-2004. Rule Change IV is 

described in text. Panel A has a specification identical to column (2) in Panel A of Table 4 except additional 

policy variables have been included (see text). Panel B has a specification identical to column (4) in Panel A of 

Table 4 except additional policy variables have been included (see text). 
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Table A6: Alternative ways of controlling for initial conditions in area regressions  

 (1) (2) (3) (4) 

Method  OLS Reduced Form First Stage IV 

A. Dependent variable: ln(Manufacturing Employment); No initial lagged values 

Maximum investment subsidy 0.218   1.140 

NGE (0.071)   (0.244) 

Policy Rule Instrument  1.007 0.883  

  (0.215) (0.032)  

B. Dependent variable: ln(Unemployment); No initial lagged values 

Maximum investment subsidy -0.226   -0.583 

NGE (0.025)   (0.076) 

Policy Rule Instrument  -0.515 0.883  

  (0.067) (0.032)  

C. Dependent variable: ln(Manufacturing Employment); Second order polynomial in all lagged 

characteristics  

Maximum investment subsidy 0.095   1.110 

NGE (0.071)   (0.247) 

Policy Rule Instrument  0.930 0.837  

  (0.204) (0.034)  

D. Dependent variable: ln(Unemployment); Second order polynomial in all lagged characteristics 

Maximum investment subsidy -0.139   -0.671 

NGE (0.024)   (0.079) 

Policy Rule Instrument  -0.562 0.837  

  (0.064) (0.034)  

E. Dependent variable: ln(Manufacturing Employment); Including predicted probabilities  

Maximum investment subsidy 0.139   0.887 

NGE (0.070)   (0.256) 

Policy Rule Instrument  0.786 0.886  

  (0.227) (0.033)  

F. Dependent variable: ln(Unemployment); Including predicted probabilities 

Maximum investment subsidy -0.127   -0.334 

NGE (0.024)   (0.078) 

Policy Rule Instrument  -0.296 0.886  

  (0.069) (0.033)  

Number of areas (wards) 10,737 10,737 10,737 10,737 

Observations 85,896 85,896 85,896 85,896 

Notes:  denotes significance at the 1% level, 5% level and 10% level. Standard errors (in parentheses below coefficients) 

are clustered at the area (ward) level.  NGE (“Net Grant Equivalent”) is the level of the maximum investment subsidy in the 

area. The time-period is 1997-2004. These specifications are the same as Table 4 except instead of including lagged linear 

controls used to define eligibility in 1993 (
,93rX ), Panels A and B exclude them, while Panels C and D include both linear 

controls and a second order polynomial in these terms (all cross products and quadratic terms). Panels E and F include the 

predicted probabilities of receiving a particular level of support as additional controls. These are derived from the 

multinomial regression of support level state on long lagged area level statistics, which we use to construct our instruments. 

(Table 3 columns (1) and (2)). 
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Table A7: Area Level regressions – Placebo regressions 1995-1999 
 

 (1) (2) 

Dependent Variable: ln(employment)   

Specification Baseline: 2000 Placebo: 1997 

Years 1997-2004 1995-1999 

   

Policy Rule Instrument 0.839 0.162 

  (0.228) (0.163) 

Number of areas (wards) 10,737 10,737 

Observations 85,896 53,685 

Notes:  denotes significance at the 1% level, 5% level and 10% level. Column (1) is the same specification as the reduced 

form employment equation of Table 4 Panel A using the baseline in 2000 when actual policy rule change took place.  The 

placebo in column (2) uses employment changes as if the policy change happened in 1997 in column (2).  

 

 

 

Table A8: Area level - Bootstrapped standard errors to account for generated 

regressors 
 

 Dependent Variable: Ln(Employment) Ln(Unemployment) 

Policy Rule Instrument 0.839 -0.365 

 

(0.215) (0.072) 

Number of areas (wards) 10,737 10,737 

Observations 85,896 85,896 

Notes:  denotes significance at the 1% level, 5% level and 10% level. The standard errors in most of our tables ignore the 

fact that our policy rule instrument emerges after regressing support status on various area level statistics taken into account 

by EU rules; i.e. as reported in Table 3. Here we provide bootstrapped results (clustered at the ward level, 200 replications). 

This shows standard errors very similar to those simpler ones found in column (2) of Table 4. 
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Table A9: Regression Discontinuity Design approach using only GDP per capita policy variable 

 

(1) (2) (3) (4) (5) 

Dependent Variable NGE ln(Employment) Ln(Unemployment) 

 

First Stage Reduced Form IV Reduced Form IV 

D (Threshold) 0.091 0.161  -0.119  

 (0.034) (0.188)  (0.161)  

NGE   1.7665  -1.299 

 

  (2.339)  (1.962) 

Running variable -0.017 0.064 0.094 -0.082 -0.104 

 

(0.005) (0.021) (0.060) (0.018) (0.05) 

Running  0.006 -0.084 -0.095 0.092 0.100 

Variable Threshold (0.006) (0.024) (0.037) (0.020) (0.032) 

      

Observations 27,562 27,562 27,562 27,562 27,562 

Wards 4,079 4,079 4,079 4,079 4,079 

# of NUTS2 clusters 14 14 14 14 14 

Notes:  denotes significance at the 1% level, 5% level and 10% level. Coefficients are from OLS regressions, with standard errors below clustered by NUTS2. An 

observation is a ward-year. All regressions include ln(population in the ward).  Bandwidth is (wards in) NUTS2 areas between 60% to 95% GDP per capita of EU average. 

See text for exact specifications. The dependent variables in columns (2) through (4) are normalized on area population. 

 

Table A10: Alternative RD Design 
 (1) (2) 

Dependent Variable: Employment Unemployment 

Maximum investment subsidy (NGE) 0.160 -0.210 

 (0.070) (0.024) 

Area statistics defining support eligibility pre-2000 Yes Yes 

Area statistics defining support eligibility post-2000 Yes Yes 

Number of areas (wards) 10,737 10,737 

Observations 85,896 85,896 
Notes:  denotes significance at the 1% level, 5% level and 10% level. Coefficients are from OLS regressions, with standard errors below clustered by ward.  NGE (“Net 

Grant Equivalent”) is the level of the maximum investment subsidy in the area. All columns include a full set of linear (lagged) characteristics used to define eligibility in the 

pre and post-2000 period. The time-period is 1997-2004. Dependent variables are in differences of relative to the base year of 1997.   
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Table A11: Robustness of Ward Level regressions – Long time horizon (1986-2004) and Common Support 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Var: ln(Employment) Ln(Employment) Ln(Unemployment) 

Years 1997-2004 1986-2004 1997-2004 1997-2004 1997-2004 1997-2004 1997-2004 1997-2004 

Trimming: None None 1% 5% 10% 1% 5% 10% 

NGE 0.169 0.280       

 

(0.057) (0.071)       

Rules Change IV   0.895 0.856 0.958 -0.419 -0.322 -0.313 

   (0.234) (0.269) (0.303) (0.068) (0.073) (0.079) 

         

         

# of areas(wards) 10,737 10,737 10,322 8,755 6,985 10,322 8,755 6,985 

Observations 85,896 204,003 82,576 70,040 55,880 82,576 70,040 55,880 

Notes:  denotes significance at the 1% level, 5% level and 10% level. Each cell is from a different regression and each of the eight panels is a different sample and measure of 

the treatment effect. Columns (1) and (2) are by OLS (as we do not know pre-1993 policy rules to construct IVs) and include a full set of area fixed effects and time dummies 

(so within groups rather than the standard long-differences regressions as it is unclear which year to use as baseline). Standard errors below coefficients are clustered by area 

(ward level) in all columns. The time-period is 1986-2004 in columns (1) and (2) and 1997-2004 in the other columns. NGE is maximum investment grant subsidy. Columns 

(3)-(8) trim the sample to get a closer common support and re-run the reduced form of Table 3 Panel A column (2). “1%” trims the sample at the lowest and top percentiles, 

“2%” trims from 2
nd

 to 98
th

 percentile, etc. 
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Table A12: Alternative Firm Size cut-offs, Plant-level employment regressions  

 
 

 (1) (2) (3) (4) 

  OLS Reduced Form First Stage IV 

Panel A. Small Firm employment less than 40 in 1996 (583,259 observations; 86,109 firms; 9,874 

areas) 

NGE -0.002   0.429 

 (0.027)   (0.096) 

Policy Rule   0.292 0.680  

Instrument  (0.064) (0.040)  

Panel B. Large Firm employment greater than 40 in 1996 (70,126 observations; 10,659 firms; 

4,008 areas) 

NGE 0.065   0.200 

 

(0.052)   (0.191) 

Policy Rule   0.126 0.629  

instrument  (0.120) (0.052)  

Panel C. Small Firm employment less than 60 in 1996 ( 601,976 observations; 88,837 firms  

9,893 areas) 

NGE 0.004   0.431 

 

(0.026)   (0.094) 

Policy Rule   0.292 0.679  

instrument  (0.062) (0.040)  

Panel D. Large Firm employment greater than 60 in 1996 (51,409 observations; 7,931 firms; 

3,466  areas) 

NGE 0.055   0.174 

 

(0.059)   (0.221) 

Policy Rule   0.11 0.632  

Instrument  (0.140) (0.052)  

Notes:  denotes significance at the 1% level, 5% level and 10% level. Standard errors (in parentheses below 

coefficients) are clustered at the area (ward) level.  These are all plant-level regressions splitting the samples by 

firm size in 1996 (or the year the plant enters the sample). Each cell is from a different regression. All columns 

include a full set of area fixed effects time dummies. Standard errors below coefficients are clustered by area 

(ward level) in all columns. The time-period is 1997-2004. Policy Rule instrument is described in text. 
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Table A13: Do small firms respond to treatment more because they are younger?  

 

 

  (1) (2) (3) (4) (5) 

Dependent variable: ln(employment)      

Young = Alive for no more than:  3 years 4 years 5 years 6 years 

NGE 0.034 0.043 0.067 0.047 0.071 

 

(0.184) (0.184) (0.185) (0.186) (0.187) 

NGE × Small Firm 0.407 0.408 0.430 0.429 0.442 

 

(0.200) (0.201) (0.201) (0.203) (0.202) 

NGE × Young firms  -0.187 -0.396 -0.108 -0.162 

  (0.315) (0.225) (0.170) (0.160) 

      

Observations 653,385 653,385 653,385 653,385 653,385 

Firms 96,768 96,768 96,768 96,768 96,768 

Number of Areas (wards) 9,975 9,975 9,975 9,975 9,975 

      

Notes:  denotes significance at the 1% level, 5% level and 10% level. These are specifications equivalent to 

Table 10 Panel A column (4) except that we include additional interactions as specified. Column (1) includes an 

interaction with “small” - defined as firms with less than 50 employees (as in Table 10) only. Columns (2) to (5) 

are based on different definitions of a “young” firm. Column (2) defines young to be a firm that is one year old 

or younger; in column (3) young = 2 years old or less, etc. All treatment variables are instrumented using the 

equivalent interactions between the policy rule instrument and the respective indicators for “small” and 

“young”.  

 

  



 31 

Table A14: Is absence of policy effect on plants in large firms because they 

receive less subsidies?  
 

 (1) (2) (3) 

Method OLS First Stage IV 

Sample: Pooled across all plants, 653,385 observations on 96,768 plants, 9,975  wards  

A. Pooled, Dummy for subsidy receipt 

Receiving any subsidy? -0.004  1.658 

RSA>0 (0.011)  (0.464) 

Policy Rule Instrument  0.188  

  (0.040)  

B. Pooled, subsidy amount    

ln(subsidy) 0.001  0.276 

RSA  (0.001)  (0.112) 

Policy Rule Instrument  1.132  

  (0.418)  

Sample: Small (Plants in Firm with under 50 employees) 594,356 observations on 87,728 plants, 

9,880 wards  

C. Small, Dummy for subsidy receipt 

Receiving any subsidy? -0.02  1.891 

RSA>0 (0.013)  (0.607) 

Policy Rule Instrument  0.158  

  (0.037)  

D. Small, subsidy amount 

Ln(subsidy) 0.000  0.329 

RSA  (0.001)  (0.160) 

Policy Rule Instrument  0.908  

  (0.401)  

Sample: Large (Plants in Firm with over 50 employees), 59,029 observations on 9,040 plants, 

3,708 wards  

E. Large, Dummy for subsidy receipt 

Receiving any subsidy? 0.022  0.120 

RSA>0 (0.018)  (0.345) 

Policy Rule Instrument  0.375  

  (0.139)  

F. Large, subsidy amount    

ln(subsidy) 0.002  0.019 

RSA  (0.002)  (0.055) 

Policy Rule Instrument  2.384  

  (1.569)  
Notes:  denotes significance at the 1% level, 5% level and 10% level. Each cell is from a different regression 

and each of the six panels is a different sample and measure of the treatment effect. Standard errors below 

coefficients are clustered by area (ward level) in all columns. The time-period is 1997-2004. Policy Rule 

instrument is described in text. “Receiving any subsidy” (RSA>0) is a dummy switched on when the firm 

begins receiving an investment subsidy and ln(subsidy), RSA, is the log of (1+the amount of subsidy received). 

All columns include a full set of long memory area statistics. All variables are in differences of ln(1+Y) relative 

to the base year 1997, where Y is the raw value of the variable. 
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Table A15: RSA Impact in large vs small firms 
 

 

  (1) (2) (3) (4) 

  

Average 

Subsidy 

amount 

(£1,000s) 

Average 

number of 

employees 

Elasticity 

between 

employment 

and subsidies 

Marginal 

Impact of 

subsidy 

Small Firm (under 50) 29.45 18 0.329 0.201 

Large Firm (over 50) 107.19 211 0.012 0.024 
Notes: The Table calculates the marginal effect of £1,000 of subsidy on the number of jobs, split by large and 

small firms. Column (1) is the average subsidy received and column (2) is the average plant size from our data 

1997-99. In column (3) we report the elasticity between jobs and subsidies received (  ) as estimated in 

column (3) of Online Appendix Table A14 for small firms (Panel D) and large firms (Panel F). Since 

lnL

ln








 where L = employment and  = subsidy, the marginal effect of a $ of subsidy on the number of 

jobs is: 
L L


 





. This is given in column (4). It shows that the marginal impact of subsidies on jobs is over 

eight times (= 0.201/0.024) bigger in plants belonging to small firms rather than large firms. 
 

 

 

Table A16: Alternative ways of measuring firm-level productivity  

 

 (1) (2) (3) 

Method of measuring TFP: Factor Share Regression MU OMEGA 

Policy Rule instrument -0.034 -0.017 0.336 

 

(0.043) (0.065) (3.206) 

    

Observations 45,511 45,511 18,999 

Firms 21,389 21,389 9,139 

 

Notes:  denotes significance at the 1% level, 5% level and 10% level. These are reduced form specifications 

corresponding to column (2) of Panel E in Table 11. “Factor Share” method in column (1) reproduces the results 

reported in Panel E of Table 11 for reference; i.e. TFP is computed using a “factor share” method and relative to 

an industry by year average “Regression” method in column (2) includes (the log of) labor, materials and capital 

as additional control variables in a specification where the dependent variable is ln(revenue). “MU OMEGA” in 

column (3) implements the structural production function framework proposed in Martin (2012) which takes 

into account firm specific variation in market power when computing TFP. The exact method of construction is 

in the final subsection of Appendix C. 
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Table A17: Firm level regressions with capital intensity interactions  
 

 Dependent variable: ln(employment)     

Policy Rule Instrument 0.519 0.247 

 

(0.112) (0.137) 

Policy Rule Instrument × High Capital Intensity  0.525 

 

 (0.200) 

Observations 72,902 72,902 

Firms 12,242 12,242 

Notes:  denotes significance at the 1% level, 5% level and 10% level. These are specifications equivalent to 

column (2) of Table 11 Panel B.  Standard errors (in parentheses below coefficients) are clustered at the area 

(ward) level.  Capital intensity is firm level average capital to labor ratio before 2000. “High capital intensity” is 

a dummy equal to one if capital intensity is above the sample median and zero otherwise. Sample is smaller than 

in other firm level results because firms without valid observations for pre-2000 capital intensity are excluded. 

 

 

 

 

Table A18: Instrumenting NGE with Policy Rule Instrument (but using 

linear probability model instead of ordered probit for Table 3)  
 

 (1) (2) (3) (4) 

Method OLS Reduced Form First Stage IV 

A. Dependent variable: ln(Employment) 

Maximum investment subsidy 0.124   1.509 

NGE (0.070)   (0.255) 

Policy Rule Instrument  1.266 0.839  

  (0.208) (0.036)  

B. Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.137   -0.767 

NGE (0.024)   (0.099) 

Policy Rule Instrument  -0.644 0.839  

  (0.079) (0.036)  

Number of areas (wards) 10,737 10,737 10,737 10,737 

Observations 85,896 85,896 85,896 85,896 

Notes:  denotes significance at the 1% level, 5% level and 10% level. NGE (“Net Grant Equivalent”) is the level 

of the maximum investment subsidy in the area. All columns include a full set of area fixed effects time 

dummies. Standard errors below coefficients are clustered by area (ward level) in all columns. The time-period 

is 1997-2004. This Table corresponds to Table 4, however, we use a slightly different version of the policy rule 

instrument. Instead of the ordered probit reported in Table 3, the instrument here is based on a binary Probit of 

the event “NGE>0”.   
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Table A19: Other policies (introduced between 1997 and 2004) 

    

Policy Aim When Introduced? Area Eligibility 

New Deal for 

the Long 

Term 

Unemployed  

Helping long-term 

unemployed (over 25 

years old) into work. 

Mandatory work 

search, training or 

wage subsidy. 

July 1999 National 

Employment 

Zones (EZ) 

 

To improve the 

employability of the 

long-term unemployed 

through skill 

acquisition, fast-track 

job services and 

removal of restrictions 

to getting jobs.  

April 2000 In 15 disadvantaged 

areas EZ provision 

replaced New Deal for 

Long-Term 

Unemployed.  

Coalfields 

Regeneration 

Trust 

To support areas 

historically dependent 

on Coalfields. 

1999 Coalfields 

New Deal for 

Communities 

To tackle multiple 

deprivation in the 

poorest areas. 

1998-2008 17 areas 1998-2010; 22 

areas 1999-2011 (10 in 

London and others 

throughout England).  

9,900 people per area 

on average 

New Deal for 

18 - 24 year 

old 

unemployed 

people 

To help young 

unemployed people 

find work. Mandatory 

work search, training or 

wage subsidy. 

July 1999 National   

New deal for 

Lone Parents 

To encourage lone 

parents into work. 

April 1998  National  

 

New Deal for 

Partners of 

Unemployed 

People 

To give unemployed 

partners of unemployed 

access to employment 

programs. 

April 1999 National 

New Deal for 

Disabled 

People 

Helping people off 

disability benefit and 

into work  

July 2001 National  
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Job Centre 

Plus 

Merged services of 

working age welfare 

and unemployment 

benefits. Increased IT 

spending and 

incentives for public 

sector workers. Aim of 

getting more benefit 

claimants into work. 

April 2002 National  

Phoenix Fund To encourage 

entrepreneurship in 

disadvantaged areas. 

1999 National 

Enterprise 

Fund 

To give entrepreneurs 

access to finance by 

creating a £180m fund 

for debt and equity 

finance to SMEs with 

growth potential (e.g. 

UK High Technology 

growth fund 

specialized in fund of 

fund investments in 

venture capital). 

December 1998   National 

Regional 

Venture 

Capital Funds  

Provision of small scale 

equity (under 

£500,000) to firms with 

growth potential.  

West Midlands and 

East of England from 

2002 

All England from 2003 

Grant for 

research and 

development  

To provide grants for 

investigating 

innovative ideas and 

knowledge transfer.  

1999 National 

Single 

Regeneration 

Budget 

To support local 

initiatives to make a 

contribution towards 

the area regeneration. 

1994-2002 National  

 
Notes: Details of different policies that could potentially confound the effects of RSA. 
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Table A20: Alternative approaches to spatial correlation 
Panel A: Clusters based on Travel to Work Areas (TTWA); 322 clusters  

Method OLS Reduced Form First Stage IV 

Dependent variable: ln(Manufacturing Employment) 

Maximum investment subsidy 0.124   0.953 

NGE (0.080)   (0.279) 

Policy Rule Instrument  0.839 0.881  

  (0.238) (0.133)  

 Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.137   -0.414 

NGE (0.052)   (0.198) 

Policy Rule Instrument  -0.365 0.881  

  (0.180) (0.133)  

Number of Clusters 322 322 322 322 

Panel B: Clusters based on immediate neighbors; 102 clusters 

Dependent variable: ln(Manufacturing Employment) 

Maximum investment subsidy 0.124   0.953 

NGE (0.082)   (0.330) 

Policy Rule Instrument  0.839 0.881  

  (0.259) (0.140)  

Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.137   -0.414 

NGE (0.053)   (0.237) 

Policy Rule Instrument  -0.365 0.881  

  (0.197) (0.140)  

Number of Clusters 102 102 102 102 

Panel C: Clusters based on close neighbors; 80 clusters 

Dependent variable: ln(Manufacturing Employment) 

Maximum investment subsidy 0.124   0.953 

NGE (0.081)   (0.343) 

Policy Rule Instrument  0.839 0.881  

  (0.275) (0.145)  

Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.137   -0.414 

NGE (0.053)   (0.239) 

Policy Rule Instrument  -0.365 0.881  

  (0.198) (0.145)  

Number of Clusters 80  80 80 80 

Panel D: Clusters based on NUTS2 regions; 34 clusters 

Dependent variable: ln(Manufacturing Employment) 

Maximum investment subsidy 0.124   0.953 

NGE (0.087)   (0.458) 

Policy Rule Instrument  0.839 0.881  

  (0.367) (0.188)  

Dependent variable: ln(Unemployment) 

Maximum investment subsidy -0.137   -0.414 

NGE (0.058)   (0.278) 

Policy Rule Instrument  -0.365 0.881  

  (0.236) (0.188)  

Number of Clusters 34 34 34 34 

Notes: These are identical regressions to Table 4 (85,896 observations) except we allow the standard errors to 

be clustered at a higher level than the ward. Panel A clusters the standard errors at the Travel to Work Area 

(TTWA) level. Panel B clusters at the “neighboring ward” level defined to be wards that are (i) directly adjacent 

(ii) that receive the same level of support pre and post-2000. Wards not receiving any support are clustered at 

the NUTS2 level. Panel C defines neighboring wards more broadly to be (i) within 1km of each other and (ii) 

receiving the same level of support pre and post 2000. Wards not receiving any support are again clustered at 

the NUTS2 level. Panel D is the most conservative simply clustering at the NUTS2 level.  
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Table A21: Cost per job estimates in RSA compared to others in the literature 
 

 (1) (2) (3) (4) (5) (6) (7) 

# Program Country Program Description Method Unit Cost per job  

(2010 USD) 

Source(s) 

1 Regional Selective Assistance UK Investment subsidies to businesses in 

disadvantaged areas. 

IV Area 

(wards) 

3,541 This paper 

2 Regional Selective Assistance UK Investment subsidies to businesses in 

disadvantaged areas. 

DD Area 

(wards) 

24,662 This paper 

3 Regional Selective Assistance UK Investment subsidies to businesses in 

disadvantaged areas. 

IV Small 

Firms 

26,572 This paper 

4 Empowerment Zones US Grants, hiring credits and other benefits for 

businesses in distressed urban areas. 

DD Area 

(tract) 

18,295 Bartik (2010), Busso et al. (2010) 

5 Empowerment Zones US Grants, hiring credits and other benefits for 

businesses in distressed urban areas. 

DD Area 

(tract) 

63,100 Glaeser and Gottlieb (2008), Busso 

and Kline (2008) 

6 New Markets Tax Credit US Subsidised capital investment in low-income 

neighborhoods. 

RDD Area 

(tract) 

50,820 Freedman (2012) 

7 Small Business 

Administration loans 

US Guaranteed and partially-guaranteed loans up to 

$5.5m for small businesses. 

IV Firm 22,781 Brown and Earle (2017) 

8 Law 488/91 Italy Capital subsidies to businesses in least-developed 

regions. 

RDD Firm 42,638 Pellegrini and Muccigrosso (2017) 

9 Law 488/91 Italy Capital subsidies to businesses in least-developed 

regions. 

RDD Firm 68,409 Cerqua and Pellegrini (2014) 

 

Notes: Cost per job estimates have been converted from original units to US$ using yearly average exchange rates for the year that costs were reported for and then deflated 

to 2010 using a US consumer price index from the World Bank. Midpoints are taken where cost per job is reported as a range. In cases where base year is not stated, the last 

year of reported expenditures is taken. In the methods column: IV is instrumental variables, DD is differences-in-differences and RDD is regression discontinuity design.   If 

more than one source is cited, the first source provides the cost per job estimate based on job effects that are cited in the second source. 
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