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Definable Categorical Equivalence

Laurenz Hudetz

Abstract

This paper proposes to explicate theoretical equivalence by supplementing for-
mal equivalence criteria with preservation conditions concerning interpretation. I
argue that both the internal structure of models and choices of morphisms are as-
pects of formalisms that are relevant when it comes to their interpretation. Hence, a
formal criterion suitable for being supplemented with preservation conditions con-
cerning interpretation should take these two aspects into account. The two currently
most important criteria—generalised definitional equivalence (Morita equivalence)
and categorical equivalence—are not optimal in this respect. I put forward a cri-
terion that takes both aspects into account: the criterion of definable categorical
equivalence.
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1 Introduction

This paper puts forward a new criterion of formal equivalence of theories. Roughly
speaking, theories are formally equivalent when their formalisms are intertranslatable
in the sense that they can be logically or mathematically recovered from each other.
There are various explications of this idea. The criterion of definitional equivalence is
one of the oldest and most well-known ones. Recently, increasing effort has been devoted
to finding criteria of formal equivalence that improve on definitional equivalence: the
most important proposals are direct generalisations of definitional equivalence (Andréka,
Madarász, and Németi, 2008; Barrett and Halvorson, 2016) and category-theoretic cri-
teria (Halvorson, 2016; Halvorson and Tsementzis, 2017; Weatherall, 2016a). These new
criteria have been applied in several case studies.1

A well-known criticism of this project is that no criterion that focuses exclusively
on formalisms is able to capture full equivalence of theories while full equivalence is
what ultimately matters (cf. Coffey, 2014). Whether two theories are fully equivalent
depends on how their formalisms are empirically and ontologically interpreted. Different
interpretations lead to different equivalence judgements.

Coffey is right that one should not neglect interpretation when addressing the prob-
lem of full theoretical equivalence. However, this point is by no means a valid objection
against the project of explicating formal equivalence. This project is not committed to
the assumption that formal equivalence is necessary and sufficient for full equivalence
of theories. Instead, one can view the formal project as laying the groundwork for (suf-
ficient2) criteria of full theoretical equivalence. According to this view, full theoretical
equivalence is to formal equivalence what interpreted formalisms are to uninterpreted
ones. The idea is that full equivalence of theories (qua interpreted formalisms) obtains
if there is a way of translating between their formalisms that preserves empirical con-
tent as well as theoretical content beyond the empirical (if there is any). This idea has
been put forward, e.g., by Putnam (1983, pp. 38–39). In order to turn this idea into a
rigorous account, we need (1) a criterion of formal equivalence that is suitable for being
supplemented with preservation conditions regarding interpretation, (2) an explication
of what it is to endow a formalism with an interpretation and (3) a rigorous formulation
of preservation conditions.

This paper addresses the first point (but work devoted to the second and third point
is already in progress). In Section 2, I highlight two aspects of formalisms that are rele-
vant when it comes to interpreting a formalism. I briefly present the two currently most
important criteria of formal equivalence—generalised definitional equivalence (GDE)
and categorical equivalence (CE)—and point out that each of them takes into account
one such aspect while neglecting the other. In Section 3, I introduce the criterion of de-
finable categorical equivalence (DCE), which takes into account both relevant aspects.
Section 4 investigates the properties of DCE and how it is related to GDE and CE.

1See for example Andréka and Németi (2014), Barrett (2017), Barrett and Halvorson (2017), Bar-
rett, Rosenstock, and Weatherall (2015), Hudetz (2015), Lefever and Székely (2018), Rosenstock and
Weatherall (2016), Teh and Tsementzis (2017) and Weatherall (2016a).

2Putnam (1983, p. 40) argues that formal equivalence is even necessary for full equivalence.
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Section 4 contains results suggesting that DCE can also be of interest independently
of the motivations concerning interpretation described above. For instance, these results
shed new light on the criterion of GDE and answer a technical question about the
relationship between CE and GDE posed by Barrett (2018). There is a sense in which
DCE builds a bridge between CE and GDE. Thereby, it connects two main strands
of research about formal equivalence criteria: the category-theoretic approach and the
definability-theoretic approach. The results of this paper might be relevant to anyone
who is interested in either of these approaches.

2 Two criteria, morphisms and internal structure

To understand the new criterion, we first examine the criteria of GDE and CE. These
two criteria focus on different aspects of formalisms. GDE focuses on the internal consti-
tution of models, whereas CE focuses on relationships between models. I argue that both
of these aspects are relevant when it comes to interpreting a formalism. An adequate
criterion should take both into account.

2.1 Generalised definitional equivalence

The basic idea behind GDE is to count theories as formally equivalent just in case
one can define the vocabulary of each theory within the other theory such that this
introduction of vocabulary makes the two sides logically equivalent. This idea can be
made precise using only weak presuppositions about the structure of theories. All we
need is that a theory T comes with a class of models, Mod(T ), and that its models are
Σ(T )-structures of a signature Σ(T ).3 A signature is simply a collection of non-logical
symbols. It is not necessary to identify theories with their classes of models. Hence, this
requirement is compatible with both the syntactic and the semantic view of theories.
Moreover, signatures do not have to be single-sorted and first-order. They may just as
well be many-sorted and higher-order.4

Definition 1. T1 is GD-equivalent to T2 iff their classes of models Mod(T1) and
Mod(T2) have stepwise GD-expansions E1 and E2 such that E1 = E2. (For a definition
of ‘GD-expansion’ see Appendix A.)

In essence, GD-equivalent theories differ only in the choice of primitive vocabulary.
Since sort symbols also belong to the vocabulary of a theory, GD-equivalent theories
may differ in the sorts of objects they take as primitive. GDE allows that objects of a
sort taken as primitive in one theory have to be logically constructed in another theory.
Definitional equivalence is the special case of GDE where theories are required to have
the same primitive sorts.

3So models are taken to be structures in the model-theoretic sense (see Hodges, 1993).
4For details about higher-order signatures see Hudetz (2017), Johnstone (2002, Section D4.1) or

Awodey (1997, Chapter I, Section 1).
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For self-contained expositions of the criterion of GDE see Barrett and Halvorson
(2016) or Andréka, Madarász, and Németi (2008).5 Note that Halvorson and Barrett
call GDE ‘Morita equivalence’. 6 GDE is also closely related to the criterion of general
bi-interpretability as described by Hodges (1993, Section 5.4). There is a conjecture that
the two criteria are in fact equivalent. Yet, a proof is still missing.

2.2 Choices of morphisms as interpretive choices

GDE works well in many cases. However, there are cases in which the class of mod-
els of a formalism is endowed with additional structure that GDE is not designed to
take into account but that is relevant when it comes to possible interpretations. As
several authors have pointed out, it can be fruitful to endow a class of models with a
collection of morphisms when reconstructing the formalism of a theory (cf. Halvorson,
2016; Weatherall, 2016a,b; Nguyen, Teh, and Wells, 2017). Intuitively, morphisms are
structure-preserving mappings between models (also called ‘transformations’ or ‘sym-
metries’ in some contexts).

Among other things, this additional structure on a class of models can be used to
encode constraints on possible interpretations. Used in this way, a choice of morphisms
reflects which features of models are taken to be meaningful, i.e. intended to play a
representational role in possible applications.7 The idea is that only features invariant
under the chosen morphisms count as meaningful.8 For example, Euclidean geometry has
the group of Euclidean isometries as morphisms, whereas affine geometry has the larger
group of affine transformations as morphisms. So although distance is meaningful in
Euclidean geometry, it is not meaningful in affine geometry since it is not invariant under
all affine transformations. However, parallelism is still meaningful in affine geometry.
Note that even if two formalisms have exactly the same models, they may differ in
which morphisms they include. Also note that non-meaningful (surplus or auxiliary)
features of models can be of great practical usefulness and it may be hard and even
undesirable to eliminate them.

Since GDE does not take into account morphisms, it is unable to capture certain
cases of equivalence or inequivalence that are due to choices of morphisms between mod-
els. Weatherall (2016a) discusses examples of such equivalences. An example regarding

5For applications of GDE to formulations of special relativity, affine geometry and Newtonian kine-
matics see Andréka and Németi (2014), Barrett and Halvorson (2017) and Lefever and Székely (2018).

6The reason is that GDE is equivalent to the topos-theoretic notion of Morita equivalence for co-
herent first-order theories (cf. Tsementzis, 2017). Coherent theories are Morita equivalent iff they have
equivalent classifying topoi.

7Of course, choosing morphisms in not sufficient for interpreting a formalisms. It only sets an upper
bound on meaningfulness. Formalisms that include morphisms and in which certain formulas are des-
ignated as meaningful may be described as ‘pre-interpreted formalisms’. They are prepared for being
interpreted but not endowed with a particular interpretation.

8I only assume that the choice of morphisms is coupled with interpretive decisions. This implies
neither a commitment to a morphisms first approach, according to which morphisms are prior to the
identification of surplus structure (cf. Ismael and van Fraassen, 2003), nor to an interpretation first
approach, according to which the interpretive identification of surplus structure is prior to the choice of
morphisms.
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inequivalences will be discussed in Section 4.3.
So in order to deal with formalisms that are enriched with morphisms, we need a

criterion that takes morphisms into account. CE is such a criterion.

2.3 Categorical equivalence

In contrast to GDE, the criterion of CE compares classes of models endowed with
morphisms rather than bare classes of models of theories. A class of models endowed with
morphisms forms what is called a ‘category ’. A category C comprises a class of objects,
Ob(C), a class of morphisms (arrows) between these objects, Mor(C), an associative
composition operation for morphisms as well as an identity morphism from each object
to itself. Category theory provides a rigorous notion of equivalence of categories, on
which the criterion of CE is based. In order to define this notion, we need a few important
category-theoretic concepts.

A functor from one category to another maps objects to objects and morphisms to
morphisms in a way that preserves composition of morphisms and identity morphisms.
So functors are morphisms of categories. Natural transformations, on the other hand,
are morphisms of functors and natural isomorphisms are invertible natural transfor-
mations.9 Using these concepts, we can define when categories are equivalent. Roughly
speaking, categories are equivalent just in case they are related by functors that are
quasi-inverse to each other (and hence forget nothing that matters from a categorical
perspective).

Definition 2. C1 and C2 are equivalent categories iff there are functors

F : C1 → C2,

G : C2 → C1

such that their composition GF is naturally isomorphic to 1C1 and FG is naturally
isomorphic to 1C2 (where 1Ci is the identity functor on Ci for 1 ≤ i ≤ 2).

A closely related notion is that of duality. Two categories are said to be dual to each
other (also: dually equivalent or contravariantly equivalent) iff one category is equivalent
to the opposite of the other category, where the opposite of a category is the result of
reversing all of its arrows.

With these concepts at hand, we can state the criterion of CE for theories that come
with an associated category of models. If T is such a theory, let ‘Cat(T )’ denote its
category of models.

Definition 3. T1 is C-equivalent to T2 iff Cat(T1) and Cat(T2) are equivalent or
dually equivalent categories.

Philosophers of physics have applied this criterion in several case studies (cf. Barrett,
2017; Barrett et al., 2015; Hudetz, 2015; Rosenstock and Weatherall, 2016; Teh and
Tsementzis, 2017; Weatherall, 2016a).

9For details about these notions see any textbook on category theory, e.g. MacLane (1998) or Awodey
(2006).
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2.4 Internal structure of models matters for representation

The criterion of CE only takes into account how models are related by morphisms
and neglects other properties of models. In particular, it does not take into account
how models are internally structured. Yet, the internal constitution of models matters
when it comes to establishing representation relations between models and their target
systems.

Let me illustrate this point using a simple example. It is well-known that the cat-
egory of finite-dimensional vector spaces with linear mappings as morphisms is equiv-
alent to the category that has natural numbers as objects and real m × n-matrices as
morphisms. Up to isomorphism, there is exactly one vector space of dimension n. So
one replaces all vector spaces of dimension n with the natural number n and linear
mappings with corresponding matrices. Differences in how the objects of two equiva-
lent categories are internally structured are irrelevant from a purely category-theoretic
perspective. Nonetheless, such differences are by no means irrelevant for all scientific
purposes. Whenever vector spaces are used to model features of real-world systems, we
cannot simply replace them with natural numbers. Vector spaces posses internal struc-
ture: a set of vectors, the operations of vector addition and scalar multiplication, a zero
vector (and an underlying field of scalars). In applications, some of these features serve
representational purposes. For example, vectors might be used to represent forces acting
upon objects and the net-force on an object may be represented by a sum of vectors.
It is utterly impossible that a natural number n could serve the same representational
purposes as a vector space of dimension n. The number n simply lacks internal structure
necessary for fulfilling such representational roles.

These observations suggest two things. First, a formalism intended to serve repre-
sentational purposes can only be equivalently replaced by another formalism if their
models have the same representational capacities. Second, it is a necessary condition for
sameness of representational capacities that the models of each formalism have internal
structure that is sufficient for recovering the relevant internal structure of the models
of the other formalism.

It is hardly surprising that the fact that CE does not take into account the internal
structure of models leads to a trivialisation of CE in certain cases. It is easy to see that
CE collapses to a mere cardinality comparison of model classes when the theories in
question have “very few” morphisms. More precisely, any two theories with categories
of models that are rigid groupoids (i.e. where every morphism is an isomorphism and no
model has non-trivial automorphisms) are C-equivalent as soon as they have the same
number of non-isomorphic models. We will see in Section 4.1 that this does not hold for
DCE.

3 Definable categorical equivalence

The upshot so far is this: Both choices of morphisms and the internal structure of
models are aspects of formalisms that are relevant when it comes to their possible inter-
pretations. Hence, a criterion that is suitable for being supplemented with preservation
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conditions concerning interpretation should take these aspects into account. GDE and
CE are not optimal in this respect because GDE does not take into account choices of
morphisms and CE does not take into account the internal structure of models.10

In this section, I propose a criterion that is designed to take into account both
morphisms and the internal structure of models. The basic idea is to strengthen CE
by imposing a definability constraint on equivalence functors. For this reason, the new
criterion is called ‘definable categorical equivalence’. The definability constraint serves to
capture the above-mentioned idea that, if theories are formally equivalent, the models in
each formalism should have sufficient internal structure to recover the internal structure
of the other formalism’s models.

Before laying down the definition of DCE, some preliminary remarks are in order.
We consider theories T that come with an associated category Cat(T ) having the mod-
els of T as objects. We use the same assumptions about Mod(T ) as in the case of GDE
(see Section 2.1). So models are assumed to be higher-order structures.11 Construing
models of scientific theories as higher-order structures does not lead to a relevant loss
of generality (see Hudetz, 2017). Models such as dynamical systems, differentiable man-
ifolds, stochastic processes, causal graphs or games (in normal or extensive form) can
all be seen as higher-order structures. Moreover, theories with first-order structures as
models are subsumed as a special case.

The essential idea of DCE does not depend on this particular choice of represent-
ing formalisms of theories. DCE could in principle also be explicated in a different
framework in which we can rigorously talk about definability and models. I use the
model-theoretic framework because it is very general, comparatively simple, close to
mathematical practice and many philosophers are familiar with it. Moreover, it makes
a comparison with GDE possible, which is also naturally explicated in this framework.

There is only a mild requirement concerning morphisms in Cat(T ) since the type
of structures used as models does not necessarily determine what the relevant notion
of morphism is (cf. Awodey, 1997, p. 18; Landry, 2007). The only requirement is that
Σ(T )-isomorphic models of T should also be isomorphic in Cat(T ). The idea is that
being Σ(T )-isomorphic is the strictest notion of isomorphism for Σ(T )-structures. Σ(T )-
isomorphisms preserve all features of structures expressible in terms of the symbols in
Σ(T ). The notion of Σ(T )-isomorphism is the standard notion of isomorphism in model
theory.12 It is crucial that the above requirement allows that there are invertible mor-
phisms in Cat(T ), i.e. Cat(T )-isomorphisms, that are not Σ(T )-isomorphisms. For
example, gauge transformations serving as extra isomorphisms in the category of mod-
els of a potential-based formulation of classical electromagnetism are isomorphisms of

10To be fair, GDE and CE were not designed to take these aspects into account. So their lack of doing
so is by no means an objection against these criteria per se. It just speaks against using them for certain
purposes.

11One could easily lift the requirement that the objects are higher-order structures in the usual sense,
i.e. structures consisting of a set (or element) for each symbol of a higher-order signature: they could
also be higher-order models in other topoi than the topos of sets. But let us keep things simple and
classical for now.

12For a definition of Σ-isomorphism, see any model theory textbook, e.g. Hodges (1993, p. 5).
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this kind (cf. Weatherall, 2016a). Moreover, Cat(T ) may also contain non-invertible
morphisms such as homomorphisms or embeddings.

I will now define DCE and then unpack the definition step by step.

Definition 4. T1 is DC-equivalent to T2 iff there are reconstruction functors

F : Cat (T1)→ Cat (T2)

G : Cat (T2)→ Cat(T1)

constituting a (dual) equivalence between the categories Cat (T1) and Cat (T2).

So in contrast to CE, the existence of arbitrary functors constituting a (dual) equiv-
alence between categories of models is not sufficient for DCE. Roughly speaking, a
reconstruction functor is a functor such that for every model A of the source theory,
the corresponding model F (A) of the target theory can be reconstructed up to isomor-
phism from A. To reconstruct F (A) from A is to define F (A) on the basis of A. The
reconstruction has to be uniform in the sense that the same definitions are used for all
models. More precisely:

Definition 5. A functor F : Cat(T1) → Cat(T2) is a reconstruction functor iff
there is a reconstruction manual Φ for Σ (T2) in terms of Σ (T1) such that for every
object A in Cat(T1), F (A) is defined by Φ over A or a Σ(T2)-isomorphic copy of F (A)
is defined by Φ over A.

The rest of this section is devoted to clarifying what reconstruction manuals are and
what it means that a structure is defined over another structure by a reconstruction
manual.

Reconstruction manuals tell us how to reconstruct structures of one signature from
structures of another signature. They can be viewed as functions mapping the non-
logical symbols of one signature to open formulas over the other signature. The free
variables of these associated formulas need to be of the right type, of course. So a recon-
struction manual presupposes an association between the types of the two signatures
in question. In the general case of higher-order signatures, this can be made precise as
follows.

Definition 6. Let Σ1 and Σ2 be higher-order signatures.
α is an association of Σ1-types with Σ2-types iff α maps every type of Σ1 to a type
of Σ2 such that:

(1) α commutes with the product type constructor: α(τ1 × τ2) = α(τ1)× α(τ2).

(2) α commutes with the power type constructor: α(℘(τ)) = ℘(α(τ)).

Using this auxiliary notion, we can make precise what reconstruction manuals are.

Definition 7. Let Σ1 and Σ2 be higher-order signatures.
Φ is a reconstruction manual for Σ1 in terms of Σ2 iff there is an association α of
Σ1-types with Σ2-types such that:

7



(1) Φ maps every basic sort σ of Σ1 to a Σ2-formula Φσ with one free variable of type
α(σ).

(2) Φ maps every predicate P in Σ1 with simple type ℘(τ) to a Σ2-formula ΦP with
a free variable of type α(τ).

(3) Φ maps every function symbol f in Σ1 with input-type τ1 and output-type τ2 to
a Σ2-formula Φf with two free variables of types α(τ1), α(τ2).

(4) Φ maps every individual constant c in Σ1 of basic sort σ to a Σ2-formula Φc with
a free variable of type α(σ).

With the concept of reconstruction manuals at hand, we can make precise what it means
that the models of one theory can be defined from corresponding models of another
theory. Definability of models is explained in terms of definability of their components.
The latter notion is understood as usual: Suppose A is a Σ-structure and ϕ an open
formula over Σ. Then a set X is defined by ϕ over A just in case X contains exactly
those (tuples of) objects that satisfy ϕ in A, i.e. X = {a : A � ϕ [a]}. The set defined
by ϕ in A, i.e. the extension of ϕ in A, is denoted by ‘ϕA’. Similarly, the extension of
a symbol S of Σ in A is denoted by ‘SA’. Using these notations, then next definition
explicates when a model is defined over another model by means of a reconstruction
manual.

Definition 8. Suppose A1 is a Σ1-structure and A2 is a Σ2-structure.
A2 is defined by Φ over A1 iff Φ is a reconstruction manual for Σ2 in terms of Σ1

such that the following conditions hold:

(1) for every symbol S of Σ2 that is not an individual constant, SA2 is defined by ΦS

over A1 (i.e. SA2 = ΦA1
S ).

(2) for every individual constant c of Σ2, {cA2} is defined by Φc over A1

(i.e. {cA2} = ΦA1
c ).

This completes the explication of DCE. Before investigating the properties of DCE, three
remarks about possible modification are in order. First, using formulas of higher-order
languages in reconstruction manuals reflects a liberal attitude about which kinds of
logico-mathematical constructions are admissible to reconstruct models. This liberality
ties in with scientific practice. Working scientists do not restrict themselves to first-
order constructions. For example, defining states over a C∗-algebra is a higher-order
construction: states are defined as certain functions from a C∗-algebra to its underlying
field C. However, using higher-order languages is not essential to the idea of DCE.
So if one wishes to take a less liberal stance on admissible logical constructions for
philosophical reasons, one can impose constraints on which kinds of formulas are allowed
in reconstruction manuals (e.g. only first-order formulas). This will lead to stricter
versions of DCE.

Second, to go beyond formal equivalence, one can impose admissibility constraints
on reconstruction manuals and functors that take into consideration how formalisms
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are interpreted. A natural constraint would be to allow only reconstruction manuals
that preserve meaningfulness in the sense that they map meaningful symbols of one
theory to meaningful formulas of another theory. Also constraints regarding empirical
content or theoretical content beyond the empirical can be brought in at this stage.
However, putting forward concrete formulations of preservation conditions for recon-
struction functors falls outside the scope of this paper. But work devoted to this issue
is already in progress.

Third, there are cases in which it is not necessary to reconstruct the entire internal
structure of models. It may suffice to reconstruct only those parts of models that play a
representational role. Such cases can be captured using the notion of partial reconstruc-
tion manuals. Roughly speaking, a partial reconstruction manual maps the meaningful
formulas of one theory to meaningful formulas of another theory. Explicating DCE with
partial reconstruction manuals raises questions about meaningfulness and interpretation
that would lead us too far afield. Therefore, we will restrict our attention to the simpler
case of full reconstruction manuals in this paper.

4 Properties of the new criterion

To understand the new criterion better, it is useful to examine in which ways it differs
from CE and GDE and in which ways it is similar to these criteria.

4.1 DCE is strictly stronger than CE

There are cases of CE, in which equivalence functors trivially exist but mutual recon-
struction of models is not possible along these functors. In particular, the criterion of
DCE does not collapse to a mere cardinality comparison of model classes when it comes
to theories with “very few” morphisms (described at the end of Section 2.4). I will il-
lustrate this point using two examples. First, let us consider a well-known simple toy
example of a pathological C-equivalence due to Barrett and Halvorson (2016, Theorem
5.7). They specify two single-sorted first-order axiom systems: T1 := {∃σ1 !xx = x} and
T2 := {∃σ2 !yy = y}∪ {∀σ2y (Q0y → Qiy) : i ∈ N} with signatures Σ1 := {σ1, P0, P1, . . .}
and Σ2 := {σ2, Q0, Q1, . . .}, respectively. Elementary embeddings serve as morphisms in
their categories of models. Barrett and Halvorson prove that T1 and T2 are C-equivalent
but not GD-equivalent. T2 is stronger than T1 in virtue of its additional axioms. The
reason why T1 and T2 are C-equivalent is that they have the same number of non-
isomorphic models and their categories of models are rigid groupoids. However, one
can show that no functors constituting an equivalence between these categories are
reconstruction functors. Hence:

Proposition 1. The theories T1 and T2 are not DC-equivalent.

Although this is only a toy example, it shows that, relative to CE, the definability condi-
tion built into DCE makes a difference and is therefore not redundant. This observation
might seem trivial. Nevertheless, it is important to make in order to address an idea
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that has recently been put forward in the literature. Feintzeig (2017) claims that an
adjunction between two categories of models hints at a sense in which the models in one
category are definable from the models in the other category. Since CE is stronger than
adjunction, the same must hold for CE if Feintzeig’s claim is right. This idea leads to
the question whether CE entails that the models in one category are in some sense de-
finable from the models in the other category. If this were so, then adding a definability
condition to CE would be redundant. However, it is not so in general. It might be true
in special cases in which all the internal structure of models is fully encoded by the mor-
phisms between them.13 But there are cases in which CE does not capture or even hint
at mutual definability in any way. Here is an example that is more general and more
robust14 than the first one. There is no reasonable sense of definability according to
which any two rigid structures whatsoever are definable from each other. Nevertheless,
for any two rigid structures A1 and A2, there is an equivalence between the categories
C1 and C2, where Ci has Ai as its sole object and the trivial identity automorphism of
Ai as its only arrow. In such cases, CE is trivially satisfied even if A1 and A2 are not
definable from each other in any sense. In contrast, DCE is not necessarily satisfied as
it explicitly takes into account definability.

Proposition 2. There are theories with an up to isomorphism unique rigid model that
are C-equivalent but not DC-equivalent.

For instance, take a simple theory describing a social network with an up to isomorphism
unique rigid model (a finite graph) and a cosmological model that arises from general
relativity by means of conditions singling out a unique spacetime manifold with no non-
trivial isometries (i.e. where spacetime is highly asymmetric). Then these theories are
trivially C-equivalent. However, they are not DC-equivalent because a model of general
relativity with its rich internal structure is not definable from a finite graph.

Some authors take it as “a definite mark against categorical equivalence as a general
standard for equivalence of theories” (Barrett, 2018, p. 13) that C-equivalence does not
imply that the models of each theory are somehow definable in terms of the models of
the other. From this perspective, DCE can be seen as an amendment of CE not subject
to this concern.

4.2 Proving CE often yields a proof of DCE

We have now seen that DCE is a non-trivial strengthening of CE, ruling out several
instances of the latter. However, the definability constraint in the criterion of DCE does
not constitute an extreme strengthening either. DCE is not very far from CE in the sense

13In such cases, it would seem plausible that CE should be sufficient for DCE. Yet, it is not clear at
all what it exactly means that morphisms fully encode the internal structure of models. However, to
explicate this idea seems to be an interesting project.

14The example by Barrett and Halvorson (2016) is not very robust in the following sense. Although
T1 and T2 are not GD-equivalent in classical first-order logic, it turns out that they are GD-equivalent
when infinitely long formulas with countable conjunctions and disjunctions are allowed in definitions.
Thanks to Hajnal Andréka and István Németi for sharing their proof.
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that from many proofs of C-equivalences occurring in practice one can extract proofs
of DC-equivalences. The reason is that proofs of (dual) equivalences between concrete
categories often establish more than the mere existence of (contravariant) equivalence
functors. In many cases, one establishes how to define structures of one kind from
structures of another kind and vice versa in order to specify functors witnessing the
duality or equivalence in question. In such cases, theorems sometimes state a bit less
than their proofs establish.

For example, when proving that the category of Boolean algebras is dual to the
category of Stone spaces one defines a Stones space from a given Boolean algebra and
vice versa. Another example is Gelfand duality, where one defines a compact Hausdorff
space from any given unital commutative C∗-algebra A (namely the space of non-
vanishing C∗-algebra homomorphisms from A to C with the spectral topology) and
one defines a unital commutative C∗-algebra from any given compact Hausdorff space
X (namely the algebra of continuous functions from X to C). Roughly speaking, the
definitions involved in specifying the functors constituting Gelfand duality capture a
sense in which state spaces and algebras of observables of classical mechanical systems
can be reconstructed from each other (Strocchi, 2005, p. 15).

Actually, finding appropriate definitions is often a crucial step in proofs of (dual)
equivalences between categories. It is what enables us to specify functors in the first
place and the fact that the so specified functors constitute a (dual) equivalence between
the categories in question depends on the judicious choice of definitions. In this sense,
the idea of reconstruction underlying DCE ties in with scientific practice.

It follows from the results in the previous section that not all instances of CE have
proofs involving definitions in this way. However, I conjecture that many instances
of CE that we encounter in practice do: especially those arising from reconstruction or
representation theorems. This conjecture suggests to undertake case studies as a task for
future research. For example: Is the C-equivalence between formulations of Hamiltonian
mechanics and Lagrangian mechanics (Barrett, 2017) a case of DCE? Does the Gelfand-
Naimark representation theorem (Gelfand and Naimark, 1943) allow us to prove that
the Hilbert space formalism and the C∗-algebra formalism of quantum mechanics are
DC-equivalent? Do reconstruction theorems relating different approaches to quantum
field theories (e.g. Wightman, 1956; Osterwalder and Schrader, 1973, 1975) give rise to
DC-equivalences?

4.3 DCE and GDE differ in the presence of surplus structure

A major difference between DCE and GDE is that DCE is not overly sensitive to the
presence of auxiliary or surplus structure because it takes morphisms into account. This
section is devoted to showing that. We put the focus a particular kind of auxiliary struc-
ture, namely coordinate systems. Although introducing coordinates is an insignificant
extension of a formalism as far as representational capacities are concerned, it makes a
big difference for GDE: models that are not GD-equivalent can become GD-equivalent
when equipped with coordinate systems. The reason is that the presence of a coordi-
nate system allows to formulate new definitions that could not be formulated otherwise.

11



These newly available definitions can be used to establish GDE even though the defini-
entia involved are not meaningful formulas. This leads to pathological positive cases of
GDE. As we will see, DCE is not beset with this problem.

Let us look at an example to illustrate these points. We compare n-dimensional
Minkowski geometry (MGn) and n-dimensional Euclidean geometry (EGn). The mod-
els of MGn and EGn are n-dimensional Minkowski spaces and n-dimensional Euclidean
spaces, respectively. Both Minkowski spaces and Euclidean spaces are here understood
as real vector spaces equipped with generalised inner products (i.e. non-degenerate sym-
metric bilinear forms).15 This is a slight simplification. Strictly speaking, Minkowski
and Euclidean spaces should be treated as affine spaces—rather than vector spaces—
equipped with generalised inner products.16 But since this would unnecessarily compli-
cate our presentation without affecting any results, the chosen simplification is unprob-
lematic. It is also common in physics to simplify in this way (cf. Naber, 2012).

So we take an n-dimensional Minkowski space (V, η) to consist of an n-dimensional
vector space V = (V,⊕,�) over the field R of real numbers together with a Minkowskian
inner product η : V ×V → R of metric signature (1, n−1). An n-dimensional Euclidean
space (V, 〈·, ·〉) is an n-dimensional real vector space V endowed with a Euclidean inner
product 〈·, ·〉 : V × V → R of metric signature (n, 0). Up to isomorphism, there is only
one n-dimensional Minkowski space and only one n-dimensional Euclidean space.

When endowed with a physical interpretation (cf. Malament, 2009, Section 3.2),
4-dimensional Minkowski geometry yields the theory of spacetime underlying special
relativity. 4-dimensional Euclidean geometry, when physically interpreted, ascribes a
very different structure to spacetime. But more than that: these geometries should count
as inequivalent irrespective of concrete physical applications because their generalised
inner products are very different from a mathematical point of view. They encode very
different notions of distance and angles. The criteria of GDE and DCE both capture
this difference when the models of Euclidean and Minkowski geometry are not endowed
with coordinate systems:

Proposition 3.

(1) MGn and EGn are not DC-equivalent.

(2) MGn and EGn are not GD-equivalent.

However, we will now see that if we endow their models with coordinate systems, the
resulting versions of Minkowski and Euclidean geometry become GD-equivalent but not
DC-equivalent. Endowing models with coordinate systems can hardly be regarded as
an illegitimate step. Although coordinate systems may be dispensable for a character-
isation of fundamental spacetime structure or other foundational issues, they still play

15So Minkowski spaces have a first-order signature comprising two basic sort symbols (for scalars and
vectors) as well as various operation symbols (for the field operations, the vector space operations and
the generalised inner product). The signature of Euclidean spaces only differs from that of Minkowski
spaces in having a different symbol for the inner product.

16For a detailed exposition of Minkowski and Euclidean spaces as metric affine spaces see Malament
(2009, Section 2).
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an important role in practice. Usually, one cannot apply geometry empirically without
choosing a reference frame and an associated coordinate system. For a defence of the
legitimacy of a coordinate-based approach for foundational work see Wallace (2016).

We need a bit of terminology to specify the coordinatised models. A linear coordi-
nate system for an n-dimensional vector space V is an n-tuple of coordinate functions
(f0, . . . , fn−1), where f i : V → R maps every vector v ∈ V to a real number serving
as the i-th coordinate of v (0 ≤ i < n), such that the function f : V → Rn defined
by f(v) := (f0(v), . . . , fn−1(v)) is a vector space isomorphism from V to the real co-
ordinate space Rn.17 We say that a linear coordinate system (f0, . . . , fn−1) for V is
a Lorentz coordinate system for an n-dimensional Minkowski space M = (V, η) iff f
is an isometric isomorphism from M to the real coordinate space (Rn, ηstd) with the
standard Minkowski inner product ηstd on Rn, which takes the following form in the
standard coordinates xi on Rn (mapping elements of Rn to their i-th components):

ηstd(u, v) = x0(u) · x0(v)− . . .− xn−1(u) · xn−1(v). (1)

It immediately follows that all Lorentz coordinate systems for M are related to each
other by Lorentz transformations. Analogously, (f0, . . . , fn−1) is a Euclidean coordinate
systems for an n-dimensional Euclidean space E = (V, 〈·, ·〉) iff f is an isometric isomor-
phism from E to the real coordinate space (Rn, 〈·, ·〉std) with the standard Euclidean
inner product on Rn, which is given by:

〈u, v〉std = x0(u) · x0(v) + . . .+ xn−1(u) · xn−1(v). (2)

Now we can specify the models of Minkowski and Euclidean geometry extended with co-
ordinate systems (MG+

n and EG+
n ). The models of MG+

n are those structures (V, f0, . . . , fn−1, η)
such that (V, η) is a model of MGn and (f0, . . . , fn−1) is a Lorentz coordinate system
for (V, η). The models of EG+

n are those structures (V, f0, . . . , fn−1, 〈·, ·〉) such that
(V, 〈·, ·〉) is a model of EGn and (f0, . . . , fn−1) is a Euclidean coordinate system for
(V, 〈·, ·〉).18 With these specifications at hand, one can prove that:

Proposition 4. MG+
n and EG+

n are GD-equivalent (for n ≥ 2).

To get an impression of what is going on here, consider a modelM = (V+, η) of MG+
n ,

where V+ = (V, f0, . . . , fn−1). It follows that M is a definitional expansion of V+

because (f0, . . . , fn−1) is a Lorentz coordinate system for M and hence M satisfies:

η(u, v) = f0(u) · f0(v)− . . .− fn−1(u) · fn−1(v). (3)

Now define a Euclidean inner product 〈·, ·〉 over V+:

〈u, v〉 = f0(u) · f0(v) + . . .+ fn−1(u) · fn−1(v). (4)

17Note that choosing a linear coordinate system for a vector space amounts to the same as choosing
an ordered basis. Hence, coordinate systems are often simply defined as ordered bases.

18Note that for every model of MGn there are infinitely many models of MG+
n . The same holds for

EGn and EG+
n .
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This definition can be formulated in the first-order language of n-dimensional vector
spaces with coordinate functions. Then E := (V+, 〈·, ·〉) is a model of EG+

n and also
a definitional expansion of V+. Hence, M and E are definitional expansions of the
same underlying structure V+ and, therefore, have a common definitional expansion
(V+, η, 〈·, ·〉). Thus, M and E are definitionally equivalent.

Let us now see how a different analysis of the relationship between MG+
n and EG+

n

can be achieved by making use of morphisms to wash out auxiliary structure. The crucial
point is that choices of coordinates need not be preserved under morphisms. One can
change coordinates (e.g. via a Lorentz transformation in the case of MG+

n ) and the model
with the new coordinate system will represent exactly the same physical situation. This
suggests to specify the categories of models of MG+

n and EG+
n in such a way that choices

of coordinates may vary under morphisms. In particular, we should not take Σ(MG+
n )-

isomorphisms and Σ(EG+
n )-isomorphisms as the respective morphisms because they

preserve all the internal structure of models, including coordinate functions. Further-
more, if we would like to wash out surplus structure that is due to our simplification—i.e.
the designated origins in Euclidean and Minkowski spaces—now is the opportunity to
do so by choosing morphisms that do not preserve origins. This is what we will do. We
define Cat(MG+

n ) in such a way that h : (V, f0, . . . , fn−1, η) → (V′, f ′0, . . . , f ′n−1, η′)
is a morphism in Cat(MG+

n ) iff h is a bijection from V to V ′ that is an affine map19

from V to V′ preserving Minkowski inner products (i.e. η(u, v) = η′(h(u), h(v)) for all
u, v ∈ V ) and for technical reasons we also require that h maps each scalar to itself.
The morphisms in Cat(EG+

n ) are specified analogously.
It follows that, the automorphism group of each model in Cat(MG+

n ) is the Poincaré
group, whereas the automorphism group of models in Cat(EG+

n ) is the Euclidean group.
The fact that the Poincaré group and the Euclidean group are not isomorphic implies
that:

Proposition 5. MG+
n and EG+

n are not DC-equivalent (for n ≥ 2).

We can say more when we consider which formulas count as meaningful in MG+
n and

EG+
n . On a usual interpretation of these formalisms, formulas with free vector variables

are only meaningful when they are invariant under morphisms. We call a formula ϕ
over Σ(MG+

n ) with n free variables invariant under the morphisms of Cat(MG+
n ) just

in case for all morphisms h :M→M′ in Cat(MG+
n ), an n-tuple (a1, . . . , an) satisfies

ϕ in M iff (h(a1), . . . , h(an)) satisfies ϕ in M′. It follows that the formula

z = f0(u) · f0(v) + . . .+ fn−1(u) · fn−1(v) (5)

is not invariant under the morphisms of Cat(MG+
n ).20 Hence, formula (5) is not mean-

19h is an affine map from a vector space V = (V,⊕,�) to another V′ = (V ′,⊕′,�′) iff there is a
vector space isomorphism H from V to V′ and a w ∈ V such that for all v ∈ V : h(v) = H(v)⊕′w.

20In contrast, the formula

z = f0(u) · f0(v)− . . .− fn−1(u) · fn−1(v)

is invariant under the morphisms of Cat(MG+
n ) although coordinate functions vary from model to

model. This formula is meaningful in MG+
n . So a formula may be meaningful even if the terms and

function symbols occurring in it are not meaningful.
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ingful in MG+
n . So although formula (5) defines a Euclidean inner product over any

given model of MG+
n , this inner products will not count as meaningful in MG+

n . Thus,
any reconstruction manual for Σ(EG+

n ) in terms of Σ(MG+
n ) yielding (5) as a transla-

tion of 〈u, v〉 = z does not preserve meaningfulness. An analogous conclusions holds for
reconstruction manuals for Σ(MG+

n ) in terms of Σ(EG+
n ).

4.4 DCE is close to GDE in the absence of surplus structure

We have seen that DCE and GDE sometimes coincide and sometimes do not coincide.
This section shows under which conditions the two criteria coincide.

First, one can show that DCE is a generalisation of GDE for theories of a certain
kind. Barrett and Halvorson (2016) have shown that GD-equivalent first-order theories
with elementary embeddings as morphisms are C-equivalent. Their proof can be gen-
eralised for the case of theories with higher-order structures as models. Moreover, one
can show that the equivalence functors constructed from a GD-equivalence are indeed
reconstruction functors (which is not entirely trivial). So we get the following result.

Theorem 1. Suppose T1 and T2 are theories with disjoint signatures and suppose the
morphisms in Cat(Ti) are precisely elementary embeddings (1 ≤ i ≤ 2).
If T1 and T2 GD-equivalent, then T1 and T2 are DC-equivalent.

Let us briefly pause here and reflect on what the choice of elementary embeddings
as morphisms means for a theory. Elementary embeddings are injective mappings be-
tween models that preserve all relations definable in the theory’s language. This choice
of morphisms reflects the idea that all definable features of models may be taken to
be meaningful. (The same holds for Σ(T )-isomorphisms, which form a subclass of ele-
mentary embeddings.) So taking precisely elementary embeddings (or precisely Σ(T )-
isomorphisms) as the morphisms of a theory T means viewing the models of T as not
exhibiting any auxiliary or surplus structure.

Under this reading, Theorem 1 partially captures the idea that morphisms need
to be taken into account only in the presence of auxiliary or surplus structure. This
idea furthermore suggests that DCE should also not be much wider than GDE when it
comes to theories without auxiliary or surplus structure. The following theorem captures
a sense in which this is indeed the case. This theorem is one of the main technical results
of this paper.

Theorem 2. Suppose T1 and T2 are theories with disjoint signatures and suppose the
isomorphisms in Cat(Ti) are precisely the Σ(Ti)-isomorphisms (1 ≤ i ≤ 2). If T1 and
T2 are DC-equivalent, then T1 and T2 are GD-equivalent up to external auxiliaries.

The qualification ‘up to external auxiliaries’ concerns auxiliary vocabulary introduced
in GD-expansions rather than auxiliary vocabulary of the theories themselves. Every
GD-expansion to a signature with new sorts also introduces auxiliary function symbols
relating the new sorts to old sorts. GDE up to external auxiliaries is like GDE except
that it does not require such “external” auxiliary vocabulary to be recovered. More
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precisely, T1 and T2 are GD-equivalent up to external auxiliaries iff they have step-
wise GD-expansions E1 and E2 that coincide insofar as one ignores external auxiliary
vocabulary on both sides, i.e. E1|Σ(T1)∪Σ(T2) = E2|Σ(T1)∪Σ(T2).

21

So for theories with standard model-theoretic isomorphisms, DCE differs from GDE
only in not requiring that auxiliary symbols used for reconstructing the sorts of one
theory from sorts of another theory have to be recovered as well. Hence, DCE is slightly
more liberal than GDE in these cases. This raises the question whether and when we
should regard recovering external auxiliaries as necessary. I am not aware of any pub-
lished arguments concerning this question. To shed light on what the requirement of
recovering external auxiliaries amounts to, it is useful to find a corresponding strength-
ening of DCE. It turns out that to obtain GDE simpliciter instead of GDE up to
auxiliaries, one only needs to strengthen DCE by adding an extra definability condition
regarding isomorphisms between models and their inner models given by composition
of reconstruction functors. Call such isomorphisms ‘inner isomorphisms’.

Definition 9. T1 and T2 are DC-equivalent with definable inner isomorphisms
iff there are functors F : Cat (T1) → Cat (T2), G : Cat (T2) → Cat(T1) and recon-
struction manuals Φ for Σ(T2) in terms of Σ(T1) and Ψ for Σ(T1) in terms of Σ(T2)
establishing a DCE between T1 and T2 such that

(1) there is a family of Σ(T1)-formulas defining a Σ(T1)-isomorphism from A1 to
GF (A1) for all A1 ∈Mod(T1) and

(2) there is a family of Σ(T2)-formulas defining a Σ(T2)-isomorphism from A2 to
FG(A2) for all A2 ∈Mod(T2) such that

(3) these isomorphisms are compatible with each other and with Φ and Ψ.

Call (1)–(3) the ‘many-sorted Ahlbrandt-Ziegler condition’. Its underlying idea is closely
related to the concept of bi-interpretability due to Ahlbrandt and Ziegler (1986). For a
more detailed formulation of this condition see Definition B.8, Appendix B.

Theorem 3. Suppose T1 and T2 are theories with disjoint signatures and suppose the
isomorphisms in Cat(Ti) are precisely the Σ(Ti)-isomorphisms (1 ≤ i ≤ 2). If T1 and T2

are DC-equivalent with definable inner isomorphisms, then T1 and T2 are GD-equivalent.

This shows that the requirement to recover external auxiliaries contained in GDE is
closely related to the requirement that inner isomorphisms are definable in a certain
way. Moreover, this theorem answers a question posed by Barrett (cf. 2018, p. 14). The
question is whether there is a special property P of functors such that the existence of a
C-equivalence that is constituted by functors having property P entails GDE (given the
theories in question have precisely elementary embeddings as morphisms). The property
of being a reconstruction functor comes close. But to achieve GDE, a monadic property
of functors is unlikely to suffice. However, a binary relation between functors works,

21E|Σ := {A|Σ : A ∈ E}, where A|Σ is the reduct of A to Σ (cf. Hodges, 1993, p. 9).
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namely the relation of being reconstruction functors that jointly satisfy the Ahlbrandt-
Ziegler condition.

There are good reasons not to include the many-sorted Ahlbrandt-Ziegler condition
as a regular component of the criterion of DCE. When strengthened with this extra
condition, it would not be able to capture formal equivalences between theories with
categories of models that do not (only) contain standard model-theoretic isomorphisms.
For instance, in Weatherall’s (2016a) examples, different potential-based models A1,A2

that are related by a gauge transformation will be mapped to the same model A by the
composite auto-equivalence functor. However, the gauge transformations from A1 to A
and from A2 to A are not induced by uniformly defined bijections in the way the many-
sorted Ahlbrandt-Ziegler condition would require (cf. Definition B.8, Appendix B). So
if we seek to capture equivalences between theories that do not (only) have standard
model-theoretic isomorphisms, we should not impose the many-sorted Ahlbrandt-Ziegler
condition as necessary.

5 Conclusions

I have argued that choices of morphisms and the internal structure of models both mat-
ter when it comes to possible interpretations of a formalism. I have pointed out that
GDE does not take into account morphisms and CE does not take into account the
internal structure of models. I have presented a new criterion, namely DCE, which con-
nects the category-theoretic approach and the definability-theoretic approach to formal
equivalence. DCE is a strengthening of CE with a definability constraint on equivalence
functors. It is also closely related to GDE in cases where morphisms preserve all de-
finable features of models. DCE takes into account the internal structure of models as
well as choices of morphisms. Thereby, it allows a more nuanced analysis of scientific
theories.

An important task for future work is to supplement DCE with preservation condi-
tions concerning interpretation by imposing constraints on which reconstruction manu-
als and functors are admissible. One can specify preservation conditions corresponding to
different levels of interpretation: (1) preservation of meaningfulness for pre-interpreted
formalisms, (2) preservation of empirical content for empirically interpreted formalisms
and (3) preservation of theoretical content for formalisms that are endowed with a
full-blown interpretation going beyond the empirical. Furthermore, one can weaken the
notion of reconstruction functor by allowing partial reconstruction manuals, in which
non-meaningful features of models do not need to be reconstructed. Working out these
ideas in detail and exploring their consequences seems to be a promising direction for
future research.
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Appendix A GD-expansions

Suppose Σ and Σ+ are higher-order signatures with Σ ⊂ Σ+ and C and E are classes
of Σ-structures and Σ+-structures, respectively.

Definition A.1. E is a GD-expansion of C to Σ+ by ∆ iff ∆ is a set of explicit
definitions and sort-definitions of the symbols in Σ+ \ Σ in terms of Σ such that

(1) all A ∈ C satisfy the admissibility conditions of the definitions in ∆;

(2) all A+ ∈ E satisfy ∆;

(3) C = {A+|Σ : A+ ∈ E}.

For the form of sort-definitions see Barrett and Halvorson (2016, Section 4.1).

Definition A.2. E is a stepwise GD-expansion of C to Σ+ by (∆1, . . . ,∆n) iff there
is a sequence (E0, E1, . . . , En) of classes of structures of signatures Σ0 ⊂ Σ1 ⊂ . . . ⊂ Σn

such that

(1) Σ0 = Σ and Σn = Σ+;

(2) E0 = C and En = E and

(3) Ei is a GD-expansion of Ei−1 to Σi by ∆i (for 1 ≤ i ≤ n).

Appendix B Proofs

Proposition 1. The theories T1 and T2 are not DC-equivalent.

Proof. Note that, up to Σ2-isomorphism, there is only one model A∗2 of T2 such that
the predicate Q0 has a non-empty extension. Suppose for reductio that there are recon-
struction functors F : Cat (T1) → Cat (T2) and G : Cat (T2) → Cat(T1) constituting
a (dual) equivalence. Then for every A1 � T1 there is an A2 � T2 such that A2 is Σ2-
isomorphic to F (A1) and A2 is definable from A1 by some reconstruction manual Φ. It
follows that

(*) there can only be one model A∗1 � T1 up to Σ1-isomorphism such that Φ
A∗1
Q0
6= ∅,

namely A∗1 ∼= G (A∗2).
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The formula ΦQ0 contains only finitely many of the predicates P0, P1, . . . of Σ1. There-
fore, we get many models A of T1 such that A is not Σ1-isomorphic to G (A∗2) but
ΦAQ0

6= ∅. We achieve this by varying the extensions of those Pi not contained in the
formula ΦQ0 , while using the same extension as in G (A∗2) for the predicates contained
in ΦQ0 . Thus we get a contradiction to (*).

Proposition 2. There are theories with an up to isomorphism unique rigid model that
are C-equivalent but not DC-equivalent.

Proof. Let T1 be a theory with an up to isomorphism unique finite rigid model (e.g. an
asymmetric graph) and let T2 be a theory with an up to isomorphism unique infinite
rigid model (e.g. a spacetime manifold without non-trivial isometries). Then T1 and
T2 are trivially C-equivalent. But they are not DC-equivalent. It is sufficient to show
that no infinite structure is definable over a finite structure. Let A be a structure such
that every basic type has a finite extension. Note that if τ1 and τ2 are types with finite
extensions, then so are the product type τ1 × τ2 and the power types ℘ (τi). Thus,
every type has a finite extension. Therefore, every Σ(A)-formula can only have a finite
extension under A. Hence, no infinite set is definable over A.

Proposition 3.

(1) MGn and EGn are not DC-equivalent.

(2) MGn and EGn are not GD-equivalent.

Proof. The Σ(MGn)-automorphism group of the models of MGn is not isomorphic to the
Σ(EGn)-automorphism group of the models of EGn. Since GDE preserves automorphism
groups, MGn and EGn cannot be GD-equivalent. For analogous reasons, they cannot
be DC-equivalent either.

Proposition 4. MG+
n and EG+

n are GD-equivalent (for n ≥ 2).

Proof. Let VEC+ be the set of all structures (V, f0, . . . , fn−1) such that V is an n-
dimensional vector space and (f0, . . . , fn−1) is a linear coordinate system for V. It
suffices to show that both Mod(MG+

n ) and Mod(EG+
n ) are GD-expansions of VEC+. Let

M = (V+, η) be a model of MG+
n , where V+ = (V, f0, . . . , fn−1). Then (f0, . . . , fn−1)

is a Lorentz coordinate system for M. This implies that M satisfies the definition:

η(u, v) = f0(u) · f0(v)− . . .− fn−1(u) · fn−1(v).

Moreover, it follows that V+ ∈ VEC+. Conversely, if V+ ∈ VEC+, one can define
a Minkowskian inner product η over V+ using the equation above. Then (V+, η) ∈
Mod(MG+

n ). Hence, Mod(MG+
n ) is a GD-expansion of VEC+. Analogously, one shows

that Mod(EG+
n ) is a GD-expansion of VEC+.

Proposition 5. MG+
n and EG+

n are not DC-equivalent (for n ≥ 2).
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Proof. There cannot be reconstruction functors establishing a (dual) equivalence be-
tween Cat(MG+

n ) and Cat(EG+
n ) because the Poincaré group is not isomorphic to the

Euclidean group.

Definition B.1. A stepwise GD-expansion E of C to Σ+ by (∆1, . . . ,∆n) uses only
subsorts iff all basic sorts of Σ+ are introduced as subsorts of types of Σ by (∆1, . . . ,∆n).

Lemma B.1. If T1 and T2 are GD-equivalent, there are stepwise GD-expansions E1

and E2 of Mod(T1) and Mod(T2) using only subsorts such that E1 = E2.

Theorem 1. Suppose T1 and T2 are theories with disjoint signatures and suppose the
morphisms in Cat(Ti) are precisely elementary embeddings (1 ≤ i ≤ 2).
If T1 and T2 are GD-equivalent, then T1 and T2 are DC-equivalent.

Proof. By Lemma B.1, Mod(T1) and Mod(T2) have stepwise GD-expansions E1 and E2

to some signature Σ+ by (∆1
1, . . . ,∆

1
n) and (∆2

1, . . . ,∆
2
m) using only subsorts such that

E1 = E2. This gives rise to reconstruction manuals. Let Φ map every symbol S of Σ(T2)
to the open Σ(T1)-formula used to define S in (∆1

1, . . . ,∆
1
n). Then Φ is a reconstruction

manual for Σ(T2) in terms of Σ(T1). Analogously, we get a reconstruction manual Ψ for
Σ(T1) in terms of Σ(T2).

Let Cat(Ei) be the category having the structures of Ei as objects and elemen-
tary embeddings between them as morphisms (1 ≤ i ≤ 2). Then the reduct functors
P1 : Cat(E1) → Cat(T1) and P2 : Cat(E2) → Cat(T2) are equivalence functors, as
described in Barrett and Halvorson (2016, Section 5). By the axiom of choice, there are
functors P−1

1 and P−1
2 essentially inverse to P1 and P2. Since Cat(E1) = Cat(E2), we

can define functors F := P2P
−1
1 : Cat(T1) → Cat(T2) and G := P1P

−1
2 : Cat(T2) →

Cat(T1). F and G constitute an equivalence of categories between. It is a matter of
routine to check that F and G are reconstruction functors w.r.t. the reconstruction
manuals Φ and Ψ.

In order to prove Theorem 2, we need several lemmata and definitions.

Lemma B.2. Suppose α and α′ both are associations of Σ1-types with Σ2-types satis-
fying (1) in Definition 7 with respect to the same reconstruction manual Φ for Σ1 in
terms of Σ2. Then for every type τ of Σ1: α(τ) = α′(τ).

So given a type τ of Σ1, a reconstruction manual Φ for Σ1 in terms of Σ2 associates a
unique type Φ(τ) of Σ2 with τ .

Definition B.2. Let Φ be a reconstruction manual for Σ∗ in terms of Σ and let T be
a theory with signature Σ. Then we say that Φ is formally admissible w.r.t. T2 iff
for every model A of T :

(1) for every basic sort σ of Σ∗, Φσ defines a non-empty set over A.

(2) for every function symbol f of Σ∗, Φf defines a function over A.

(3) for every individual constant c of Σ∗, Φc defines a singleton over A.
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From now on suppose that (a) T and T ∗ have disjoint signatures Σ and Σ∗ and (b) Φ
is a reconstruction manual for Σ∗ in terms of Σ that is formally admissible w.r.t. T .

Definition B.3. Σ+ is a Φ-extension of Σ by external auxiliaries iff Σ+ contains
the symbols of Σ as well as Σ∗ and

(1) for every basic sort σ in Σ∗, Σ+ contains exactly one new function symbol iσ with
σ as input-type and Φ(σ) as output-type.

(2) for every types τ of Σ∗, Σ+ contains exactly one new function symbol jτ with τ
as input-type and Φ(τ) as output-type.

From now on let Σ+ be a Φ-extension of Σ by external auxiliaries.

Definition B.4. LetA ∈Mod(T ). Then we call the Σ+-structureA+ with the following
properties the canonical expansion of A to Σ+ induced by Φ:

(1) A+|Σ = A.

(2) For every symbol S in Σ∗ that is not an individual constant: SA
+

= ΦAS .

(3) For every individual constant c in Σ∗: {cA+} = ΦAc .

(4) For every basic sort σ in Σ∗: iA
+

σ is the identity on ΦAσ .

(5) For every type τ over Σ∗: jA
+

τ is the identity on Dτ , where Dτ is defined as follows:

(a) if τ is a basic sort of Σ∗, then Dτ = ΦAτ .

(b) if τ = τ1 × τ2 is a product type of Σ∗, then Dτ = Dτ1 ×Dτ2 .

(c) if τ = ℘(τ ′) is a power type of Σ∗, then Dτ = P(Dτ ′).

Definition B.5. The canonical expansion of Mod(T ) to Σ+ induced by Φ is the
isomorphic closure of {A+ : A ∈ Mod(T )}, where A+ is the canonical expansion of A
to Σ+ induced by Φ for A ∈Mod(T ).

Notation. In the following it is useful to write variables with their type as superscript
(e.g. ‘xτ ’) to avoid confusions.

Lemma B.3. The canonical expansion of Mod(T ) to Σ+ induced by Φ is a stepwise
GD-expansion of Mod(T ) to Σ+ by (∆sorts

Φ ,∆inj
Φ ,∆const

Φ ), where

(1) ∆sorts
Φ consists of subsort-definitions for all basic sorts σ of Σ∗:

∀xΦ(σ)(Φσ(xΦ(σ))↔ ∃yσ iσ(yσ) = xΦ(σ)) ∧
∀yσ1∀yσ2 (iσ(yσ1 ) = iσ(yσ2 )→ yσ1 = yσ2 ),

(2) ∆inj
Φ consists of definitions of the injection symbols jτ for types τ of Σ∗:

∀xτ∀zΦ(τ)(jτ (xτ ) = zΦ(τ) ↔ ϕτ (xτ , zΦ(τ))),
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where the definiens ϕτ (xτ , zΦ(τ)) is a Σ ∪ Σ(∆sorts
Φ )-formula for every type τ of

Σ∗, recursively defined as follows:

(a) if τ is a basic sort of Σ∗, then ϕτ (xτ , zΦ(τ)) is the formula zΦ(τ) = iτ (xτ ).

(b) if τ = τ1 × τ2 is a product type of Σ∗, then ϕτ (xτ , zΦ(τ)) is the formula

∃xτ11 ∃x
τ2
2 (xτ = 〈xτ11 , x

τ2
2 〉 ∧ ∃z

Φ(τ1)
1 ∃zΦ(τ2)

2 (ϕτ1(xτ11 , z
Φ(τ1)
1 ) ∧ ϕτ2(xτ22 , z

Φ(τ2)
2 ) ∧

zΦ(τ) = 〈zΦ(τ1)
1 , z

Φ(τ2)
2 〉)).

(c) if τ = ℘(τ ′) is a power type of Σ∗, then ϕτ (xτ , zΦ(τ)) is the formula

zΦ(τ) = {uΦ(τ ′) : ∃vτ ′(xτ (vτ
′
) ∧ ϕτ ′(vτ

′
, uΦ(τ ′)))}.

(3) ∆const
Φ consists of the following definitions:

(a) ∀xτ (P (xτ )↔ ΦP (jτ (xτ ))), for every predicate P in Σ∗ of type τ .

(b) ∀xτ1∀yτ2(f(xτ1) = yτ2 ↔ Φf (jτ1(xτ1), jτ2(yτ2))), for every function symbol f
in Σ∗ with input-type τ1 and output-type τ2.

(c) ∀xσ(c = xσ ↔ Φc(jτ (xτ ))), for every individual constant c of basic sort σ in
Σ∗.

Lemma B.4. Suppose the following: H : Cat(T )→ Cat(T ∗) is a reconstruction func-
tor with reconstruction manual Φ; the isomorphisms in Cat(T ∗) are precisely the Σ∗-
isomorphisms; A is a model of T ; A+ is the canonical expansion of A to Σ+ induced by
Φ. Then H(A) is Σ∗-isomorphic to A+|Σ∗.

Lemma B.5. Suppose E is the canonical expansion of Mod(T ) to Σ+ induced by Φ,
A ∈ E and (A|Σ)+ is the canonical expansion of A|Σ to Σ+ induced by Φ. Then A is
Σ+-isomorphic to (A|Σ)+.

Theorem 2. Suppose T1 and T2 are theories with disjoint signatures and suppose the
isomorphisms in Cat(Ti) are precisely the Σ(Ti)-isomorphisms (1 ≤ i ≤ 2). If T1 and
T2 are DC-equivalent, then T1 and T2 are GD-equivalent up to external auxiliaries.

Proof. Suppose T1 and T2 are DC-equivalent. Let Σ1 and Σ2 be their signatures. Then
there are reconstruction functors F : Cat (T1)→ Cat (T2) and G : Cat (T2)→ Cat(T1)
constituting a (dual) equivalence accompanied by reconstruction manuals Φ for Σ2 over
Σ1 and Ψ for Σ1 over Σ2. It follows that Φ and Ψ are formally admissible w.r.t. T1

and T2, respectively. Let Σ+
1 and Σ+

2 be Φ- and Ψ-extensions of Σ1 and Σ2 by external
auxiliaries, respectively. Now let E1 and E2 be the canonical expansions of Mod(T1)
and Mod(T2) to Σ+

1 and Σ+
2 induced by Φ and Ψ. We know from Lemma B.3 that E1

and E2 are stepwise GD-expansions of Mod(T1) and Mod(T2), respectively. We show
that E1|Σ1∪Σ2 = E2|Σ1∪Σ2 .

Suppose A ∈ E1|Σ1∪Σ2 . Then there is a B ∈ E1 such that A = B|Σ1∪Σ2 . Moreover,
A|Σ1 ∈Mod(T1). Let (A|Σ1)+ be the canonical expansion of A|Σ1 to Σ+

1 induced by Φ.
Check that the following statements hold.

(1) B is Σ+
1 -isomorphic to (A|Σ1)+ (by Lemma B.5 and B|Σ1 = A|Σ1).
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(2) F (A|Σ1) is Σ2-isomorphic to (A|Σ1)+|Σ2 (Lemma B.4).

(3) A|Σ2 is Σ2-isomorphic to F (A|Σ1) (by 1, 2 and B|Σ2 = A|Σ2).

(4) A|Σ1 is Σ1-isomorphic to GF (A|Σ1) (because F and G constitute a (dual) equiv-
alence and isomorphisms in Cat(Ti) are Σ(Ti)-isomorphisms).

(5) GF (A|Σ1) is Σ1-isomorphic to F (A|Σ1)+|Σ1 , where F (A|Σ1)+ is the canonical
expansion of F (A|Σ1) induced by Ψ (Lemma B.4).

(6) A|Σ1 is Σ1-isomorphic to F (A|Σ1)+|Σ1 (by 4 and 5).

(7) A is Σ1 ∪ Σ2-isomorphic to F (A|Σ1)+|Σ1∪Σ2 (by 3 and 6).

Since F (A|Σ1) ∈Mod(T2), its canonical expansion F (A|Σ1)+ by Ψ is in E2. This implies
F (A|Σ1)+|Σ1∪Σ2 ∈ E2|Σ1∪Σ2 . E2|Σ1∪Σ2 is closed under Σ1 ∪Σ2-isomorphism because E2

is closed under Σ+
2 -isomorphism. Hence, A ∈ E2|Σ1∪Σ2 . The proof for the other direction

is analogous.

Definition B.6. We say that χ is a family of formulas defining inner isomor-
phisms of T1-models w.r.t. F,Φ and G,Ψ iff

(1) χ maps every basic sort σ1 of Σ(T1) to a Σ(T1)-formula χσ1(xσ1 , yΦΨ(σ1)).

(2) for every basic sort σ1 of Σ(T1) and every A1 ∈Mod(T1), χA1
σ1

is a bijection from

σA1
1 to σ

GF (A1)
1 ; and these bijections constitute a Σ(T1)-isomorphism from A1 to

GF (A1).

Definition B.7. Let Σ(T1)+ be a Φ-extension of Σ(T1) by external auxiliaries, let E1

be the canonical expansion of Mod(T1) to Σ(T1)+ induced by Φ and let χ be a family
of formulas defining inner isomorphisms of T1-models w.r.t. F,Φ and G,Ψ. Then the
χ-expansion of Mod(T1) to Σ(T1)+ ∪ Σ(T2)+ induced by Φ and Ψ is the stepwise
GD-expansion of E1 to Σ(T1)+∪Σ(T2)+ by (∆i

Ψ,∆
inj
Ψ ), where ∆inj

Ψ is as in Lemma B.3
and ∆i

Ψ comprises definitions of the following form for all basic sorts σ1 of Σ(T1):

∀xσ1∀yΨ(σ1)(iσ1(xσ1) = yΨ(σ1) ↔ χσ1(xσ1 , jΨ(σ1)(y
Ψ(σ1)))) (Def-iσ1)

Definition B.8. T1 and T2 are DC-equivalent with definable inner isomorphisms
iff there are functors F : Cat (T1) → Cat (T2), G : Cat (T2) → Cat(T1) and recon-
struction manuals Φ for Σ(T2) in terms of Σ(T1) and Ψ for Σ(T1) in terms of Σ(T2)
establishing a DCE between T1 and T2 such that the many-sorted Ahlbrandt-Ziegler
condition holds:

(1) there is a family of formulas χ defining inner isomorphisms of T1-models w.r.t.
F,Φ and G,Ψ and

(2) there is a family of formulas χ̃ defining inner isomorphisms of T2-models w.r.t.
G,Ψ and F,Φ such that
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(3) these isomorphisms are compatible with each other and with Φ and Ψ in the
following sense:

(a) for every model B1 of the χ-expansion ofMod(T1) to Σ(T1)+∪Σ(T2)+ induced
by Φ and Ψ and all basic sorts σ2 of Σ(T2): jB1

Φ(σ2) ◦ i
B1
σ2

= χ̃B1
σ2

.

(b) for every model B2 of the χ̃-expansion ofMod(T2) to Σ(T2)+∪Σ(T1)+ induced
by Φ and Ψ and all basic sorts σ1 of Σ(T1): jB2

Ψ(σ1) ◦ i
B2
σ1

= χB2
σ1

.

Theorem 3. Suppose T1 and T2 are theories with disjoint signatures and suppose the
isomorphisms in Cat(Ti) are precisely the Σi-isomorphisms (1 ≤ i ≤ 2).
If T1 and T2 are DC-equivalent with definable inner isomorphisms, then T1 and T2 are
GD-equivalent.

Proof. Let Σ1,Σ2 be the signatures of T1, T2. There are functors F,G, reconstruction
manuals Φ,Ψ and stepwise GD-expansions E1, E2 to extended signatures Σ+

1 ,Σ
+
2 as in

the proof of Theorem 2 and we know that E1|Σ1∪Σ2 = E2|Σ1∪Σ2 . Moreover, there are
families of formulas χ and χ̃ defining inner isomorphisms of T1-models and T2-models,
respectively.

Note that, for every basic sort σ1 and every type τ1 of Σ1, the auxiliary function
symbols iσ1 and jτ1 are in Σ+

2 but not in Σ+
1 . Analogously, for every basic sort σ2 and

every type τ2 of Σ2, the auxiliary function symbols iσ2 and jτ2 are in Σ+
1 but not in Σ+

2 .
Moreover, that is the only difference between Σ+

1 and Σ+
2 .

Let E+
1 be the χ-expansion of Mod(T1) to Σ+

1 ∪Σ+
2 induced by Φ and Ψ and let E+

2

be the χ̃-expansion of Mod(T2) to the same signature. By definition, E+
i is a stepwise

GD-expansion of Ei (1 ≤ i ≤ 2). We have to show that E+
1 = E+

2 . It is sufficient if
E+

2 � Def-iσ1 for σ1 in Σ1 and E+
1 � Def-iσ2 for σ2 in Σ2 because the definitions of

jτ1 and jτ2 are the same for E+
1 and E+

2 . That E+
2 � Def-iσ1 and E+

1 � Def-iσ2 follows
directly from the many-sorted Ahlbrandt-Ziegler condition.
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