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A Nonparametric Eigenvalue-Regularized Integrated

Covariance Matrix Estimator for Asset Return Data

Clifford Lam∗and Phoenix Feng†

Department of Statistics, London School of Economics and Political Science

Abstract

In high-frequency data analysis, the extreme eigenvalues of a realized covariance matrix are biased

when its dimension p is large relative to the sample size n. Furthermore, with non-synchronous tra-

ding and contamination of microstructure noise, we propose a nonparametrically eigenvalue-regularized

integrated covariance matrix estimator (NERIVE) which does not assume specific structures for the

underlying integrated covariance matrix. We show that NERIVE is positive definite in probability,

with extreme eigenvalues shrunk nonlinearly under the high dimensional framework p/n → c > 0. We

also prove that in portfolio allocation, the minimum variance optimal weight vector constructed using

NERIVE has maximum exposure and actual risk upper bounds of order p−1/2. Incidentally, the same

maximum exposure bound is also satisfied by the theoretical minimum variance portfolio weights. All

these results hold true also under a jump-diffusion model for the log-price processes with jumps removed

using the wavelet method proposed in Fan and Wang (2007). They are further extended to accommo-

date the existence of pervasive factors such as a market factor under the setting p3/2/n → c > 0. The

practical performance of NERIVE is illustrated by comparing to the usual two-scale realized covariance

matrix as well as some other nonparametric alternatives using different simulation settings and a real

data set.
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1 Introduction

In modern day finance, the so called tick-by-tick data on the prices of financial assets are readily available

together with huge volume of other financial data. Advanced computational power and efficient data storage

facilities mean that these data are analyzed on a daily basis by various market makers and academic

researchers. While the Markowitz portfolio theory (Markowitz, 1952) is originally proposed for a finite

number of assets using inter-day price data, the now easily accessible intra-day high frequency price data

for a large number assets gives rise to new possibilities for efficient portfolio allocation, on top of the

apparent increase in sample size for returns and volatility matrix estimation.

Certainly, the associated challenges for using high frequency data have to be overcome at the same

time. One main challenge comes from the well documented market microstructure noise in the recorded

tick-by-tick price data (Aı̈t-Sahalia et al., 2005, Asparouhova et al., 2013). Another challenge comes from

the non-synchronous trading times when more than one assets are considered. In terms of integrated

covariance estimation, Xiu (2010) suggested a maximum likelihood approach for consistent estimation un-

der market microstructure noise. Aı̈t-Sahalia et al. (2010) proposed a quasi-maximum likelihood approach

for estimating the covariance between two assets, while Zhang (2011) proposed a two or multi-scale co-

variance estimator to remove the bias accumulated due to the microstructure noise in the usual realized

covariance formula, at the same time overcoming the non-synchronous trading times problem by using

previous-tick times (see Section 2 also). Other attempts to overcome these two challenges together include

Barndorff-Nielsen et al. (2011a) and Griffin and Oomen (2011), to name but a few.

When there are more than one asset to manage, the integrated covariance matrix for the asset returns

is an important input for risk management or portfolio allocation. A large number of assets requires an

estimation of a large integrated covariance matrix. Even in the simplest case of independent and identically

distributed random vectors, random matrix theory tells us that the sample covariance matrix will have

severely biased extreme eigenvalues (see chapter 5.2 of Bai and Silverstein (2010) for instance). To give a

simple demonstration of how serious the bias problem can be, suppose we have independent and identically

distributed p-dimensional random vectors X = (x1, . . . , xn)
T with mean 0 and covariance matrix Σ = σ2Ip,

where Ip is the p× p identity matrix. The Marčenko-Pastur Law (Marčenko and Pastur, 1967) states that

the density function of the limiting spectrum of the sample covariance matrix S = n−1XXT as p, n → ∞

with p/n→ c > 0, is

pc(x) =


1

2πxcσ2

√
(b− x)(x− a), a ≤ x ≤ b;

0, otherwise,

where a = σ2(1 −
√
c)2, b = σ2(1 +

√
c)2. See Bai and Silverstein (2009) Section 3.1 also. With this, say
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p = 25 and n = 500, i.e., p is just 5% of n, the largest and smallest eigenvalues are 50% larger and 40%

smaller than the corresponding population ones (i.e., σ2) respectively. It means that a seemingly small p

is enough already for the sample covariance matrix to suffer from significant distortions for the extreme

eigenvalues, creating instability. When Σ ̸= σ2Ip the distortion can potentially be more severe.

To ameliorate the bias issue above, researchers propose different methods to reduce the dimension of the

estimation problem, which is of order p2, where p is the number of assets. Wang and Zou (2010), Tao et al.

(2013) and Kim et al. (2016) assume a sparsity condition (perhaps after removing a market factor) and use

thresholding to regularize different integrated covariance matrix estimators based on previous-tick times.

Tao et al. (2011) uses a thresholded estimator to find a factor model structure for the daily dynamics of

the integrated covariance matrix. These methods reduce the effective number of parameters to estimate to

the order of p or less (or plog(p) for approximate sparsity. See Tao et al. (2013)). While consistent results

are established for these methods, sparsity or factor model structure imposed regularities in the integrated

covariance matrix which may not be completely satisfied in practice.

At the same time, with respect to portfolio allocation, DeMiguel et al. (2009) constrains the portfolio

norm of a portfolio w using either the L1 or squared L2 norm, defined respectively by
∥∥w∥∥

1
=
∑

i |wi| and∥∥w∥∥2
2
=
∑

i w
2
i . Fan et al. (2012) proposes to regularize the portfolio weights by constraining the L1 norm of

the portfolio, termed the gross exposure of a portfolio in the paper. These two portfolio allocation methods

do not regularize the integrated covariance matrix, but directly regularize the portfolio weights. The two-

scale covariance matrix constructed in Fan et al. (2012) using the pairwise refresh method, however, may

not be positive definite and adjustments are necessary to make it so again. In a very broad sense, these two

methods are variations of sparsity or factor model-assumed papers mentioned in the previous paragraph,

essentially reducing an order p2 problem to order p or less by assuming a sparse optimal portfolio weight.

In this paper, we address the estimation of the integrated covariance matrix by reducing it to exactly an

order p problem, but without assuming inherent structures to the population integrated covariance matrix

or optimal portfolio weight. While this makes it impossible to estimate the integrated covariance matrix

consistently, we achieve another important objective - regularization of extreme eigenvalues of the realized

covariance matrix under the setting p/n → c > 0 - through introducing a class of rotation-equivariant

estimators and bringing it as close to the population counterpart as possible. Indeed, it is clear in our

simulations and portfolio allocation exercises in Section 5 that the two-scale covariance matrix, which is

essentially a realized covariance matrix, suffers from bad performance because of the instability created by

the biases in its extreme eigenvalues compared to its population counterpart.

The said regularization above is achieved by minimizing a certain Frobenius error, to be discussed in

Section 2.2. Such a regularization is inspired by a data splitting method originated from Abadir et al.
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(2014), which is proved in Lam (2016) to be nonlinearly shrinking the sample covariance eigenvalues

at a certain data splitting ratio. We show that the resulting integrated covariance matrix estimator is

consistent with a certain positive definite matrix with regularized eigenvalues at a rate of n−1/6 under the

setting p/n → c > 0, with n being the sample size. This is the same rate as the univariate two-scale

realized covariance estimator by Zhang (2011). We also prove the same rate of convergence when there are

pervasive factors but with p3/2/n→ c > 0. Using its inverse in the construction of the minimum variance

portfolio induces a natural upper bound on the maximum exposure of the portfolio, which decays at a

rate of p−1/2 in probability when there are no pervasive factors. The importance of this bound is that the

theoretical minimum variance portfolio satisfies such a bound also. See Theorem 5 for more details, which

includes results when there are pervasive factors like a market factor in the data.

The rest of the paper is organized as follows. Section 2 presents the notations and model for the

high frequency data and introduces our way to perform nonlinear shrinkage on the two-scale covariance

matrix estimator. Asymptotic theories and detailed assumptions, including those involving jumps removed

data in the case of jump-diffusion log-price processes, can be found in Section 3. Practical concerns

and implementation can be found in Section 4, while all simulations and a thorough empirical study are

presented in Section 5. We give the conclusion of the paper in Section 6, before all the proofs of the

theorems in the paper in Section 7.

2 Framework and Methodology

Let
(
Ω,F ,

{
Ft

}
0≤t≤1

,P
)
be a filtered probability space on which the log-price process of the p assets under

study, {Xt}0≤t≤1, is adapted, where Xt = (X
(1)
t , . . . , X

(p)
t )T. We assume Xt follows a diffusion process

dXt = µtdt+ σtdWt, t ∈ [0, 1], (2.1)

so that the time period is normalized to have length 1. Let L be the number of partitions of the data, with

0 = τ0 < τ1 < · · · < τL = 1,

and (τℓ−1, τℓ] represents the ℓth partition. The reason we partition the data is that our method of regulari-

zation is carried out within a partition at a time, with data from outside of the partition help regularize the

estimator within. The ultimate estimator is then the sum of all regularized estimators for the partitions.

See section 2.2 for full details.

We assume that L is finite throughout the paper. The process {Wt} is a p-dimensional standard
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Brownian motion. The drift µt ∈ Rp is càdlàg. It can be random and can be correlated with {Wt}. The

volatility σt ∈ Rp×p is also càdlàg. See all assumptions in Section 3 for full details. For each time interval

[a, b] ⊂ [0, 1], the corresponding integrated covariance matrix is defined as

Σ(a, b) =

∫ b

a

σuσ
T

udu.

This matrix is an important input in risk assessment and in Markowitz portfolio allocation. If we have a

portfolio w which stays constant over a period of time [a, b], then the risk of the portfolio over this period

of time can be expressed as

R1/2(w) = (wTΣ(a, b)w)1/2 =
(∫ b

a

wTσtσ
T

t w dt
)1/2

.

The integrand wTσtσ
T
t w can be considered an instantaneous squared-risk at time t for w, and hence R(w)

is a measure of the total risk accumulated over the period [a, b]. At the same time, in Markowitz portfolio

allocation for instance, Σ(a, b)−1 is required for the construction of the minimum variance portfolio (see

Section 3.2 for more details).

Let {vs}, 1 ≤ s ≤ nL be the set of all-refresh times for the log-prices in Xt, where n(ℓ) is the number

of all-refresh times at partition ℓ, with ℓ = 1, . . . , L, and n = L−1
∑L

ℓ=1 n(ℓ) is the average number of

all-refresh times in a partition, which has the same order as the total sample size nL since L is finite. An

all-refresh time vs is the time when all assets have been traded at least once from the last all-refresh time

vs−1. Let tjs ∈ (vs−1, vs] be the sth previous-tick time for the jth asset, which is the last trading time

before or at vs. For non-synchronous trading, tj1s ̸= tj2s for j1 ̸= j2 in general. Also, high-frequency prices

are typically contaminated by microstructure noise, so that at the all-refresh time vs, we only observe

Y(s) = X(s) + ϵ(s), s = 1, . . . , nL, (2.2)

where X(s) = (X
(1)
t1s
, . . . , X

(p)

tps
)T and ϵ(s) = (ϵ

(1)
t1s
, . . . , ϵ

(p)

tps
)T, and ϵ(·) can be dependent on X(·) in general

(see the assumptions in Section 3). The underlying microstructure noise process {ϵt}0≤t≤1 is assumed to

be adapted to {Ft}0≤t≤1, so that the observed price process {Yt}0≤t≤1 is also adapted.

2.1 Two-Scale Covariance Estimator

Contamination of microstructure noise in high-frequency data means that the usual realized covariance is

heavily biased. Hence in Zhang (2011), a two-scale covariance estimator (TSCV) is introduced to remove

this bias. In this paper, we use a slightly modified multivariate version of the two-scale covariance estimator,
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also by Zhang (2011). For ℓ = 1, . . . , L, define

̂⟨Y,YT⟩ℓ = [Y,YT]
(K)
ℓ − |Sℓ(K)|K

|Sℓ(1)|
[Y,YT]

(1)
ℓ , with

(
[Y,YT]

(m)
ℓ

)
i,j

= [Y (i), Y (j)]
(m)
ℓ =

1

m

∑
r∈Sℓ(m)

(Y
(i)
tir

− Y
(i)

tir−m
)(Y

(j)

tjr
− Y

(j)

tjr−m

), and

Sℓ(m) = {r : tir, tir−m ∈ (τℓ−1, τℓ] for all i}, |Sℓ(m)|m =
|Sℓ(m)| −m+ 1

m
.

(2.3)

Note that [Y (i), Y (j)]
(1)
ℓ is the usual realized covariance matrix when returns are calculated using adjacent

previous-tick times, whereas [Y (i), Y (j)]
(K)
ℓ can be seen as a realized covariance matrix when returns are

calculated at time points which are K previous-tick times apart instead of 1 (so, another scale). Ultimately,

while both are dominated by the market microstructure noise, the difference defined in ̂⟨Y,YT⟩ℓ is proved

in Zhang (2011) to be able to cancel out the dominating effect of the microstructure noise. With this, we

define the two-scale covariance matrix (TSCV) for the partition (τℓ−1, τℓ] to be

Σ̃(τℓ−1, τℓ) = ̂⟨Y,YT⟩ℓ. (2.4)

We suppress the dependence on K in the notation Σ̃(τℓ−1, τℓ) and all related definitions in the next section.

In Section 3, we show that K works well at the order n2/3, which is indeed the order of magnitude suggested

in Zhang (2011).

Remark 1. The multi-scale realized volatility matrix (MSRVM) by Tao et al. (2013), the kernel realized

volatility matrix (KRVM) by Barndorff-Nielsen et al. (2011b) and the pre-averaging realized volatility ma-

trix (PRVM) by Christensen et al. (2010) all have better convergence rates than the TSCV for multivariate

settings. The latter two estimators can be constructed to be positive semi-definite, although all three esti-

mators do not allow p to be growing with n. In principle, our regularized estimator, to be introduced in

Section 2.2, can be based on regularizing these three estimators. However, while the proof of our regulari-

zation method on the MSRVM is an extension of ours on the TSCV (because MSRVM involves sums of

order of n1/2 terms), the jittering and pre-averaging operations on the KRVM and PRVM respectively are

more difficult to handle in the proofs. We decide to leave the extensions of our regularization method to

these estimators in a future project.

2.2 Our Proposed Integrated Covariance Matrix Estimator

Although the two-scale covariance estimator in (2.4) removes the bias contributed from the microstructure

noise, it does not solve the bias issue for the extreme eigenvalues when p is large such that p/n → c > 0,
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where the spread of the eigenvalues in the realized covariance matrix Σ̃(τj−1, τj) is much larger than the

population counterpart, creating instability. In Abadir et al. (2014), in a setting with stationary covariance

matrix, they introduce the idea of splitting the data into two parts in order to regularize the sample

covariance matrix constructed from one part of the data. Lam (2016) shows that with a certain splitting

ratio, in fact the extreme eigenvalues of the sample covariance matrix are nonlinear shrunk asymptotically,

the same as the nonlinear shrinkage introduced in Ledoit and Wolf (2012). We employ the data splitting

idea in Abadir et al. (2014) for our high-frequency data setting in this paper. In order to regularize the

realized covariance matrix in the time period (τj−1, τj ], j = 1, . . . , L, we follow Lam (2016) and consider a

rotation-equivariant estimator Σ(D) = P−jDPT
−j , where D is a diagonal matrix, and P−j is orthogonal

such that

Σ̃−j = P−jD−jP
T

−j , j = 1, . . . , L, with Σ̃−j =
∑
ℓ̸=j

Σ̃(τℓ−1, τℓ). (2.5)

The class of rotation-equivariant estimators allows for the same rotation of the estimator when the observed

vectors are rotated. This is first introduced in James and Stein (1961) for estimating a covariance matrix

under the Stein’s loss function, with respect to which this class is invariant under rotation. Hence with

no a priori information of the eigenvectors of the population covariance matrix, this class provides a good

starting point as an estimator. Ledoit and Wolf (2012) used this class of estimators for the purpose of

nonlinear shrinkage of eigenvalues. However, high frequency data vectors are in general not independent

and identically distributed, so that the explicit nonlinear shrinkage formula in Ledoit and Wolf (2012)

cannot be used.

To introduce our estimator, consider the following optimization problem, with similar problem consi-

dered in Ledoit and Wolf (2012) and Lam (2016):

min
D diagonal

∥∥P−jDPT

−j −Σ(τj−1, τj)
∥∥
F
, (2.6)

where
∥∥ · ∥∥

F
denotes the Frobenius norm. Unlike Ledoit and Wolf (2012) which uses the eigenmatrix of

the sample covariance constructed from the full data set, we use P−j for the rotation-equivariant class.

This facilitates regularization by allowing us to condition on the information outside of partition j, which

weaken the correlation between {Xt} and {ϵt}, and the serial correlation in {ϵt} within partition j. See

Assumption (E3) in Section 3.

Proposition 1. The optimization problem (2.6) has solution D = diag(PT
−jΣ(τj−1, τj)P−j), where diag(A)

creates a diagonal matrix using the diagonal elements of A.

Proof of Proposition 1. To simplify notations in this proof, write D = diag(d1, . . . , dp), P−j = Q =
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(q1, . . . ,qp) and Σ(τj−1, τj) = Σj . Then

∥∥P−jDPT

−j −Σ(τj−1, τj)
∥∥2
F
= tr(D−QTΣjQ)2 =

p∑
i=1

d2i − 2tr(DQTΣjQ) + tr(QTΣ2
jQ)

=

p∑
i=1

d2i − 2

p∑
i=1

diq
T

i Σjqi + tr(QTΣ2
jQ).

Differentiating the above with respect to di and set the derivative to 0, we get di = qT
i Σjqi, which leads

to the solution D = diag(PT
−jΣ(τj−1, τj)P−j). �

Clearly, all eigenvalues of D are contained within the largest and smallest eigenvalues of Σ(τj−1, τj).

This way, the spread of the eigenvalues in D is regularized. Ultimately, we can prove that all the elements in

diag(PT
−jΣ̃(τj−1, τj)P−j) are asymptotically close to those in D = diag(PT

−jΣ(τj−1, τj)P−j) in probability.

See Theorem 2. This allows us to define our integrated covariance matrix estimator for the partition

(τj−1, τj ] to be

Σ̂(τj−1, τj) = P−jdiag(P
T

−jΣ̃(τj−1, τj)P−j)P
T

−j . (2.7)

The overall integrated covariance matrix estimator for the period [0, 1] is then defined to be

Σ̂(0, 1) =

L∑
j=1

Σ̂(τj−1, τj) =

L∑
j=1

P−jdiag(P
T

−jΣ̃(τj−1, τj)P−j)P
T

−j . (2.8)

An ideal estimator relative to Σ̂(0, 1) is an estimator with Σ̃(τj−1, τj) replaced by the population counter-

part Σ(τj−1, τj), i.e.,

ΣIdeal(0, 1) =

L∑
j=1

P−jdiag(P
T

−jΣ(τj−1, τj)P−j)P
T

−j . (2.9)

In practice, a partition can be a trading day or a quarter of it, depending on the number of trading

days of data we have and the number of all-refresh data points in them. We proposed an optimization

criterion to choose the number of partitions (not necessarily uniform) in Section 4. In our simulations and

empirical examples in Section 5, we use 5 or 1 day of training data with (τℓ−1, τℓ] set at 1 day or a quarter

of a day, with the number of all-refresh data points in the order of hundreds in each interval.

3 Asymptotic Theory

In this section, we show that our proposed estimator (2.7) in the jth partition of the data is asymptotically

close to the corresponding ideal rotation-equivariant estimator

ΣIdeal(τj−1, τj) = P−jdiag(P
T

−jΣ(τj−1, τj)P−j)P
T

−j . (3.1)
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This is exactly the optimal estimator that solves (2.6) following Proposition 1. While Σ̃(τj−1, τj) can have

its spread of eigenvalues much larger than that of Σ(τj−1, τj) when p/n→ c > 0, our estimator Σ̂(τj−1, τj)

in (2.7) has its spread of eigenvalues contained within the spread of Σ(τj−1, τj) asymptotically by being

close to ΣIdeal(τj−1, τj) in (3.1) above. See Theorem 2 below. We first introduce some assumptions for

our theorems to hold. In the following and hereafter, we denote λmin(·) and λmax(·) the minimum and

maximum eigenvalue of a square matrix respectively. We write a ≍ b to mean that a = O(b) and b = O(a),

and a ≍P b to mean that a = OP (b) and b = OP (a).

For j = 1, . . . , L, and vs = vjs which is the sth all-refresh time within partition j, define

F−j = Fτj−1
∪ F/Fτj , F j

s = Fvs/Fτj−1
,

with F j
s = ϕ for s ≤ 0. The following assumptions are true for K = 1 or K ≍ n2/3.

Assumptions on the drift µt:

(D1) The drift µt has càdlàg components, such that for s = K,K + 1, . . . , n(j),

∫ vs

vs−K

µtdt = A(vs−K , vs)Z
j
d,s,

where A(vs−K , vs) ̸= 0 is a non-random p × p matrix and can be asymmetric and singular. It has∥∥A(vs−K , vs)
∥∥ = O(p1/2K1/2|vs − vs−1|), where the order p1/2 only appears when there are only

finite number of columns (say r) that are non-zero. The random vector Zj
d,s ∈ F j

s has components

conditionally independent of each other given F−j , with eighth moments exist. Also, E(Zj
d,s|F−j) = 0

and var(Zj
d,s|F−j) = Ip almost surely.

The drift µt can also be non-random, in which case Zj
d,s = (1, 0, . . . , 0)T for all s, and the assumption

for A(vs−K , vs) is the same as above.

(D2) Write P−j = (p1j , . . . ,ppj). We assume for each i = 1, . . . , p, and s = rK+q for r = 1, . . . , |Sj(K)|K

and q = 0, 1, . . . ,K − 1, there exists ρjd,K,q ∈ F−j such that 0 ≤ ρjd,K,q ≤ ξ < 1 with ξ a constant,

and for ℓ = K + q, 2K + q, . . . , rK + q,

E
(
(pT

ijA(vs−K , vs)Z
j
d,ℓ)

2|F−j ∪ F j
ℓ−K

)
= ρjd,K,q(p

T

ijA(vs−K , vs)Z
j
d,ℓ−K)2 + (1− ρjd,K,q)p

T

ijA(vs−K , vs)A(vs−K , vs)
Tpij + eijd,ℓ−K ,

where we define Zj
d,ℓZ

jT
d,ℓ = Ip and eijd,ℓ = 0 for ℓ ≤ 0. The process {eijd,ℓ} with eijd,ℓ ∈ F j

ℓ has

E(eijd,ℓ|F−j ∪ F j
ℓ−K) = 0 almost surely, and eijd,ℓ|F−j ∪ F j

ℓ−K = OP (
∥∥A(vs−K , vs)

∥∥2).
9



(D3) Let ψ(x) = ex
2 − 1. We assume that for ℓ = 0, 1, . . . , s,

E

{
ψ

( |(pT
ijA(vs−K , vs)Z

j
d,ℓ)

2 − pT
ijA(vs−K , vs)A(vs−K , vs)

Tpij |
(pT

ijA(vs−K , vs)Z
j
d,ℓ−K)2

)∣∣∣F−j ∪ F j
ℓ−K

}
<∞,

E

{
ψ

( |eijd,ℓ|
(pT

ijA(vs−K , vs)Z
j
d,ℓ−K)2

)∣∣∣F−j ∪ F j
ℓ−K

}
<∞.

Assumptions on the volatility σt and Brownian motion Wt:

(V1) The volatility σt has càdlàg components, and the Brownian motion {Wt} can be correlated with

{µt} in general. Write ∫ vs

vs−K

σtdWt = Σ(vs−K , vs)
1/2Zj

v,s,

where Σ(vs−K , vs) is a symmetric positive definite p× p matrix which can be random, with

λmin(Σ(τj−1, τj)) ≥ C(τj − τj−1)
−1, λmax(Σ(vs−K , vs)) ≍P

∥∥A(vs−K , vs)
∥∥2/|vs − vs−K |,

where C > 0 is a constant. The process {σt} is independent of all other processes.

Also, E(Zj
v,s|F−j) = 0 and var(Zj

v,s|F−j) = Ip almost surely. The random vector Zj
v,s ∈ F j

s has

components conditionally independent of each other given F−j , with eighth moments exist.

(V2) Parallel to (D2), but expectations are taken conditional on F−j ∪ F j
ℓ−K ∪ Fσ

vs , where Fσ
t is the

σ-algebra generated by the process {σt} up to time t.

Also, ρjd,K,q is replaced by ρjv,K,q ∈ F−j , A(vs−K , vs) by Σ(vs−K , vs)
1/2, Zj

d,ℓ by Zj
v,ℓ and e

ij
d,ℓ by e

ij
v,ℓ

with eijv,ℓ|F−j ∪ F j
ℓ−K ∪ Fσ

vs = OP (e
ij
d,ℓ|F−j ∪ F j

ℓ−K)/|vs − vs−K |.

(V3) Parallel to (D3), replacements the same as in (V2).

Assumptions on the microstructure noise ϵt:

(E1) Within the jth partition, E(ϵ(s)ϵ(s)T|F−j) = Σj
ϵ,s, which is random and independent of all other

processes given F−j . Also, E(Σj
ϵ,s) = Σj

ϵ , and
∥∥Σj

ϵ,s

∥∥ ≤ λϵ < ∞ uniformly as n, p → ∞ where λϵ is

a constant.

(E2) Within the jth partition, we can write ϵ(s) = (Σj
ϵ,s)

1/2Zj
ϵ,s, with Zj

ϵ,s ∈ F j
s having conditionally

independent components given F−j . Also E(Zj
ϵ,s|F−j) = 0 almost surely and eighth order moments

exist for the components of Zj
ϵ,s.
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(E3) Let FX
t be the σ-algebra generated by the log-price process up to time t, and Fϵ

t the one by the

microstructure noise process up to time t, so that Ft =
∩

s>t FX
s ⊗ F ϵ

s . Then for s1, s2 time points

within partition j, given F−j , we assume the φ-mixing coefficient between two σ-algebras satisfies

φ(FX
s1 ,F

ϵ
s2 |F−j) = O(n−1) = φ(Fϵ

s2 ,F
X
s1 |F−j).

Also, for s2 > s1 time points within partition j, we assume

φ(Fϵ
s1 ,F

ϵ
s2/F

ϵ
s1 |F−j) = O(n−1) = φ(Fϵ

s2/F
ϵ
s1 ,F

ϵ
s1 |F−j).

Other assumptions:

(A1) The observation times are independent of X(·) and ϵ(·), and the partition boundaries τℓ, ℓ =

0, 1, . . . , L, satisfy 0 < C1 ≤ minℓ=1,...,L L(τℓ − τℓ−1) ≤ maxℓ=1,...,L L(τℓ − τℓ−1) ≤ C2 < ∞, where

C1, C2 are generic constants. Also, the all-refresh times vs, s = 1, . . . , nL satisfy maxs=1,...,nL nL(vs−

vs−1) ≤ C3 for a generic constant C3 > 0. Moreover, maxℓ=1,...,L nL(τℓ − vn(ℓ)) = o(1). The sample

size in the jth partition has n(j)/n→ 1.

(A2) The pervasive factors, if any, persist within an interval (vs−1, vs] for s = 1, . . . , nL.

There is another set of assumptions (A3) to (A5) in Section 7. They involve the drift and volatility in Xvs−

X(s), i.e., the drift and volatility in between the all-refresh and the previous-tick times. These assumptions

are in many ways parallel to assumptions (D1) to (D3) and (V1) to (V3), but the decompositions are more

involved, so that we choose to present them in Section 7 to aid the flow of the paper.

The matrix A(vs−K , vs) in assumptions (D1) to (D3) plays the role of a factor loading matrix in a

factor model if the drift µt is random. Within partition j, if A(vs−K , vs) is diagonal, the contribution of

drift among all assets over vs−K to vs are conditionally independent given F−j . If A(vs−K , vs) is singular

with only the first r ≪ p columns being non-zero, then it represents an exact r-factor model with no

noise on the drift. The first r singular values of A(vs−K , vs) are then of order p1/2K1/2|vs − vs−1|, with

K1/2|vs − vs−1| accounting for the length of the time interval considered.

The serial dependence of the drift vector is depicted in Assumption (D2). This assumption is more

general then it seems. For instance, Zj
d,ℓ can be a random vector of martingales, so that

E(Zj
d,ℓ|F−j ∪ F j

ℓ−K) = Zj
d,ℓ−K ,
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and hence E(pT
ijA(vs−K , vs)Z

j
d,ℓ|F−j ∪ F j

ℓ−K) = pT
ijA(vs−K , vs)Z

j
d,ℓ−K . Then by Jensen’s inequality,

E
(
(pT

ijA(vs−K , vs)Z
j
d,ℓ)

2|F−j ∪ F j
ℓ−K

)
≥ (pT

ijA(vs−K , vs)Z
j
d,ℓ−K)2,

and the assumption only requires a uniformly strict inequality above, so that ρjd,K,q can be uniformly

smaller than 1. Note also E((pT
ijA(vs−K , vs)Z

j
d,ℓ)

2|F−j) = pT
ijA(vs−K , vs)A(vs−K , vs)

Tpij , and hence the

assumption balances this mean with the squared-conditional expected value of the martingale, subject to

an error eijd,ℓ.

If Zj
d,ℓ is independent of any past information such that E(Zj

d,ℓ|F−j ∪ F j
ℓ−K) = 0, then

E
(
(pT

ijA(vs−K , vs)Z
j
d,ℓ)

2|F−j ∪ F j
ℓ−K

)
= pT

ijA(vs−K , vs)A(vs−K , vs)
Tpij ,

so that Assumption (D2) means that ρjd,K,q = eijd,ℓ = 0.

Assumption (D3) says that quadratic forms not too far in time apart can be very different but with

sub-Gaussian-tailed probability. Assumptions (D1) to (D3) together allow us to use certain Hoeffding’s

inequalities for sums of martingale differences (see van de Geer (2002), Theorem 2.2).

If the drift µt is non-random, then the matrix A(vs−K , vs) can be set as zero except the first column

which is a non-zero known vector. With Zj
d,s = (1, 0, . . . , 0)T, assumptions (D2) and (D3) are automa-

tically satisfied with eijd,ℓ = 0. We do not make further assumptions for A(·, ·), and hence the drift can

include longer term trends (where components of A(·, ·) can be increasing or decreasing over different time

segments) and pervasive factors.

Assumption (V1) to (V3) for the volatility are parallel to (D1) to (D3). The subtler part is in As-

sumption (V1), where
∥∥Σ(vs−K , vs)

∥∥ depends on
∥∥A(vs−K , vs)

∥∥. In doing so, we are essentially assuming

that if there are pervasive factors such as the market factor, then they affect both the drift and the vo-

latility of the log-price process at the same time, which certainly makes sense. Then order p1/2 singular

values in A(vs−K , vs) translates to order p eigenvalues in Σ(vs−K , vs) in the presence of pervasive factors,

appropriately adjusted by |vs − vs−K |.

Assumption (E1) allows for time-varying covariance matrix for the microstructure noise. Assumption

(E3) particularly assumes a weak dependence between the log-price process and the microstructure noise

process within partition j, as well as a weak serial dependence among the microstructure noise vectors,

when F−j is given. This assumption is inspired by Chen and Mykland (2017), where they assumed that

given the entire information of the log-price process, the microstructure noise at different time points are

independent. In our case, we are not given the entire picture of the log-price process, but not far from that
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either since with F−j we are given nL− n(j) data points from the total of nL. Then instead of assuming

the microstructure noise vectors are independent, we assume that they are weakly dependent, and with

n larger (i.e., more information at more time points is available outside partition j), the dependence is

weaker.

The first part of Assumption (A1) is automatically satisfied if the boundary set {τℓ}0≤ℓ≤L is pre-set, for

instance, to be the daily opening or closing time of the L days of data, or a quarter of it, just as described

in Section 2.2. See also Section 4 on a criterion in choosing these tuning parameters. Assumption (A2)

means that the pervasive factors are either present between two all-refresh times, or they are absent.

Theorem 2. Let Assumptions (D1) to (D3), (V1) to (V3), (E1) to (E3) and (A1) to (A5) hold. For the

all-refresh log-price data Y(s), s = 1, . . . , nL in (2.2), as n, p → ∞ such that p/n → c > 0, if there are

no pervasive factors, i.e.,
∥∥A(vs−K , vs)

∥∥ = O(K1/2|vs − vs−1|), the integrated covariance matrix estimator

constructed in (2.7) and Σ̂(0, 1) in (2.8) satisfy

max
j=1,...,L

∥∥Σ̂(τj−1, τj)ΣIdeal(τj−1, τj)
−1 − Ip

∥∥ = OP (n
−1/6),

∥Σ̂(0, 1)ΣIdeal(0, 1)
−1 − Ip∥ = OP (n

−1/6),

where
∥∥ · ∥∥ denotes the spectral norm of a matrix. If there are pervasive factors so that

∥∥A(vs−K , vs)
∥∥ =

O(p1/2K1/2|vs − vs−1|) (this includes the case when µt is assumed non-random), then assuming p3/2/n→

c > 0, the above results still hold.

The proof can be found in Section 7. The rate of convergence of our estimator is n−1/6, the same as the

TSCV in the univariate case (Zhang, 2011). Note that Assumption (D1) and (V1) allow for the existence

of pervasive factors like the market factor, and our estimator is still converging to the ideal estimator in

probability at a rate of n−1/6 if p3/2/n → c > 0. One remarkable fact is that this rate does not depend

on p. We require p to be growing slower than n in the presence of pervasive factors mainly because the

drift term can overwhelm the estimator when there are pervasive factors. When the drift is non-random

under Assumption (D1), it certainly can behave as if there are pervasive factors when there are no further

assumptions on A(·, ·), and we do need p3/2/n→ c > 0 for the results in Theorem 2 to hold. See Remark 3

also at the end of this Section as well. Indeed, without a drift term, Lam (2016) allows the (low frequency)

data to have a factor structure under p/n→ c > 0.

Since P−j is orthogonal, it is easy to see that ΣIdeal(τj−1, τj) in (3.1) has

Cond(ΣIdeal(τj−1, τj−1)) ≤ Cond(Σ(τj−1, τj)),
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where Cond(·) is the condition number of a matrix, defined by dividing the maximum over the minimum

magnitude of eigenvalue of the matrix. Theorem 2 then implies that

Cond(Σ̂(τj−1, τj−1)) ≤ Cond(Σ(τj−1, τj))

in probability. This is the result of nonlinear shrinkage of the eigenvalues in Σ̂(τj−1, τj). Our estimator

then has its spread of eigenvalues contained within the population counterpart, so that it is more stable

than Σ̃(τj−1, τj), which can have its extreme eigenvalues severely biased when p/n → c > 0, creating

instability. The TSCV indeed performs worse than all other methods in Section 5. Incidentally, since all

eigenvalues of Σ(τj−1, τj) are non-negative, the results of Theorem 2 also prove the following.

Corollary 3. Let all the assumptions in Theorem 2 hold. Then as n, p → ∞ such that p/n → c > 0, the

integrated covariance matrix estimator Σ̂(τj−1, τj) in (2.7), and also Σ̂(0, 1) in (2.8), are positive definite

in probability as long as Σ(τj−1, τj) and Σ(0, 1) are.

This corollary shows that the positive definiteness of an integrated covariance matrix is preserved in

our proposed estimator in probability as we have large enough sample size. In practice, we always have

positive definiteness of the estimator with a moderate sample size n and a similar dimension p.

Remark 2. In Theorem 2, unlike Lam (2016), we do not require the partition to be very small with the

number of data points of order smaller than the total sample size. This is because we are not proving

efficiency relative to using the majority of data points in constructing the eigenmatrix for our rotation-

equivariant estimator. We can pursue it, but then a very small partition essentially means L → ∞ also,

which unfortunately makes the rate of convergence to be slower than n−1/6 due to the complications of

microstructure noise. This can be seen explicitly in the proof of Lemma 4, where one of the term has rate

n−1/6L. The practical performance is also worse if we use a very small partition, resulting in too many

of them. Hence we decide not to pursue something like Theorem 5 of Lam (2016), for the sake of a better

rate of convergence, and a better practical performance overall.

Remark 3. Defining pij as an eigenvector for P−j, the term pT
ijA(vs−K , vs)A(vs−K , vs)

Tpij is bounded

by
∥∥A(vs−K , vs)

∥∥2 in our proofs when there are pervasive factors, which is an order p larger than when

there are no factors. The same treatment goes when µt is assumed non-random, where A(·, ·) essentially

has only one non-zero column. In the end, this is exactly the reason why p3/2/n→ c > 0 is needed instead

of just p/n→ c > 0. We conjecture that p/n→ c > 0 is enough for our results to hold even with pervasive

factors, since pij is in fact a random eigenvector of a sample covariance-like matrix
∑

ℓ ̸=j Σ̃(τℓ−1, τℓ). If

it were a proper sample covariance matrix, then for any known unit vector x ∈ Rp, pT
ijx = OP (p

−1/2) (see
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Theorem 1 and Remark 1 of Bai et al. (2007)), so that pT
ijA(vs−K , vs)A(vs−K , vs)

Tpij should be of order∥∥A(vs−K , vs)
∥∥2/p in probability, i.e., the same order as when there are no factors.

3.1 Extension to Jump-Diffusion Processes

Our method can be extended to include jumps in the underlying log-price process Xt. We introduce the

relevant model first. With jumps, the underlying log-price process is modeled as

dXt = µtdt+ σtdWt + dJt, t ∈ [0, 1], (3.2)

where µt and σt are as in the pure diffusion model (2.1), and Jt = (J
(1)
t , . . . , J

(p)
t )T denotes a p-dimensional

right-continuous pure jump process. Each element in Jt is assumed to have finite activity in [0, 1], so that

there are only finite number of jumps in each log-price process X
(j)
t in the time interval we consider. The

J
(j)
t ’s can be correlated with each other, and each is modeled by

J
(j)
t =

N
(j)
t∑

ℓ=1

B
(j)
ℓ , t ∈ [0, 1],

where each count process N
(j)
t can be correlated with each other. The same holds true for each jump size

B
(j)
ℓ . The quadratic covariation over [0, 1] for the process Xt is then

QV =

∫ 1

0

σtσ
T

t dt+
∑

0≤t≤1

∆Jt∆JT

t , (3.3)

where ∆Jt = Jt − Jt−. It is clear that an off-diagonal entry in ∆Jt∆JT
t will only be non-zero in general

when both the corresponding log-price processes have jumps at the same time (cojumps) for at least once.

It can correspond to, e.g., certain major market news reacted by a number of stocks at the same time. To

account for the jump risks contributed by regular occurrence of cojumps (see e.g. Gilder et al. (2014) for

examples of systematic or non-systematic cojumps), QV should be estimated as a whole rather than just

the integrated covariance matrix.

To this end, we propose to use the wavelet method described in Section 3.2 of Fan and Wang (2007)

to first remove the jumps in the log-price processes and construct our nonlinear shrinkage estimator in

(2.8) using the jumps-removed data. The wavelet approach is also considered in Xue et al. (2014) to test

for the presence of jumps in high-frequency financial time series. We give the practical details on how

we implement the wavelet method for each observed log-price process at the end of the section. The

estimated jump process Ĵt using the wavelet method is then used to construct
∑

0≤t≤1 ∆Ĵt∆ĴT
t , giving us
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an estimator of QV as

Q̂V = Σ̂(0, 1) +
∑

0≤t≤1

∆Ĵt∆ĴT

t . (3.4)

Note that from Theorem 1 of Fan and Wang (2007), using our notations, we can deduce immediately

that the finite number of jumps in each log-price process are removed at a rate at least (nL)−1/4 using the

wavelet method, with nL being the total number of all-refresh data points. Individual asset may do even

better since we use all data points available in practice for each asset before evaluating the all-refresh time

points. This jump removal rate is in fact the key to the successful adaptation of wavelet jumps removal to

our proposed nonlinear shrinkage estimator. More detailed assumptions:

(W1) The wavelets used in jump estimation are differentiable.

(W2) For the jump part of X
(j)
t in [0, 1] for j = 1, . . . , p, its jump locations η

(j)
ℓ and jump sizes B

(j)
ℓ satisfy

N
(j)
1 <∞, η

(j)
1 < . . . < η

(j)
ℓ < . . . , 0 < |B(j)

ℓ | <∞ almost surely.

(W3) The number of stocks involved in a cojump is finite.

Assumptions (W1) and (W2) are technical assumptions adapted from Fan and Wang (2007). Assumption

(W2) means that we are dealing with finite number of jumps for each log-price process, and the sizes

of the jumps are bounded from 0 almost surely. If Assumption (W3) is not satisfied, then the rate of

convergence of Σ̂(τj−1, τj) in Theorem 2 using the jumps-removed data will be dependent on how many

stocks is involved in a cojump in general. Our assumptions allow the jump process to be dependent on the

drift, volatility and the microstructure noise process in general.

Theorem 4. Let all the assumptions in Theorem 2 hold, as well as (W1) to (W3) for the jump-diffusion

model (3.2). Using the jumps-removed all-refresh log-price data Y∗(s) = Y(s) − Ĵvs , s = 1, . . . , nL in

constructing the integrated covariance matrix estimator in (2.7), the same conclusions in Theorem 2 and

Corollary 3 hold. Moreover, we have

∥∥ ∑
0≤t≤1

(∆Jt∆JT

t −∆Ĵt∆ĴT

t )
∥∥ = OP (n

−1/4).

The following is the jumps-removal procedure:

1. Denote Y
(j)
i,k the wavelet coefficients of {Y (j)

t }, k = 1, . . . , 2i, i = 1, . . . , log2(n), j = 1, . . . , p.

2. Let D
(j)
n = d

√
2logn be the universal threshold with d as the median of |Y (j)

in,k
|. If |Y (j)

in,k
| > D

(j)
n , the

estimated jump location is τ̂ = k2−in .
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3. For a small neighbourhood δn of the estimated jump location, denote Ȳ
(j)
τ̂l+

and Ȳ
(j)
τ̂l− as the average

value over periods [τ̂l, τ̂l + δn] and [τ̂l − δn, τ̂l) respectively. We take δn as the square root of the total

number of data points after data cleaning, following Fan and Wang (2007).

4. The estimated jump size is B̂
(j)
l = Ȳ

(j)
τ̂l+

− Ȳ
(j)
τ̂l−, and the estimated jump variation is

∑q̂
l=1(B̂

(j)
l )2,

where q̂ is the estimated number of jumps.

5. We remove the jump effect from the original observed data as Y
∗(j)
t = Y

(j)
t −

∑
τ̂l≤t B̂

(j)
l .

3.2 Application to Portfolio Allocation

In this section we investigate the theoretical performance of our estimator when it is used to construct

minimum-variance portfolios. Defining 1p as a column vector of p ones, we define the estimated optimal

minimum-variance portfolio weights to be

ŵopt =
Σ̂(0, 1)−11p

1T
pΣ̂(0, 1)−11p

,

where Σ̂(0, 1) is our estimator of Σ(0, 1). In Section 5, we empirically compare our estimator to other

estimators using different measures, including the performance in minimizing portfolio risks.

Unlike DeMiguel et al. (2009) or Fan et al. (2012) which constrain the L1 or L2 norm of a port-

folio vector w explicitly through a tuning parameter, our method enjoys a natural upper bound on

the maximum exposure asymptotically in probability. The maximum exposure of a portfolio vector

w is defined as
∥∥w∥∥

max
= maxi |wi|. The bound for our method is important since the theoretical

minimum-variance portfolio is also subjected to the same bound. At the same time, the actual risk

R1/2(ŵopt) = (ŵT
optΣ(0, 1)ŵopt)

1/2 also has a natural upper bound, as presented below.

Theorem 5. Let all the assumptions in Theorem 2 hold. Define the theoretical minimum variance portfolio

weight to be

wtheo =
Σ(0, 1)−11p

1T
pΣ(0, 1)−11p

.

In the case of no pervasive factors with p/n → c > 0, or the existence of pervasive factors with p3/2/n →

c > 0, the maximum exposures of ŵopt and wtheo satisfy, in probability,

p1/2
∥∥ŵopt

∥∥
max

, p1/2
∥∥wtheo

∥∥
max

≤ max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
.

If there are no pervasive factors and p/n → c > 0, the actual risks of ŵopt and wtheo satisfy, in
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probability,

p1/2R1/2(ŵopt) ≤
max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
· λ1/2max(Σ(0, 1)),

p1/2R1/2(wtheo) ≤ λ1/2max(Σ(0, 1)).

If there are pervasive factors and p3/2/n → c > 0, then R(ŵopt) = OP (λmax(Σ)) = OP (p), where the

bound for R(wtheo) remains the same as above.

If Assumptions (W1) to (W3) hold also under the jump-diffusion model (3.2), then the same conclusions

as above hold for the maximum exposure and actual risk bounds, as long as we are using the jumps-removed

data as described in Section 3.1.

The proof of this theorem is in Section 7. The gross exposure constraint by Fan et al. (2012) or the

L2-norm constraint by DeMiguel et al. (2009) are useful in constraining the total exposure of a portfolio

and obtaining special ones like the no-short-sale portfolio (by setting
∥∥w∥∥

1
≤ 1). In practice, as illustrated

by our simulation experiments and real data analysis in Section 5, the maximum exposure can still be large

while these explicit constraints are in place. Certainly, there are a lot of examples where concentrated

portfolios can be rewarding. However, with respect to the minimum-variance portfolio, the theoretical one

does satisfy an upper bound on the maximum exposure as presented in Theorem 5. Our method has the

same upper bound in probability, which decays as p increases when there are no pervasive factors in the

data. As illustrated in Section 5, the maximum exposure in ŵopt is on average smaller than other state-

of-the-art methods in various settings, especially when using a quarter of a trading day as a partition. At

the same time, in the real data analysis, the risk for our method measured as the out-of-sample standard

deviation of the return for a portfolio is smaller than all other methods in the two portfolio studies. The

relatively small turnover of our portfolio as shown in Table 4 and 5 is also important when profitability is

concerned. See Section 5 for more details.

When there are pervasive factors like the market factor in the data, we have
∥∥ŵopt

∥∥
max

= OP (p
1/2) =∥∥wtheo

∥∥
max

and R(
∥∥ŵopt

∥∥) = OP (p). It would seem that explicit constraints in the portfolio weights

would be better than our method. However, the bounds are certainly not tight. Simulation results with

pervasive factors in Table 3 show that our method still performs better than others with the smallest L2

distance from the theoretical portfolio, and matches closely to its out-of-sample risk. It would need more

sophisticated analysis to obtain tighter bounds when there are pervasive factors.
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4 Practical Implementation

There are two parameters that can be tuned for potentially better performance, namely the partition

(τj−1, τj ] of the period [0, 1] (thus also determining L itself which represents the number of partitions), and

the scale parameter K used in the TSCV in (2.4). For example, suppose we are given a period of 10 days

of tick-by-tick data, if we set (τj−1, τj ] to be one day, then L = 10. Note that the length of each partition

can be different. Similar to the function g(m) in equation (4.7) of Lam (2016), we propose to minimize the

following criterion for a good choice of τ = {τj}0≤j≤L and K:

g(τ ,K) =

∥∥∥∥ L∑
j=1

(
Σ̂(τj−1, τj)− Σ̃(τj−1, τj)

)∥∥∥∥2
F

, (4.1)

where Σ̃(τj−1, τj) and Σ̂(τj−1, τj) are defined in (2.4) and (2.7) respectively. This function is inspired

by Bickel and Levina (2008), where a similar function, with the population covariance matrix replaced by

the sample covariance matrix, is used for the determination of the banding number in banding a large

covariance matrix estimator. In our case, the above aligns with the optimization problem (2.6), but with

Σ(τj−1, τj) replaced by the sample counterpart Σ̃(τj−1, τj). From our experience, as long as the intervals

are not too different in length and that each interval has enough data points (at least the same order as

p), the performance of the estimator is in fact more dependent on L, the number of partitions we choose.

Hence we suggest to divide the time interval into equal length partitions, checking that each one has enough

data points. We can then choose L by minimizing the criterion (4.1) above.

For the choice of K, since we are using K ≍ n2/3 as in Zhang (2011), we can search K = [bn2/3] on

a preset grid of constant b. In practice, we found from our simulation results and real data analysis that

using b = 1 provide good results, and portfolio performance is not too different from using other values of

b, hence in this paper we use b = 1.

5 Empirical Results

5.1 Simulation

In this section, we simulate high frequency trading transactions of 100 stocks for one year (250 trading

days). The price processes and the asynchronous transaction times are simulated independently. The

observed log-price is defined as X
o(i)
t = X

(i)
t + ε

(i)
t , where X

(i)
t represents the latent log-price, and the

microstructure noise has ε
(i)
t

iid∼ N(0, 0.00052). We generate p = 100 latent log-prices by the following
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Heston-like multivariate factor model with stochastic volatilities:

dX
(i)
t = µ(i)dt+

√
1− (ρ(i))2σ

(i)
t dB

(i)
t + ρ(i)σ

(i)
t dWt + Cν(i)dZt, i = 1, . . . , 100, (5.1)

where {Wt}, {Zt} and the {B(i)
t }’s are independent standard Brownian motions. The processes {Wt} and

{Zt} imitate factors in the market. The constant C = 1{model 2} is 0 for the first model we consider. We

set ρ(i) = −0.7C, so that it is 0 in the first model, and hence there are no factors. For the second model,

C = 1, so that it contains two factors. The spot volatility σ
(i)
t =

√
ϱ
(i)
t follows the Cox-Ingersoll-Ross

(CIR) process

dϱ
(i)
t = κ(i)(θ(i) − ϱ

(i)
t )dt+ ξ(i)dU

(i)
t ,

where the {U (i)
t }’s are independent standard Brownian motions. Other parameters of X

(i)
t are set at

(µ(i), κ(i), ξ(i), θ(i)) = (0.03x
(i)
1 , 1.1x

(i)
2 , 0.5x

(i)
3 , 0.25x

(i)
4 ) and ν(i) =

√
θ(i), where the x

(i)
j ’s are independent

uniform random variables on the interval [0.7, 1.3]. The initial value of each log-price X
(i)
0 is set randomly

on the interval [0.5, 1.5] and the starting spot volatility ϱ
(i)
0 on the interval [0.5θ(i), 1.5θ(i)].

For the transaction times, we generate 100 different Poisson processes with intensities λ1, . . . , λ100

respectively. Since the normal trading time for one day is 23400 seconds, λi is set to be 0.01i × 23400,

where i = 1, . . . , 100.

5.2 Comparison of different estimators

5.2.1 Comparisons with TSCV and thresholded method

We compare our estimator to the TSCV, as well as the thresholded average realized volatility matrix

(TARVM) which is essentially a thresholded TSCV introduced in Wang and Zou (2010). The reason we

choose to compare to the TARVM on top of the TSCV is because when there are no factors, sparseness

or approximate sparseness in Σ(0, 1) can be natural as its eigenvalues are of constant order even with a

diverging matrix dimension, giving potential advantages to thresholded estimators. Our estimator is a

modified TSCV, and so comparing to another modified TSCV like the TARVM makes sense. Hereafter,

we abbreviate our estimator as NERIVE when we are using one trading day as a partition length, and

quarNERIVE when we are using a quarter of a trading day.

We use two measures for comparing the estimators. One is the Frobenius error, another is the average

bias in eigenvalues, defined by

Frobenius error = tr(Σ̂(0, 1)−Σ(0, 1))2, Average bias = tr(Σ̂(0, 1)−Σ(0, 1))/p.
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The integrated covariance matrix Σ(0, 1) is evaluated using the simulated latent log-prices at the finest

grid (1 per second). We divide the 250 trading days into disjoint 5-day intervals, and calculate the two

error measures for different estimators over each 5-day interval. The means and standard deviations of

these errors are reported in Table 1. It also includes the same exercise when 5-day becomes 1-day intervals.

When we are using 5-day training windows, it is clear that NERIVE, especially quarNERIVE, performs

No factors (C = 0) NERIVE quarNERIVE TSCV TARVM
5-day Frobenius error 12(1.3) 7(0.9) 156(22.2) 64(5.3)

Average bias 30(1.6) 23(1.4) 33(2.3) 36(1.6)
1-day Frobenius error - 0.4(0.1) 9.3(1.7) 1.9(0.2)

Average bias - 3(0.4) 2(0.5) 1(0.2)
With factors (C = 1) NERIVE quarNERIVE TSCV TARVM

5-day Frobenius error 2007(1269) 1161(539) 3241(3370) 3123(1527)
Average bias 59(14) 45(8) 67(25) 72(14)

1-day Frobenius error - 40(32) 62(51) 12(11)
Average bias - 7(3.7) 4(5.9) 3(2.8)

Table 1: Mean and standard deviation of Frobenius error and average bias of eigenvalues over different
5-day or 1-day intervals for various methods. All values are multiplied by 10000.

better than TSCV and TAVRM in both measures. However, in using 1-day training windows, TAVRM

is better in terms of average bias in the eigenvalues. When there are factors, TAVRM is also better in

Frobenius norm error using 1-day training windows. It is clear that there are advantages in thresholding,

especially when we consider a shorter window for the integrated covariance matrix, but our method is

better in general when such window increases.

5.2.2 Comparisons with POET and related methods

POET (Principal Orthogonal complEment Thresholding), originally proposed as a general low frequency

data method in Fan et al. (2013), essentially assumes that the true covariance matrix can be decomposed

into a low rank matrix (induced from factors in the data) plus a sparse residual one. Aı̈t-Sahalia and Xiu

(2017) proposes such a decomposition on the realized covariance matrix of subsampled return data (15

or 30 minutes interval) to reduce the effects of microstructure noise contamination, while the residual

covariance is assumed to be block diagonal with known blocks (e.g., blocking by industry). Dao et al.

(2017) proposes the POET method on realized covariance matrix calculated on pre-averaged return data

(PRVM), with thresholding developed for the residual matrix. We find that such thresholding usually works

better than blocking using industry, and so we compare our method to such a POET method applied on

TSCV (TS-POET), since NERIVE or quarNERIVE are based on nonlinear shrinkage of the TSCV.

We also explore if our nonlinear shrinkage can be applied to the PRVM rather than TSCV. To be precise,

we replace Σ̃(τℓ−1, τℓ) in (2.4) by the corresponding PRVM, and follow Section 2.2 to construct Σ̂(0, 1)

in (2.8). We abbreviate nonlinear shrinkage based on PRVM as PR-NERIVE or PR-quarNERIVE, and
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compare them with the POET in Dao et al. (2017) (PR-POET). Since Fan and Kim (2017) has developed a

robust version of PRVMwith POET (RPR-POET), we compare this to PR-NERIVE and PR-quadNERIVE

as well. Throughout the rest of the paper, all POET methods use 5 factors which is enough to achieve

consistently good results.
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Figure 1: Boxplot of Frobenius errors when there are no factors in model (5.1) (C = 0).

quarNERIVE TS-POET
0

0.02

0.04

1-Day Intervals

PR-quarNERIVE PR-POET RPR-POET

×10-3

0

5

10

15

1-Day Intervals

NERIVE quarNERIVE TS-POET
0

0.2

0.4

0.6

0.8
5-Day Intervals

PR-NERIVE PR-quarNERIVE PR-POET RPR-POET

0.1

0.2

0.3

0.4

5-Day Intervals

Figure 2: Boxplot of Frobenius errors when there are factors in model (5.1) (C = 1).
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Figure 1 shows the Frobenius errors when there are no factors in model (5.1). It is clear that quar-

NERIVE is better than NERIVE and TS-POET. When we use pre-averaged data for nonlinear shrinkage,

PR-quarNERIVE is also better than PR-NERIVE, PR-POET and RPR-POET. When there are factors

in model (5.1), quarNERIVE is still better than NERIVE and TS-POET, but PR-quarNEIVE is not as

good as RPR-POET when we consider a longer time horizon for the integrated covariance matrix (5-day).

Clearly PR-NERIVE has a lot of potential, and we hope to develop its theoretical performance in another

project (see Remark 1 as well). We have also considered the spectral error, but the patterns are very

similar to Figure 1 and 2, and hence they are omitted.

5.3 Comparison of portfolio allocation performance

To compare the performance of different methods, we focus on the minimum variance portfolio

wopt =
Σ(0, 1)−11p

1T
pΣ(0, 1)−11p

, which solves min
w:wT1p=1

wTΣ(0, 1)w.

We first set the benchmark for comparisons. Following Fan et al. (2012), we create a theoretical portfolio

wtheo, which is a minimum variance portfolio withΣ(0, 1) evaluated similarly as in Section 5.2. For all other

methods, we use the all-refresh time points evaluated from the data (we do not hold positions overnight

for all methods to avoid overnight price jumps, since they are not what our study is about).

Other portfolios are constructed and compared to the theoretical minimum variance portfolio (THEO)

above. The first one is the equal weight portfolio (EQUAL). The second one is the minimum variance

portfolio with Σ(0, 1) substituted by the two scale covariance matrix (TSCV). We abbreviate it as TARVM

when Σ(0, 1) is replaced by the TARVM as in Section 5.2. When Σ(0, 1) is substituted with our estimator,

we abbreviate it as NERIVE with one trading day as a partition length, and quarNERIVE when a partition

length is a quarter of a trading day. We also compare with the gross exposure constraint (GEC) method

(Fan et al., 2012), and the L2 norm constraint (NORM) (DeMiguel et al., 2009) based on TSCV. The GEC

and NORM methods solve respectively

GEC : min
w:wT1p=1,

∥∥w∥∥
1
≤c

wTΣ̃(0, 1)w,

NORM : min
w:wT1p=1,

∥∥w∥∥2

2
≤δ

wTΣ̃(0, 1)w.

We constructed 3 GEC portfolios with tuning parameters c = 1, 2, 3, as well as 3 NORM portfolios with

tuning parameters δ = 0.1, 0.5, 1 for comparisons. We do not use the pairwise refresh method for GEC

23



to save significant computational time in both the simulations and the real data analysis, as well as that

the features of our method can be compared more directly to those of GEC. Finally, we also compare

to TS-POET, PR-NERIVE, PR-quarNERIVE, PR-POET and RPR-POET as in Section 5.2.2 when the

corresponding estimator substitutes Σ(0, 1) in wopt.

The portfolio exercise is carried out as follows for all methods. We invest 1 unit of capital to the

different portfolios above at a certain start date (e.g., day 6 if we are using a 5-day training window), and

rebalance the portfolio weights daily, moving the training window one day ahead. There are two investment

strategies for comparisons under each model 1 or 2. The first one rebalances the portfolio daily with a

5-day training window. The second one rebalances the portfolio daily with a 1-day training window.

The quantities to be compared for different portfolios are as follows. For daily rebalancing with a k-day

training window (k = 1 or 5), we calculate the annualized portfolio return and annualized out-of-sample

standard deviation, given respectively by

µ̂ = 250× 1

250− k

250∑
i=k+1

wTri, σ̂ =
(
250× 1

250− k

250∑
i=k+1

(wTri −
µ̂

250
)2
)1/2

.

The out-of-sample standard deviation is a good indicator of how much risk is associated with a portfolio

(DeMiguel et al., 2009), and is our main quantity for performance comparisons, whereas portfolio return

is of secondary importance. We also calculate the Sharpe ratio µ̂/σ̂. The average maximum exposure and

the maximum of the maximum exposure over the whole investment horizon are two important measures

for comparisons too. Since this is a simulation experiment, we can calculate the actual risk of a portfolio

w, R1/2(w) = (wTΣw)1/2, over a trading day. We compare the averaged actual risks of different methods

over the whole investment horizon. Finally we compare the error norm compared to wtheo, defined as

Norm =
∥∥w −wtheo

∥∥, and also the portfolio turnover for different methods.

Table 2 shows the results for model (5.1) with no factors. Excluding all methods based on pre-averaged

return data, the out-of-sample standard deviations of NERIVE and quarNERIVE are among the smallest

for both 5-day and 1-day training windows, and closely match that of the theoretical minimum portfolio.

TS-POET is the best when we are using 1-day training window. Pre-averaging tends to improve on

nonlinear shrinkage and POET also, with PR-POET the best when we are using 1-day training window.

The equal weight portfolio performs well also but is not as good as our methods when we use 5-day training

windows. Our methods also have (together with TS-POET and PR-POET) among the closest L2 distance

from the theoretical minimum portfolio weight, and apart from GEC1, PR-quarNERIVE has the smallest

portfolio turnover. Both TSCV and TARVM are having much larger actual risks than other methods, and

a lot of times with impractical maximum exposures.
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Table 3 shows the results for model (5.1) with factors. In general, risks are higher with factors, even

for the theoretical portfolio. Our methods (quarNERIVE or PR-quarNERIVE) have risks close to the

theoretical ones, with portfolio weights the closest to the theoretical portfolio weights among all methods.

Equal weight portfolio now performs at a similar level to other methods (apart from TSCV and TARVM)

in terms of risk minimization, but our methods are around 50% better in minimizing the our-of-sample

SD or the actual risk. TSCV and TARVM are still the worst in terms of risks, maximum exposures and

portfolio turnover. Overall, NERIVE or quarNERIVE (and their pre-averaging versions) do well in risk

minimization compared to all other methods including the equal weight portfolio, with reasonable and

often small maximum exposures and portfolio turnover.

Out-of Actual Norm Average Max Portfolio Portfolio Sharpe
Sample Risk Max Abs Max Abs Turnover Return Ratio

Methods SD (%) (%) Wgt(%) Wgt(%) (%)
daily rebalancing portfolio with 5-day training window

THEO 1.6 1.7 − 10(6.2) 44 0.06(0.02) 5.2 3.2
NERIVE 1.9 1.9 0.08 6(2.7) 18 0.14(0.02) 7.4 3.9

quarNERIVE 1.8 1.9 0.07 7(3.0) 19 0.12(0.02) 6.0 3.3
EQUAL 2.0 2.2 0.13 1(−) 1 − 5.5 2.8
TSCV 149.6 149.2 1.34 64(352.7) 5066 4.21(33.43) 297.5 2.0
GEC1 2.1 2.3 0.13 2(1.0) 7 0.06(0.04) 6.1 2.9
GEC2 2.5 2.6 0.13 8(4.0) 32 0.35(0.06) 3.9 1.6
GEC3 2.9 2.9 0.15 7(2.1) 14 0.42(0.08) 4.5 1.5

NORM0.1 3.6 3.5 0.18 8(3.6) 24 0.62(0.24) 9.8 2.7
NORM0.5 5.8 5.3 0.28 16(8.9) 54 1.20(0.51) 2.0 0.3
NORM1 7.1 6.6 0.36 20(13.8) 80 1.56(0.92) 7.9 1.1
TARVM 7.9 14.5 0.44 34(119.6) 1276 1.47(4.27) −21.6 −2.7

TS-POET 2.0 2.0 0.08 9(4.1) 27 0.15(0.03) 9.7 4.9
PR-NERIVE 1.8 1.9 0.08 6(2.6) 14 0.11(0.02) 6.6 3.6

PR-quarNERIVE 1.8 1.9 0.08 6(2.5) 13 0.10(0.02) 6.0 3.3
PR-POET 1.8 1.9 0.06 9(4.3) 27 0.10(0.02) 6.0 3.4

RPR-POET 5.6 6.0 0.32 26(7.3) 52 0.36(0.15) 1.0 0.2

daily rebalancing portfolio with 1-day training window
THEO 1.6 1.7 − 10(6.2) 44 0.06(0.02) 5.7 3.6

quarNERIVE 2.1 2.2 0.13 2(0.3) 4 0.2(0.03) 5.4 2.6
EQUAL 2.0 2.2 0.13 1(−) 1 − 6.1 3.1
TSCV 373.4 806.1 5.43 172(1187.5) 17696 15.95(117.09) 1204.9 3.2
GEC1 2.0 2.2 0.13 1(0.1) 2 0.04(0.01) 6.0 3.0
GEC2 6.9 7.1 0.29 11(6.6) 36 1.02(0.32) −5.0 −0.7
GEC3 16.5 16.1 0.63 28(11.1) 58 2.38(1.10) −45.6 −2.8

NORM0.1 6.6 6.5 0.28 7(2.8) 13 1.28(0.31) 2.8 0.4
NORM0.5 14.8 14.7 0.60 19(6.0) 32 3.38(1.14) −0.5 0.0
NORM1 20.7 19.3 0.80 25(8.1) 51 −12.41(268.64) 2.5 0.1
TARVM 342.8 511.0 4.64 139(652.4) 7949 14.63(144.97) 902.8 2.6

TS-POET 1.8 2.0 0.08 9(4.4) 28 0.29(0.03) 3.3 1.8
PR-quarNERIVE 2.0 2.2 0.12 2(0.3) 3 0.17(0.02) 5.3 2.6

PR-POET 1.7 1.9 0.06 9(5.4) 35 0.21(0.03) 5.7 3.3
RPR-POET 5.8 6.2 0.31 25(9.1) 66 0.98(0.32) -1.4 -0.2

Table 2: Simulation results for model 1 with no factors (C = 0 in (5.1)): Annualized out-of-sample standard
deviation, actual risk, norm of weights difference, averaged maximum absolute weight (standard deviation
in bracket), maximum of maximum absolute weight, portfolio return and Sharpe ratio for various methods,
including GEC (c = 1, 2, 3) and NORM (δ = 0.1, 0.5, 1).
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Out-of Actual Norm Average Max Portfolio Portfolio Sharpe
Sample Risk Max Abs Max Abs Turnover Return Ratio

Methods SD (%) (%) Wgt(%) Wgt(%) (%)
daily rebalancing portfolio with 5-day training window

THEO 13 13 − 41(21) 143 0.3(0.1) −1.5 −0.1
NERIVE 14 15 0.55 22(5) 42 0.9(0.2) 0.8 0.1

quarNERIVE 14 14 0.53 23(6) 48 0.8(0.2) −10.7 −0.8
EQUAL 27 27 0.97 1(−) 1 − 28.8 1.1
TSCV 34235 19343 107.02 3937(51415) 804861 468.0(6900.5) −75911.4 −2.2
GEC1 25 25 1.00 45(15) 94 0.5(0.2) 20.2 0.8
GEC2 24 24 1.00 47(16) 98 0.7(0.3) 20.3 0.9
GEC3 23 24 1.01 47(15) 106 0.9(0.5) 14.8 0.6

NORM0.1 21 22 0.87 8(1) 14 0.6(0.2) 5.5 0.3
NORM0.5 17 18 0.78 18(2) 26 1.2(0.4) −44.7 −2.6
NORM1 18 18 0.86 28(3) 44 1.7(0.6) −49.2 −2.8
TARVM 8777 13790 91.58 3077(33547) 524587 61.7(447.5) 18387.1 2.1

TS-POET 17 17 0.77 31(7) 59 1.8(0.3) -5.9 -0.4
PR-NERIVE 14 14 0.53 21(5) 42 0.9(0.1) -4.7 -0.3

PR-quarNERIVE 14 14 0.52 22(5) 39 0.8(0.1) -11.5 -0.8
PR-POET 15 15 0.57 32(8) 60 1.2(0.2) -11.2 -0.7

RPR-POET 19 20 0.96 41(10) 81 2.4(0.7) -16.9 -0.9

daily rebalancing portfolio with 1-day training window
THEO 13 13 − 41(21) 143 0.3(0.1) 0.4 0.0

quarNERIVE 16 17 0.75 17(2) 26 2.0(0.6) −37.5 −2.3
EQUAL 27 27 0.97 1(−) 1 − 20.8 0.8
TSCV 1605 2061 30.52 1054(5474) 77945 39.7(439.9) 112.1 0.1
GEC1 26 27 1.05 44(17) 95 0.8(0.2) −6.0 −0.2
GEC2 26 26 1.05 46(16) 103 1.1(0.3) −12.8 −0.5
GEC3 25 25 1.06 48(16) 106 1.6(0.6) −27.1 −1.1

NORM0.1 22 23 0.89 8(1) 14 1.4(0.2) 4.2 0.2
NORM0.5 21 22 0.95 19(3) 33 3.1(1.0) 3.4 0.2
NORM1 26 26 1.23 29(5) 52 5.7(5.3) 22.2 0.8
TARVM 2707 2714 23.87 667(4307) 67297 1.3(536.7) 5567.6 2.1

TS-POET 20 20 0.84 22(6) 51 2.5(0.3) -1.1 -0.1
PR-quarNERIVE 16 17 0.72 16(2) 25 2.0(0.2) -39.9 -2.5

PR-POET 17 18 0.76 27(8) 56 2.7(0.3) 11.7 0.7
RPR-POET 23 24 1.21 51(22) 159 5.1(2.2) 64.7 2.8

Table 3: Simulation results for model 2 with factors (C = 1 in (5.1)): Annualized out-of-sample standard
deviation, actual risk, norm of weights difference, averaged maximum absolute weight (standard deviation
in bracket), maximum of maximum absolute weight, portfolio return and Sharpe ratio for various methods,
including GEC (c = 1, 2, 3) and NORM (δ = 0.1, 0.5, 1).

5.4 Portfolio allocation study - real data analysis

In this study, we choose the stocks based on two lists, the “Fifty Most Active Stocks on NYSE, Round

Lots (mils. of shares), 2013” and “Fifty Most Active Stocks by Dollar Volume on NYSE ($ in mils.),

2013”, from the New York Stock Exchange Data official website http://www.nyxdata.com/. There are

26 stocks appearing in both of the lists above, and 74 stocks in either of them. We downloaded all the

trading transactions of these 74 stocks in Year 2013 from the Wharton Research Data Services (WRDS,

https://wrds-web.wharton.upenn.edu/). We omit the stock Sprint Corporation due to missing price

data. We first clean all the data by the R-package “highfrequency”, which follows the high frequency

data cleaning steps presented in Barndorff-Nielsen et al. (2009). We conduct our portfolio allocation study

on two portfolios, one with the p = 26 stocks appearing in both lists, and the other with p = 73 stocks

appearing in either of the lists.
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p = 26 Out-of-Sample Aver Max Abs Max Max Abs Portfolio Portfolio Sharpe
Methods SD (%) Weight(%) Weight(%) Turnover Return(%) Ratio

daily rebalancing portfolio with 5-day training window
NERIVE 4.5 21(6) 41 0.26(0.1) 18.6 4.2

quarNERIVE 4.4 20(5) 36 0.22(0.1) 21.0 4.8
EQUAL 5.2 4(−) 4 − 24.3 4.6
TSCV 6.1 42(13) 84 1.16(0.5) 16.9 2.8
GEC1 5.0 30(11) 69 0.33(0.1) 28.0 5.6
GEC2 4.9 34(11) 78 0.58(0.2) 20.1 4.1
GEC3 5.4 39(12) 83 0.88(0.3) 18.0 3.3

NORM0.1 4.6 13(2) 19 0.25(0.1) 18.6 4.0
NORM0.5 5.4 33(6) 52 0.84(0.3) 14.3 2.7
NORM1 5.9 41(11) 74 1.09(0.4) 14.7 2.5
TARVM 13.3 56(75) 1097 1.74(3.0) −9.1 −0.7

TS-POET 5.0 30(8) 59 0.60(0.2) 18.9 3.7
PR-NERIVE 4.4 19(5) 39 0.23(0.1) 18.1 4.1

PR-quarNERIVE 4.3 19(5) 36 0.22(0.1) 19.4 4.5
PR-POET 4.4 25(7) 48 0.34(0.1) 18.2 4.1

RPR-POET 8.0 50(15) 110 1.12(0.4) 21.0 2.6

daily rebalancing portfolio with 1-day training window
quarNERIVE 4.5 19(7) 42 0.58(0.2) 17.8 3.9

EQUAL 5.2 4(−) 4 − 24.1 4.6
TSCV 7.0 60(80) 973 3.15(7.3) 19.6 2.8
GEC1 4.9 28(13) 67 0.54(0.2) 28.2 5.7
GEC2 5.0 33(12) 74 0.97(0.2) 26.7 5.3
GEC3 5.5 36(13) 87 1.32(0.3) 24.5 4.4

NORM0.1 4.6 12(2) 19 0.52(0.1) 20.7 4.5
NORM0.5 5.3 29(6) 47 1.33(0.2) 18.3 3.5
NORM1 5.8 41(10) 70 1.86(0.4) 17.2 3.0
TARVM 13.4 40(93) 878 3.49(18.5) 3.4 0.3

TS-POET 4.8 28(11) 85 1.24(0.4) 22.7 4.7
PR-quarNERIVE 4.5 18(6) 38 0.55(0.2) 16.5 3.7

PR-POET 4.8 26(9) 59 1.00(0.3) 22.1 4.6
RPR-POET 9.2 67(27) 193 2.50(0.6) -2.2 -0.2

Table 4: Empirical results for the 26 most actively traded stocks in NYSE: annualized out-of-sample stan-
dard deviation, averaged maximum absolute weight, maximum of maximum absolute weight, annualized
portfolio return and Sharpe ratio for various methods, including GEC with c = 1, 2, 3, and NORM with
δ = 0.1, 0.5, 1.

We carry out the same portfolio allocation exercises as in our simulations for both the 26-stock and

73-stock portfolios. First we do not remove jumps from the cleaned data. The results are displayed in

Tables 4 and 5. Both NERIVE and quarNERIVE achieve the lowest out-of-sample SD in the two scenarios

presented for both portfolios, which are all under 4.5%. PR-POET has similarly good performance too,

although with higher maximum exposure compared to NERIVE, quarNERIVE and their pre-averaging

versions. The maximum exposure of our methods are reasonably low even compared to the no-short-sale

or L2-constrained portfolios, with among the lowest portfolio turnovers under all scenarios for both p = 26

and p = 73 portfolios.

We also considered jumps removed data. The results are presented in Table 6 and Table 7. In general,

the out-of-sample SD do not change much for all methods, except for TSCV and TARVM which can see

huge increase or decrease in the risk. It is not surprising though as both methods can invest heavily in all

stocks, rendering them more sensitive to jumps removal. In fact the number of jumps estimated for each
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p = 73 Out-of-Sample Aver Max Abs Max Max Abs Portfolio Portfolio Sharpe
Methods SD (%) Weight(%) Weight(%) Turnover Return(%) Ratio

daily rebalancing portfolio with 5-day training window
NERIVE 3.8 12(3) 22 0.44(0.1) 15.3 4.0

quarNERIVE 3.9 12(3) 21 0.40(0.1) 16.1 4.1
EQUAL 5.4 1(−) 1 − 22.3 4.1
TSCV 470.8 629(4042) 58950 104.71(1554.4) 1367.1 2.9
GEC1 5.0 21(11) 57 0.34(0.2) 21.4 4.3
GEC2 4.7 25(10) 64 0.57(0.2) 14.2 3.0
GEC3 4.7 25(9) 59 0.87(0.2) 9.5 2.0

NORM0.1 4.5 9(1) 15 0.46(0.1) 14.7 3.3
NORM0.5 4.9 19(5) 33 1.29(0.3) 8.8 1.8
NORM1 5.8 26(7) 48 2.07(0.6) 7.9 1.4
TARVM 4.6 5(1) 12 0.09(0.0) 21.5 4.7

TS-POET 4.2 19(5) 37 0.87(0.3) 14.6 3.4
PR-NERIVE 3.9 11(3) 21 0.43(0.1) 15.7 4.0

PR-quarNERIVE 3.9 11(3) 22 0.39(0.1) 15.3 3.9
PR-POET 3.8 16(5) 32 0.56(0.2) 17.0 4.4

RPR-POET 5.6 15(4) 33 0.61(0.2) 22.6 4.0

daily rebalancing portfolio with 1-day training window
quarNERIVE 4.2 8(3) 20 0.79(0.2) 18.6 4.4

EQUAL 5.4 1(−) 1 − 22.4 4.2
TSCV 120.3 381(671) 3897 25.80(214.4) −33.2 −0.3
GEC1 5.1 7(13) 69 0.17(0.2) 19.2 3.7
GEC2 5.5 19(12) 61 0.83(0.2) 25.3 4.6
GEC3 9.7 30(27) 158 1.58(3.9) 29.8 3.1

NORM0.1 4.6 8(3) 19 0.76(0.2) 21.4 4.6
NORM0.5 8.0 18(10) 50 1.95(0.9) 29.7 3.7
NORM1 11.0 27(17) 69 3.25(3.5) 21.4 1.9
TARVM 103.9 221(455) 4726 44.63(324.1) 136.7 1.3

TS-POET 5.2 23(11) 83 1.78(0.5) 15.8 3.0
PR-quarNERIVE 4.3 8(2) 18 0.79(0.2) 16.9 3.9

PR-POET 4.2 13(5) 40 0.94(0.3) 20.1 4.8
RPR-POET 6.4 17(5) 43 1.10(0.2) 23.7 3.7

Table 5: Empirical results for the 73 most actively traded stocks in NYSE: annualized out-of-sample stan-
dard deviation, averaged maximum absolute weight, maximum of maximum absolute weight, annualized
portfolio return and Sharpe ratio for various methods, including GEC with c = 1, 2, 3, and NORM with
δ = 0.1, 0.5, 1.

date is typically around 4 or 5, which is a very small number compared to the number of all-refresh data

points.

6 Conclusion

We generalize nonlinear shrinkage of eigenvalues in a large sample covariance matrix for independent and

identically distributed random vectors (Lam, 2016) to that of a large two-scale covariance matrix estimator

(TSCV) for high frequency returns, which are not independent and identically distributed in general. To

do this, we split the data into partitions and regularize the eigenvalues of the TSCV within a partition

by the data from other partitions. Regularization is indeed achieved both theoretically and empirically, as

demonstrated by the good performance in our simulations and portfolio allocation exercises.

Since TSCV has a slower rate of convergence than the multi-scale realized volatility matrix (Tao et al.,
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p = 26 Out-of-Sample Aver Max Abs Max Max Abs Portfolio Portfolio Sharpe
Methods SD (%) Weight(%) Weight(%) Turnover Return(%) Ratio

daily rebalancing portfolio with 5-day training window
NERIVE 4.5 20(6) 44 0.26(0.1) 17.1 3.8

quarNERIVE 4.4 19(5) 34 0.23(0.1) 19.2 4.4
EQUAL 5.2 4(−) 4 − 24.3 4.6
TSCV 5.9 41(13) 92 1.09(0.4) 16.5 2.8
GEC1 5.0 30(11) 66 0.33(0.1) 29.9 6.0
GEC2 5.0 35(10) 80 0.68(0.2) 19.0 3.8
GEC3 5.5 39(11) 88 0.95(0.3) 17.6 3.2

NORM0.1 4.6 13(2) 18 0.26(0.1) 17.6 3.8
NORM0.5 5.3 33(6) 52 0.83(0.3) 15.8 3.0
NORM1 5.7 40(11) 76 1.04(0.4) 15.8 2.7
TARVM 6.7 51(37) 550 1.53(1.6) 17.8 2.7

TS-POET 5.1 30(8) 58 0.60(0.2) 16.9 3.3
PR-NERIVE 4.4 19(5) 34 0.23(0.1) 20.1 4.6

PR-quarNERIVE 4.4 20(5) 35 0.22(0.1) 20.9 4.8
PR-POET 4.3 25(6) 50 0.33(0.1) 17.0 3.9

RPR-POET 7.9 50(14) 110 1.14(0.4) 17.5 2.2

daily rebalancing portfolio with 1-day training window
quarNERIVE 4.5 18(7) 41 0.58(0.2) 17.0 3.7

EQUAL 5.2 4(−) 4 − 24.1 4.6
TSCV 6.5 55(49) 708 2.54(1.8) 23.4 3.6
GEC1 4.9 28(12) 62 0.55(0.2) 29.2 6.0
GEC2 5.0 33(13) 84 0.95(0.2) 28.5 5.8
GEC3 5.4 36(13) 85 1.32(0.3) 26.9 5.0

NORM0.1 4.6 12(2) 20 0.52(0.1) 20.9 4.5
NORM0.5 5.2 30(6) 62 1.34(0.2) 16.6 3.2
NORM1 5.7 41(10) 73 1.86(0.4) 17.8 3.1
TARVM 14.2 42(90) 724 0.38(20.6) 3.3 0.2

TS-POET 4.9 28(11) 77 1.25(0.4) 21.2 4.3
PR-quarNERIVE 4.5 18(6) 40 0.56(0.2) 17.3 3.8

PR-POET 4.7 26(9) 63 1.01(0.3) 23.7 5.0
RPR-POET 9.2 65(27) 214 2.51(0.7) -9.2 -1.0

Table 6: Empirical results (jumps removed) for the 26 most actively traded stocks in NYSE: annualized
out-of-sample standard deviation, averaged maximum absolute weight, maximum of maximum absolute
weight, annualized portfolio return and Sharpe ratio for various methods, including GEC with c = 1, 2, 3,
and NORM with δ = 0.1, 0.5, 1.

2013), the kernel realized volatility matrix (Barndorff-Nielsen et al., 2011b) or the pre-averaging realized

volatility positive semi-definite matrix (Christensen et al., 2010), there are potential improvements if our

method is applied to these estimators. Indeed, simulation and empirical results in Section 5 do suggest

that pre-averaging can improve nonlinear shrinkage performance further. Comparisons with the thresholded

version of these estimators (Kim et al., 2016) will also be revealing, and we leave these works in a future

project.

7 Proof of Theorems

Before presenting the proofs, we present the last set of assumptions which are required for Theorem 2 to

hold. We first need to decompose Xvs −X(s). Consider the previous-tick time tis ∈ (vs−1, vs] for the ith
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p = 73 Out-of-Sample Aver Max Abs Max Max Abs Portfolio Portfolio Sharpe
Methods SD (%) Weight(%) Weight(%) Turnover Return(%) Ratio

daily rebalancing portfolio with 5-day training window
NERIVE 3.9 12(3) 22 0.44(0.1) 14.9 3.9

quarNERIVE 3.9 12(3) 21 0.39(0.1) 15.3 3.9
EQUAL 5.4 1(−) 1 − 22.3 4.1
TSCV 126.6 236(503) 4693 25.31(96.7) −456.5 −3.6
GEC1 5.0 20(10) 53 0.34(0.1) 17.6 3.5
GEC2 4.9 24(9) 60 0.57(0.2) 13.2 2.7
GEC3 4.7 25(9) 61 0.87(0.2) 8.9 1.9

NORM0.1 4.4 9(1) 16 0.46(0.1) 15.0 3.4
NORM0.5 5.0 20(5) 41 1.33(0.3) 11.6 2.3
NORM1 6.1 28(8) 61 2.14(0.7) 8.8 1.4
TARVM 4.6 5(2) 15 0.09(0.0) 21.9 4.8

TS-POET 4.2 19(5) 37 0.87(0.3) 17.2 4.1
PR-NERIVE 3.8 11(3) 22 0.43(0.1) 15.9 4.1

PR-quarNERIVE 3.9 11(3) 23 0.40(0.1) 16.1 4.2
PR-POET 4.0 16(5) 33 0.56(0.2) 17.0 4.3

RPR-POET 5.9 15(4) 31 0.64(0.2) 23.4 4.0

daily rebalancing portfolio with 1-day training window
quarNERIVE 4.4 8(3) 18 0.77(0.2) 16.3 3.7

EQUAL 5.4 1(−) 1 − 22.4 4.2
TSCV 85.5 364(837) 7965 42.63(846.9) 268.1 3.1
GEC1 5.2 8(12) 69 0.18(0.2) 20.4 3.9
GEC2 5.8 20(13) 74 0.86(0.2) 26.9 4.7
GEC3 10.2 33(28) 157 1.36(3.6) 3.0 0.3

NORM0.1 4.7 8(2) 17 0.78(0.2) 21.9 4.7
NORM0.5 8.6 20(10) 51 2.11(0.9) 29.2 3.4
NORM1 11.5 28(16) 74 3.20(2.3) 30.9 2.7
TARVM 332.8 486(2383) 29145 26.54(238.0) 684.5 2.1

TS-POET 5.4 23(10) 82 1.79(0.5) 20.7 3.9
PR-quarNERIVE 4.3 8(2) 15 0.81(0.2) 18.4 4.3

PR-POET 4.2 13(5) 44 0.96(0.3) 20.1 4.8
RPR-POET 6.5 17(6) 49 1.11(0.2) 21.0 3.2

Table 7: Empirical results (jumps removed) for the 73 most actively traded stocks in NYSE: annualized
out-of-sample standard deviation, averaged maximum absolute weight, maximum of maximum absolute
weight, annualized portfolio return and Sharpe ratio for various methods, including GEC with c = 1, 2, 3,
and NORM with δ = 0.1, 0.5, 1.

asset, which should satisfy

vs−1 < t(i1)s ≤ t(i2)s ≤ · · · ≤ t(ip)s = vs,

where {i1, . . . , ip} is some permutation of 1, . . . , p. Letting bs denote the number of tides, we can write the

above as

vs−1 < tj1s < tj2s < · · · < t
jp−bs
s = vs,

where j1, . . . , jp−bs ∈ {1, . . . , p}.

Then we can write, for s = 1, . . . , nL,

Xvs −X(s) =

p−bs−1∑
m=1

Ds
mA(tjms , tjm+1

s )Zj
d,s(m+ 1) +

p−bs−1∑
m=1

Ds
mΣ(tjms , tjm+1

s )1/2Zj
v,s(m+ 1), (7.1)

where Ds
m is a diagonal matrix with either 0 or 1 as elements. The jth diagonal element is 1 if the jth

asset is already traded at time tjms , and 0 otherwise. The matrices A(·, ·) and Σ(·, ·) are as defined in
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Assumption (D1) and (V1) respectively.

(A3) If the drift µt is random, the components of Zj
d,s(m + 1), Zj

v,s(m + 1) ∈ F j

t
jm+1
s

are conditionally

independent given F−j , E(Zj
d,s(m + 1)|F−j) = 0 = E(Zj

v,s(m + 1)|F−j), var(Z
j
d,s(m + 1)|F−j) =

Ip = var(Zj
v,s(m+ 1)|F−j) almost surely. Eighth moments exist for their components as well.

If the drift µt is non-random, then Zj
d,s(m+ 1) = (1, 0, . . . , 0)T.

(A4) (Only for random drift). Using notations in Assumption (D2), we assume that for some cd,j,s ∈

F−j ∪ F j
s greater than 0, and for ℓ = 1, . . . ,m,

E
(
pT

ijD
s
mA(tjms , tjm+1

s )Zj
d,s(ℓ+ 1)

∣∣F−j ∪ F j

t
jℓ
s

)
=

(
1− cd,j,s

(p− bs − 1)1/6

)
pT

ijD
s
mA(tjms , tjm+1

s )Zj
d,s(ℓ) + eijd,s(ℓ),

where we define Zj
d,s(ℓ)Z

j
d,s(ℓ)

T = Ip and eijd,s(ℓ) = 0 for ℓ ≤ 0. The process {eijd,s(ℓ)} with eijd,s(ℓ) ∈

F j

t
jℓ
s

has E(eijd,s(ℓ)|F−j ∪F j

t
jℓ−1
s

) = 0 almost surely, and eijd,s(ℓ)|F−j ∪F j

t
jℓ−1
s

= OP (
∥∥A(t

jℓ−1
s , tjℓs )

∥∥) =
OP (p

1/2 · (p− bs − 1)−1n−1L−1).

The assumption for E
(
pT
ijD

s
mΣ(tjms , t

jm+1
s )1/2Zj

v,s(ℓ+1)
∣∣F−j∪F j

t
jℓ
s

∪Fσ
vs

)
runs parallel to the above,

with cv,j,s ∈ F−j ∪ F j
s replaces cd,j,s, Z

j
v,s(·) replaces Z

j
d,s(·), and eijv,s(·) replaces e

ij
d,s(·) with

eijv,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

∪ Fσ
vs = OP (

∥∥Σ(tjℓ−1
s , tjℓs )1/2

∥∥) = OP (
∥∥A(tjℓ−1

s , tjℓs )
∥∥/|tjℓs − tjℓ−1

s |1/2).

(A5) (Only for random drift). Let ψ(x) = ex
2 − 1. We assume that for ℓ = 1, . . . ,m,

E

{
ψ

( |pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(ℓ)|

|pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(ℓ− 1)|

)∣∣∣F−j ∪ F j

t
jℓ−1
s

}
<∞,

E

{
ψ

( |eijd,s(ℓ)|

|pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(ℓ− 1)|

)∣∣∣F−j ∪ F j

t
jℓ−1
s

}
<∞.

The assumption for the volatility runs parallel to the above, with the expectations now conditional

on F−j ∪ F j

t
jℓ−1
s

∪ Fσ
vs , Σ(·, ·)1/2 replaces A(·, ·), Zj

v,s(·) replaces Z
j
d,s(·) and eijv,s(·) replaces e

ij
d,s(·).

Assumptions (A3), (A4) and (A5) are parallel to (D1), (D2) and (D3) respectively. The major difference

is that the coefficients ρjd,K,q, ρ
j
v,K,q ≤ ξ < 1 are now replaced by coefficients that are going to 1 as

n, p→ ∞. This reflects that the correlations among variables between tick-by-tick trading times are high,

since the time length between ticks is usually very small. Note that if the drift is non-random, we only

need Assumption (A3) that Zj
d,s(m+ 1) = (1, 0, . . . , 0)T, which is just a matter of notation rather than an

assumption.
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We provide the proof of all the theorems of the paper in this section. We assume the jump-diffusion

model (3.2) for the log-price process {Xt}, and prove Theorem 4, so that Theorem 2 then follows automa-

tically. Define

Ỹt = Yt − Ĵt = (Xt − Ĵt) + ϵt = X̃t + ϵt, (7.2)

where {Ĵt} is the estimated jump process using the wavelet method in Fan and Wang (2007) described in

Section 3.1. Then {X̃t} represents the jumps-removed log-price process. For j = 1, . . . , L and vs = vjs for

s = 0, . . . , n(j), we then have

Ỹ(s) = X̃(s) + ϵ(s) = X̃vs +E(s),

where we define

E(s) = ϵ(s) + X̃(s)− X̃vs = ϵ(s) + (X(s)− Ĵ(s))− (Xvs − Ĵvs).

We can then decompose, for i = 1, . . . , p, j = 1, . . . , L with P−j = (p1j , . . . ,ppj),

pT

ijΣ̃(τj−1, τj)pij = pT

ij [Ỹ, Ỹ
T]

(K)
j pij −

|Sj(K)|K
|Sj(1)|

pT

ij [Ỹ, Ỹ
T]

(1)
j pij

= I1 + 2I2 + I3,

where Σ̃(τj−1, τj) is the TSCV in (2.4) constructed using jumps-removed data, and

I1 = pT

ij [X̃v, X̃
T

v ]
(K)
j pij −

|Sj(K)|K
|Sj(1)|

pT

ij [X̃v, X̃
T

v ]
(1)
j pij ,

I2 = pT

ij [X̃v,E
T]

(K)
j pij −

|Sj(K)|K
|Sj(1)|

pT

ij [X̃v,E
T]

(1)
j pij ,

I3 = pT

ij [E,E
T]

(K)
j pij −

|Sj(K)|K
|Sj(1)|

pT

ij [E,E
T]

(1)
j pij ,

(7.3)

with [X̃v, X̃
T
v ]

(m)
j , [X̃v,E

T]
(m)
j and [E,ET]

(m)
j defined by

[X̃v, X̃
T

v ]
(m)
j =

1

m

∑
s,s+m∈Sj(m)

(X̃vs+m
− X̃vs)(X̃vs+m

− X̃vs)
T,

[X̃v,E
T]

(m)
j =

1

m

∑
s,s+m∈Sj(m)

(X̃vs+m − X̃vs)(E(s+m)−E(s))T,

[E,ET]
(m)
j =

1

m

∑
s,s+m∈Sj(m)

(E(s+m)−E(s))(E(s+m)−E(s))T.

Lemma 1. Let all the assumptions in Theorem 4 hold. Then with p/n→ c > 0 when there are no pervasive
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factors, or p3/2/n→ c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

∣∣∣∣ I1
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (n
−1/6).

Proof of Lemma 1. By Assumption (D1) and (V1), we first decompose for an integer m ≥ 1, and

i = 1, . . . , p, j = 1, . . . , L,

pT

ij [X̃v, X̃
T

v ]
(m)
j pij = I11 + 2I12 + I13, where

I11 =
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT

ijA(v(r−1)m+q, vrm+q)Z
j
d,rm+q + pT

ijΣ(v(r−1)m+q, vrm+q)
1/2Zj

v,rm+q)
2,

I12 =
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT

ijA(v(r−1)m+q, vrm+q)Z
j
d,rm+q + pT

ijΣ(v(r−1)m+q, vrm+q)
1/2Zj

v,rm+q)

· (Jvrm+q
− Ĵvrm+q

− Jv(r−1)m+q
+ Ĵv(r−1)m+q

)Tpij ,

I13 =
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(
(Jvrm+q − Ĵvrm+q − Jv(r−1)m+q

+ Ĵv(r−1)m+q
)Tpij

)2
.

(7.4)

Consider further decomposition

∣∣∣∣ I11
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ ≤ ∣∣∣∣ 1m
m−1∑
q=0

|Sj(m)|m∑
r=1

(aijd,r,m,q(r))
2

∣∣∣∣+ ∣∣∣∣ 2m
m−1∑
q=0

|Sj(m)|m∑
r=1

aijd,r,m,q(r)b
ij
v,r,m,q(r)

∣∣∣∣
+

∣∣∣∣ 1m
m−1∑
q=0

|Sj(m)|m∑
r=1

(bijv,r,m,q(r))
2 − 1

∣∣∣∣, where
(aijd,r,m,q(ℓ))

2 = (pT

ijA(v(r−1)m+q, vrm+q)Z
j
d,ℓm+q)

2/pT

ijΣ(τj−1, τj)pij ,

(bijv,r,m,q(ℓ))
2 = (pT

ijΣ(v(r−1)m+q, vrm+q)
1/2Zj

v,ℓm+q)
2/pT

ijΣ(τj−1, τj)pij .

To find the order of I11/p
T
ijΣ(τj−1, τj)pij − 1, define

gijd,r,m,q(ℓ) = (aijd,r,m,q(ℓ))
2 − E((aijd,r,m,q(ℓ))

2|F−j ∪ F j
(ℓ−1)m+q),

gijv,r,m,q(ℓ) = (bijv,r,m,q(ℓ))
2 − E((bijv,r,m,q(ℓ))

2|F−j ∪ F j
(ℓ−1)m+q ∪ Fσ

vrm+q
).
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Then we first consider

1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(aijd,r,m,q(r))
2

=
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

[(aijd,r,m,q(r))
2 − E((aijd,r,m,q(r))

2|F−j ∪ F j
(r−1)m+q)]

+
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

{
ρjd,m,q(a

ij
d,r,m,q(r − 1))2

+ (1− ρjd,m,q)

∥∥pT
ijA(v(r−1)m+q, vrm+q)

∥∥2
pT
ijΣ(τj−1, τj)pij

+
eijd,(r−1)m+q

pT
ijΣ(τj−1, τj)pij

}

=
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

gijd,r,m,q(r) + ρjd,m,q ·
1

m

m−1∑
q=0

|Sj(m)|m∑
r=2

gijd,r,m,q(r − 1)

+
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

{
eijd,(r−1)m+q

pT
ijΣ(τj−1, τj)pij

+ ρjd,m,q ·
eijd,(r−2)m+q

pT
ijΣ(τj−1, τj)pij

}

+ (ρjd,m,q)
2 · 1

m

m−1∑
q=0

|Sj(m)|m∑
r=3

{
(a

(ij)
d,r,m,q(r − 2))2 −

∥∥pT
ijA(v(r−1)m+q, vrm+q)

∥∥2
pT
ijΣ(τj−1, τj)pij

}

+
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

∥∥pT
ijA(v(r−1)m+q, vrm+q)

∥∥2
pT
ijΣ(τj−1, τj)pij

= I11,1 + I11,2 + I11,3 + I11,4,

where the equalities use Assumption (D2), and

I11,1 =
1

m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0

(ρjd,m,q)
ℓ

|Sj(m)|m∑
r=1+ℓ

gijd,r,m,q(r − ℓ)

 ,

I11,2 =
1

m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0

(ρjd,m,q)
ℓ

|Sj(m)|m∑
r=1+ℓ

eijd,(r−1−ℓ)m+q

pT
ijΣ(τj−1, τj)pij

 ,

I11,3 = (ρjd,m,q)
⌊|Sj(m)|m/2⌋

· 1

m

m−1∑
q=0

|Sj(m)|m∑
r=⌊|Sj(m)|m/2⌋+1

{
(a

(ij)
d,r,m,q(r − 2))2 −

(pT
ijA(v(r−1)m+q, vrm+q))

2

pT
ijΣ(τj−1, τj)pij

}
,

I11,4 =
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT
ijA(v(r−1)m+q, vrm+q))

2

pT
ijΣ(τj−1, τj)pij

.
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Letting Kij
d,r,m,q(ℓ) =

(pT
ijA(v(r−1)m+q,vrm+q)Z

j
d,(ℓ−1)m+q

)2

pT
ijΣ(τj−1,τj)pij

, by Assumption (D2),

E

{
ψ

(
|gijd,r,m,q(r − ℓ)|
Kij

d,r,m,q(r − ℓ)

)∣∣∣F−j ∪ F j
(r−1−ℓ)m+q ∪ Fσ

τj

}
<∞,

E

{
ψ

(
|eijd,(r−1−ℓ)m+q/p

T
ijΣ(τj−1, τj)pij |

Kij
d,r,m,q(r − 1− ℓ)

)∣∣∣F−j ∪ F j
(r−2−ℓ)m+q ∪ Fσ

τj

}
<∞.

(7.5)

At the same time, by Assumption (D1) that eighth moments exist for the Zj
d,(r−1−ℓ)m+q’s and are condi-

tionally independent given F−j , we can use Lemma 2.7 of Bai and Silverstein (1998) to arrive at

E((Kij
d,r,m,q(r − ℓ))4|F−j ∪ Fσ

τj ) = O(
∥∥A(v(r−1)m+q, vrm+q)

∥∥8/(pT

ijΣ(τj−1, τj)pij)
4)

= O
(
pfm · 1

(nL)2
/
1

L

)4
= O

(pfm
n2L

)4
, so that

Kij
d,r,m,q(r − ℓ)2 = OP

(
pfm · 1

(nL)2
/
1

L

)2
= OP

(pfm
n2L

)2
, (7.6)

where the last line used Assumption (D1), with pf = 1 if there are no pervasive factors and pf = p if there

are pervasive factors or the drift is non-random, and the second line used Assumption (V1) on the rate of

λmin(Σ(τj−1, τj)). With (7.5) and (7.6), we can apply Theorem 2.2 of van de Geer (2002) to arrive at

|Sj(m)|m∑
r=1+ℓ

gijd,r,m,q(r − ℓ),

|Sj(m)|m∑
r=1+ℓ

eijd,(r−1−ℓ)m+q

pT
ijΣ(τj−1, τj)pij

= OP

(
|Sj(m)|1/2m · pfm

n2L

)
= OP

(pfm1/2

n3/2L

)
,

for ℓ = 0, 1, . . . , ⌊|Sj(m)|m/2⌋ − 1. Since ρjd,m,q ≤ ξ < 1 uniformly by Assumption (D2), we have

I11,1, I11,2 = OP

(
pfm

1/2

n3/2L

)
. (7.7)

Similar techniques in finding the order of Kij
d,r,m,q(r − ℓ) show that

I11,3 = OP

(
ξn/m · pfm

n2L

)
. (7.8)

For I11,4, by (7.6), we have

I11,4 = OP

(
|Sj(m)|m · pfm

n2L

)
= OP

( pf
nL

)
. (7.9)

Combining (7.7), (7.8) and (7.9), we have

1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(aijd,r,m,q(r))
2 = OP (pfn

−1L−1). (7.10)
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Similar to the above calculations, by Assumption (V2), we can decompose

1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(bijv,r,m,q(r))
2 − 1 = J11,1 + J11,2 + J11,3 + J11,4, where

J11,1 =
1

m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0

(ρjv,m,q)
ℓ

|Sj(m)|m∑
r=1+ℓ

gijv,r,m,q(r − ℓ)

 ,

J11,2 =
1

m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0

(ρjv,m,q)
ℓ

|Sj(m)|m∑
r=1+ℓ

eijv,(r−1−ℓ)m+q

pT
ijΣ(τj−1, τj)pij

 ,

J11,3 = (ρjv,m,q)
⌊|Sj(m)|m/2⌋

· 1

m

m−1∑
q=0

|Sj(m)|m∑
r=⌊|Sj(m)|m/2⌋+1

{
(b(ij)v,r,m,q(r − 2))2 −

pT
ijΣ(v(r−1)m+q, vrm+q)pij

pT
ijΣ(τj−1, τj)pij

}
,

J11,4 =
1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

pT
ijΣ(v(r−1)m+q, vrm+q)pij

pT
ijΣ(τj−1, τj)pij

− 1.

Letting Kij
v,r,m,q(ℓ) =

(pT
ijΣ(v(r−1)m+q,vrm+q)

1/2Zj
d,(ℓ−1)m+q

)2

pT
ijΣ(τj−1,τj)pij

, by Assumption (V2),

E

{
ψ

(
|gijv,r,m,q(r − ℓ)|
Kij

v,r,m,q(r − ℓ)

)∣∣∣F−j ∪ F j
(r−1−ℓ)m+q

}
<∞,

E

{
ψ

(
|eijv,(r−1−ℓ)m+q/p

T
ijΣ(τj−1, τj)pij |

Kij
v,r,m,q(r − 1− ℓ)

)∣∣∣F−j ∪ F j
(r−2−ℓ)m+q

}
<∞.

(7.11)

At the same time, by Assumption (V1) that eighth moments exist for the Zj
v,(r−1−ℓ)m+q’s and are condi-

tionally independent given F−j , we can use Lemma 2.7 of Bai and Silverstein (1998) to arrive at

E((Kij
v,r,m,q(r − ℓ))4|F−j ∪ Fσ

τj ) = O((pT

ijΣ(v(r−1)m+q, vrm+q)pij)
4/(pT

ijΣ(τj−1, τj)pij)
4)

= O
(
pf · m

nL
/
pf
L

)4
, so that

Kij
v,r,m,q(r − ℓ)2 = OP

(
pf · m

nL
/
pf
L

)2
= OP

(m
n

)2
, (7.12)

where the last line used Assumption (V1), with pf = 1 if there are no pervasive factors and pf = p if there

are pervasive factors. The main difference between (7.6) and (7.12) is that in (7.12), the numerator is a

part of the denominator, and if pervasive factors affect the numerator, they have to affect the denominator

too. This results in the balance of orders and hence pf disappears from the order of the term. With (7.11)

and (7.12), we can apply Theorem 2.2 of van de Geer (2002) to arrive at

J11,1, J11,2 = OP

(
|Sj(m)|1/2m · m

n

)
= OP (m

1/2n−1/2). (7.13)
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Similar to I11,3, we have

J11,3 = OP (ξ
n/m ·mn−1). (7.14)

For J11,4, using Assumption (V1),

J11,4 =
1

m

m−1∑
q=0

pT
ijΣ(vq, vn(j)−m+1+q)pij − pT

ijΣ(τj−1, τj)pij

pT
ijΣ(τj−1, τj)pij

= − 1

m

m−1∑
q=0

pT
ijΣ(vn(j)−m+1+q, τj)pij + pT

ijΣ(τj−1, vq)pij

pT
ijΣ(τj−1, τj)pij

= OP

(
1

m

m−1∑
q=0

(m− 1− q) + q

nL
/
1

L

)
= OP (mn

−1). (7.15)

Combining (7.13), (7.14) and (7.15), we have

1

m

m−1∑
q=0

|Sj(m)|m∑
r=1

(bijv,r,m,q(r))
2 − 1 = OP (m

1/2n−1/2). (7.16)

Using the Cauchy-Schwarz inequality, together with (7.10) and (7.16), we have

∣∣∣∣ I11
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (pfn
−1L−1 +m1/2n−1/2 + p

1/2
f n−1/2L−1/2)

= OP (n
−1/6), (7.17)

if there are pervasive factors such that pf = p ≍ n2/3 and m = O(n2/3). Turning to I12 and I13 defined in

(7.3), using Assumption (W1) to (W3), and the rate in Fan and Wang (2007), we have

I13/p
T

ijΣ(τj−1, τj)pij = OP (n
−1/2L1/2).

The above implies, through using the Cauchy-Schwarz inequality,

I12/p
T

ijΣ(τj−1, τj)pij = OP (n
−1/4L1/4).

Combining all results, we have for K ≍ n2/3,

∣∣∣∣pT
ij [X̃v, X̃

T
v ]

(K)
j pij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (n
−1/6),

|Sj(K)|K
|Sj(1)|

·
∣∣∣∣pT

ij [X̃v, X̃
T
v ]

(1)
j pij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = Op(K
−1 · 1) = OP (n

−2/3).
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Note that the above bounds are independent of the indices i and j, and hence

max
i=1,...,p
j=1,...,L

∣∣∣∣ I1
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (n
−1/6 + n−2/3) = OP (n

−1/6).

This completes of proof of the lemma. �

Lemma 2. Let all the assumptions in Theorem 4 hold. Then with p/n→ c > 0 when there are no pervasive

factors, or p3/2/n→ c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

max
s=1,...,n(j)

∣∣∣∣ pT
ij(Xvs −X(s))

(pT
ijΣ(τj−1, τj)pij)1/2

∣∣∣∣ = OP (p
1/6n−1/2).

Proof of Lemma 2. Consider
pT

ij(Xvs−X(s))

(pT
ijΣ(τj−1,τj)pij)1/2

= Aij
d (s) +Aij

v (s), where using (7.1),

Aij
d (s) =

p−bs−1∑
m=1

pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(m+ 1)

(pT
ijΣ(τj−1, τj)pij)1/2

,

Aij
v (s) =

p−bs−1∑
m=1

pT
ijD

s
mΣ(tjms , t

jm+1
s )1/2Zj

v,s(m+ 1)

(pT
ijΣ(τj−1, τj)pij)1/2

.

We first deal with non-random drift for Aij
d (s). By Assumptions (D1) and (V1), we have

|Aij
d (s)| ≤

p−bs−1∑
m=1

∥∥pT
ijD

s
mA(tjms , t

jm+1
s )

∥∥
(pT

ijΣ(τj−1, τj)pij)1/2
= OP ((p− bs − 1) · p1/2 · (p− bs − 1)−1n−1L−1/L1/2)

= OP (p
1/2n−1). (7.18)

Now we focus on random drift. Define for ℓ = 1, . . . ,m+ 1,

gijd,s,m(ℓ) =
pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(ℓ)− E(pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

)

(pT
ijΣ(τj−1, τj)pij)1/2

,

gijv,s,m(ℓ) =
pT
ijD

s
mΣ(tjms , t

jm+1
s )1/2Zj

v,s(ℓ)− E(pT
ijD

s
mΣ(tjms , t

jm+1
s )1/2Zj

v,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

∪ Fσ
τj )

(pT
ijΣ(τj−1, τj)pij)1/2

.
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Consider Aij
d (s) first. By Assumption (A4), we can decompose

Aij
d (s) =

p−bs−1∑
m=1

gijd,s,m(m+ 1) +

(
1− cd,j,s

(p− bs − 1)1/6

) p−bs−1∑
m=1

pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(m)

(pT
ijΣ(τj−1, τj)pij)1/2

+

p−bs−1∑
m=1

eijd,s(m)

(pT
ijΣ(τj−1, τj)pij)1/2

= J1 + J2 + J3,

where

J1 =

⌊(p−bs−1)/2⌋−1∑
ℓ=0

(
1− cd,j,s

(p− bs − 1)1/6

)ℓ p−bs−1∑
m=1

gijd,s,m(m− ℓ+ 1),

J2 =

⌊(p−bs−1)/2⌋−1∑
ℓ=0

(
1− cd,j,s

(p− bs − 1)1/6

)ℓ p−bs−1∑
m=1

eijd,s(m− ℓ)

(pT
ijΣ(τj−1, τj)pij)1/2

,

J3 =

(
1− cd,j,s

(p− bs − 1)1/6

)⌊(p−bs−1)/2⌋ p−bs−1∑
m=1

pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(m+ 1− ⌊(p− bs − 1)/2⌋)
(pT

ijΣ(τj−1, τj)pij)1/2
.

Letting Kij
d,s,m(ℓ) =

|pT
ijD

s
mA(tjms ,t

jm+1
s )Zj

d,s(ℓ−1)|
(pT

ijΣ(τj−1,τj)pij)1/2
, by Assumption (A5),

E

{
ψ

(
|gijd,s,m(m− ℓ+ 1)|
Kij

d,s,m(m− ℓ+ 1)

)∣∣∣F−j ∪ F j

t
jm−ℓ
s

}
<∞,

E

{
ψ

(
|eijd,(s(m− ℓ)/(pT

ijΣ(τj−1, τj)pij)
1/2|

Kij
d,s,m(m− ℓ)

)∣∣∣F−j ∪ F j

t
jm−ℓ−1
s

}
<∞.

(7.19)

At the same time, by Assumption (A3) that fourth moments exist for the Zj
d,s(ℓ)’s and are conditionally

independent given Fj , we can use Lemma 2.7 of Bai and Silverstein (1998) to arrive at

E(Kij
d,s,m(m− ℓ+ 1)4|F−j ∪ Fσ

τj ) = O(
∥∥A(tjms , tjm+1

s )
∥∥4/(pT

ijΣ(τj−1, τj)pij)
2)

= O(pf · (p− bs − 1)−2n−2L−2/L−1)

= O(pf · (p− bs − 1)−2n−2L−1), so that

Kij
d,s,m(m− ℓ+ 1)2 = OP (pf · (p− bs − 1)−2n−2L−1), (7.20)

where pf = 1 if there are no pervasive factors and pf = p if there are pervasive factors. With (7.19) and
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(7.20), we can apply Theorem 2.2 of van de Geer (2002) to arrive at

p−bs−1∑
m=1

gijd,s,m(m− ℓ− 1),

p−bs−1∑
m=1

eijd,s(m− ℓ)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (p
1/2 · p1/2f · (p− bs − 1)−1n−1L−1/2)

= OP (p
1/2
f p−1/2n−1L−1/2).

The above implies that

J1, J2 = OP ((p− bs − 1)1/6 · p1/2f p−1/2n−1L−1/2) = OP (p
1/2
f p−1/3n−1L−1/2).

We also have, as p→ ∞,

J3 = OP (e
−cd,j,sp

5/6/2p
1/2
f n−1L−1/2).

The above results give

Aij
d (s) = OP (p

1/2
f p−1/3n−1L−1/2). (7.21)

Parallel arguments show that

p−bs−1∑
m=1

gijv,s,m(m− ℓ− 1),

p−bs−1∑
m=1

eijv,s(m− ℓ)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP ((p− bs − 1)1/2 · (pT

ijD
s
mΣ(tjms , tjm+1

s )Ds
mpij)

1/2/(pT

ijΣ(τj−1, τj)pij)
1/2)

= OP ((p− bs − 1)1/2 · (p− bs − 1)−1/2n−1/2L−1/2/L−1/2)

= OP (n
−1/2),

where pf cancels since Ds
m is only a diagonal matrix of 1 or 0, and hence if pervasive factors are affecting

the numerator, it has to affect the denominator too. Parallel arguments as before show that

Aij
v (s) = OP (p

1/6n−1/2). (7.22)

Combining (7.18), (7.21), (7.22), since we at most have p3/2/n→ c > 0,

pT
ij(Xvs −X(s))

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (p
1/6n−1/2 + p1/2n−1) = OP (p

1/6n−1/2). (7.23)

This completes the proof of the theorem, since the above rate is free of all indices. �

Lemma 3. Let all the assumptions in Theorem 4 hold. Then with p/n→ c > 0 when there are no pervasive
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factors, or p3/2/n→ c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

∣∣∣∣ I2
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n
−1/6).

Proof of Lemma 3. For an integer m ≥ 1, i = 1, . . . , p and j = 1, . . . , L, write

pT
ij [X̃v,E

T]
(m)
j pij

pT
ijΣ(τj−1, τj)pij

=

3∑
i=1

(I2,i + Ji +Ki), where, defining e(Jt) = Jt − Ĵt,

I2,1 =
1

m

∑
s,s−m∈Sj(m)

pT
ijA(vs−m, vs)Z

j
d,s(ϵ(s)− ϵ(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I2,2 =
1

m

∑
s,s−m∈Sj(m)

pT
ijΣ(vs−m, vs)

1/2Zj
v,s(ϵ(s)− ϵ(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I2,3 =
1

m

∑
s,s−m∈Sj(m)

pT
ij(e(Jvs)− e(Jvs−m

))(ϵ(s)− ϵ(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

J1 =
1

m

∑
s,s−m∈Sj(m)

pT
ijA(vs−m, vs)Z

j
d,s(X(s)−Xvs +Xvs−m

−X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

J2 =
1

m

∑
s,s−m∈Sj(m)

pT
ijΣ(vs−m, vs)

1/2Zj
v,s(X(s)−Xvs +Xvs−m

−X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

J3 =
1

m

∑
s,s−m∈Sj(m)

pT
ij(e(Jvs)− e(Jvs−m)(X(s)−Xvs +Xvs−m −X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

K1 =
1

m

∑
s,s−m∈Sj(m)

pT
ijA(vs−m, vs)Z

j
d,s(e(J(s))− e(Jvs)− e(J(s−m)) + e(Jvs−m

))Tpij

pT
ijΣ(τj−1, τj)pij

,

K2 =
1

m

∑
s,s−m∈Sj(m)

pT
ijΣ(vs−m, vs)

1/2Zj
v,s(e(J(s))− e(Jvs)− e(J(s−m)) + e(Jvs−m

))Tpij

pT
ijΣ(τj−1, τj)pij

,

K3 =
1

m

∑
s,s−m∈Sj(m)

pT
ij(e(Jvs)− e(Jvs−m))(e(J(s))− e(Jvs)− e(J(s−m)) + e(Jvs−m))Tpij

pT
ijΣ(τj−1, τj)pij

.

Consider gijd,s = pT
ijA(vs−m, vs)Z

j
d,sϵ(s)

Tpij . Then

E

(( 1

m

∑
s,s−m∈Sj(m)

gijd,s

)2∣∣∣F−j

)
=

1

m2

∑
s,s−m∈Sj(m)

E((gijd,s)
2|F−j)

+
1

m2

∑
sk,sk+m∈Sj(m)

s1 ̸=s2

E(gijd,s1g
ij
d,s2

|F−j). (7.24)
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With Assumption (D1) and (E2), we can use Lemma 2.7 of Bai and Silverstein (1998) to arrive at

E((gijd,s)
2|F−j) ≤ E1/2((pT

ijA(vs−m, vs)Z
j
d,s)

4|F−j)E
1/2((pT

ij(Σ
j
ϵ,s)

1/2Zj
ϵ,s)

4|F−j)

= O(pT

ijA(vs−m, vs)A(vs−m, vs)
Tpij · E1/2((pT

ijΣ
j
ϵ,spij)

2|F−j))

= O(
∥∥A(vs−m, vs)

∥∥2 · λϵ) = O(pfmn
−2L−2),

where pf = p if there are pervasive factors, and pf = 1 otherwise. Also, by Assumption (E3), since

E(pT
ijϵ(s)|F−j) = 0, by Theorem 1.4 in Rio (2013) we have that

E(gijd,s1g
ij
d,s2

|F−j) ≤ 2O(n−1)E1/2((pT

ijϵ(s1))
2|F−j)

· E1/2((pT

ijϵ(s2)p
T

ijA(vs1−m, vs1)Z
j
d,s1

pT

ijA(vs2−m, vs2)Z
j
d,s2

)2|F−j)

≤ 2O(n−1)E1/2((pT

ijϵ(s1))
2|F−j) · E1/4((pT

ijϵ(s2))
4|F−j)

· E1/8((pT

ijA(vs1−m, vs1)Z
j
d,s1

)8|F−j)E
1/8((pT

ijA(vs2−m, vs2)Z
j
d,s2

)8|F−j)

= O(n−1
∥∥A(vs−m, vs)

∥∥2) = O(pfmn
−3L−2),

where the third inequality sign used Lemma 2.7 of Bai and Silverstein (1998), and the existence of the

eighth moments after applying the Cauchy-Schwarz inequality. Using these two results, (7.24) becomes

E

(( 1

m

∑
s,s−m∈Sj(m)

gijd,s

)2∣∣∣F−j

)
= O(m−2pfmn

−1L−2) = O(pfm
−1n−1L−2).

This implies that

I2,1 = OP (p
1/2
f m−1/2n−1/2L−1/L−1) = OP (p

1/2
f m−1/2n−1/2). (7.25)

Now consider gijv,s = pT
ijΣ(vs−m, vs)

1/2Zj
v,sϵ(s)

Tpij/p
T
ijΣ(τj−1, τj)pij . Parallel arguments using Assump-

tion (V1) and (E2) give

E((gijv,s)
2|F−j ∪ Fσ

τj ) = O(pT

ijΣ(vs−m, vs)pij/(p
T

ijΣ(τj−1, τj)pij)
2) = O(pfmn

−1L−1/(p2fL
−2))

= O(p−1
f mn−1L),

E(gijv,s1g
ij
v,s2 |F−j ∪ Fσ

τj ) = O(n−1p−1
f mn−1L) = O(p−1

f mn−2L)).

Hence using decomposition parallel to (7.24),

I2,2 = OP (m
−2 · p−1

f mL)1/2 = OP (p
−1/2
f m−1/2L1/2). (7.26)
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For terms involving jumps, using Assumption (W1) to (W3) and the rate in Fan and Wang (2007), we

have

I2,3 = OP (n
−1/4L3/4),

J3 = OP (n
−1/4L1/4 · p1/6n−1/2) = OP (p

1/6n−3/4L1/4),

K1 = OP (
∥∥A(vs−m, vs)

∥∥/L−1 · n−1/4L−1/4) = OP (p
1/2
f m1/2n−5/4L−1/4),

K2 = OP (p
−1/2
f m1/2n−1/2L1/2 · n−1/4L−1/4) = OP (p

−1/2
f m1/2n−3/4L1/4),

K3 = OP (n
−1/2L1/2),

(7.27)

where J3 used the result of Lemma 2. Using the result of Lemma 2 again, we have

J1 = OP (nm
−1 · p1/2f m1/2n−1L−1/2 · p1/6n−1/2) = OP (p

1/2
f p1/6m−1/2n−1/2L−1/2),

J2 = OP (nm
−1 ·m1/2n−1/2 · p1/6n−1/2) = OP (m

−1/2p1/6).

(7.28)

At m = K ≍ n2/3, (7.25), (7.26), (7.27) and (7.28) imply that, for pf = 1 with p ≍ n or pf = p ≍ n2/3,

pT
ij [X̃v,E

T]
(K)
j pij

pT
ijΣ(τj−1, τj)pij

= OP (n
−1/6).

At m = 1, (7.25), (7.26), (7.27) and (7.28) imply that, for pf = 1 with p ≍ n or pf = p ≍ n2/3,

pT
ij [X̃v,E

T]
(1)
j pij

pT
ijΣ(τj−1, τj)pij

= OP (p
1/6).

Since the above two results are free of all indices, they imply that

max
i=1,...,p
j=1,...,L

∣∣∣∣ I2
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n
−1/6 + p1/6K−1) = OP (n

−1/6).

This completes the proof of the lemma. �

Lemma 4. Let all the assumptions in Theorem 4 hold. Then with p/n→ c > 0 when there are no pervasive

factors, or p3/2/n→ c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

∣∣∣∣ I3
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n
−1/6).

Proof of Lemma 4. Consider for an integer m ≥ 1 and i = 1, . . . , p, j = 1, . . . , L, using the notations
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in the proof of Lemma 3,

pT
ij [E,E

T]
(m)
j pij

pT
ijΣ(τj−1, τj)pij

=

3∑
ℓ=1

I3,ℓ + 2

3∑
ℓ=1

I3,ℓ, where

I3,1(m) =
1

m

∑
s,s−m∈Sj(m)

(pT
ij(ϵ(s)− ϵ(s−m)))2

pT
ijΣ(τj−1, τj)pij

,

I3,2 =
1

m

∑
s,s−m∈Sj(m)

(pT
ij(X(s)−Xvs +Xvs−m

−X(s−m)))2

pT
ijΣ(τj−1, τj)pij

,

I3,3 =
1

m

∑
s,s−m∈Sj(m)

(pT
ij(e(J(s))− e(Jvs)− e(J(s−m)) + e(Jvs−m

)))2

pT
ijΣ(τj−1, τj)pij

,

I3,4 =
1

m

∑
s,s−m∈Sj(m)

pT
ij(ϵ(s)− ϵ(s−m))(X(s)−Xvs +Xvs−m

−X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I3,5 =
1

m

∑
s,s−m∈Sj(m)

pT
ij(ϵ(s)− ϵ(s−m))(e(J(s))− e(Jvs)− e(J(s−m)) + e(Jvs−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I3,6 =
1

m

∑
s,s−m∈Sj(m)

pT
ij(X(s)−Xvs +Xvs−m

−X(s−m))

pT
ijΣ(τj−1, τj)pij

· (e(J(s))− e(Jvs)− e(J(s−m)) + e(Jvs−m))Tpij .

We consider I3,2 first, which by Lemma 2 has

I3,2 = OP (nm
−1 · p1/3n−1) = OP (p

1/3m−1).

Using Assumption (W1) to (W3) and the rate of wavelet removal in Fan and Wang (2007), we have

I3,3 = OP (n
−1/2L1/2),

I3,5 = OP (n
−1/4L3/4),

I3,6 = OP (p
1/6n−1/2 · n−1/4L1/4) = OP (p

1/6n−3/4L1/4).

Consider hijs = pT
ijϵ(s)(X(s) −Xvs)

Tpij/p
T
ijΣ(τj−1, τj)pij . Then using Assumption (E3), (D1) and (V1)

that eighth moments exist, with s1 ̸= s2,

E((hijs )
2|F−j ∪ Fσ

τj ) = O(p1/3n−1L),

E(hijs1h
ij
s2 |F−j ∪ Fσ

τj ) = O(n−1 · L · p1/3n−1) = O(p1/3n−2L).
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Hence using decomposition parallel to (7.24), we can conclude that

I3,4 = OP (m
−2 · n · p1/3n−1L+m−2 · n2 · p1/3n−2L)1/2 = OP (p

1/6m−1L1/2).

Finally, for K ≍ n2/3, we consider the rate of

(pT

ijΣ(τj−1, τj)pij)

(
I3,1(K)− |Sj(K)|K

|Sj(1)|
I3,1(1)

)
= J1 − 2J2 + J3, where

J1 =
1

K

∑
s,s−K∈Sj(K)

(pT

ijϵ(s))
2 − |Sj(K)|K

|Sj(1)|
∑

s,s−1∈Sj(1)

(pT

ijϵ(s))
2,

J2 =
1

K

∑
s,s−K∈Sj(K)

pT

ijϵ(s)ϵ(s−K)Tpij −
|Sj(K)|K
|Sj(1)|

∑
s,s−1∈Sj(1)

pT

ijϵ(s)ϵ(s− 1)Tpij ,

J3 =
1

K

∑
s,s−K∈Sj(K)

(pT

ijϵ(s−K))2 − |Sj(K)|K
|Sj(1)|

∑
s,s−1∈Sj(1)

(pT

ijϵ(s− 1))2.

With Assumption (E1) to (E3), writing gijm,s = pT
ijϵ(s)ϵ(s−m)Tpij , by Lemma 2.7 of Bai and Silverstein

(1998),

E

{( 1

m

∑
s,s−m∈Sj(m)

gijm,s

)2∣∣∣F−j

}
= O(m−2n · 1 + n−1 ·m−2n2 · 1) = O(m−2n), hence

1

m

∑
s,s−m∈Sj(m)

gijm,s = OP (m
−1n1/2),

which implies that

J2 = OP (K
−1n1/2) = OP (n

−1/6).

We can further decompose J1 = J11 − J12 + J13, where

J11 =
1

K

∑
s,s−K∈Sj(K)

((pT

ijϵ(s))
2 − pT

ijΣ
j
ϵ,spij),

J12 =
|Sj(K)|K
|Sj(1)|

∑
s,s−1∈Sj(1)

((pT

ijϵ(s))
2 − pT

ijΣ
j
ϵ,spij),

J13 =
1

K

∑
s,s−K∈Sj(K)

pT

ijΣ
j
ϵ,spij −

|Sj(K)|K
|Sj(1)|

∑
s,s−1∈Sj(1)

pT

ijΣ
j
ϵ,spij .
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Consider

J13 =
1

K

∑
s,s−K∈Sj(K)

pT

ijΣ
j
ϵ,spij −

1

K

∑
s,s−1∈Sj(1)

pT

ijΣ
j
ϵ,spij +

K − 1

Kn(j)

∑
s,s−1∈Sj(1)

pT

ijΣϵ,spij

= − 1

K

K−1∑
s=1

pT

ijΣ
j
ϵ,spij +

K − 1

Kn(j)

n(j)∑
s=1

pT

ijΣ
j
ϵ,spij

=

(
pT

ijE(Σj
ϵ,s)pij −

1

K

K−1∑
s=1

pT

ijΣ
j
ϵ,spij

)
+

(
1

n(j)

n(j)∑
s=1

pT

ijΣ
j
ϵ,spij − pT

ijE(Σj
ϵ,s)pij

)

− 1

Kn(j)

n(j)∑
s=1

pT

ijΣ
j
ϵ,spij

= OP (K
−1/2) +OP (n

−1/2) +OP (K
−1) = OP (n

−1/3),

where the last line used the weak law of large number given F−j .

Now define gijs = (pT
ijϵ(s))

2 − pT
ijΣ

j
ϵ,spij . Using Lemma 2.7 of Bai and Silverstein (1998) under As-

sumption (E1) to (E3), we have

E(J2
11|F−j ∪ {Σϵ,u, u ∈ [0, 1]}) = K−2

∑
s,s−K∈Sj(K)

E((gijs )2|F−j ∪ {Σϵ,u, u ∈ [0, 1]})

+K−2
∑

s1 ̸=s2

E(gijs1g
ij
s2 |F−j ∪ {Σϵ,u, u ∈ [0, 1]})

= O(K−2n · 1 +K−2n2 · n−1 · 1) = O(n−1/3).

The above implies that

J11 = OP (n
−1/6) = J12.

The rates for J11, J12 and J13 imply that

J1 = OP (n
−1/6) = J3,

so that combining with the rate of J2, we have

I3,1(K)− |Sj(K)|K
|Sj(1)|

I3,1(1) = OP (n
−1/6L).

Finally, among I3,2 to I3,6, when m = K ≍ n2/3, the dominating term is I3,5 = OP (n
−1/4L3/4), while it is
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I3,2 = OP (p
1/3) when m = 1. Hence

max
i=1,...,p
j=1,...,L

∣∣∣∣ I3
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n
−1/6L) +OP (n

−1/4L3/4) +OP (K
−1 · p1/3)

= OP (n
−1/6L) = OP (n

−1/6),

since L is finite. This completes the proof of the lemma. �

Proof of Theorem 2, 4. Combining the results of Lemma 1, 3 and 4, we have

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ijΣ̃(τj−1, τj)pij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ ≤ max
i=1,...,p
j=1,...,L

∣∣∣∣ I1
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣+ 2 max
i=1,...,p
j=1,...,L

∣∣∣∣ I2
pT
ijΣ(τj−1, τj)pij

∣∣∣∣
+ max

i=1,...,p
j=1,...,L

∣∣∣∣ I3
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n
−1/6).

Note that the above result is equivalent to the first main result in Theorem 2. For the second main result,

∥∥Σ̂(0, 1)ΣIdeal(0, 1)
−1 − Ip

∥∥ =

∥∥∥∥ L∑
j=1

(Σ̂(τj−1, τj)ΣIdeal(τj−1, τj)
−1 − Ip)ΣIdeal(τj−1, τj)ΣIdeal(0, 1)

−1

∥∥∥∥
≤

L∑
j=1

∥∥Σ̂(τj−1, τj)ΣIdeal(τj−1, τj)
−1 − Ip

∥∥
·
∥∥∥∥diag(PT

−jΣ(τj−1, τj)P−j) ·
(
diag(PT

−jΣ(τj−1, τj)P−j) +
∑
i̸=j

PT

−jΣIdeal(τi−1, τi)P−j

)−1∥∥∥∥
= OP

(
Ln−1/6 · max

j=1,...,L

∥∥∥∥(Ip +∑
i ̸=j

PT

−jΣIdeal(τi−1, τi)P−jdiag
−1(PT

−jΣ(τj−1, τj)P−j)

)−1∥∥∥∥)
= OP (n

−1/6).

Hence these complete the proof of Theorem 2 and the equivalent parts in Theorem 4 under jumps

removed data.

To complete the proof of Theorem 4, note that for a generic constant C > 0,

∥∥ ∑
0≤t≤1

(∆Jt∆JT

t −∆Ĵt∆ĴT

t )
∥∥ ≤ C max

0≤t≤1

∥∥∆Jt∆JT

t −∆Ĵt∆ĴT

t )
∥∥

≤ 2C max
0≤t≤1

∥∥∆Jt −∆Ĵt

∥∥ · ∥∥∆Jt

∥∥+ C max
0≤t≤1

∥∥∆Jt −∆Ĵt

∥∥2
= OP (n

−1/4L−1/4),

where the first line used Assumption (W2) that there are only finite number of jumps in [0, 1] for each

stock, and the second line used Assumption (W3) that there are only finite number of cojumps, with rate
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of jumps removal given as in Fan and Wang (2007). This completes the proof of Theorem 4. �

Proof of Theorem 5. Define Dj = diag(PT
−jΣ(τj−1, τj)P−j) and D̃j = diag(PT

−jΣ̃(τj−1, τj)P−j).

Define ei to be the unit vector with 1 on the ith position and 0 elsewhere, and
∥∥A∥∥

1
= maxj

∑
i |aij | the

L1 norm of a matrix A. Then for some i = 1, . . . , p,

p1/2
∥∥ŵopt

∥∥
max

=
p1/2|eT

i Σ̂(0, 1)−11p|
1T
pΣ̂(0, 1)−11p

≤
p1/2

∥∥Σ̂(0, 1)−1
∥∥
1

pλmin(Σ̂(0, 1)−1)
≤ p1/2 · p1/2/λmin(Σ̂(0, 1))

p/λmax(Σ̂(0, 1))

≤
∑L

j=1 λmax(D̃j)∑L
j=1 λmin(D̃j)

≤
Lmax1≤j≤L λmax(D̃jD

−1
j − Ip)λmax(Dj) +

∑L
j=1 λmax(Dj)

Lmin1≤j≤L λmin(D̃jD
−1
j − Ip)λmin(Dj) +

∑L
j=1 λmin(Dj)

≤
(max1≤j≤L λmax(D̃jD

−1
j − Ip) + 1)max1≤j≤L λmax(Dj)

(min1≤j≤L λmin(D̃jD
−1
j − Ip) + 1)min1≤j≤L λmin(Dj)

P−→ max1≤j≤L λmax(Dj)

min1≤j≤L λmin(Dj)
≤ max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
,

where the last line follows from the results of Theorem 2 and Theorem 4. For the theoretical minimum-

variance portfolio,

p1/2
∥∥wtheo

∥∥
max

=
p1/2|eT

i Σ(0, 1)−11p|
1T
pΣ(0, 1)−11p

≤
p1/2

∥∥Σ(0, 1)−1
∥∥
1

pλmin(Σ(0, 1)−1)
≤ p1/2 · p1/2/λmin(Σ(0, 1))

p/λmax(Σ(0, 1))

≤
∑L

j=1 λmax(Dj)∑L
j=1 λmin(Dj)

=
max1≤j≤L λmax(Dj)

min1≤j≤L λmin(Dj)
≤ max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
.

For the actual risk bound, define R =
∑L

j=1 P−j(D̃jD
−1
j − Ip)DjP

T
−j . We first consider the case of

no pervasive factors. Consider

Σ̂(0, 1)−1 =

( L∑
j=1

P−jD̃jP
T

−j

)−1

=

( L∑
j=1

P−j(D̃jD
−1
j − Ip)DjP

T

−j +

L∑
j=1

P−jDjP
T

−j

)−1

= (Ip +ΣIdeal(0, 1)
−1R)−1ΣIdeal(0, 1)

−1

= ΣIdeal(0, 1)
−1 +

∑
k≥1

(
−ΣIdeal(0, 1)

−1R
)k
ΣIdeal(0, 1)

−1,
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where the Neumann’s series expansion in the last line is valid since

∑
k≥0

∥∥ΣIdeal(0, 1)
−1
∥∥k∥∥R∥∥k ≤ 1 +

∑
k≥1

∥∥R∥∥k
λkmin(ΣIdeal(0, 1))

≤ 1 +
∑
k≥1

Lk max1≤j≤L

∥∥D̃jD
−1
j − Ip

∥∥k max1≤j≤L

∥∥Σ(τj−1, τj)
∥∥k

Lk min1≤j≤L λkmin(Σ(τj−1, τj))

P−→ 1 <∞,

where the last line follows from the results in Theorem 2 and 4. This implies that, in probability,

∥∥Σ̂(0, 1)−1 −ΣIdeal(0, 1)
−1
∥∥ ≤ λmax(ΣIdeal(0, 1)

−1)
∑
k≥1

∥∥R∥∥k
λkmin(ΣIdeal(0, 1))

P−→ 0. (7.29)

With the above, consider the decomposition pR(ŵopt) = I1 + I2 + I3, where

I1 =
p1T

p (Σ̂(0, 1)−1 −ΣIdeal(0, 1)
−1)Σ(0, 1)Σ̂(0, 1)−11p

(1T
pΣ̂(0, 1)−11p)2

,

I2 =
p1T

pΣIdeal(0, 1)
−1Σ(0, 1)(Σ̂(0, 1)−1 −ΣIdeal(0, 1)

−1)1p

(1T
pΣ̂(0, 1)−11p)2

,

I3 =
p1T

pΣIdeal(0, 1)
−1Σ(0, 1)ΣIdeal(0, 1)

−11p

(1T
pΣ̂(0, 1)−11p)2

.

By (7.29), with
∥∥Σ(0, 1)

∥∥ ≤ C where C is a generic constant since there are no pervasive factors,

|I1| ≤
p2
∥∥Σ̂(0, 1)−1 −ΣIdeal(0, 1)

−1
∥∥ · C · (

∥∥Σ̂(0, 1)−1 −ΣIdeal(0, 1)
−1
∥∥+ λmax(ΣIdeal(0, 1)

−1))

p2
(
λmin(ΣIdeal(0, 1)−1)−

∥∥Σ̂(0, 1)−1 −ΣIdeal(0, 1)−1
∥∥)2 P−→ 0.

Similarly, |I2|
P−→ 0. For I3, by (7.29),

|I3| ≤
p2λ2max(ΣIdeal(0, 1)

−1)λmax(Σ(0, 1))

p2
(
λmin(ΣIdeal(0, 1)−1)−

∥∥Σ̂(0, 1)−1 −ΣIdeal(0, 1)−1
∥∥)2

P−→ λ2max(ΣIdeal(0, 1))

λ2min(ΣIdeal(0, 1))
λmax(Σ(0, 1))

≤
(∑L

j=1 λmax(Σ(τj−1, τj))∑L
j=1 λmin(Σ(τj−1, τj))

)2

λmax(Σ(0, 1))

=

(
max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))

)2

λmax(Σ(0, 1)),

which leads to the result in the theorem.
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If there are pervasive factors, abbreviating Σ(0, 1) as Σ etc, consider

R(ŵopt) =
1T
pΣ̂

−1
ΣΣ̂

−1
1p

(1T
pΣ̂

−1
1p)2

≤ λmax(Σ̂
−1

Σ)

1T
pΣ̂

−1
1p

≤ λmax(Σ̂)λmax(Σ)

pλmin(Σ̂)

= OP (λmax(Σ)),

where the last line follows from the results in Theorem 2 and 4. For the actual risk bound for wtheo,

pR(wtheo) =
p

1T
pΣ(0, 1)−11p

≤ λmax(Σ(0, 1)).

This completes the proof of the theorem. �
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