THE LONDON SCHOOL
oF ECONOMICS AnD
POLITICAL SCIENCE

LSE Research Online

Tomaso Aste and T. Di Matteo
Sparse causality network retrieval from short

time series

Article (Published version)
(Refereed)

Original citation:

Aste, Tomaso and Di Matteo, T. (2017) Sparse causality network retrieval from short time series.
Complexity, 2017 (4518429). ISSN 1076-2787

DOI: 10.1155/2017/4518429

© 2017 Tomaso Aste and T. Di Matteo
CCBY 4.0

This version available at: http://eprints.Ise.ac.uk/88241/
Available in LSE Research Online: June 2018

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.Ise.ac.uk) of the LSE
Research Online website.

http://eprints.lse.ac.uk


https://www.hindawi.com/journals/complexity/
http://doi.org/10.1155/2017/4518429
http://eprints.lse.ac.uk/88241/

Hindawi

Complexity

Volume 2017, Article ID 4518429, 13 pages
https://doi.org/10.1155/2017/4518429

Research Article

WILEY

Hindawi

Sparse Causality Network Retrieval from Short Time Series

Tomaso Aste">’ and T. Di Matteo">**

lDepartment of Computer Science, UCL, London, UK

2UCL Centre for Blockchain Technologies, UCL, London, UK

3Systemic Risk Centre, London School of Economics and Political Sciences, London, UK
*Department of Mathematics, King’s College London, London, UK

Correspondence should be addressed to Tomaso Aste; t.aste@ucl.ac.uk
Received 25 May 2017; Accepted 6 September 2017; Published 6 November 2017
Academic Editor: Diego Garlaschelli

Copyright © 2017 Tomaso Aste and T. Di Matteo. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We investigate how efficiently a known underlying sparse causality structure of a simulated multivariate linear process can be
retrieved from the analysis of time series of short lengths. Causality is quantified from conditional transfer entropy and the
network is constructed by retaining only the statistically validated contributions. We compare results from three methodologies: two
commonly used regularization methods, Glasso and ridge, and a newly introduced technique, LoGo, based on the combination of
information filtering network and graphical modelling. For these three methodologies we explore the regions of time series lengths
and model-parameters where a significant fraction of true causality links is retrieved. We conclude that when time series are short,
with their lengths shorter than the number of variables, sparse models are better suited to uncover true causality links with LoGo

retrieving the true causality network more accurately than Glasso and ridge.

1. Introduction

Establishing causal relations between variables from obser-
vation of their behaviour in time is central to scientific
investigation and it is at the core of data-science where
these causal relations are the basis for the construction of
useful models and tools capable of prediction. The capability
to predict (future) outcomes from the analytics of (past)
input data is crucial in modelling and it should be the main
property to take into consideration in model selection, when
the validity and meaningfulness of a model is assessed. From
a high-level perspective, we can say that the whole scientific
method is constructed around a circular procedure consisting
in observation, modelling, prediction, and testing. In such a
procedure, the accuracy of prediction is used as a selection
tool between models. In addition, the principle of parsimony
favours the simplest model when two models have similar
predictive power.

The scientific method is the rational process that, for the
last 400 years, has mostly contributed to scientific discov-
eries, technological progress, and the advancement of human

knowledge. Machine learning and data-science are nowadays
pursuing the ambition to mechanize this discovery process
by feeding machines with data and using different method-
ologies to build systems able to make models and predictions
by themselves. However, the automatisation of this process
requires to identify, without the help of human intuition, the
relevant variables and the relations between these variables
out of a large quantity of data. Predictive models are method-
ologies, systems, or equations which identify and make use
of such relations between sets of variables in a way that
the knowledge about a set of variables provides information
about the values of the other set of variables. This problem is
intrinsically high-dimensional with many input and output
data. Any model that aims to explain the underlying system
will involve a number of elements which must be of the
order of magnitude of the number of relevant relations
between the system’s variables. In complex systems, such as
financial markets or the brain, prediction is probabilistic in
nature and modelling concerns inferring the probability of
the values of a set of variables given the values of another
set. This requires the estimation of the joint probability of all
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variables in the system and, in complex systems, the number
of variables with potential macroscopic effects on the whole
system is very large. This poses a great challenge for the model
construction/selection and its parameter estimation because
the number of relations between variables scales with, at least,
the square of the number of variables but, for a given fix
observation window, the amount of information gathered
from such variables scales, at most, linearly with the number
of variables [1, 2].

For instance, a linear model for a system with p variables
requires the estimation from observation of p(p+1)/2 param-
eters (the distinct elements of the covariance matrix). In
order to estimate O(p?) parameters one needs a comparable
number of observations requiring time series of length g ~ p
or larger to gather a sufficient information content from a
number of observations which scales as p x g ~ O(p?).
However, the number of parameters in the model can be
reduced by considering only O(p) out of the O(p?) relations
between the variables reducing in this way the required time
series length to O(p). Such models with reduced numbers of
parameters are referred to in the literature as sparse models.
In this paper we consider two instances of linear sparse
modelling: Glasso [3] which penalizes nonzero parameters
by introducing a ¢, norm penalization and LoGo [4] which
reduces the inference network to an O(p) number of links
selected by using information filtering networks [5-7]. The
results from these two sparse models are compared with the
¢, norm penalization (nonsparse) ridge model [8, 9].

This paper is an exploratory attempt to map the parameter
regions of time series length, number of variables, penaliza-
tion parameters, and kinds of models to define the boundaries
where probabilistic models can be reasonably constructed
from the analytics of observation data. In particular, we
investigate empirically, by means of a linear autoregressive
model with sparse inference structure, the true causality link
retrieval performances in the region of short time series
and large number of variables which is the most critical
region—and the most interesting—in many practical cases.
Causality is defined in information theoretic sense as a
significant reduction on uncertainty over the present values
of a given variable provided by the knowledge of the past
values of another variable obtained in excess to the knowledge
provided by the past of the variable itself and—in the condi-
tional case—the past of all other variables [10]. We measure
such information by using transfer entropy and, within
the present linear modelling, this coincides with the con-
cept of Granger causality and conditional Granger causality
[11]. The use of transfer entropy has the advantage of being a
concept directly extensible to nonlinear modelling. However,
nonlinearity is not tackled within the present paper. Linear
models with multivariate normal distributions have the
unique advantage that causality and partial correlations are
directly linked, largely simplifying the computation of trans-
fer entropy, and directly mapping the problem into the sparse
inverse covariance problem [3, 4].

Results are reported for artificially generated time series
from an autoregressive model of p = 100 variables and
time series lengths g between 10 and 20,000 data points.
Robustness of the results has been verified over a wider range
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of p from 20 to 200 variables. Our results demonstrate that
sparse models are superior in retrieving the true causality
structure for short time series. Interestingly, this is despite
considerable inaccuracies in the inference network of these
sparse models. We indeed observe that statistical validation
of causality is crucial in identifying the true causal links, and
this identification is highly enhanced in sparse models.

The paper is structured as follows. In Section 2 we
briefly review the basic concepts of mutual information and
conditional transfer entropy and their estimation from data
that will then be used in the rest of the paper. We also
introduce the concepts of sparse inverse covariance, inference
network and causality networks. Section 3 concerns the
retrieval of causality network from the computation and sta-
tistical validation of conditional transfer entropy. Results are
reported in Section 4 where the retrieval of the true causality
network from the analytics of time series from an autoregres-
sive process of p = 100 variables is discussed. Conclusions
and perspectives are given in Section 5.

2. Estimation of Conditional Transfer Entropy
from Data

In this paper causality is quantified by means of statistically
validated transfer entropy. Transfer entropy T(Z; — Z;)
quantifies the amount of uncertainty on a random variable,
Z;, explained by the past of another variable, Z;, conditioned
to the knowledge about the past of Z; itself. Conditional
transfer entropy, T(Z; — Z; | W), includes an extra condition
also to a set variables W. These quantities are introduced in
detail in Appendix A (see also [11-13]). Let us here just report
the main expression for the conditional transfer entropy that
we shall use in this paper:

T(2— 2,1 W) =H(Z, | {Z;£,W}}) :

1
(g {2 W),

where H(: | ) is the conditional entropy and Z,isa random
variable at time ¢, whereas Ziatg = {Zi; 1., Zi; } is the
lagged set of random variable “i” considering previous times
t—1---t—7and W, are all other variables and their lags (see
Appendix A, (A.5)).

In this paper we use Shannon entropy and restrict
to linear modelling with multivariate normal setting (see
Appendix B). In this context the conditional transfer entropy
can be expressed in terms of the determinants of conditional
covariances det(Z(- | -)) (see (B.5) in Appendix B):

= %log det (Z (Zj,t | {Z}ig,Wt})) &)
iogaa(s(2, | {25.25W,))

Conditional covariances can be conveniently computed
in terms of the inverse covariance of the whole set of variables
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Z, = {Zi Ly ys. Ly }E_ € RPD (see Appendix C).

Such inverse covariance matrix, J, represents the structure

of conditional dependencies among all couples of variables

in the system and their lags. Each subpart of J is associated

with the conditional covariances of the variables in that part

with respect to all others. In terms of ], the expression for the

conditional transfer entropy becomes

1

T(Z, — Z; | W) =
(3)

-1 1
-log det (Il,l 12 (12,2) ]2,1) + 3 log det (]1,1) >

where the indices “1” and “2” refer to submatrices of J,
respectively, associated with the variables Z; , and Ziatg

2.1. Causality and Inference Networks. The inverse covariance
J, also known as precision matrix, represents the structure of
conditional dependencies. If we interpret the structure of J as
a network, where nodes are the variables and nonzero entries
correspond to edges of the network, then we shall see that any
two subsets of nodes that are not directly connected by one or
more edges are conditionally independent. Condition is with
respect to all other variables.

Links between variables at different lags are associated
with causality with direction going from larger to smaller
lags. The network becomes therefore a directed graph. In
such a network entropies can be associated with nodes,
conditional mutual information can be associated with edges
between variables with the same lag, and conditional transfer
entropy can be associated with edges between variables with
different lags. A nice property of this mapping of information
measures with directed networks is that there is a simple
way to aggregate information which is directly associated
with topological properties of the network. Entropy, mutual
information, and transfer entropies can be defined for any
aggregated subset of nodes with their values directly asso-
ciated with the presence, direction, and weight of network
edges between these subparts.

Nonzero transfer entropies indicating, for instance, vari-
able i causing variable j are associated with some nonzero
entries in the inverse covariance matrix J between lagged
variables i (i.e., Z;; ., with 7 > 0) and variable j (i.e,
Z;,). In linear models these nonzero entries define the
estimated inference network. However, not all edges in this
inference network correspond to transfer entropies that are
significantly different from zero. To extract the structure of
the causality network we shall retain only the edges in the
inference network which correspond to statistically validated
transfer entropies.

Conditioning eliminates the effect of the other variables
retaining only the exclusive contribution from the two vari-
ables in consideration. This should provide estimations of
transfer entropy that are less affected by spurious effects from
other variables. On the other hand, conditioning in itself can
introduce spurious effects; indeed two independent variables
can become dependent due to conditioning [13]. In this paper
we explore two extreme conditioning cases: (i) conditioned to
all other variables and their lags; (ii) unconditioned.

In principle, one would like to identify the maximal
value of T(Z; — Z; | W) over all lags and all possible
conditionings W. However, the use of multiple lags and
conditionings increases the dimensionality of the problem
making estimation of transfer entropy very hard especially
when only a limited amount of measurements is available
(i.e., short time series). This is because the calculation of
the conditional covariance requires the estimation of the
inverse covariance of the whole set of variables and such
an estimation is strongly affected by noise and uncertainty.
Therefore, a standard approach is to reduce the number of
variables and lags to keep dimensionality low and estimate
conditional covariances with appropriate penalizers [3, 8, 9,
14]. An alternative approach is to invert the covariance matrix
only locally on low dimensional subsets of variables selected
by using information filtering networks [5-7] and then recon-
struct the global inversion by means of the LoGo approach
[4]. Let us here briefly account for these two approaches.

2.2. Penalized Inversions. The estimate of the inverse covari-
ance is a challenging task to which a large body of literature
has been dedicated [14]. From an intuitive perspective, one
can say that the problem lies in the fact that uncertainty
is associated with nearly zero eigenvalues of the covariance
matrix. Variations in these small eigenvalues have relatively
small effects on the entries of the covariance matrix itself but
have major effects on the estimation of its inverse. Indeed
small fluctuations of small values can yield to unbounded
contributions to the inverse. A way to cure such near-singular
matrices is by adding finite positive terms to the diagonal
which move the eigenvalues away from zero: J=(1- p)S +
yIN)_l, where S = cov(Z) is the covariance matrix of the set
of variables Z € R" estimated from data and I, € RV
is the identity matrix (where N = p x (7 + 1); see later).
This is what is performed in the so-called ridge regression
[9], also known as shrinkage mean-square-error estimator
[15] or Tikhonov regularization [8]. The effect of the addi-
tional positive diagonal elements is equivalent to compute
the inverse covariance which maximizes the log-likelihood:
log det(J) - tr(S]) - i J l,, where the last term penalizes large
off-diagonal coefficients in the inverse covariance with a ¢,
norm penalization [16]. The regularizer parameter y tunes
the strength of this penalization. This regularization is very
simple and effective. However, with this method insignificant
elements in the precision matrix are penalized toward small
values but they are never set to zero. By using instead ¢,
norm penalization log det(f) - tr(ST) -9l T I, insignificant
elements are forced to zero leading to a sparse inverse
covariance. This is the so-called lasso regularization [3, 14,
17]. The advantage of a sparse inverse covariance consists
in the provision of a network representing a conditional
dependency structure. Indeed, let us recall that in linear
models zero entries in the inverse covariance are associated
with couples of nonconditionally dependent variables.

2.3. Information Filtering Network Approach: LoGo. An alter-
native approach to obtain sparse inverse covariance is by
using information filtering networks generated by keeping



the elements that contribute most to the covariance by means
of a greedy process. This approach, named LoGo, proceeds by
first constructing a chordal information filtering graph such
asa Maximum Spanning Tree (MST) [18,19] or a Triangulated
Maximally Filtered Graph (TMFG) [7]. These graphs are built
by retaining edges that maximally contribute to a given gain
function which, in this case, is the log-likelihood or—more
simply—the sum of the squared correlation coefficients [5-
7]. Then, this chordal structure is interpreted as the inference
structure of the joint probability distribution function with
nonzero conditional dependency only between variables that
are directly connected by an edge. On this structure the sparse
inverse covariance is computed in such a way to preserve
the values of the correlation coeflicients between couples of
variables that are directly connected with an information
filtering graph edge. The main advantage of this approach
is that inversion is performed at local level on small subsets
of variables and then the global inverse is reconstructed
by joining the local parts through the information filtering
network. Because of this Local-Global construction this
method is named LoGo. It has been shown that LoGo method
yields to statistically significant sparse precision matrices that
outperform the ones with the same sparsity computed with
lasso method [4].

3. Causality Network Retrieval

3.1. Simulated Multivariate Autoregressive Linear Process. In
order to be able to test if causality measures can retrieve the
true causality network in the underlying process, we gener-
ated artificial multivariate normal time series with known
sparse causality structure by using the following autoregres-
sive multivariate linear process [20]:

Z, = ZA/\Zt—A +U, (4)
A=1

where A, € RP*? are matrices with random entries drawn
from a normal distribution. The matrices are made upper
diagonal (diagonal included) by putting to zero all lower
diagonal coeflicients and made sparse by keeping only a O(p)
total number of entries different from zero in the upper and
diagonal part. U, € R’ are random normally distributed
uncorrelated variables. This process produces autocorrelated,
cross-correlated, and causally dependent time series. We
chose it because it is among the simplest processes that can
generate this kind of structured datasets. The dependency and
causality structure is determined by the nonzero entries of the
matrices A, . The upper-triangular structure of these matrices
simplifies the causality structure eliminating causality cycles.
Their sparsity reduces dependency and causality interactions
among variables. The process is made autoregressive and
stationary by keeping the eigenvalues of A, all smaller than
one in absolute value. For the tests we used 7 = 5, p = 100 and
sparsity is enforced to have a number of links approximately
equal to p. We reconstructed the network from time series
of different lengths g between 5 and 20,000 points. To test
statistical reliability the process was repeated 100 times with
every time a different set of randomly generated matrices
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A,. We verify that the results are robust and consistent by
varying sample sizes from p = 20 to 200, by changing sparsity
with number of links from 0.5p to 5p and for 7 from 1 to
10. We verified that the presence of isolated nodes or highly
connected hub nodes does not affect results significantly.

3.2. Causality and Inference Network Retrieval. We tested the
agreement between the causality structure of the underlying
process and the one inferred from the analysis of p time series
of different lengths g, Z, € R? witht = 1---q, generated
by using (4) We have p different variables and 7 lags. The
dimensionality of the problem is therefore N = p x (7 + 1)
variables at all lags including zero.

To estimate the inference and causality networks we
started by computing the inverse covariance, J € RN*N, for
all variables at all lags Z € R™*1 by using the following three
different estimation methods:

(1) €, norm penalization (Glasso [14]);
(2) ¢, norm penalization (ridge [8]);
(3) information filtering network (LoGo [4]).

We retrieved the inference network by looking at all cou-
ples of variables, with indicesi € [1,..., p] andj € [1,..., p],
which have nonzero entries in the inverse covariance matrix
J between the lagged set of j and the nonlagged i. Clearly,
for the ridge method the result is a complete graph but
for the Glasso and LoGo the results are sparse networks
with edges corresponding to nonzero conditional transfer
entropies between variables i and j. For the LoGo calculation
we make use of the regularizer parameter as a local shrinkage
factor to improve the local inversion of the covariance of the
4-cliques and triangular separators (see [4]).

We then estimated transfer entropy between couples
of variables, i — j conditioned to all other variables in
the system. This is obtained by estimating of the inverse
covariance matrix (indicated with an “hat” symbol) by using
(C.7) (see Appendix C.2) with

Z, = Zj’t
Z,= {Zi,t—l : "Zi,t—r} (5)
Zy = {Zj,t—l T Zj,t—r’w} ’

with W a conditioning to all variables Z except Z,,Z,, and
z, -7, ) The result is a p x p matrix of conditional
transfer entropies T(Z;; — Z;,). Finally, to retrieve the
causality network we retained the network of statistically vali-
dated conditional transfer entropies only. Statistical valida-

tion was performed as follows.

3.3. Statistical Validation of Causality. Statistical validation
has been performed from likelihood ratio statistical test.
Indeed, entropy and likelihood are intimately related: entropy
measures uncertainty and likelihood measures the reduction
in uncertainty provided by the model. Specifically, the Shan-
non entropy associated with a set of random variables, Z;,
with probability distribution p(Z;) is H(Z;) = —E[log p(Z;)]
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(see (B.1)) whereas the log-likelihood for the model p(Z;)
associated with a set of independent observations Z;, with
t=1---qislog Z(Z;) = ¥ log p(Z;,) which can be written
as log Q(zi) = q[Elg[log P(Z,)]. Note that g is the total avail-
able number of observations which, in practice, is the length
of the time series minus the maximum number of lags.
It is evident from these expressions that entropy and the
log-likelihood are strictly related though this link might be
nontrivial. In the case of linear modelling this connection
is quite evident because the entropy estimate is H =
(1/2)(~log[J] + plog(27) + p) and the log-likelihood is
logZ = (q/2)(logl]| - Tr(Z]) — plog(2n)). For the three
models we study in this paper we have Tr(Z)) = p and there-
fore the log-likelihood is equal to g times the opposite of the
entropy estimate. Transfer entropy and conditional transfer
entropy are differences between two entropies: the one of a
set of variables conditioned to their own past minus the one
conditioned also to the past of another variable. This, in turns,
is the difference of the unitary log-likelihood of two models
and therefore it is the logarithm of a likelihood ratio. As Wilks
pointed out [21, 22] the null distribution of such model is
asymptotically quite universal. Following the likelihood ratio
formalism, we have A = ¢gT and the probability of observ-
ing a transfer entropy larger than T, estimated under null
hypothesis, is given by p, ~ 1 — x*(rqT,d) with r = 2 and
x’ the chi-square the cumulative distribution function with
d degrees of freedom which are the difference between the
number of parameters in the two models. In our case the two
models have, respectively, 7( p? + 1) and 7( p? +1) +7(p;pi)
parameters.

3.4. Statistical Validation of the Network. The procedures
described in the previous two subsections produce the
inference network and causality network. Such networks are
then compared with the known network of true causalities
in the underlying process which is defined by the nonzero
elements in the matrices A, (see (4)). The overlapping
between the retrieved links in the inference or causality
networks with the ones in the true network underlying the
process is an indication of a discovery of a true causality
relation. However some discoveries can be obtained just by
chance or some methodologies might discover more links
only because they produce denser networks. We therefore
tested the hypothesis that the matching links in the retrieved
networks are not obtained just by chances by computing the
null-hypothesis probability to obtain the same or a larger
number of matches randomly. Such probability is given by
the conjugate cumulative hypergeometric distribution for a
number equal or larger than TP of “true positive” matching
causality links between an inferred network of # links and a
process network of K true causality links, from a population
of p* — p possible links:
TP-1( K ( p*-p-K

P(X2TP|nK,p)=1- ) (")(2—"‘")
= (7r)
Small values of P indicate that the retrieved TP links out of
K are unlikely to be found by randomly picking n edges from

(6)

p”— ppossibilities. Note that in the confusion matrix notation
[23] we have n = TP + FP and K = TP + FN with TP number
of true positives, FP number of false positives, FN number of
false negatives, and TN number of true negatives. The total
number of “negatives” (unlinked couples of vertices) in the
true model is instead m = FP + TN.

4. Results

4.1. Computation and Validation of Conditional Transfer
Entropies. By using (4) we generated 100 multivariate autore-
gressive processes with known causality structures. We here
report results for p = 100 but analogous outcomes were
observed for dimensionalities between p = 20 and 200
variables. Conditional transfer entropies between all couples
of variables, conditioned to all other variables in the system,
were computed by estimating the inverse covariances by
using tree methodologies, ridge, Glasso, and LoGo and
applying (3). Conditional transfer entropies were statistically
validated with respect to null hypothesis (no causality) at
p, = 1% p value. Results for Bonferroni adjusted p value at
1% (i.e., p, = 0.01/(p* — p) ~ 107 for p = 100) are reported
in Appendix E. We also tested other values of p, from 107®
to 0.1 obtaining consistent results. We observe that small p,
reduce the number of validated causality links but increase
the chance that these links match with the true network in the
process. Conversely large values of p, increase the numbers
of mismatched links but also of the true links discoveries. Let
us note that here we use p, as a thresholding criteria and we
are not claiming any evidence of statistical significance of the
causality. We assess the goodness of this choice a posteriori
by comparing the resulting causality network with the known
causality network of the process.

4.2. Statistical Significance of the Recovered Causality Network.
Results for the contour frontiers of significant causality links
for the three models are reported in Figure 1 for a range
of time series with lengths g between 10 and 20,000 and
regularizer parameters y between 107 and 0.5. Statistical
significance is computed by using (6) and results are reported
for both P < 0.05 and P < 107® (continuous and dotted
lines respectively). As one can see, the overall behaviours for
the three methodologies are little affected by the threshold
on P. We observe that LoGo significance region extends well
beyond the Glasso and ridge regions.

The value of the regularizer parameter y affects the results
for the three models in a different way. Glasso has a region
in the plane y-p/q where it has best performances (in this
case it appears to be around y = 0.1 and p/q = 2.5). Ridge
appears instead to be little affected with mostly constant per-
formances across the range of y. LoGo has best performances
for small, even infinitesimal, values of y. Indeed, different
from Glasso in this case y does not control sparsity but instead
acts as local shrinkage parameter. Very small values can be
useful in some particular cases to reduce the effect of noise
but large values have only the effect to reduce information.

4.3. Causality Links Retrieval. Once identified the parameter
regions where the retrieved causality links are statistically
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FIGURE 1: Regions in the p/q-y space where causality networks for
the three models are statistically significant. The significance regions
are all at the left of the corresponding lines. Tick line reports the
boundary P < 0.05 (see (6)) and dotted lines indicate P < 1078
significance levels (P is averaged over 100 processes). The plots refer
to p = 100 and report the region where the causality networks are
all significant for 100 processes.

significant, we also measured the fraction of true links
retrieved. Indeed, given that the true underlying causality
network is sparse, one could do significantly better than
random by discovering only a few true positives. Instead,
from any practical perspective we aim to discover a significant
fraction of the edges. Figure 2 shows that the fraction of
causality links correctly discovered (true positive, TP) with
respect to the total number of causality links in the process
(n) is indeed large reaching values above 50%. This is the
so-called true positive rate or sensitivity, which takes values
between 0 (no links discovered) and 1 (all links discovered).
Reported values are averages over 100 processes. We observe
that the region with discovering of 10% or more true causality
links greatly overlaps with the statistical validity region of
Figure 1.

We note that when the observation time becomes long,
plq S 0.25, ridge discovery rate becomes larger than
LoGo. However, statistical significance is still inferior to
LoGo, indeed the ridge network becomes dense when g
increases and the larger discovery rate of true causality links
is also accompanied by a larger rate of false links incorrectly
identified (false positive FP).

The fraction of false positives with respect to the total
number of causality links in the process () are reported in
Table 1 together with the true positive rate for comparison.
This number can reach values larger than one because the
process is sparse and there are much more possibilities to
randomly chose false links than true links. Note that this is
not the false positive rate, which instead is FP/m, and cannot
be larger than one. Consistent with Figure 1 we observe
that, for short time series, up to p/q ~ 0.5, the sparse

Complexity

Rid
05 idge >0.5
0.4
=
(=]
¥ 02 &=
0 0
0 2 4 6 3 10
rlq
()
Glasso >0.5
0.4
=
L4 02 &
0
LoG
05 0%0 >0.5
T 0.4
y RS
0.2 £
0 0
0 1 2 3 4 5

(c)

FIGURE 2: True positive rate: fraction of retrieved true causality links
(TP) with respect to the total number of links in the process (n). The
three panels refer to ridges, Glasso, and LoGo ((a), (b), and (¢)). Data
are average fractions over 100 processes.

models have better capability to identify true causality links
and to discard the false ones with LoGo being superior to
Glasso. Remarkably, LoGo can identify a significant fraction
of causality links already from time series with lengths of 30
data points only. p value significance, reported in the table
with one or two stars, indicates when all values of P(X >
TP | n, K, p) from (6) for all 100 processes have, respectively,
P < 0.05or P < 10°%. Again we observe that LoGo discovery
rate region extends well beyond the Glasso and ridge regions.

4.4. Inference Network. We have so far empirically demon-
strated that a significant part of the true causality network
can be retrieved from the statistically validated network of
conditional transfer entropies. Results depend on the choice
of the threshold value of p, at which null hypothesis is
rejected. We observed that lower p, are associated with net-
work with fewer true positives but also fewer false positives
and conversely larger p, yield to causality networks with
larger true positives but also larger false positives. Let us
here report on the extreme case of the inference network
which contains all causality channels with no validation. For
the ridge model this network is the complete graph with all
variables connected to each other. Instead, for Glasso and
LoGo the inference network is sparse.
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TABLE 1: Causality network validation. Comparison between fraction of true positive (TP/n) and fraction of false positive (FP/n), statistically
validated, causality links for the three models, and different time-series lengths. The table reports only the case for the parameter y = 0.1.
Statistical validation of conditional transfer entropy is at p, = 1% p value. Note that LoGo can perform better than reported in this table for
smaller values of y (see Figures 1 and 2).

q 10 20 30 50 200 300 1000 20000
Ridge TP/n 0.00 0.00 0.00 0.00 0.23*" 0.49"* 0.76™" 0.93**
Ridge FP/n 0.00 0.00 0.00 0.00 0.00 0.10 0.65 1.06
Glasso TP/n 0.00 0.00 0.00 0.13"" 0.48"" 0.53"" 0.62"" 0.74™"
Glasso FP/n 0.00 0.00 0.00 0.00 0.06 0.10 0.23 0.54
LoGo TP/n 0.00 0.08" 0.21*" 0.37°* 0.61** 0.65"" 0.75"* 0.90*"
LoGo FP/n 0.00 0.00 0.00 0.01 0.06 0.08 0.15 0.34

*P<0.05*p<1078

TABLE 2: Inference network validation: comparison between fraction of true positive (TP/n) and fraction of false positive (FP/n). Data for ridge
are only for comparison because it is a complete graph with all links present. The table reports only the case for the parameter y = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/n 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ridge FP/n 97.84 97.84 97.84 97.84 97.84 97.84 97.84 97.84
Glasso TP/n 0.61* 0.74* 0.79* 0.85" 0.87°* 0.84*" 0.80"" 0.80""
Glasso FP/n 28.39 38.11 45.79 53.58 40.61 26.60 1.54 0.92
LoGo TP/n 0.31" 0.50"" 0.58"" 0.63"" 0.75"" 0.78"" 0.85"" 0.93""
LoGo FP/n 4.53 4.27 4.18 4.03 3.72 3.63 3.44 3.21

*P<0.05*P<107°.

Results are summarized in Table 2. In terms of true
positive rate we first notice that they are all larger than the
ones in Table 1. Indeed, the network of statistically validated
conditional transfer entropies is a subnetwork of the inference
network. On the other hand we notice that the false positive
fraction is much larger than the ones in Table 2. Ridge
network has a fraction of 1 because, in this case, the inference
network is the complete graph.

Glasso also contains a very large number of false positives
reaching even 55 times the number of links in the true
network and getting to lower fractions only from long time
series with g > 1000. These numbers also indicate that Glasso
networks are not sparse. LoGo has a sparser and more signifi-
cant inference network with smaller fractions of false posi-
tives which stay below 51, which is anyway a large number
of misclassifications. Nonetheless, we observe that, despite
such large fractions of FP, the discovered true positives are
statistically significant.

4.5. Unconditioned Transfer Entropy Network. We last tested
whether conditioning to the past of all other variables gives
better causality network retrievals than the unconditioned
case. Here, transfer entropy, T(Z; — Z;), is computed by
using (3) with W = 0, the empty set. For the ridge case
this unconditional transfer entropy depends only from the
time series, Z; . {Z;;_y, ..., Z;;_;yand{Z;, ..., Z;, .} (with
T = 5 in this case). Glasso and LoGo cases are instead
hybrid because a conditional dependency has been already
introduced in the sparse structure of the inverse covariance J
(the inference network). Results are reported in Table 3 where
we observe that these networks retrieve a larger quantity of

true positives than the ones constructed from conditional
entropy. However, the fraction of false positive is also larger
than the ones in Table 1 although it is smaller than what
observed in the inference network in Table 2. Overall, these
results indicate that conditioning is effective in discarding
false positives.

4.6. Summary of All Results in a Single ROC Plot. In sum-
mary, we have investigated the networks associated with
conditional transfer entropy, unconditional transfer entropy,
and inference for three models under a range of different
parameters. In the previous subsections we have provided
some comparisons between the performances of the three
models in different ranges of parameters. Let us here provide a
summary of all results within a single ROC plot [23]. Figure 3
reports the ROC values, for each model and each parameter
combination, x-axis is false positive rates (FP/m), and y-axis
is true positive rates (TP/n). Each point is an average over 100
processes. Points above the diagonal line are associated with
relatively well performing models with the upper left corner
representing the point where models correctly discover all
true causality links without any false positive. The plot reports
with large symbols the cases for y = 0.1 and validation
at p value p, = 0.01, which can be compared with the
data reported in the tables. We note that, by construction,
LoGo models are sparse (with a number of edges ~ 3p [4]).
This restrains the ROC results to the left-hand side of the
plot. For this reason an expanded view of the figure is also
proposed with the x-axis scaled. Note that this ROC curve
is provided as a visual tool for intuitive comparison between
models.



Complexity

TABLE 3: Unconditioned transfer entropy network: comparison between fraction of true positive (TP/n) and fraction of false positive (FP/n).
Statistical validation of transfer entropy is at p, = 1% p value. The table reports only the case for the parameter y = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/n 0.02 0.39"" 0.45"" 0.51"" 0.65"" 0.69" 0.78"" 0.92%"
Ridge FP/n 0.07 1.06 0.95 0.85 0.93 0.99 1.20 1.73
Glasso TP/n 0.00 0.24*" 0.35%" 0.43*" 0.57*" 0.60"" 0.67*" 0.77**
Glasso FP/n 0.00 0.10 0.20 0.29 0.51 0.56 0.73 1.66
LoGo TP/n 0.11 0.34"" 0.41%" 0.47%* 0.63** 0.66™" 0.76*" 0.89%"
LoGo FP/n 0.02 0.16 0.25 0.34 0.59 0.66 0.87 1.49
*p<107d,
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FIGURE 3: ROC values, for each model and each parameter combination. x-axis false positive rates (FP/m); y-axis true positive rates (TP/n).
(a) and (b) are the same with x-axis expanded on the low values only for (b) to better visualise the differences between the various models.
Large symbols refer to y = 0.1 and validation at p value p, = 0.01. Color intensity is proportional to time series length. Inference network
results are all outside the range of the plot. Reported values are averages over 100 processes.

Overall from Tables 1, 2, and 3 and Figure 3 we con-
clude that all models obtain better results for longer time
series and that conditional transfer entropy overperforms
the unconditional counterparts (see, Tables 1 and 3 and the
two separated ROC figures for conditional and unconditional
transfer entropies reported in Figure 5 in Appendix D). In the
range of short time series, when g < p, which is of interest
for this paper, LoGo is the best performing model with better
performances achieved for small y < 107 and validation
with small p values p, < 107*. LoGo is consistently the best
performing model also for longer time series up to lengths of
q ~ 1000. Instead, above g = 2000 ridge begins to provide
better results. For long time series, at g =20,000, the best
performing model is ridge with parameters y = 10, p value
p, = 5107°. LoGo is also performing well when time series
are long with best performance obtained at g =20,000 for

parameters y = 107'%, p value p, = 5 107°. We note that
LoGo instead performs poorly in the region of parameters
with y < 0.1and p, < 0.01 for short time series g < p/2.

5. Conclusions and Perspectives

In this paper we have undertaken the challenging task to
explore models and parameter regions where the analytics of
time series can retrieve significant fractions of true causality
links from linear multivariate autoregressive process with
known causality structure. Results demonstrate that sparse
models with conditional transfer entropy are the ones who
achieve best results with significant causality link retrievals
already for very short time series even with g < p/5 = 20.
This region is very critical and general considerations would
suggest that no solutions can be discovered. Indeed, this result
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is in apparent contradiction with a general analytical results
in [24, 25] who find that no significant solutions should be
retrieved for g < N/2 = 150. However, we notice that
the problem we are addressing here is different from the
one in [24, 25]. In this paper we have been considering an
underlying sparse true causality structure and such a sparsity
changes considerably the condition of the problem yielding
to significant solutions even well below the theoretical limit
from [24, 25] which is instead associated with nonsparse
models.

Unexpectedly, we observed that the structure of the
inference networks in the two sparse models, Glasso and
LoGo, has excessive numbers of false positives yielding to
rather poor performances. However, in these models false
positive can be efficiently filtered out by imposing statistical
significance of the transfer entropies.

Results are affected by the choice of the parameters
and the fact that the models depend on various parameters
(@ p>v> py» P) make the navigation in this space quite
complex. We observed that the choice of p values, p,, for
valid transfer entropies affects results. Within our setting we
obtained best results with the smaller p values especially in
the regions of short time series. We note that the regularizer
parameter y also plays an important role and best perfor-
mances are obtained by combination of the two parameters
y and p,. Not surprisingly, longer time series yield to better
results. We observe that conditioning to all other variables or
unconditioning is affecting the transfer entropy estimation
with better performing causality network retrieval obtained
for conditioned transfer entropies. However, qualitatively,
results are comparable. Other intermediate cases, such as
conditioning to past of all other variables only, have been
explored again with qualitatively comparable results. It must
be said that in the present system results are expected to
be robust to different conditionings because the underlying
network of the investigated processes is sparse. For denser
inference structures, conditioning could affect more the
results.

Consistently with the findings in [4] we find that LoGo
outperforms the other methods. This is encouraging because
the present settings of LoGo is using a simple class of infor-
mation filtering networks, namely, the TMFG [7], obtained by
retaining largest correlations. There are a number of alterna-
tive information filtering networks which should be explored.
In particular, given the importance of statistical validation
emerged from the present work, it would be interesting to
explore statistical validation within the process of construc-
tion of the information filtering networks themselves.

In this paper we investigate a simple case with a lin-
ear autoregressive multivariate normal process analysed by
means of linear models. Both LoGo and Glasso can be
extended to the nonlinear case with LoGo being particularly
suitable for nonparametric approaches as well [4].

There are alternative methods to extract causality net-
works from short time series, in particular Multispatial CCM
[26, 27] appears to perform well for short time series. A
comparison between different approaches and the application
of these methods to real data will be extremely interesting.
However this should be the object of future works.

Appendix

A. Conditional Transfer Entropy

Let us here briefly review two of the most commonly used
information theoretic quantities that we use in this paper,
namely, mutual information (quantifying dependency) and
transfer entropy (quantifying causality) for the multivariate
case [11-13].

A.L Mutual Information. Let us first start from the simplest
case of two random variables, X € R! and Y € R},
where dependence can be quantified by the amount of
shared information between the two variables, which is called
mutual information: I(X;Y) = H(X) + H(YY) - H(X,Y),
where H(X) is the entropy of variable X, H(Y) is the entropy
of variable Y, and H(X,Y) is the joint entropy of variables
X and Y [13]. Extending to the multivariate case, the shared
information between a set of # random variables X =
(Xyees Xn)T € R" and another set of #1 random variables
Y=(,....Y,) e R™is
IX;Y)=HX)+H(Y)-H(XY) (A1)

with H(X), H(Y) being the entropies, respectively, for the
set of variables X and Y and H(X,Y) being their joint
entropy. It must be stressed that this quantity is the mutual
information between two sets of multivariate variables and
it is not the multivariate mutual information between all
variables {X, Y} which instead measures the intersection of
information between all variables. Mutual information in
(A.1) can also be written as

IXY)=HY)-H(Y|X)=HX)-HX|Y) (A2)
which makes use of the conditional entropy of Y given X:
H(Y | X) = H(Y,X) - HX) = E(H(Y) | X).

Conditioning to a third set of variables W can also be
applied to mutual information itself and its expression is a
direct extension of (A.1) and it is called conditional mutual
information:

IXY|W)=HX|W)+H(Y|W)
(A.3)
~HXY|W).

Equations (A.1) and (A.3) coincide in the case of an empty set
W = 0. Mutual information and conditional mutual informa-
tion are symmetric measures with I(X;Y | W) = I(Y;X |
W) always. Let us note that symmetry is unavoidable for
information measures that quantify the simultaneous effect
of a set of variables onto another. Indeed, in a simultaneous
interaction cause and effect cannot be distinguished from the
exchange of information and direction cannot be established.
To quantify causality one must investigate the transmission
of information not only between two sets of variables but also
through time.

A.2. Conditional Transfer Entropy. Causality between two
random variables, X € R' and Y € R!, can be quantified
by means of the so-called transfer entropy which quantifies
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the amount of uncertainty on Y explained by the past of X
given the past of Y. Let us consider a series of observations
and denote with X, being the random variable X at time ¢ and
with X,_, being the random variable at a previous time, 7 lags
before t. Using this notation, we can define transfer entropy
from variable X to variable Y in terms of the following
conditional mutual information: T(X — Y) = I(Y; X,_, |
Y, ) [11,13].

For the multivariate case, given two sets of random
variables X € R" and Y € R"™, the transfer entropy is the
conditional mutual information between the set of variables
Y, at time t and the past of the other set of variables, X,_,
conditioned to the past of the first variable Y,_,. That is,
TX - Y) = I(Y;X,_,1Y,_,) [13]. In general, the influence
from the past can come from more than one lag and we can
therefore extend the definition including different sets of lags
for the two variables: 7;,..., 7, Aq,..., Ay

T(X—Y)

(0¥, Yo 5 X )
(A4)
(Y Y ))

-H (Yt {Xt—n X Yy, Yt_)‘h}) ;

a further generalization, which we use in this paper, includes
conditioning to any other set of variables {W, g ---W,_g }

lagged at 0,,...,0,:

TX—YIW) =1(Ys{X X }

(A.5)
{Yt—/\l "'Yt—)t,,"'vt—@1 "‘Wtfeg}) :

In this paper we simplify notation using Xltag ={X;
Xt—‘rk}’ Yltag = {Yt—/ll '”Yt—)th}’ and W, = {Wt—el "'Wt—eg}-

In the literature, there are several examples that use
adaptations of (1) to compute causality and dependency
measures [28]. A notable example is the directed information,
introduced by Massey in [29], where 7 spans all lags in a range
between 0 and s — 1 and A spans the lags from 1 to s — 1. The
directed information is then defined as the sum over transfer
entropies from s = 1 to present:

I({X}; — {Y}} | W)

t ) (A.6)
= Y I(Ys (X} [{Y}7, W),
s=1
where we adopted the notations {X}t1 = {X;---X,} and

{Y}t1 = {Y, --- Y,}. Interestingly, this definition includes the
conditional synchronous mutual information contributions
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between X, and Y,. Following Kramer et al. [30, 31] we
observe that for stationary processes

Jim =1 (X)) — V) = Jim (155, 1 (v)}")
(A7)
=T (X} — Y,) + (X3 0 X)),

with TUXY " — Y,) = (Y, (X, - X, H{Y, -~ Y,_;}). This
identity supports the intuition that the directed information
accounts for the transfer entropy plus an instantaneous term.

B. Shannon-Gibbs Entropy

The general expression for the transfer entropy reported di
in Section A, (1), is independent of the kind of entropy
definition. In this paper we use Shannon entropy, which is
defined as

H (X) = -E [log p (X)], (B.1)

H(Y) = -E [log p (Y)], (B.2)

where p(X) and p(Y) are the probability distribution function
for the set of random variables X and Y. Similarly, the joint
Shannon entropy for the variables X and Y is defined as

H(X,Y)=-E[logp(X,Y)] (B.3)

with p(X, Y) being the joint probability distribution function
of X and Y. This is the most common definition of entropy.
It is a particularly meaningful and suitable entropy for linear
modelling, as we focus in the paper.

B.1. Multivariate Normal Modelling. For multivariate normal
variables the Shannon-Gibbs entropy is

H(X) = %log (det2 (X)) + Slog(2me)  (B4)

and its conditional counterpart is
H(X|W) = %log (et 2 (X [ W) + 5 log 2me) (B3

with X being the covariance matrix and det(-) being the
matrix determinant. In the paper we use these expressions
to compute mutual information and conditional transfer
entropy.

C. Computing Conditional
Covariances for Subsets of Variables from
the Inverse Covariance

Let us consider three sets of variables Z; € R, Z, ¢
R, and Z; € R” and the associated inverse covariance
J € R(Pl*Pz*Pa)X(PﬁPz*PQ for {ZI’ZZ’ZS} € R(Pl*PZ*Ps). The
conditional covariance of Z, given Z, and Z, is the inverse of
the p; x p; upper left part of J with indices in V; = (1,..., p;)
(see Figure 4):

z“(Zl | Z2) Zs) = (]1,1)_1 . (C1)



Complexity

Z, Z, Z,

- (]1,1)_1 =X(Z, | Z,,Z5)

(112,12)71 = E(ZI)ZZ | Zs)

(112,12)1,11 = E(Zl | Z3)

(]123,123){,11 =2(2,)

FIGURE 4: The inverse of parts the inverse covariance J gives the
covariance of the variables corresponding to that part conditioned
to the other variables.

Instead, the conditional covariance of Z; given Z; is
obtained by inverting the larger upper left part J;,;, with
both indices in {V},V,} with V, = (p, + L,..., p; + p,), and
then taking the inverse of the part with indices in V; which,
using the Schur complement [13], is

_ -1
2(Zl | Z3) = (11,1 “Ji2 (12,2) 1]2,1) .

Figure 4 schematically illustrates these inversions and
their relations with conditional covariances. Let us note that
these conditional covariances can also be expressed directly
in terms of subcovariances by using again the Schur com-
plement:

(C2)

-1
X (21Z2> Z3) = 2:1,1 - Z:1,23 (223,23) 2:23,1)
. (C.3)
X (Zl | Z3) = 21,1 - 2"1,3 (23,3) 23,1~

However, when p; (cardinality of V3) is much larger than p,
and p, (cardinalities of V; and V,) then the equivalent expres-
sions, (C.1) and (C.2), that use the inverse covariance involve
matrices with much smaller dimensions. This can become
computationally crucial when very large dimensionalities are
involved. Furthermore, if the inverse covariance J is estimated
by using a sparse modelling tool such as Glasso or LoGo [4,
14] (as we do in this paper), then computations in expressions
(C.1) and (C.2) have to handle only a few nonzero elements
providing great computational advantages over (C.3).

In the paper we make use of (C.1)-(C.2) to compute
mutual information and conditional transfer entropy for the
system of all variables and their lagged versions.

C.1. Mutual Information. Let us consider the mutual infor-
mation between any two subsets X € R" and Y € R™ of vari-
ables conditioned to all other variables, which we shall call
W e RP™™ For these three sets of variables {X, Y, W} € R?
the conditional mutual information, I(X,Y,W) = H(X,Y |
W) - HX | Y,W) (see (A.3)), can be expressed in terms of
the conditional covariances by using (B.5):

[GY | W) = %logdetZ(X |'W)
C4
: (C.4)
- ElogdetZ(X | Y, W).

1

Given the inverse covariance ] € RP*P, by using (C.1) and
(C.2) and substituting

Z, =X,
Z,-Y, (C.5)
Z,=W,

we can express the conditional mutual information, (C.4),
directly in terms of the parts of J:

1 _
I(X;Y | W) = - log det (i1 =12 U22) ' Tan)
(C.6)

+ % log (det]J; ;).

Note that although this is not directly evident, (C.6) is
symmetric by exchanging 1 and 2 (i.e., X and Y).

C.2. Conditional Transfer Entropy. Conditional transfer
entropy (see (1)) is conditional mutual information between
lagged sets of variables and therefore it can be computed
directly from (C.6). In this case we shall name

Z, =Y,
2= (X X )

Z, = {Yt—/ll Y, Weeg, "'Wt—Gg} >

T(X —Y|W) (C7)

1 _
=73 log det (]1,1 “Ji2 (]2,2) ' ]2,1)
1
*3 logdet (J; ;)

obtaining an expression which is formally identical to (C.6)
but with indices 1 and 2 referring to the above sets of variables
instead.

Note that index 3 does not appear in this expression.
Information from variables 3 (W) has been used to compute
J but then only the subparts 1 and 2 are required to compute
the conditional transfer entropy. The fact that these expres-
sions for conditional mutual information and conditional
transfer entropy involve only local parts (1 and 2) of the
inverse covariance can become extremely useful when high-
dimensional datasets are involved.

D. Comparison between Conditional and
Unconditional Transfer Entropies

The two ROC plots for conditional and unconditional trans-
fer entropies are displayed in Figure 5. Form the comparison
it is evident that, for the process studied in this paper,
conditional transfer entropy provides best results. This is in
line with what observed in Tables 1, 3, 4, and 5.
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FIGURE 5: ROC values, for conditional (a) and unconditional (b) transfer entropies. x-axis false positive rates (FP/m); y-axis true positive rates
(TP/n). Large symbols refer to y = 0.1 and validation at p value p, = 0.01. Color intensity is proportional to time series length. Inference
network results are all outside the range of the plot. Reported values are averages over 100 processes.

TABLE 4: Causality network validation with conditional transfer entropy validation at 1% Bonberroni adjusted p value. Fraction of true positive
(TP/n) and fraction of false positive (FP/n), statistically validated, causality links for the three models, and different time series lengths. The
table reports only the case for the parameter y = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/n 0.00 0.00 0.00 0.00 0.00 0.30%" 0.67"" 0.89""
Ridge FP/n 0.00 0.00 0.00 0.00 0.00 0.01 0.18 0.75
Glasso TP/n 0.00 0.00 0.00 0.00 0.35"" 0.43*" 0.57** 0.71**
Glasso FP/n 0.00 0.00 0.00 0.00 0.01 0.03 0.13 0.45
LoGo TP/n 0.00 0.00 0.02 0.17** 0.50%" 0.56%" 0.69%" 0.87*"
LoGo FP/n 0.00 0.00 0.00 0.00 0.01 0.03 0.09 0.28
*p<10d,

TABLE 5: Causality network validation with unconditional transfer entropy validation at 1% Bonberroni adjusted p value. Fraction of true positive
(TP/n) and fraction of false positive (FP/n), statistically validated, causality links for the three models, and different time-series lengths. The
table reports only the case for the parameter y = 0.1.

q 10 20 30 50 200 300 1000 20000
Ridge TP/n 0.00 0.00 0.22"" 0.36"" 0.55"" 0.59"" 0.70"" 0.88""
Ridge FP/n 0.00 0.00 0.09 0.21 0.47 0.55 0.77 1.32
Glasso TP/n 0.00 0.00 0.00 0.27** 0.48*" 0.53** 0.62*" 0.75**
Glasso FP/n 0.00 0.00 0.00 0.1 0.37 0.43 0.61 1.41
LoGo TP/n 0.00 0.00 0.22%" 0.35"" 0.53"" 0.58"" 0.69"" 0.86™"
LoGo FP/n 0.00 0.00 0.05 0.16 0.42 0.49 0.71 1.27

**p<107%
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E. Causality Network Results for
Transfer Entropy Validation with 1%
Bonferroni Adjusted p Values

In Tables 4 and 5, true positive rates (TP/n) and fraction
of false positives (FP/m) statistically validated and causality
links with validation at 1% Bonberroni adjusted p value (i.e.,
p, < 107°) are reported. These tables must be compared
with Tables 1 and 3, in the main text where causality links are
validated at p, = 1% nonadjusted p value.
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