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1 Introduction

How responsive are households to changes in the intertemporal price of consumption? In standard

economic models this response is governed by the Elasticity of Intertemporal Substitution (EIS).

The EIS is a key parameter in economics as it plays a central role for a range of questions in macro,

public finance, household finance, and asset pricing. Unfortunately, there exists no consensus on a

reasonable value for this parameter due to limitations in data and research designs. The most cited

estimates in the literature range between 0 and 2, which is an an enormous range in terms of its

implications for intertemporal behavior and policy.

A fundamental difficulty in addressing this question is how to find exogenous variation in in-

terest rates. Most studies rely on time series movements in interest rates, which are gradual and

almost certainly endogenous to unobserved factors that affect consumption. Our starting point is

a novel source of quasi-experimental variation in interest rates arising from the fact that UK banks

offer notched mortgage interest schedules. That is, the mortgage interest rate features discrete jumps

at critical thresholds for the loan-to-value (LTV) ratio. For example, the interest rate increases by

almost 0.5pp on the entire loan when crossing the 80% LTV threshold. This creates very strong in-

centives to reduce borrowing to a level below the notch, thereby giving up consumption today in

order to get a lower interest rate and more consumption in the future. Intuitively, the magnitude of

such borrowing and consumption responses to interest rate notches is governed by the value of the

EIS.

Our study is based on administrative mortgage data from the Financial Conduct Authority.

The data cover the universe of household mortgages in the UK between 2008-2014, including rich

information on mortgage contracts and borrower characteristics. The majority of UK mortgage

products carry a relatively low interest rate for a period of 2-5 years after which a much higher

reset rate kicks in, creating strong incentives to refinance at the time the reset rate starts to apply.

This makes refinancing a common occurrence in the UK. We focus on the population of refinancers,

because they allow for a clean assessment of borrowing and intertemporal consumption choices.

Specifically, because housing choices are pre-determined for refinancers, estimating LTV responses

in this sample allows us to isolate borrowing choices from housing choices.

Figure 1 plots the LTV distribution for UK home refinancers around the different interest rate

notches, depicted by vertical lines. There is large and sharp bunching below every notch along
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with missing mass above every notch, which provides direct evidence that borrowers respond to

interest rates. A recent literature in public economics has developed approaches to translate such

bunching moments into reduced-form price elasticities, mostly focusing on behavioral responses

to taxes and transfers in static contexts (Saez 2010; Chetty et al. 2011; Kleven & Waseem 2013). It

remains an open question whether these bunching-based elasticities have any structural or external

validity, and whether their interpretation is robust to allowing for dynamics (Kleven 2016). In this

paper we consider an inherently dynamic decision context and take the bunching literature in a

more structural direction.

Translating bunching moments — or indeed any quasi-experimental moment — into structural

parameters that can be used for out-of-sample prediction requires a structural model (see Kleven

2016; Einav et al. 2015, 2017). We develop two different approaches. The first approach is based

on a simple two-period model with no uncertainty, no portfolio choice, no liquidity demand, and

several other simplifying assumptions. This model provides the most transparent way of translating

a bunching moment into the EIS. The second approach is based on a rich stochastic lifecycle model

that relaxes many of the simplifying assumptions made in the baseline model. This model is more

realistic, but computationally more involved and thus more of a “black box”. We show that these

two approaches give essentially the same answer: the observed bunching at interest notches is

consistent with a small EIS, around 0.1. We present a battery of robustness checks to and extensions

of the stochastic lifecycle model, which confirm our finding that the EIS is small.

How can the EIS be small given the observation of substantial bunching? What would the raw

data have looked like if the EIS were larger? To answer these questions, Figure 2 compares the

observed LTV distribution to a simulated LTV distribution based on our two-period model with

an EIS set equal to one (log preferences). These distributions are starkly different. The simulated

distribution has zero mass above the 70% LTV threshold, except at the notches. The simulated

distribution has smaller bunching at the highest notches (80% and 85%) and much larger bunching

at the lowest notches (60%, 70% and 75%). The fact that there is smaller bunching at the top reflects

that, under an EIS of one, some homeowners jump across multiple notches and therefore skip the

top notches entirely. We will show that the observed data is not consistent with such multiple-notch

jumps. The stark contrast between the observed and simulated distributions suggests that the data

is inconsistent with standard assumptions about the elasticity of intertemporal substitution.

A key question for identification is whether we can close the gap between the observed and

simulated distributions through other means than a small EIS. As we show in the paper, it is not

2



possible to close the gap by changing parameters and assumptions within a framework of friction-

less household optimization. Rather, the only threat to identification is the presence of optimization

frictions that attenuate bunching. Some borrowers may be stuck at LTV ratios above a notch, not

because of true intertemporal preferences, but because they do not pay attention to or understand

the incentives created by the notch. However, an important advantage of notch-based identification

is that the missing mass just above the threshold is directly informative of optimization frictions. As

shown by Kleven & Waseem (2013), it is possible to correct for frictions using missing mass in dom-

inated regions just above notches. We develop a structural extension of the Kleven-Waseem friction

approach, showing that optimization frictions in this setting are not sufficient to justify large values

of the EIS.

Our paper contributes to three literatures. First, we contribute to a large structural literature

studying intertemporal substitution in consumption, reviewed by Attanasio & Weber (2010). This

literature estimates consumption Euler equations using either aggregate data (e.g., Hall 1988; Camp-

bell & Mankiw 1989) or micro survey data (e.g., Zeldes 1989; Attanasio & Weber 1993, 1995; Vissing-

Jørgensen 2002; Gruber 2013). Most of the literature has relied on time series movements in interest

rates, producing a very wide range of estimates depending on the analysis sample and empirical

specification.1 The main conceptual differences between our approach and this literature is that

we use interest rate notches at a point in time as opposed to interest rate changes over time, and

that our estimating equation is not a standard Euler equation due to the discontinuous nature of

the notched incentive. Our EIS estimates are at the lower end of the spectrum provided by these

non-experimental studies.2

Second, we contribute to a reduced-form literature studying borrowing responses to the after-

tax interest rate. This literature includes a number of natural experiment studies using variation in

the after-tax interest rate created by taxes, subsidies, and regulation (e.g. Follain & Dunsky 1997;

Ling & McGill 1998; Dunsky & Follain 2000; Martins & Villanueva 2006; Jappelli & Pistaferri 2007;

DeFusco & Paciorek 2017).3 The range of estimates is very wide, from a zero effect in Jappelli &

Pistaferri (2007) to elasticities of about 1 in Dunsky & Follain (2000) and 1.5-3.5 in Follain & Dunsky

1A methodological exception is Gruber (2013) who uses cross-sectional and time series variation in capital income tax
rates to identify the EIS and obtains very large estimates of about 2.

2Havránek (2015) conducts a meta analysis of the existing literature and finds estimates centered around 0.3-0.4, after
controlling for publication bias.

3Related to our empirical approach, DeFusco & Paciorek (2017) estimate leverage responses using an interest notch
created by the conforming loan limit in the US, although their estimates do not separate mortgage demand from housing
demand as we do here. Most importantly, they do not pursue the analysis of structural parameters, which is the main
contribution of our paper.
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(1997). We estimate reduced-form borrowing elasticities around 0.5. A conceptual contribution of

our paper is to characterize the relationship between reduced-form borrowing elasticities and the

structural EIS, demonstrating that the former by itself is not very informative about the latter. The

translation between the two parameters is mediated by additional (endogenous) variables that can

vary widely across borrower populations.4

Third, we contribute to the recent bunching literature in public economics (as reviewed by

Kleven 2016). Most of this literature has focused on static contexts and reduced-form estimation. By

combining a bunching approach with dynamic structural estimation, our paper is related to recent

work by Einav et al. (2015, 2017) who analyze bunching at a kink point in US Medicare. They argue

that the choice of model is crucial when translating bunching into a parameter that can be used

for out-of-sample prediction. In particular, they highlight the role played by frictions in the form

of lumpiness and randomness in the choice variable used to bunch.5 This contrasts with our find-

ing that the structural EIS (“out-of-sample prediction”) is robust to the modeling assumptions we

make. This difference can be explained mainly by a conceptual difference between kink-based and

notch-based estimation. In the case of notches, the amount of friction is directly accounted using

an observational moment — the amount of missing mass above the notch — as opposed making

parametric assumptions about such frictions.

The paper is organized as follows. Section 2 describes the institutional setting and data, Section

3 characterizes the link between bunching, reduced-form elasticities, and the EIS in our baseline

two-period model, Section 4 presents empirical results using the baseline model, Section 5 develops

and structurally estimates our full stochastic lifecycle model, and finally Section 6 concludes.

2 Institutional Setting, Data and Descriptives

2.1 UK Mortgage Market

The UK mortgage market has several institutional features that facilitate our analysis. First, the in-

terest rate on mortgage debt follows a step function with discrete jumps — notches — at certain LTV

4This finding echoes insights from early calibration studies, which showed that a given value of the EIS can imply
widely different, but typically much larger, savings elasticities depending on other calibrated parameters (Summers 1981;
Evans 1983).

5As discussed by Kleven (2016), this general insight echoes findings elsewhere in the bunching literature showing
that the conversion of observed bunching (at kinks) into a structural elasticity is very sensitive to the assumed model of
optimization frictions (e.g., Saez 1999; Chetty et al. 2010, 2011; Gelber et al. 2017).
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thresholds. There are interest rate notches at LTVs of 60%, 70%, 75%, 80%, and 85%.6 When a bor-

rower crosses one of these thresholds, the interest rate increases on the entire loan. The thresholds

apply to the LTV ratio at the time of loan origination; the interest rate does not change as amortiza-

tion or house price growth gradually reduces the LTV. The size of the interest rate jump at a given

threshold varies across product types and over time.7 The notches are very salient: daily newspa-

pers display menus of interest rates by bank and LTV bracket, and the LTV thresholds feature very

prominently when shopping for mortgages. For example, the mortgage websites of all the major

banks show LTV brackets and interest rates for their different products up front.8

Second, most UK mortgage products come with a relatively low interest rate for an initial period

— typically 2, 3, or 5 years — after which a much larger (and variable) reset rate starts to apply. The

notched interest rate schedule described above applies to the rate charged during the initial period

of 2-5 years as opposed to the rate charged over the entire term of the mortgage (typically 25-35

years). The large and variable reset rate creates a very strong incentive to refinance at the end of

the initial lower-rate period. This makes refinancing a frequent occurrence in the UK. In this paper

we focus specifically on refinancers as this will allow us to isolate borrowing choices from housing

choices, which is critical when assessing intertemporal consumption substitution.

Third, while borrowers have a strong incentive to refinance no later than at the onset of the reset

rate, the cost of early refinancing means that there is also a strong incentive to refinance no sooner

than this time. Specifically, UK mortgage contracts feature large pre-payment charges (often 5-10%

of the outstanding loan) on borrowers who refinance before reset rate onset. The combination of pe-

nalizing reset rates and heavy pre-payment charges implies that households have strong incentives

to refinance right around the end of the initial lower-interest period.

To confirm that households act on these refinancing incentives, Figure A.1 shows the distribution

of time-to-refinance in our data. The distribution features large excess mass in refinancing activity

6There is in principle also an interest notch at 90%. However, very few banks offered mortgages above 90% after the
financial crisis, implying that this threshold became a corner solution rather than a notch for most borrowers in our data.
Our empirical analysis therefore focuses on the notches below 90%.

7There is also some — but much less — variation in the size of notches across banks within product type and time.
In particular, some banks do not feature certain notches at some points in time, but we show later that such no-notch
observations represent a very small fraction of the data.

8A broad question not addressed in this paper is why UK banks impose such notched interest rate schedules, a type
of question that often arises in settings with notched incentive schemes (Kleven 2016). The traditional explanation for
upward-sloping interest rate schedules is that the default risk is increasing in leverage, either due to increasing risk
for each borrower or due to adverse changes in the mix of borrowers. However, under the reasonable assumption of
smoothly increasing default rates, standard models predict smoothly increasing interest rates. While the UK practice
of implementing the increasing interest rate schedule as a step function may not be second-best efficient in standard
models, it may be explained — as with other types of notches — by the simplicity and salience of notches to banks and
their customers. Our empirical analysis of these notches is implicitly based on the assumption that default rates (in the
absence of notches) are smooth around the threshold.
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around 2, 3, and 5 years, consistent with the fact that these are the most common timings of the

penalizing reset rate. The lightly shaded bars indicate the fraction of households in each monthly

bin who refinance “on time”, i.e. around the time their reset rate kicks in. These bars show that

the majority of households refinance around reset rate onset and that this can explain the excess

mass at 2, 3, and 5 years.9 Note that this graph represents clear evidence that borrowers respond to

interest rate changes, but on a different margin (refinance timing) than our main focus (borrowing

and consumption). What is more, the empirical patterns documented here imply that the time of

refinancing is effectively locked in by the reset rate structure. This is helpful for ruling out selection

issues from endogenous refinance timing in the analysis below.

2.2 Data

Our analysis uses a novel and comprehensive administrative dataset containing the universe of

mortgage product sales in the UK.10 This Product Sales Database (PSD) is collected by the Financial

Conduct Authority for regulatory purposes and has information on mortgage originations back to

April 2005. This includes detailed information on the mortgage contract such as the loan size, the

date the mortgage became active, the valuation of the property, the initial interest rate charged,

whether the interest rate is fixed or variable, the end date of the initial interest rate (the time at

which the higher reset rate starts applying), whether the mortgage payments include amortization,

and the mortgage term over which the full loan will be repaid. The data also include a number

of borrower characteristics such as age, income, whether the income is solely or jointly earned,

whether the borrower is a first-time buyer, mover or refinancer, and the reason for the refinance.

There are also some characteristics of the property such as the type of dwelling and the number of

rooms.

While we observe the borrower’s LTV ratio, the PSD does not include information on product

origination fees. These fees, while small relative to the loan size, can sometimes be rolled into the

loan without affecting the LTV statistic used to determine the borrower’s interest rate. For exam-

ple, it is possible to observe an actual LTV ratio of 75.01% where the borrower was still offered the

product with a maximum LTV of 75%. In order to address this, we exploit information on all mort-

gage products (including origination fees) in the UK available from the organization MoneyFacts

9Indeed, we observe only around a quarter of households not refinancing on time.
10The FCA Product Sales Database covers regulated mortgage contracts, which represent the majority of home finance

products in the UK. The database does not cover home finance products such as home purchase plans, home reversions,
second-charge lending, and buy-to-let mortgages.
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between 2008Q4 and 2014Q4. For a mortgage observation in the PSD, we find the corresponding

product in MoneyFacts based on the lender, the date of the loan, the mortgage type, and the interest

rate. Where the interest rate paid accords with an LTV bracket just below the actual LTV in the PSD

data, we subtract the product fee from the observed loan value. Inspecting such individuals, the

loan amount in excess of the threshold often corresponds precisely to the product fee. As a result,

this adjustment places most of these individuals exactly at the notch. While this matching exercise

reduces the sample, it is crucial for our methodology that the LTV ratio we use corresponds exactly

to the one determining the actual interest rate.

Another useful feature of the PSD is that we are able to observe whether the household is re-

financing. Using information about the characteristics of the property and the borrower, we can

match refinancers over time in order to construct a panel.11 As described later, the panel structure

allows us to implement a novel approach for estimating the counterfactual LTV distribution absent

notches. The refinancer panel will therefore be the baseline dataset for our analysis.

Table 1 shows a range of descriptive statistics in different samples. Column 1 includes the full

sample of mortgages sold between 2008Q4 and 2014Q4 where we can exploit fee information from

MoneyFacts. The full sample contains around 2.8 million observations. Column 2 shows how the

sample characteristics change when we restrict attention to refinancers. The descriptive statistics

are very similar, although the LTV and LTI ratios are slightly lower for refinancers as one would

expect. Column 3 shows the descriptive statistics in the panel of refinancers that we use in the

empirical analysis. In moving from column 2 to 3, we lose refinancers for whom we lack sufficient

information on their previous loans as well as those we are not able to match up over time. Our

estimation sample still includes over 550,000 mortgages. Importantly, the descriptive statistics are

very stable across the three columns, suggesting that our estimation sample (column 3) has similar

average characteristics as the full population of borrowers.

2.3 Interest Rate Jumps at Notches

As described above, the UK mortgage market features discrete interest rate jumps at critical LTV

thresholds, namely at 60%, 70%, 75%, 80%, and 85%. The first step of our analysis is to estimate the

size of these interest rate notches. Unlike standard bunching approaches in which the discontinuity

is the same across agents, in our setting the interest rate notch varies by bank, mortgage product,

and the time of loan origination (all of which we observe). As we will show, notches do not depend
11For each homeowner we use the location of their house by 6-digit postcode (a code that covers a very small geo-

graphical area, around 15 homes on average) and the date of birth of the homeowner.
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on individual characteristics conditional on bank, product, and time, which is important for ruling

out selection bias in the estimated interest notches. This is because the UK mortgage market works

like a mortgage supermarket in which banks offer their interest rate schedule on a given product to

all borrowers who meet their lending standards, as opposed to entering into individual negotiations

that depend on idiosyncratic factors.

Our empirical analysis will be based on the average interest rate jump at each notch conditional

on bank, product, and time. We estimate these interest rate jumps non-parametrically using the

following regression:

ri = f (LTVi) + β1banki + β2variabilityi⊗ durationi⊗monthi + β3repaymenti + β4termi + νi (1)

where ri is the nominal mortgage interest rate for individual i, f (.) is a step function with steps at

each 0.25pp of the LTV ratio, banki is a vector of bank dummies, variabilityi is a vector of interest

variability dummies (fixed interest rate, variable interest rate, capped interest rate, and “other”),

durationi is a vector of dummies for the duration of the initial low-interest period (the time until

the reset rate kicks in), monthi is a vector of dummies for the month in which the mortgage was

originated, repaymenti is a vector of dummies for the repayment type (interest only, capital and

interest, and “other”), and termi is a vector of dummies for the total term length. We denote by ⊗
the outer product, so that the term variabilityi⊗durationi⊗monthi allows for each combination of

interest rate variability and duration to have its own non-parametric time trend.

Figure 3 plots the conditional interest rate as a function of LTV based on specification (1). In each

LTV bin we plot the coefficient on the LTV bin dummy plus a constant given by the predicted value

E [r̂i] at the mean of all the other covariates (i.e., omitting the contribution of the LTV bin dummies).

The figure shows that the mortgage interest rate evolves as a step function with sharp jumps at LTV

ratios of 60%, 70%, 75%, 80%, and 85%. These interest jumps are larger at LTV thresholds higher

up in the distribution. At the two top thresholds, the annual interest rate increases by almost 0.5pp.

Importantly, the interest rate schedule is flat between notches. This implies that, conditional on

product and bank characteristics, the mortgage interest rate is almost fully determined by the LTV

notches we exploit.

The flatness of the interest schedule between notches suggests that individual characteristics

(that vary by LTV) have no effect on the mortgage interest rate. Figure A.2 in the appendix verifies

this by controlling for the individual characteristics we observe (such as age, income, and family

status) in the estimation of the interest schedule. The figure shows that the results are virtually
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unchanged. If observables such as age and income do not matter for the interest notches, it is

difficult to imagine any unobservables that would matter. These results confirm the institutional

context described earlier, namely that the UK mortgage market works as a mortgage supermarket

in which a given type of product is offered at a given price, independently of who buys it.12

When estimating the interest jumps from the coefficients on the LTV bin dummies in equation

(1), we are holding all non-LTV mortgage characteristics constant on each side of the LTV threshold.

For example, if a household is observed in a 5-year fixed rate mortgage (in a particular bank and

month) just below the notch, we are asking how much higher the interest rate would have been for

that same product just above the notch. In practice, if the household did move above the notch, it

might decide to re-optimize in some of the non-LTV dimensions — say move from a 5-year fixed

to a 2-year fixed rate — and this would give a different interest rate change. However, not only

are such interest rate changes endogenous, they are conceptually misleading due to the fact that

the non-interest characteristics of the mortgage have value to the borrower and are priced into the

offered interest rate. Our approach of conditioning on non-LTV characteristics when estimating the

interest rate schedule is based on a no-arbitrage assumption: within a given LTV bin, if lower-interest

rate products or banks are available, in equilibrium this must be offset by less favorable terms in

other dimensions. In this case, the within-product interest rate jump around the threshold is the

right measure of the price incentive.

2.4 Actual vs Counterfactual LTV Distributions

The interest rate notches described above create strong incentives for borrowers to choose LTVs just

below one of the notches, giving rise to bunching below the critical LTV thresholds and missing

mass (holes) above them. We have already seen in Figure 1 that bunching and missing mass are

indeed features of the data. The idea of our approach is to use these empirical moments to identify

the EIS.

To quantify the amount of bunching and missing mass in the observed LTV distribution, we

need an estimate of the counterfactual LTV distribution — what the distribution would have looked

like without interest rate notches — and the public finance literature has developed approaches to

obtain such counterfactuals (see Kleven 2016). The standard approach is to fit a flexible polynomial

12Moreover, the global interest estimations shown in Figures 3 and A.2 understate flatness between notches compared to
the more precise local estimations used later. The locally estimated interest schedules are essentially completely flat. This
implies that “donut hole” approaches in which we exclude observations in a range around the threshold when estimating
the interest rate jump give virtually unchanged results.
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to the observed distribution, excluding data around the notch, and then extrapolate the fitted dis-

tribution to the notch (Chetty et al. 2011; Kleven & Waseem 2013). However, this approach is not

well-suited for our context: it it based on the assumption that notches affect the distribution only lo-

cally, which may be a reasonable assumption when there is only one notch or if the different notches

are located very far apart. This is not satisfied in our setting in which we have many notches located

relatively close to each other, and where Figure 1 suggests that most parts of the distribution are af-

fected by notches. For example, it would be difficult to evaluate the counterfactual density at the

75% LTV notch using observations further down the distribution, say around 70%, because those

observations are distorted by other notches.

To resolve this issue, we propose a new approach to assess the counterfactual distribution that

exploits the panel structure of the refinancer data. Based on the LTV in the previous mortgage, the

amortization schedule, and the house value at the time of refinance (which is assessed by the bank),

we measure the new LTV before the refinancer has taken any action. We label this the passive LTV as it

would be the LTV if the homeowner simply rolled over debt between the two mortgage contracts.

We will base our estimate of the counterfactual LTV on the passive LTV with an adjustment that we

describe below.

In Panel A of Figure 4 we compare the actual LTV distribution to the passive LTV distribution.

We see that the passive LTV distribution is smooth: unlike the actual LTV distribution it features no

excess bunching or missing mass around notches. In general, the two distributions in Figure 4A may

be different for two reasons: (i) behavioral responses to notches, and (ii) equity extraction or injec-

tion that would have happened even without notches. The second effect does not create bunching or

missing mass, but it may smoothly shift the distribution. In this case, the passive LTV distribution

would not exactly capture the counterfactual LTV distribution. To gauge the importance of such

effects, we use information on equity extracted among households who do not bunch at notches.13

Figure A.3 shows that equity extracted among non-bunchers is positive through most of the passive

LTV distribution (except at the very top) and has a smooth declining profile. We adjust the passive

LTV distribution for non-bunching effects on LTV using the profile of equity extracted in Figure A.3.

The assumption we are making is that the equity extraction profile among non-bunchers is a good

proxy for the equity extraction profile in the full population of refinancers (including bunchers) in

the counterfactual scenario without notches. We relax this assumption below.

Our estimate of the counterfactual LTV distribution is shown in Panel B of Figure 4. Compar-

13Where we define bunchers as those with LTVs within 0.25pp below a notch, and non-bunchers as their complement.
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ing the actual and counterfactual LTV distributions provides clear visual evidence of bunching and

missing mass around each notch. Notice that, except for the region below the bottom notch at 60%,

the actual and counterfactual distributions never line up. This is because the actual distribution

below each notch is affected by missing mass due to a notch further down. This implies that the

standard approach to obtaining the counterfactual — fitting a polynomial to the observed distribu-

tion, excluding data right around the notch — would produce biased estimates in our context.

The assumption that the equity extraction profile among non-bunchers is a good proxy for the

counterfactual equity extraction profile among bunchers raises potential concerns about selection.

It is possible that bunchers are selected on variables that would impact their counterfactual equity

extraction. We can address this concern in two ways. First, a straightforward extension of our

approach is to control for selection on observables: income, age, family status, and the number of

past and future bunching episodes. The last of these covariates intends to capture the possibility

that bunchers at time tmay be a selected sample of “optimizers” (thus bunching more at other times

as well) while non-bunchers may be a selected sample of “passives”.14 We regress equity extracted

among non-bunchers on these covariates and predict equity extraction for both bunchers and non-

bunchers from this regression. This approach makes virtually no difference to any of our results.

Hence, if selection were an issue for our equity extraction adjustment, it would have to come from

unobservables that impact equity extraction and are uncorrelated with (and therefore not picked

up by) the observables that we do control for. Second, to allow for selection on unobservables, we

can use a standard Heckman (1979) sample selection framework to estimate equity extraction. A

previous version of the paper (Best et al. 2018) considered such an extension and it had very little

impact on our results.

It is worth pointing out that there is a very simple reason why the counterfactual distribution is

robust to different ways of doing the equity extraction adjustment. The reason is that the adjustment

corresponds to shifting a distribution — the passive LTV distribution — which is relatively flat, or

at least not strongly sloped, around the notches. Of course, if the passive LTV distribution had

been completely flat, any shift to the left or right would have precisely zero impact on the bunching

estimation. This is not true here, but the passive LTV distribution is sufficiently flat that the specific

procedure we use is relatively unimportant.

Finally, we note that the observed LTV distribution features a small spike at an LTV of 65%,

14However, it turns out that the number of previous/future bunching events is not excessively large for households
currently bunching. Figure A.4 in the appendix shows the average number of past/future bunching events at each value
of current chosen LTV. The graph is smoothly increasing and features no spikes at at notches. This suggests that bunching
households are not different “types” in terms of their general propensity to bunch or optimize.
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although this threshold is not associated with an interest notch. This spike is most naturally ex-

plained by round-number bunching, a phenomenon observed across a wide range of settings (see

Kleven 2016). If we do not adjust for round-number bunching, the amount of excess mass at interest

notches (all of which are located at round numbers) would overstate the true response to interest

rates. While we could adjust for round-number bunching using the observed spike at 65%, a con-

cern may be that round-number bunching is different in different parts of the LTV distribution.

Instead, we deal with this issue by exploiting that some banks at some points in time do not feature

a specific notch. This allows us to net out round-number bunching at a given notch using bunching

at that same threshold in a no-notch subsample. As we show in Section 4, this adjustment has only

a minor impact on our results.

3 A Simple Structural Model

In this section we develop an approach to estimating the EIS using bunching at interest rate notches.

The approach is based on a two-period model in which we make many simplifying assumptions.

The virtue of this model is to provide a simple and transparent mapping between an observed

bunching moment and the underlying structural EIS. In Section 5 we show that the estimates are

robust to extending the analysis to a rich stochastic lifecycle model.

3.1 The Mapping Between Bunching and the EIS

We consider households who live for two periods (0 and 1) and have perfect foresight. They are

homeowners and have chosen to remain in their current dwellings in both periods, but face a mort-

gage refinancing choice at time zero. As a baseline, assume that they can refinance at a constant

gross borrowing rate equal to R (i.e., there is no notch).

The utility of consuming housing services Ht is separable from the utility of consuming non-

durable goods ct, and households place no value on residual wealth (e.g. bequests) at the end of

period 1. Households value non-housing consumption in any period t via a constant EIS function
σ
σ−1c

σ−1
σ

t and discount the future by a factor δ. Hence, the lifetime utility derived from non-housing

consumption is given by σ
σ−1

(
c
σ−1
σ

0 + δc
σ−1
σ

1

)
.

The households receive an exogenous stream of income, yt in period t. They have initial net

wealth W0 equal to housing wealth net of any mortgage debt and net of any refinancing costs in-

curred in period zero. For simplicity, we assume that households hold no assets other than housing
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and have no liabilities other than the mortgage. The budget constraint in period 0 is therefore given

by

c0 = y0 +W0 − (1− λ)P0H, (2)

where λ is the LTV of the new mortgage and P0H is housing value (using that H0 = H1 = H). The

period-1 budget constraint is given by

c1 = y1 −RλP0H + (1− d)P1H, (3)

where d is the rate of house depreciation and P1 is the house price in period 1.

Households choose consumption according to the standard Euler equation

c1 = (δR)σ c0. (4)

Equations (2)-(4) determine the choice of c0, c1, and λ as functions the exogenous parameters of

the model. We note that the LTV choice λ is monotonically decreasing in initial wealth W0 and the

interest rate R.15

To begin with, we simplify by assuming that households are heterogeneous only inW0. Our gen-

eral argument goes through if households are heterogeneous in other dimensions such as income,

housing quality, or preferences. Below we analyze the important case where the EIS parameter itself

is heterogeneous. If W0 is smoothly distributed in the population, equations (2)-(4) imply a smooth

density distribution of LTV, which we denote by f0 (λ). We will refer to this as the counterfactual LTV

distribution under a constant interest rateR. Our estimate of the empirical counterpart to f0 (λ) was

shown in Figure 4.

Suppose now that an interest rate notch is introduced at λ∗, so that the borrowing rate jumps

from R to R + ∆R for LTVs exceeding λ∗. Figure 5 illustrates the implications of this notch for

borrowing and consumption. Panel A depicts the period-1 budget constraint before and after the

introduction of the notch in {λ, c1} space. It also shows the indifference curves before and after the

notch for the marginal bunching household, i.e. the highest-LTV (lowest-wealth) household who will

15The first effect follows from the fact that consumption in period 1 is a normal good and therefore increasing in initial
wealth W0. Initial wealth can increase c1 only via a decrease in borrowing in period 0. The second effect follows from the
fact that the wealth and substitution effects of the interest rate push in the same direction here. Given that the household
is a borrower, an increase in the interest rate reduces lifetime wealth and thus consumption in both periods. Reducing
consumption in period 0 requires a reduction in debt. The substitution effect follows from the fact that an increase in the
interest rate increases the relative price of consumption in period 0 (or equivalently the relative cost of debt).
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choose to bunch at the notch.16 When faced with the constant interest rateR, this household chooses

an LTV of λ∗ + ∆λ, where the indifference curve is tangent to the initial budget constraint. After

the introduction of the notch, this household is indifferent between locating at the LTV threshold

λ∗ and locating at the best interior LTV λI , where the indifference curve is tangent to the notched

budget constraint. All households whose LTV fell in the segment [λ∗,λ∗ + ∆λ] absent the notch are

strictly better off bunching than staying at an interior LTV.

Panel B shows the LTV distribution before and after the notch. In the presence of the notch,

there is sharp bunching at λ∗ along with a hole in the distribution between
(
λ∗,λI

)
. The amount of

bunching is equal to B =
´ λ∗+∆λ
λ∗ f0 (λ) dλ ' f0 (λ∗)∆λ. Hence, with estimates of excess bunching

B and the counterfactual density around the notch f0 (λ∗), it is possible to estimate the LTV response

∆λ. The fundamental idea of our approach — a dynamic extension of Kleven & Waseem (2013) —

is that we can use the indifference condition between λ∗ and λI for the marginal buncher to derive

a relationship between the LTV response ∆λ and the EIS σ.

To characterize the estimating indifference equation, we first use that the marginal bunching

household chooses the LTV ratio λ∗ + ∆λ in the counterfactual scenario with a constant interest rate

R. From equations (2)-(4), this allows us to relate initial wealth W0 for this household to the other

parameters of the model as follows

W0 = P0H − y0 +
y1 + (1− d)P1H − ((δR)σ +R) (λ∗ + ∆λ)P0H

(δR)σ
. (5)

This relationship allows us to eliminate W0 from the problem. This is helpful because our data

do not contain information on non-housing assets and liabilities, and therefore do not enable us to

measure total initial wealth.

Using wealth defined in equation (5) and the optimality conditions (2)-(4) evaluated at the in-

terest rate R+ ∆R, we can solve for the lifetime utility of the marginal buncher at the best interior

choice λI in the presence of the notch. This is given by

V I(σ, δ, ∆λ, ∆R, x) =
σ

σ− 1 (P0H)
σ−1
σ

(
δσ (R+ ∆R)σ−1 + 1

) 1
σ

(δR)σ−1 ×
((

(δR)σ

R+ ∆R
+ 1
)(

y1
P0H

+ Π1

)
− ((δR)σ +R) (λ∗ + ∆λ)

) σ−1
σ

, (6)

where Π1 ≡ (1− d) P1
P0

is gross house price growth net of depreciation. In the indirect utility func-

16Indifference curves can be plotted in in {λ, c1} space using the period-0 budget constraint.
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tion V I (.), the argument x is a vector that includes the parameters
{
λ∗,R, y1

P0H
+ Π1

}
.

Similarly, setting λ = λ∗and applying the interest rate R, the budget constraints (2)-(3) and the

wealth condition (5) allow us to evaluate lifetime utility at the notch as

V N (σ, δ, ∆λ, x) =
σ

σ− 1 (P0H)
σ−1
σ

 1
(δR)σ

(
y1
P0H

+ Π1 −Rλ∗ − ((δR)σ +R)∆λ
) σ−1

σ

+δ
(

y1
P0H

+ Π1 −Rλ∗
) σ−1

σ

 . (7)

The marginal buncher is indifferent between bunching at the notch and locating at the best interior

LTV, allowing us to state the following proposition:

Proposition 1 (Estimating Indifference Equation). Given a bunching moment {∆λ, ∆R} and a discount

factor δ, the EIS σ is the solution to the indifference equation

F (σ, δ, ∆λ, ∆R, x) ≡ V N (σ, δ, ∆λ, x)− V I (σ, δ, ∆λ, ∆R, x) = 0, (8)

where x =
{
R,λ∗, y1

P0H
+ Π1

}
, and where V I (.) and V N (.) are given by (6) and (7), respectively.

Proof. The proof is in Appendix B.

Three points are worth highlighting. First, the indifference equation (8) is based on a setting

with only one notch, while our empirical setting has multiple notches. In the presence of multiple

notches, it is possible that bunchers move across more than one threshold at a time, and it is concep-

tually straightforward to modify the indifference equation to allow for this (see Kleven & Waseem

2013). We focus on the single-notch equation here, because the data does not support the presence

of multiple-notch jumps. We discuss this point in the next section.

Second, the indifference equation contains two structural parameters, the EIS σ and the discount

factor δ. This suggests that we cannot identify σ from a single bunching moment. However, it turns

out that the value of σ is extremely robust to assumptions about δ. The intuitive reason is that the

discount factor primarily governs the level of borrowing at any interest rate (i.e., it shifts the LTV

distribution on both sides of the notch) and has only a minor impact on the response of borrowing

to interest rate changes. By contrast, the EIS governs the curvature of intertemporal preferences,

which directly impacts bunching responses. This is immediately apparent when differentiating the

Euler equation (4):
∂log (c1/c0)

∂logR
= σ. (9)
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The response of consumption growth to a small change in the interest rate is fully governed by the

EIS with no role for the discount factor. Of course, the bunching moment reflects the response of

borrowing rather than consumption, but these two are intimately related as shown by the budget

constraints (2)-(3). Furthermore, the bunching moment reflects a response to a discontinuous, rather

than marginal, interest change, which implies that the Euler equation logic does not carry over

exactly. Still, a similar logic implies that the discount factor plays a very small role.17 In section 3.3

we demonstrate this important identification argument using numerical simulations.18

Third, even in this simple dynamic model, the estimating indifference equation is considerably

more involved than the static bunching estimator developed by Kleven & Waseem (2013). The static

bunching estimator does not require calibrating any variables: the bunching moment maps directly

into a structural elasticity. The added complexity of the dynamic approach increases by an order

of magnitude when we turn to the full stochastic lifecycle model in Section 5. However, as we will

show, it is a general feature of our methodology that the calibrated variables have a very small

impact on the estimating indifference equation, making our results robust despite the analytical

complexity of the expressions. The intuitive reason is essentially the same as the one underlying the

robustness to δ.

The exposition above assumes that there is only one value of the structural EIS σ, while in prac-

tice there is likely to be heterogeneity in this parameter. In fact, the empirical LTV distribution

shown in Figure 1 implies that this has to be the case: without heterogeneity, there would be a sharp

hole in the LTV distribution between λ∗ and λI as illustrated in Figure 5B, whereas the empirical

LTV distribution features a gradual hole and has some refinancers located just above the notch.19

This provides prima facie evidence that some households have very small σs while others have larger

σs. As Kleven & Waseem (2013) and Kleven (2016) show, in the presence of heterogeneity in σ, our

bunching approach estimates the average σ.

To see this, consider a joint distribution of initial wealth W0 and the EIS σ. At each elasticity

level σ, households optimize as characterized above. In the counterfactual scenario with a constant

17A formal demonstration of the relative importance of the EIS and the discount factor can be obtained by differentiat-
ing the indifference equation (8) with respect to σ and δ. However, because of the complexity of the indifference equation,
the resulting expressions are not helpful for intuition and yield insight only with additional numerical assumptions. An
exercise of this sort shows that σ’s effect on bunching is orders of magnitude larger than δ’s effect.

18Besides δ, the only other value in equation ((8)) that requires calibration is y1
P0H

+ Π1 =
y1+(1−d)P1H

P0H
. This is

a measure of future resources from human wealth (y1) and housing wealth ((1− d)P1H), scaled by current housing
wealth. We estimate σ using empirically reasonable values of this variable, but results are essentially unaffected by
assumed parameter values (as for δ, this is mainly a level effect rather than a response effect).

19Besides very small σs among some households, the presence of density mass just above the notch may reflect various
optimization frictions (including liquidity constraints), an issue that we will address in Section 3.2.
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interest rate R, there is a joint distribution of LTV and EIS given by g0 (λ,σ) and an unconditional

distribution of LTV given by g0 (λ) =
´
σ g0 (λ,σ) dσ. In the observed scenario with a notched inter-

est rate, the marginal buncher at elasticity level σ reduces LTV by ∆λσ. We can then link bunching

B to the average LTV response at the notch E [∆λσ|λ∗] as follows

B =

ˆ
σ

ˆ λ∗+∆λσ

λ∗
g0 (λ,σ) dλdσ ' g0 (λ

∗)E [∆λσ|λ∗] , (10)

where the approximation assumes that the counterfactual density g0 (λ,σ) is roughly constant in λ

on the bunching segment (λ∗,λ∗ + ∆λσ). In other words, in the presence of heterogeneous treat-

ment effects, bunching identifies a local average treatment effect. When applying a bunching mo-

ment like E [∆λσ|λ∗] to the estimating indifference equation (8), we are estimating EIS at the average

LTV response as opposed to the average EIS. These two will in general be different due to the nonlin-

earity of (8), creating a form of aggregation bias. As elaborated by Kleven (2016), such aggregation

bias is likely to be very small in practice.

A large literature estimates reduced-form elasticities of borrowing or saving with respect to the

interest rate. How does one compare the magnitude of such reduced-form elasticities to the EIS?

We can use our framework to characterize the relationship between the two elasticity concepts.

Denoting the elasticity of borrowing with respect to the interest rate by ε, comparative statics on (2)

to (4) give the following result.

Proposition 2 (EIS vs Reduced-Form Borrowing Elasticity). Given the EIS σ, the discount factor δ,

the gross interest rate R, and the ratio LTW ≡ P0H−W0−y0
y1+(1−d)P1H

, the elasticity of borrowing with respect to the

interest rate is given by

ε = − ∂ log λ
∂ logR =

σ (δR)σ +R

(δR)σ +R
− σ (δR)σ ×LTW

1 + (δR)σ ×LTW . (11)

Proof. The proof is in Appendix B.

Besides the structural parameters σ, δ and the interest rate R, the reduced-form elasticity de-

pends on a ratio we have defined as LTW . To get an intuitive sense of this ratio, consider a house-

hold whose only initial wealth is (the net worth of) housing and who has no current income. In

that case, W0 = (1− λ0)P0H and the ratio LTW = λ0P0H
y1+(1−d)P1H

represents a loan to future wealth

ratio, with future wealth incorporating both human and financial (housing) wealth. For brevity,

we refer to this ratio as a loan-to-wealth ratio. This ratio is endogenous and will in general differ
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substantially across households.20

Figure A.5 in appendix illustrates the mapping between the EIS and the reduced-form elasticity

under different LTW ratios. We see that the reduced-form elasticity can vary greatly for a given EIS,

depending onLTW . Conversely, given an estimate of the reduced-form elasticity, there is very large

variation in the EIS parameters that could be consistent with that estimate. This makes it difficult to

infer the likely magnitude of the EIS from reduced-form evidence.21

3.2 Optimization Frictions

The model presented above assumes that there are no optimization frictions (such as inattention or

misperception). However, some households may be prevented from bunching due to such frictions,

in which case our estimate of σ would be downward biased. To deal with this general problem

in empirical research, Kleven & Waseem (2013) developed a non-parametric frictions adjustment

based on the presence of strictly dominated regions of behavior above notches. In their setting,

strictly dominated regions above income tax notches were used to estimate the fraction of non-

optimizing agents, while being agnostic about the specific reasons for not optimizing. Assuming

that the fraction of non-optimizers is the same outside the dominated region (i.e., where it cannot

be directly measured), Kleven & Waseem (2013) showed that it is possible to adjust the bunching

estimates for the amount of optimization friction in order to estimate true structural elasticities.

Here we propose a parametric version of the Kleven-Waseem friction approach. In our setting,

there are no strictly dominated regions per se. Locating immediately above an LTV notch implies

a large drop in future consumption, but allows for (slightly) larger current consumption. If a con-

sumer is perfectly impatient (δ = 0), locating in such regions will be optimal. However, as long

as consumers value future consumption at all (δ > 0), there exists no non-negative elasticity of

intertemporal substitution (σ ≥ 0) that can justify locating immediately above an LTV threshold.

Even with a zero substitution elasticity, the higher interest rate above the notch creates a wealth

effect that should make consumers reduce consumption and leverage today, which is inconsistent

with locating extremely close to the notch. Hence, we can structurally derive an LTV range above

the notch that is inconsistent with any σ ≥ 0. This range can be characterized as follows.

20The result in Proposition 2 also implies that, when σ converges to zero, the value of ε converges toR/ (1 +R). This is
a lower bound on the reduced-form elasticity and represents the wealth effect. This particular result is driven by the two-
period assumption. In appendix C, we generalize our results to a multi-period version of the baseline model (retaining
the other simplifying assumptions of this model) and show that the pure wealth effect (lower bound on ε) is smaller in
this case.

21In the numerical example presented in the figure (in which δ = R = 1), the reduced-form elasticity is bounded from
below by R/ (1 +R) = 0.5 corresponding to the pure wealth effect (see equation 11 for σ = 0).
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Proposition 3 (Dominated Region). Under any σ ≥ 0, choosing an LTV at the notch point λ∗ dominates

any interior LTV λ > λ∗ for households whose counterfactual LTV satisfies

λ∗ + ∆λ ∈
(
λ∗,
(

1 + ∆R
R+ 1

)
λ∗
)

. (12)

Proof. The proof is in Appendix B.

We estimate the fraction of non-optimizers as the observed density mass in proportion to coun-

terfactual density mass within the dominated region defined in (12). We assume that the fraction

of non-optimizers in the dominated region is a good proxy for optimization frictions elsewhere in

the distribution (where the amount of friction cannot be observed). Denoting the fraction of non-

optimizers by a, the friction-adjusted bunching mass equals B
1−a and the frictionless LTV response

equals ∆λ
1−a . These are the reduced-form statistics that enter into the structural estimation of σ.

It is worth noting that the dominated regions from which we estimate a are very small. As

shown in Figure 3, the largest notch is at λ∗ = 80% where the interest jumps by ∆R = 0.5pp =

0.005. Using (12), this gives a dominated LTV range of approximately (80%, 80.2%) for R ' 1. For

example, someone located at an LTV of 80.1% and with a house worth £200,000 (the average house

value around this notch) would have to inject only £200 in order to get the 0.5pp reduction in the

annual interest rate on the entire mortgage (worth roughly £3,000 in lower interest payments). If

the household does not take this investment opportunity, we attribute it to optimization friction.

The strengths and weaknesses of this approach were discussed in detail in Kleven & Waseem

(2013) and Kleven (2016). The key strength of the approach is that it provides a direct empirical

measure of optimization friction that does not rely on any parametric assumptions on the specific

structure and distribution of frictions, and in fact is completely agnostic about the sources of friction.

Alternative approaches in the literature either ignore optimization friction or rely on strong struc-

tural assumptions abouth such frictions. The limitation of the approach is the assumption that the

fraction of non-optimizers in the dominated region (where the incentive to respond is the strongest)

equals the fraction of non-optimizers above the dominated region. As an example, consider the case

where the optimization friction takes the form of a fixed adjustment cost. As discussed by Kleven

& Waseem (2013), for a given distribution of adjustment costs, the fraction of non-optimizers a is in

general increasing in the distance to the notch as the utility gain from bunching is declining. The

value of a obtained from the dominated region is therefore a lower bound on the average fraction of

non-optimizers above the notch. The magnitude of the bias depends on the distribution of adjust-
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ment costs. In the special case where a fraction of agents have zero adjustment costs (“optimizers”)

and a fraction have prohibitively large adjustment costs (“non-optimizers”), the parameter a accu-

rately captures the fraction of non-optimizers and yields unbiased estimates.

As an alternative, Kleven & Waseem (2013) also propose an upper bound on the amount of fric-

tion. This approach assumes that all density mass in the hole — not just the fraction estimated from

the narrower dominated region — can be explained by friction rather than by heterogeneity in the

true structural elasticity. Under this assumption, the true frictionless density distribution would

look like Panel B of Figure 5, even if the observed density features a gradual hole. If the notch is not

too large (so that we have λI ≈ λ∗ + ∆λ), the behavioral response ∆λ can be estimated as the point

of convergence between the observed and counterfactual distributions.22 This point corresponds

to that which is obtained from B
1−ā where ā is measured using all density mass on the segment

(λ∗,λ∗ + ∆λ). Using the two approaches outlined above, it is possible to bound the amount of

friction and therefore the true structural EIS.

3.3 Identification of the EIS: Numerical Simulations

As discussed above, it is not immediately apparent how the EIS can be identified from bunching,

because the estimating indifference equation (8) contains other parameters: the discount factor,

future house prices and future income. In this section we present simulations of the global LTV

distribution under different parameter configurations, which illustrate that only the EIS can be used

to fit the observed distribution. While other parameters play some role, their impacts on bunching

responses are very minor.

Figure 6 compares the observed LTV distribution to simulated LTV distributions under four

different EIS scenarios. The other parameters of the model are assigned reasonable values that

do not vary across the different EIS scenarios.23 The distribution of initial wealth W0 is calibrated

using equation (5) in order to replicate the counterfactual LTV distribution shown in Figure 4. In

this counterfactual scenario, we assume that each borrower faces a flat interest rate R given by

the observed rate at the counterfactual location.24 Having calibrated the model in this way, the

simulated LTV distribution is based on introducing the notched interest rate schedule and letting

22For reasons explained in Kleven & Waseem (2013) and Kleven (2016), the assumption that λI ≈ λ∗ +∆λ is reasonable
in most, if not all, notch applications.

23Specifically, the discount factor is set at an annual rate of δ = 0.96 (a common value in the literature), real house
price growth is set at an annual rate of P1/P0 = 1.026 (the historical average in the UK), the depreciation rate is set at
d = 0.025 (taken from the literature), while for simplicity real income is assumed to be constant over time y1 = y0.

24That is, borrowers get individualized flat interest rates based on their counterfactual bracket location. Our results are
insensitive to the specific assumption we make about the counterfactual interest rate level.
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borrowers choose LTV optimally by comparing utility levels at their best interior location and at the

five notch points.

The resulting distributions under each σ is shown in the four panels of Figure 6. Panel A sets

σ = 0.06, corresponding to the EIS that minimizes the mean squared error (MSE) between the sim-

ulated bunching masses and the observed bunching masses. Panels B-D consider values of the EIS

commonly used in the literature (σ = 0.5, 1, 2).25 The figure shows clearly why the data “demands”

a low EIS. With higher elasticities, households grossly over-respond to the interest rate notches and

often skip several notches in search of lower rates. As a result, the simulated distributions have

almost no mass above the 70% LTV threshold, except at the notch points. There is too little bunching

at the highest notches (as borrowers tend to skip these notches) and too much bunching at the lowest

notches. This contrasts with the simulated distribution under σ = 0.06, which does a far better job

of matching the data.26

While these results show that a low EIS can reconcile model and data, Figure A.6 in the appendix

shows that a low EIS is the only way of reconciling the two. The top panel repeats the best fit from

the previous figure, i.e. σ = 0.06 with the other parameters set to realistic values. The lower panel

instead sets σ = 1 and calibrates all the other parameters (discount rate, house price growth and

income growth) so as to minimize the MSE of the simulated bunching masses. Even when all the

other parameters are fine-tuned to satisfy this single objective, the model provides a very poor fit to

the data. This is because bunching responses are relatively insensitive to these other parameters.27

What is more, calibrating the remaining parameters in this way leads to highly unrealistic values,

including an annual discount rate of δ = 0.24 and annual income growth of −60%.

The only real threat to identification is the presence of optimization frictions such as inattention,

inertia or misperception. While σ is the only parameter that can close the gap between model and

data within a frictionless model, a sufficient amount of friction would be another way of closing

the gap. It is therefore crucial that we have an empirical handle on the amount of friction from the

dominated regions. Using the approach laid out in the previous section, Figure A.7 in the appendix

explores if there is enough optimization friction to justify a much higher value of the EIS. The figure

is constructed like Figure 6, but the simulated LTV distributions have been adjusted to account for

the presence of non-optimizers. Specifically, denoting by an the fraction of households observed in

25Panel C (σ = 1) repeats the simulation shown in Figure 2 discussed earlier.
26The fit is quite impressive when considering the crudeness of assuming a single σ throughout the LTV distribution.

This assumption is relaxed in our local estimations presented below.
27We show in Section 5 that this remains true in a rich stochastic lifecycle model where several other parameters can be

changed.
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the dominated region above notch n, the simulations assume that the fraction an of housesholds

between the notch n and the next notch n+ 1 are stuck at their counterfactual LTV. This exercise

creates less bunching at the notches and greater mass between the notches, but it does not funda-

mentally alter our conclusions. The EIS that provides the best fit is still small (σ = 0.12) and standard

EIS values provide very poor fits. Therefore, while it is clearly important to account for optimiza-

tion frictions, the dominated regions suggest that there is not nearly enough friction in our setting

to justify large structural elasticities.28

The simulation exercises presented here are useful for illustrating how bunching can identify

the EIS and why the data calls for a small elasticity. However, these simulations do not yield precise

estimates of the EIS, because they are based on fitting global distributions assuming that a single

elasticity applies everywhere. The next section presents local bunching estimations (using the esti-

mating indifference equation characterized above) in which we relax this assumption.

4 Estimating the EIS: Simple Model

4.1 Bunching Estimation

In this section we use bunching to estimate the EIS and the reduced-form borrowing elasticity based

on the simple framework developed above. The next section extends the analysis to our full struc-

tural model.

We first consider all notches together by pooling the data into a single average notch. For each

notch point n and each mortgage i, we calculate a normalized LTV as LTVin = LTVi − n.29 We

then stack the normalized LTVs across the five notches and consider their distribution around the

average notch at zero. This is shown in Figure 7 in which the actual LTV distribution is the series

in black dots and the counterfactual LTV distribution is the series in orange crosses, with their

frequencies in 0.25pp bins given on the left axis. The counterfactual is obtained using the panel

method described in Section 2.4, with the global distribution shown in Figure 4. The figure also

28The model can fit the data better if we allow for heterogeneity in σ. Specifically, this helps with matching the gradual
recovery of the LTV distribution — as opposed to the sharp holes — above notches. We have conducted such an exercise,
assuming that σ is independently distributed. The distribution of σ that provides the best fit is very tight around the point
estimates reported above, i.e. we estimate very little heterogeneity in σ. The model would be able to fit the data even
better if we allow for a joint distribution of σ and LTV λ. However, such simulations are computationally demanding and
ultimately have a relatively low pay-off. Obtaining a precise fit of the entire hole does not improve upon the estimation of
the average σ as compared to the simpler local bunching estimation presented below. Fitting the hole does give the entire
distribution of σ, but this relies heavily on the modeling assumptions (including assumptions about the distribution of
frictions).

29For example, a mortgage with an LTV of 73% has normalized LTVs of LTVi70 = 3 with respect to the 70% notch and
LTVi75 = −2 with respect to the 75% notch.
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plots the pooled conditional interest rate at each LTV in green squares (right axis) obtained from the

non-parametric regression described in Section 2.3.30 The graphs are shown with 95% confidence

bands computed by bootstrapping.31

The figure displays the two key empirical moments that we will use later: the interest rate jump

at the notch, ∆r, and the amount of bunching scaled by the counterfactual density at the threshold,

b ≡ B/ [g0 (λ∗)× binwidth].32 As shown in equation (10), this bunching statistic is approximately

proportional to the local average LTV response. In the figure, we distinguish between two different

bunching statistics: b (raw) and b. The first estimate is based on the raw data shown in the fig-

ure, while the second (smaller) estimate adjusts for the presence of round-number bunching. As

discussed earlier, we adjust for round-number bunching by using that some banks do not feature

certain notches during certain periods.33

The following findings emerge from Figure 7. First, there is large and sharp bunching equal

to five times the height of the counterfactual distribution at the notch, or about 10% less when ac-

counting for round-number bunching. Second, there is a clear gap between the actual and counter-

factual distributions to the right of the notch. This is the “hole” in which the bunching households

would have been observed absent the notched interest rate schedule. The hole extends to around

3.5pp above the notch, implying that the most responsive households reduce their LTV by 3.5pp

in response to the average interest rate notch of 0.25pp. This upper-bound response is well below

the next notch (and the confidence band is tight), validating our assumption in Proposition 1 that

bunchers move only one notch.

Third, when comparing the actual and counterfactual densities immediately above the notch,

we see that about 30% of borrowers are stuck in a dominated region.34 As discussed in section 3.2,

30The pooled interest rate line is a weighted average of conditional interest rates from the regression (1) implemented
locally around each notch.

31The bootstrap procedure draws 100 samples of mortgages from the observed sample, with replacement and stratify-
ing by notch.

32We measure bunching B as excess mass in the actual distribution relative to the counterfactual distribution in a 1pp
range below the threshold, thus allowing for some overshooting by bunching households. Because bunching is extremely
sharp in our setting, the results are very robust to reducing the width of this range.

33Figure A.8 in appendix shows the LTV distribution in the no-notch subsample, i.e. mortgages located close to one
of the five thresholds in a bank-by-time cell that does not feature an interest notch at that threshold. Panel A of the
figure shows that the no-notch subsample is a very small fraction of the full sample. Panel B of the figure zooms in on
the no-notch subsample, demonstrating that there is a modest amount of round-number bunching. To adjust for round-
number bunching, we estimate the degree of bunching at the notches using the no-notch subsample. As is common in
the bunching literature, we estimate the counterfactual LTV distribution using a 5th order polynomial fitted to the data
collapsed into bins with a width of 0.25 percentage points and excluding data within 1% of the notch. We then subtract the
estimated normalized bunching in the no-notch sample, bRN , from the bunching moment of interest, braw , to calculate
our estimate of the bunching due to the interest rate notches.

34The dominated regions (as characterized in Proposition 3) are even smaller than the 0.25pp LTV bins depicted in the
figure, but we show later that 30% is nevertheless about right.
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we interpret the observed mass in the dominated region as a reflection of optimization frictions

such as switching costs, inattention, and misperception. In this setting there is an additional reason

for locating just above notches: the fact that some borrowers have mortgages in banks that do not

feature that particular notch at the time of their loan origination. However, the impact of no-notch

banks on the hole is limited by the fact that they represent a very small fraction of the data as

mentioned above (see Figure A.8). Moreover, locating just above a threshold in a no-notch bank

may in fact be viewed as an optimization friction in the form of bank switching costs. As Figure A.9

in the appendix shows, borrowers located above a threshold in a no-notch banks could typically

get a large discount by switching to a similar product in a different bank and moving below the

threshold, and their unwillingness to do so must be related either to a friction in bank choice or

to unobserved services provided by the no-notch bank. When we adjust for optimization frictions

using the dominated regions, we assume either that (i) all mass in the dominated region is due to

friction or (ii) that only the mass coming from notched banks is due to friction.

Figure 8 shows bunching evidence for individual notches, but is otherwise constructed in the

same way as the previous figure. The interest rate jumps shown in this figure are somewhat smaller

than those reported in Figure 3, because the interest rate jumps shown here apply to the refinancer

sample (as opposed to the full population of people with mortgages) and therefore to a different

composition of mortgages. The evidence from the individual notches is qualitatively consistent

with the evidence from the pooled notch. The amount of bunching b is increasing in the size of the

interest rate jump, and the amount of mass just above the notch (friction) is decreasing in the size of

the jump, exactly as one would expect.

4.2 Elasticity Estimation

We turn to the estimation of the EIS in Table 2. The table shows results for the five individual

notches and for the pooled notch. Panel A starts by summarizing the statistics presented so far: the

interest rate level below each notch r, the interest rate jump ∆r, and the bunching statistic b. The

panel also shows the fraction of non-optimizers a obtained from the dominated region, the friction-

adjusted bunching statistic bAdj = b/ (1− a), and the implied frictionless LTV response ∆λAdj . The

average LTV response using the pooled notch is close to 2pp, i.e. households are willing to reduce

borrowing by an average of 2 percent of their house value in order to avoid the interest jump of

0.25pp. Apart from the 80% notch, the LTV response is monotonically increasing in the size of the

interest jump, from 0.7pp at the lowest notch to 3.7pp at the highest notch. Given the notches are
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at least 5pp apart, the estimated LTV responses are consistent with the assumption (made in the

theoretical model) that bunchers move only one notch down.

Panel B of the table turns the reduced-form evidence into elasticities using the simple struc-

tural model from Section 3. The EIS σ is based on the estimating indifference equation shown in

Proposition 1, and the reduced-form borrowing elasticity ε is based on the equation on shown in

Proposition 2. Besides the bunching moments, the estimation of elasticities requires us to set a few

additional parameters that are not directly observed: the discount factor δ, future income y1, and

house price growth net of depreciation Π1 = (1− d) P1
P0

. As discussed in detail in the previous

section, the estimation is not sensitive to the assumptions we make about these parameters.35 Ar-

guably, the crudest assumption in this exercise is the two-period nature of the model, but we have

repeated the exercise for a multi-period version of the model and the EIS estimates are virtually

identical (the multi-period extension is presented in appendix C).36

As shown in the table, the EIS is small. It ranges from 0.03 to 0.18 across the different notches,

and the average elasticity obtained from the pooled notch is close to 0.1. The pooled estimate is

very close to the calibrated EIS obtained from the global simulation exercise in the previous section.

Translating the structural EIS estimates into reduced-form borrowing elasticities, we obtain stable

values of ε across the different notches, all in the neighborhood of 0.5. As implied by the result in

Proposition 2, when σ converges to zero, the value of ε converges toR/ (1 +R) ' 0.5 and represents

a pure wealth effect. Given the low values of the EIS deriving from our structural model, most of

the borrowing response to interest rates is due to the wealth effect.

The elasticity estimates in Table 2 are corrected for optimization frictions using the Kleven-

Waseem adjustment factor a, i.e. the fraction of borrowers who are stuck in the dominated regions

above notches. The calculation of the dominated regions was based on the average interest jumps

at notches in an empirical setting that feature heterogeneity in the size of interest jumps across

banks and products. In particular, because some banks do not feature certain notches during cer-

tain time periods, it is conceivable that the mass immediately above notches disproportionately

comes from such no-notch contracts. In this case we would overstate the amount of friction and
35We assume that the annual discount factor equals δ = 0.96, that future income equals current income (y1 = y0), and

that annual house price growth equals its historical average in the UK (P1/P0 = 1.026) net of a depreciation rate taken
from the literature (d = 0.025). The period length is set equal to 3.34 years, corresponding to the average time between
refinance events in the data.

36While the structural EIS is not sensitive to the number of periods, the reduced-form borrowing elasticity does change
when changing the number of periods (all else being equal). Adding periods to the model tends to lower the reduced-
form elasticity by lowering (spreading out) the wealth effect of the interest rate.
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therefore the EIS.37 On the other hand, as discussed in section 3.2, there are other reasons why the

Kleven-Waseem friction adjustment may understate the amount of friction. To investigate the sen-

sitivity to these issues, Table 3 puts bounds on the friction adjustment and the EIS by considering

the following scenarios: (i) no friction adjustment; (ii) a friction adjustment based on the dominated

region and notched banks only; (iii) a friction adjustment based on the dominated region and all

banks (our baseline estimates); (iv) a friction adjustment assuming that all mass in the hole (and

not just mass in the dominated region) is due to friction. As implied by the discussion in section

3.2, scenarios (i)-(ii) provide lower bounds on the amount of friction and therefore on the EIS, while

scenario (iv) provides an upper bound on the amount of friction and the EIS. The table shows that

the EIS estimates are relatively tight. Even under the extreme assumption that all mass in the hole

is due to friction, the average EIS is fairly modest at around 0.3.

The results in Table 2 are estimates of the average EIS in the population, but there may be sub-

groups with a higher EIS. In fact, an important advantage of our rich data is the ability to study

heterogeneity in the EIS across subsamples. Hence, in Table 4 we explore heterogeneity in the EIS

along a number of dimensions. For each covariate, we partition the sample into 4 quartiles and sep-

arately estimate the EIS in each quartile. The table reveals only modest heterogeneity in the EIS. The

elasticity is larger for older households, those with lower income, those with higher loan-to-income

ratios, and those experiencing the fastest house-price growth.38 However, the differences are only

modest, with the EIS ranging from 0.02 to only 0.15 across all the subgroups considered.

To conclude, we have translated bunching at mortgage notches into structural EIS parameters

through the lens of the simplest possible dynamic model. In this model, the only way households

can reallocate consumption over time is through borrowing against their house. This implies that

bunching at mortgage notches maps directly into intertemporal consumption reallocation and there-

fore reveal the EIS. By assuming that households can bunch only by reducing current consumption,

as opposed to drawing down liquid assets, we are estimating an upper bound on the EIS. The pres-

ence of liquid assets gives households an extra margin of adjustment and will in general add to

bunching, unless liquidity demand is completely inelastic to interest rates.39 That is, a given amount

37However, the potential bias is limited by the fact that the fraction of no-notch contracts is very small as we saw in
Figure A.8.

38This analysis considers each dimension of heterogeneity in isolation, raising the concern that if the covariates are
correlated, it is unclear which covariate to attribute the heterogeneity to. To address this, in results available from the
authors, we split the data at the median of age, income, and loan-to-income ratio, calculated the EIS separately in these 8
subgroups, and then regressed the estimated EIS on the three covariates. The results confirm the patterns in Table 4.

39Adding fixed (price inelastic) liquid wealth to our model would have no impact on our results, because in that case
borrowers still bunch using only consumption.
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of observed bunching is consistent with a smaller consumption reallocation in the presence of liq-

uidity/portfolio effects, and by implication a smaller value of the EIS. This makes our small EIS

estimates very informative.

As implied by this discussion, exactly identifying the EIS requires a model of how liquidity

demand responds to the interest rate. This calls for a model that allows for uncertainty and a pre-

cautionary savings motive, in which case the responsiveness of liquidity depends on the amount

of uncertainty and risk preferences. In our baseline model with CRRA preferences, the coefficient

of relative risk aversion is the inverse of the EIS, and so a low EIS will make households very risk

averse and therefore make liquidity demand inelastic. To allow for more flexibility in liquidity

responses, it is natural to separate the EIS and risk aversion preferences using Epstein-Zin prefer-

ences. In the following section, we develop a stochastic lifecycle model that allows for all of these

features in order to demonstrate how the EIS relates to bunching in a richer and more realistic set-

ting. However, for the high-level reasons discussed here, the liquidity channel does not give rise to

larger estimates of the EIS, all else equal.40

5 Estimating the EIS: Full Structural Model

5.1 Model

We now turn to estimating the EIS in our extended structural model. Households live for T periods

(years) and choose consumption, housing, liquidity, mortgage debt, and bequests. Future house

prices and income are uncertain. The mortgage interest rate is a step function of LTV, correspond-

ing to the notched interest schedule in the UK. Households may buy and sell housing, and they may

hold an additional liquid asset. As noted above, liquidity demand may be confounded with con-

sumption demand in driving bunching behavior. The presence of a liquid asset in the model allows

a quantitative assessment of the relative importance of these two channels in driving bunching. We

present the basic structure of the model here and relegate its full analysis to Appendix D.

SETUP: Households have preferences over non-durable consumption ct and housing services Ht,

defined recursively as

Vt =

((
cαt H

1−α
t+1

) σ−1
σ + δ

(
Et

{
V 1−γ
t+1

}) 1
1−γ

σ−1
σ

) σ
σ−1

, (13)

40When moving to the full structural model below, we generalize in more dimensions than the liquidity channel. Due
to the combination of generalizations, it is possible for the full structural estimates to be larger than the baseline estimates
presented above.
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where Vt is the net present value of utility at period t, σ is the EIS, γ is the coefficient of relative

risk aversion, and α is the share of housing in overall consumption. These preferences follow Ep-

stein & Zin (1989) and Weil (1990) and allow for a distinction between risk aversion and the EIS.

This helps ensure that our EIS estimates are not influenced by the dual role this parameter plays in

standard CRRA preferences. The unit elasticity of substitution between housing and non-housing

consumption (Cobb-Douglas) is justified by the observation that expenditures on housing services

have historically been a constant share of total household expenditures (see e.g., Piazzesi & Schnei-

der 2016).

Households value end-of life wealth WT+1 via a reduced-form bequest motive, i.e.

VT+1 = ΓWT+1, (14)

where Γ is a parameter governing the intensity of bequest motives.

Households enter period t with two assets and one liability. The assets are housing Ht with a

market price of Pt, and a liquid asset Lt denominated in units of the numeraire consumption good.

The liability is mortgage debt Dt, again denominated in units of the consumption good. The real

gross mortgage interest rate is given by Rt = 1 + rt, while the liquid asset obtains zero nominal

return. For simplicity, we abstract from short-term credit so that households’ liquidity constraint is

given by Lt ≥ 0.

To conserve on computational power, we assume that housing quality Ht can take on three val-

ues normalized to {1, 1.2, 1.4} . This is sufficient to allow for a lifecycle pattern featuring increasing

housing in the beginning of life and decreasing housing at the end of life. With this discrete grid,

moving costs turn out to be relatively unimportant. Our initial simulation exercises showed that

moving costs occasionally delay moving by a year or two, but do not change the qualitative lifecy-

cle pattern. We therefore abstract from the moving cost in what follows.

Mortgage contracts have fixed maturities of m years, after which a penalizing reset interest rate

kicks in. We assume this reset rate is sufficiently high that households never refinance after this

point. Households also face an early repayment penalty if they choose to refinance before the mort-

gage matures. Penalties equal to 5− 10% of the outstanding loan are common in the UK. Simulating

the model with penalties of this magnitude shows that households virtually never refinance early.

Accordingly, we assume that households refinance after m years unless they move (in which case

the prepayment penalty waved as is typically the case in the UK). We assume a simple amortization

schedule with constant annual repayments ensuring full repayment by age 70 (The typical mort-
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gage contract in the UK requires full repayment before the borrower reaches the age of 70.) That is,

the amortization rate is given by

µt =
1

70−Age+ 1.

Of course, households have ample opportunities to readjust amortization by repaying or extracting

equity when refinancing. We set the terminal period to T = 70. This understates average longevity

in the UK, but households are typically inactive in the mortgage market after this age. We may think

of the bequest function VT+1 as capturing the overall preference for wealth at age 70 combining

retirement and bequest motives.

When a household refinances, it must pay a fixed mortgage origination fee of Ω consumption

units. Houses depreciate in quality at a rate d in each period. For simplicity, we assume that house-

holds maintain their houses in each period so as to replace its depreciated value, i.e. pay a mainte-

nance fee of d · PtHt in period t. Households obtain an income stream of yt consumption units in

period t.

With these features, the household’s budget constraint is given by

ct = yt + (1− πt)Lt −Lt+1

+ Pt ((1− d)Ht −Ht+1)

+Dt+1 −RtDt −ΩIR
t , (15)

where IRt is an indicator equal to 1 if the household refinances (Dt+1 6= (1− µt)Dt), and πt gives

the inflation rate for non-housing consumption.

The interest rate is a spread over a risk-free base rate. The spread is a function of LTV, corre-

sponding to the notched mortgage interest schedule in the UK. Formally, Rt = R0
t + ρ (λs) where

R0
t is the base rate and where the spread ρ (.) is a step function of the LTV ratio λs at the time of

mortgage origination s. The LTV ratio is defined as λs ≡ Ds+1
PsHs+1

.

Households have rational expectations, are forward looking, and optimize in each period subject

to the aforementioned adjustment costs. This may seem at odds with our assessment that a signifi-

cant fraction of households face optimization frictions (reflected in our estimates of a in Tables 2-3).

However, in our empirical estimation of the model, we will use bunching moments adjusted for op-

timization frictions, as outlined in Section 3. We can therefore restrict attention to fully optimizing

agents, as these moments reflect the amount of bunching that would prevail if households faced no

optimization frictions. This has the advantage that we do not have to take a position on the exact
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form of optimization frictions facing households in our theoretical framework.

The model is solved computationally, with the full details on our approach being described

in Appendix D. We solve for the value of the EIS using the bunching moments along with an in-

difference equation similar to (8), but using the value functions arising from the extended model.

Parameter values other than the EIS are calibrated to match features of the data or taken from the

existing literature. The calibration is summarized in Table A.1 in the appendix.

5.2 Results

Table 5 shows EIS estimates resulting from the extended model. Standard errors are obtained by

block bootstrapping with replacement. The first rows of the table restate our estimates of bunching

b, the fraction of non-optimizers a, bunching adjusted for optimization friction bAdj = b
1−a , and

the implied LTV response for optimizers ∆λAdj . We report these estimates at each individual notch

as well as at an “average” notch. The latter is obtained as a weighted average of the estimates at

individual notches, with weights proportional to the number of borrowers around each notch in the

counterfactual distribution.41

In the last row of Table 5, we report our estimates of the EIS σ at each notch. The EIS is small

and stable across notches, except at the 85% LTV notch where the elasticity is somewhat larger.

The average EIS is slightly below 0.1. This is essentially identical to the estimate deriving from the

simple two-period model shown in Table 2, despite all the bells and whistles of the full structural

model. This suggests that the low EIS estimates reported earlier are not driven by the simplifying

assumptions of the 2-period model, but rather by the magnitude of bunching observed in the data.42

It also confirms the identification arguments made in section 3.3.

Why does model specification matter so little? Despite the greater complexity of the model

developed here compared to the two-period model in Section 3, solving for the EIS ultimately boils

down to a similar indifference equation. There are two main differences between the models. First,

41When using the full structural model, we cannot estimate the EIS at a pooled notch like we did in Section 4. In
the simple model, we considered a single refinancing episode in which borrowers made bunching decisions around a
single notch. In the extended model, we consider a setting with repeated refinancing episodes in which borrowers make
bunching decisions at time t anticipating the full menu of five notches in future refinancing episodes.

42Why does the 85% notch yield a larger EIS? Our model implies substantial equity injection at the counterfactual at
the time of bunching for the average household at this notch. This means that households are short of liquidity when
attempting to bunch at the 85% notch and must forgo some current consumption for capital repayment even at the
counterfactual. This makes bunching at the 85% notch particularly painful and justifies the small amount of bunching
observed in the data even at a higher EIS approaching 0.3. This result illustrates how our model incorporates liquidity
constraints in its estimation, but also that the EIS remains low even when incorporating severe liquidity constraints. We
do not observe households’ wealth directly, but if households at this notch have more wealth than our model suggests,
our estimated EIS is overstated.
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the continuation value in the two-period model is simply the utility of second-period consumption,

as opposed to the much more involved continuation value Vt+1 in the full lifecycle model. This

has little quantitative implication for EIS estimates. This is because most factors that affect the

continuation value affect it by similar magnitudes when bunching at the notch and when locating

in the interior, and therefore roughly cancel out from the two sides of the indifference equation

(8). Rather, it is the curvature of the continuation value with respect to debt that governs bunching

motivations and therefore EIS estimates. But the curvature of the value function Vt with respect

to wealth (and therefore debt) is approximately equal to the EIS, as is often the case in dynamic

consumption models. Hence the bunching decision is roughly the same in the full model as it was

in the two-period model.

Second, our full structural model allows for a liquid asset and for liquidity choice, while no

liquid asset was available in the two-period model. This is a more substantive difference, because

the liquid asset gives households an additional margin of adjustment when making the bunching

decision. With liquid assets, households confronting the bunching decision can now forgo either

consumption or liquidity to lower their LTV to the notch. In equilibrium, households equalize the

marginal value of consumption with the marginal value of liquidity, so it is optimal to forgo a com-

bination of the two. The moderate responses to interest rates implied by the observed bunching

suggest that households are inelastic in their demand for consumption and liquidity. With reason-

able values of risk aversion and uncertainty — the main parameters governing liquidity demand

— the liquidity margin facilitates bunching, which heightens the “puzzle” of households’ small re-

sponses to borrowing rates. In contrast, the simple model without liquidity is equivalent to a model

with a binding liquidity constraint or one with perfectly inelastic liquidity demand. Hence, the

model with liquidity should give smaller EIS estimates all else equal. However, because the EIS es-

timates from the baseline model were already small, incorporating liquidity choice has only a small

impact on the estimation.

We have shown that our EIS estimates are largely robust to first-order changes in modeling as-

sumptions, i.e. moving from a very simplified 2-period model to a full dynamic lifecycle model. In

this section we subject our model to an additional battery of tests to explore its robustness to spec-

ification and parameter values. Table 6 shows EIS estimates (at the average notch) across a range

of parameterizations. In each row, the estimate in boldface corresponds to the baseline assumption

considered above.

We start by exploring robustness to household impatience. The first row shows robustness to the
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discount factor δ, while the second row allows for hyperbolic discounting and varies the coefficient

of present bias β.43 As noted earlier, the discount factor (or present bias) largely governs the level

of borrowing, while the EIS governs the responsiveness of borrowing to interest rates. As a result,

changes in the discount factor δ or the present bias factor β have relatively little impact on the

estimated EIS. Even under extreme present bias (β = 0.3), the EIS estimate is only moderately

larger than in the baseline.

We next turn to risk aversion, which governs liquidity preferences and may affect EIS estimates.

We explore values of γ ranging from risk neutrality (γ = 1 ) to high levels of risk aversion. The last

column shows the CRRA case γ = 1
σ , which implies extreme risk aversion due to the low range of

σ in our estimates. Despite the potential role of liquidity in affecting our estimates, the EIS remains

relatively small for the entire range of risk preferences.

The remaining robustness checks alter household expectations along a number of dimensions.

First, we alter interest rate expectations. The baseline interest rate process was calibrated from the

UK yield curve, which currently reflects expectations of interest rates near zero for an extended pe-

riod. We see that our EIS estimates are similar if households expect higher interest rates (shifting the

yield curve upwards by 1pp, 2pp, and 3pp). Second, we see that the estimated EIS is insensitive to

expectations of (mean) house price growth and not particularly sensitive to uncertainty about house

prices. We alter the expected lifecycle profile of income from static income expectations to a trajec-

tory implying real income growth at 7% per annum. Again, the implications for the estimated EIS

are small. Finally, we alter income uncertainty by either changing the probability of unemployment

or altering the replacement rate for unemployed workers. In both cases, the EIS remains moderate.

The message emerging from these robustness checks is that our EIS estimates are insensitive to

the parametric assumptions of the model. This confirms the conceptual arguments made earlier that

bunching identifies the EIS, because other parameters in general have minor impacts on bunching.

It also confirms the simulation exercises in section 3.3 suggesting that the raw data necessitates a

low EIS, because higher values (such as log preferences) would generate a radically different LTV

distribution.

Finally, we note that a low elasticity of intertemporal substitution could be explained by other

behavioral models and frictions than those considered here. For example, Campbell & Cochrane

43For this latter exercise, we alter the model so that households maximize the following function in each period((
cαt H

1−α
t+1

) σ−1
σ

+ βδ
(
Et
{
V 1−γ
t+1

}) 1
1−γ

σ−1
σ

) σ
σ−1

,

with Vt+1 defined as before.
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(1999) show that consumption habits may lead to low elasticities of intertemporal substitution.

Chetty & Szeidl (2016) show that consumption commitments (captured by adjustment costs in

consumption) may generate similar behaviors as consumption habits. Such models offer potential

mechanisms that could explain the low values of the EIS we find.44

6 Conclusion

A large literature estimates the elasticity of intertemporal substitution using non-experimental data

and structural models. The EIS is arguably one of the most important parameters in economics as

it plays a central role in almost any economic model involving intertemporal choice. It governs

consumption and savings responses to interest rate changes, affects the reaction of consumption to

income shocks, is an important parameter for asset pricing, and provides a key statistic for evaluat-

ing a range of macroeconomic and microeconomic policies. We contribute to efforts to estimate the

EIS with a new approach that combines quasi-experimental identification with structural methods.

Our new methodology translates empirical moments arising from bunching at mortgage interest

notches into EIS estimates. Using administrative mortgage data from the UK, we first illustrate our

approach in a simple two-period model, and then generalize to a rich stochastic lifecycle model.

The two models produce very similar results: the EIS is small, around 0.1. Although we observe

lots of bunching at notches, the intertemporal incentives created by those notches are so large that

there would have to be much more bunching to justify large values of the EIS. Our results are close

to the level obtained in the early macro-based literature (e.g. Hall 1988), although we have arrived

at this conclusion using a fundamentally different approach.

44However, note that non-responses due to consumption commitments may be partly captured by the Kleven-Waseem
friction adjustment approach.
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FIGURE 1: OBSERVED LTV DISTRIBUTION AMONG UK REFINANCERS
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Notes: This figure shows the observed distribution of loan-to-value (LTV) ratios among refinancers in the UK between
2008-14. There are interest rate notches at LTV ratios of 60%, 70%, 75%, 80%, 85%, and 90% (depicted by vertical lines).
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FIGURE 2: OBSERVED VS SIMULATED LTV DISTRIBUTIONS UNDER AN EIS = 1
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Notes: This figure compares the observed LTV distribution (black dots) to a simulated LTV distribution (blue solid) under
Cobb-Douglas preferences (EIS = 1). The simulation is based on the standard lifecycle model introduced in Section 3 in
which households choose their LTV optimally. Cobb-Douglass preferences are very far from being able to fit the data.
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FIGURE 3: INTEREST RATE JUMPS AT NOTCHES
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Notes: This figure shows the conditional interest rate as a function of the LTV ratio from the non-parametric regression
(1). In each LTV bin, we plot the coefficient on the LTV bin dummy plus a constant given by the mean predicted value
E [r̂i] from all the other covariates (i.e., omitting the contribution of the LTV bin dummies). The figure shows that the
mortgage interest rate evolves as a step function with sharp notches at LTV ratios of 60%, 70%, 75%, 80%, and 85%.
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FIGURE 4: CONSTRUCTING THE COUNTERFACTUAL LTV DISTRIBUTION

Panel A: Passive LTV Distribution
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Panel B: Counterfactual LTV Distribution
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Notes: This figure shows the two steps in the construction of the counterfactual LTV distribution among refinancers. Each
panel shows the actual LTV distribution in black dots (as in Figure 1). Panel A shows the distribution of passive LTVs in
orange crosses, calculated based on the LTV of the previous mortgage, amortization, and the house value at the time of
refinancing. Panel B shows the distribution of counterfactual LTVs in orange crosses, which adjusts passive LTVs for the
average equity extraction of non-bunchers in the actual distribution.
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FIGURE 5: BUNCHING IN A SIMPLE MODEL OF INTERTEMPORAL SUBSTITUTION
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Notes: The figure shows the choice faced by a refinancing household faced with a notched interest rate schedule in a
budget set diagram with LTV λ, on the horizontal axis and consumption in the future, c1, on the vertical axis. Given
the period zero budget constraint and the value of housing, an LTV choiceλ translates into current consumption c0. The
solid black line depicts the budget constraint with an interest notch at the LTV λ∗. The budget constraint has a slope −R
below λ∗ and a slope − (R+ ∆R) above λ∗. There is a discrete jump in the budget set (rather than a kink) because the
interest on the entire loan jumps discretely at the notch. The indifference curves shown are those of the marginal bunching
household that is indifferent between bunching at the notch and borrowing λ∗, and a point λI in the interior of the higher
interest rate bracket. This household would have chosen a point λ∗ + ∆λ in the absence of the interest rate notch. As
described in Section 3, the optimality conditions for λI and λ∗ + ∆λ together with the household’s indifference between
λI and λ∗ identify the curvature of the indifference curves—the Elasticity of Intertemporal Substitution (EIS)—in terms
of observable and/or estimable quantities.
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FIGURE 6: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WHEN VARYING THE EIS

Panel A: σ = 0.06 Panel B: σ = 0.5
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Panel C: σ = 1 Panel D: σ = 2
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Notes: The figure shows simulations of a model introduced in Section 3 for a range of EIS values. The blue lines show
the predicted LTV distribution if households choose leverage optimally according to the model. The black lines show
the empirical LTV distribution. The upper left hand corner has σ = 0.06, which is the EIS that minimizes the MSE of
the predicted bunching masses. Higher EIS values predict far greater bunching masses than found in the data, with a
large share of households jumping more than one notch in the LTV distribution to exploit lower interest charges. The
distribution largely hollows out between notches, in contrast to the data.
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FIGURE 7: BUNCHING ESTIMATION WHEN POOLING NOTCHES
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Notes: The figure shows the actual (f (λ) in black dots) and counterfactual (f0 (λ) in orange crosses) distributions of LTV
(λ), pooling all notches (60%, 70%, 75%, 80%, 85%). The green squares show the conditional interest rate in each LTV bin
from the regression described in Section 2.3 and the footnote to Figure 3. The counterfactual LTV distribution is obtained
using the method outlined in Section 2.4 and the footnote to Figure 4. The figure also shows the jump in the conditional
interest rate at the notch ∆r; the (raw) normalized amount of bunching in the actual distribution b(raw), calculated as
described in Section 3; and b which is the amount of bunching net of round number bunching.
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FIGURE 8: BUNCHING ESTIMATION AT INDIVIDUAL NOTCHES

Panel A: 70% LTV Notch Panel B: 75% LTV Notch
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b = 6.86 (0.390)
Δr = 0.33 (0.015)

b (raw) = 7.05 (0.228)
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Panel C: 80% LTV Notch Panel D: 85% LTV Notch

Δr = 0.37 (0.024)
b = 6.42 (0.743)
b (raw) = 8.98 (0.386)

3
3.

5
4

4.
5

5
In

te
re

st
 R

at
e 

(%
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

D
en

si
ty

 D
is

tri
bu

tio
n

75 76 77 78 79 80 81 82 83 84 85
Loan to Value Ratio (%)

Actual Counterfactual
Conditional Interest Rate

Δr = 0.39 (0.062)
b = 7.45 (0.995)
b (raw) = 9.24 (0.593)

3
3.

5
4

4.
5

5
In

te
re

st
 R

at
e 

(%
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

D
en

si
ty

 D
is

tri
bu

tio
n

80 81 82 83 84 85 86 87 88 89 90
Loan to Value Ratio (%)

Actual Counterfactual
Conditional Interest Rate

Notes: The figure shows the actual (f (λ) in black dots) and counterfactual (f0 (λ) in orange crosses) distributions of LTV (λ), at the notches at 70% (Panel A), 75%
(Panel B), 80% (Panel C) and 85% (Panel D) LTV. The green squares show the conditional interest rate in each LTV bin from regression described in Section 2.3 and the
footnote to Figure 3. The counterfactual LTV distribution is obtained using the method outlined in Section 2.4 and the footnote to Figure 4. The figure also shows the
jump in the conditional interest rate at the notch ∆r; the (raw) normalized amount of bunching in the actual distribution b(raw), calculated as described in Section 3;
and b which is the amount of bunching net of round number bunching.
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TABLE 1: DESCRIPTIVE STATISTICS ACROSS SAMPLES

(1) (2) (3)
Full sample Refinancer Refinancer panel

mean/sd mean/sd mean/sd

Interest Rate (%) 4.12 4.26 4.06
(1.29) (1.38) (1.23)

Loan Size (£) 142710.6 138376.2 145400.8
(120512.8) (120725.2) (116489.4)

Property Value (£) 257004.0 263076.4 262304.0
(255284.2) (270122.1) (247074.1)

Loan to Value Ratio (%) 59.9 56.4 58.8
(22.1) (21.7) (19.8)

Gross Income (£) 57270.6 57480.9 57483.2
(84069.3) (84517.4) (77513.0)

Loan to Income Ratios 2.78 2.68 2.78
(1.85) (2.03) (1.60)

Repayments to Income (%) 21.8 22.6 21.9
(39.5) (48.4) (15.4)

Proportion with Joint Income 0.54 0.55 0.55
(0.50) (0.50) (0.50)

Mortgage Term (years) 20.7 19.0 20.0
(7.44) (6.92) (6.65)

Time to Refinance (years) 2.80 2.80 3.27
(1.71) (1.70) (1.72)

Proportion of Fixed Rate Mortgages 0.68 0.65 0.73
(0.47) (0.48) (0.45)

Proportion of Refinance Events 0.56 0.88 0.76
(0.50) (0.32) (0.42)

Borrower’s Age 40.0 41.7 40.3
(10.0) (9.57) (8.93)

Observations 3049164 1961325 647192

Notes: The table shows summary statistics of the three samples used in our analysis. Column (1) shows our full sample:
all usable mortgages in the PSD (house purchases and refis) including (a) observations where we can find information on
the product fee in MoneyFacts (b) any refinancer’s previous mortgage (which we can use without fee information). Col-
umn (2) restricts the sample to refinancers only (all refinance products and any refinancer’s previous mortgage). Finally,
column (3) shows the sample of refinancers in the panel (refinancers we can link over time and where we can construct
a counterfactual LTV ratio). The samples in columns (2) and (3) use all mortgage events for refinancing households.
This includes each household’s first mortgage which, by definition, was not a refinance. As a result, the proportion of
refinance events in columns (2) and (3) is not equal to 1.
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TABLE 2: FROM BUNCHING TO THE EIS: SIMPLE MODEL

Statistic
Notch

60 70 75 80 85 Pooled

Panel A: Bunching Evidence

r(%)
3.17 3.25 3.44 3.76 4.38 3.42
(0.01) (0.00) (0.00) (0.00) (0.01) (0.01)

∆r(%)
0.10 0.21 0.33 0.37 0.39 0.25
(0.01) (0.01) (0.02) (0.02) (0.06) (0.01)

b
0.96 2.94 6.86 6.42 7.45 4.45
(0.17) (0.26) (0.39) (0.74) (0.99) (0.20)

a
0.58 0.21 0.30 0.15 0.08 0.29
(0.05) (0.02) (0.03) (0.02) (0.03) (0.01)

bAdj
2.31 3.73 9.87 7.59 8.11 6.30
(0.49) (0.35) (0.60) (0.89) (1.16) (0.30)

∆λAdj
0.67 1.06 3.32 2.68 3.71 1.93
(0.14) (0.09) (0.18) (0.32) (0.70) (0.09)

Panel B: Elasticities

EIS σ
0.03 0.03 0.17 0.08 0.13 0.07
(0.01) (0.00) (0.02) (0.02) (0.05) (0.01)

Reduced-form ε
0.53 0.53 0.60 0.56 0.58 0.55
(0.01) (0.00) (0.01) (0.01) (0.02) (0.00)

Notes: The table shows our reduced-form estimates using bunching at the various LTV notches separately, and pooling
the notches from 60% to 85%. r is the conditional nominal interest rate below the notch, ∆r is the interest rate jump at the
notch, estimated as described in Section 2.3, bAdj is our normalized bunching estimate, net of round number bunching
and adjusted for optimization frictions, and ∆λAdj is our estimate of the leverage response, estimated as described in
Section 3. The EIS σ is estimated using a simple 2-period model described in Section 3: the solution to the indifference
equation (8). The reduced form elasticity is obtained using (11), derived in Section 3. The standard errors, shown in
parentheses, are obtained by bootstrapping the estimation routine, stratifying by notch, 100 times.
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TABLE 3: BOUNDING OPTIMIZATION FRICTIONS AND THE EIS

Notch
70 75 80 85 Pooled

Panel A: Adjustment Factor a

(1) Dominated Region: Notched Banks Only
0.11 0.15 0.15 0.03 0.12
(0.02) (0.02) (0.03) (0.01) (0.01)

(2) Dominated Region: All Banks
0.21 0.30 0.15 0.08 0.22
(0.02) (0.03) (0.02) (0.03) (0.01)

(3) All Mass in the Hole is Friction
0.67 0.60 0.57 0.40 0.61
(0.05) (0.02) (0.04) (0.09) (0.02)

Panel B: Elasticity of Intertemporal Substitution σ

(4) Unadjusted
0.02 0.08 0.06 0.11 0.05
(0.00) (0.01) (0.01) (0.04) (0.01)

(5) Dominated Region: Notched Banks Only
0.02 0.11 0.08 0.11 0.07
(0.00) (0.01) (0.02) (0.04) (0.01)

(6) Dominated Region: All Banks
0.03 0.17 0.08 0.13 0.09
(0.00) (0.02) (0.02) (0.05) (0.01)

(7) All Mass in the Hole is Friction
0.16 0.50 0.31 0.30 0.30
(0.05) (0.07) (0.08) (8.53) (0.03)

Notes: The table shows how the estimated EIS is affected by assumptions on optimization frictions. The top panel of
the table shows the friction adjustment factor a estimated in three different cases. Row (1) shows the friction adjustment
based on mass in the dominated region using only notched banks, row (2) shows the friction adjustment based on mass
the dominated region using all banks (our baseline estimates), while row (3) shows the friction adjustment assuming that
all mass in the hole is due to friction. The bottom panel of the table shows the estimated EIS when not adjusting for
optimization friction (in row (4)), and when adjusting for friction using each of the three measrues provided in the top
panel (in rows (5)-(7)). As explained in the main text of the paper, the EIS estimates provided in rows (4) or (5) are in
general lower bounds, whereas the EIS estimate provided in row (7) is an upper bound. The upper bound is based on
the extreme assumption that all density mass in the hole — not just the mass in the much narrower dominated region
— can be explained by friction rather than by heterogeneity in true preferences (i.e., true preferences are assumed to be
homogeneous in the population).
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TABLE 4: HETEROGENEITY IN THE EIS

Covariate
Quartile

1 2 3 4

Age
0.05 0.09 0.10 0.15
(0.01) (0.02) (0.02) (0.08)

Household Income
0.09 0.08 0.07 0.05
(0.02) (0.01) (0.01) (0.01)

Loan to Income
0.02 0.05 0.08 0.07
(0.01) (0.01) (0.01) (0.02)

Income Growth
0.05 0.06 0.07 0.07
(0.01) (0.02) (0.01) (0.02)

House Price Growth Rate
0.06 0.05 0.04 0.13
(0.02) (0.01) (0.01) (0.03)

Interest Rate Change (Passive)
0.02 0.06 0.11 0.11
(0.01) (0.02) (0.03) (0.03)

Notes: The table shows the heterogeneity in our estimated EIS σ (using the pooled average notch) by age, income, loan
to income (LTI), income growth, house price growth, interest rate change since the previous mortgage (assuming passive
borrower behavior). For each covariate, we partition the refinancer panel into 4 quartiles and separately estimate σ in each
quartile. The standard errors, shown in parentheses, are obtained by bootstrapping the estimation routine, stratifying by
notch, 100 times.

49



TABLE 5: FROM BUNCHING TO THE EIS: FULL STRUCTURAL MODEL

Statistic
Notch

60 70 75 80 85 Average

b
0.96 2.94 6.86 6.42 7.45 4.11
(0.17) (0.26) (0.39) (0.74) (0.99) (0.19)

a
0.58 0.21 0.30 0.15 0.08 0.31
(0.05) (0.02) (0.03) (0.02) (0.03) (0.01)

bAdj
2.31 3.73 9.87 7.59 8.11 5.57
(0.49) (0.35) (0.60) (0.89) (1.16) (0.26)

∆λAdj
0.67 1.06 3.32 2.68 3.71 1.88
(0.14) (0.09) (0.18) (0.32) (0.70) (0.09)

EIS σ
0.05 0.04 0.11 0.11 0.28 0.08
(0.01) (0.01) (0.01) (0.02) (0.15) (0.01)

Notes: The table shows the results of our structural estimation as described in Section 5. b is our normalized bunching
estimate as described in Section 3 and the footnote to Figure 8. a is the adjustment factor for optimization frictions (the
number of individuals observed in the dominated region divided by the number of individuals in the same region in the
counterfactual distribution), and bAdj = b/ (1− a) is our bunching estimate, adjusted for optimization frictions. ∆λ is
the leverage response corresponding to bAdj . σ is the Elasticity of Intertemporal Substitution (EIS) that solves the full
model described in Section 5. The standard errors, shown in parentheses, are obtained by bootstrapping the estimation
routine, stratifying by notch, 100 times.
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TABLE 6: ROBUSTNESS OF EIS ESTIMATES

(1)
Discount
Factor δ

0.7 0.9 0.96 0.99

0.13 0.12 0.08 0.12
(0.015) (0.015) (0.011) (0.013)

(2)
Present
Bias
Factor β

0.3 0.5 0.7 1

0.17 0.14 0.11 0.08
(0.026) (0.019) (0.015) (0.011)

(3)
Risk
Aversion γ

0 1 2 CRRA

0.11 0.12 0.08 0.15
(0.011) (0.012) (0.011) (0.013)

(4)
Future
Interest
Rates

+0pp +1pp +2pp +3pp

0.08 0.11 0.12 0.12
(0.011) (0.014) (0.013) (0.013)

(5)
House
Price
Trend

-0.6% 0 0.6% 6%

0.10 0.10 0.08 0.10
(0.014) (0.014) (0.011) (0.014)

(6)
House
Price
Variance

0 0.004 0.006 0.008

0.08 0.10 0.08 0.16
(0.009) (0.011) (0.011) (0.012)

(7)
Lifecycle
Income
Profile

Peak £44K £46K £56K £80K
Slope 0% 0.7% 2.7% 6.5%

0.12 0.08 0.09 0.08
(0.016) (0.011) (0.008) (0.016)

(8)
Unemployment
Probability

3% 5% 7% 10%

0.09 0.08 0.11 0.12
(0.014) (0.011) (0.013) (0.015)

(9)
Replacement
Rate

60% 80% 100%

0.08 0.13 0.12
(0.011) (0.013) (0.016)

Notes: The table shows the robustness of our estimates of the elasticity of intertemporal substitution σ to a number
of the assumptions of our structural model. Panel (1) varies the discount factor δ. Panel (2) relaxes our assumption that
households discount the future with traditional geometric discounting, and allows for quasi-hyperbolic β− δ discounting
with present bias parameters β from 0.3 to 1 (geometric discounting). Panel (3) varies the coefficient of relative risk
aversion γ. Panel (4) varies (deterministic) future interest rates by shifting the entire yield curve up by 1pp to 3pp. Panel
(5) varies real house price growth ranging from house price declines to house price increases an order of magnitude
larger. Panel (6) varies the variance of house price growth in household expectations. Panel (7) varies the deterministic
lifecycle component of income expectations. In all cases, the lifecycle component is quadratic. The “Peak” parameter
gives peak income and the “Slope” parameter gives expected income growth at the time of refinancing. Panels (8) and
(9) vary assumptions on income uncertainty, with panel (8) varying the probability of unemployment and panel (9) the
unemployment replacement rate.

51



Web Appendix (Not For Publication)

A Supplementary Figures and Tables

FIGURE A.1: REFINANCING HAPPENS WHEN THE RESET RATE KICKS IN
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Notes: The figure shows the distribution of the time to refinance, excluding individuals where the date on which the
reset rate kicks in is unobserved. The figure shows individuals individuals who refinance more than 6 months after their
reset rate kicks in in black, individuals who refinance more than 2 months before their reset rate kicks in in white, and
the remainder who refinance around their reset date in gray.
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FIGURE A.2: ESTIMATING INTEREST RATE JUMPS WITH BORROWER DEMOGRAPHICS
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Notes: The figure shows the conditional interest rate as a function of the Loan-To-Value (LTV) ratio based on a regression
like (1), but adding controls for borrower demographics. Specifically, we add controls for age, income, single/couple
status, and the reason for refinancing. In each LTV bin, we plot the estimated coefficient on the LTV bin dummy plus
a constant given by the mean predicted value E [r̂i] from all the other covariates. The figure shows that the mortgage
interest rate evolves as a step function with sharp notches at LTV ratios of 60%, 70%, 75%, 80%, and 85%. These notches
are virtually unchanged compared to the specification without borrower demographics.
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FIGURE A.3: EQUITY EXTRACTION BY PASSIVE LTV FOR NON-BUNCHERS
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Notes: The figure shows the moving average of equity extracted on the y-axis, calculated among households that do
not bunch in the actual LTV distribution. The x-axis is the passive LTV, i.e. the LTV that results from applying the
amortization to the previous mortgage and using the new lender-assessed property valuation. This moving average is
used to adjust the passive LTV distribution to obtain the counterfactual LTV distribution.
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FIGURE A.4: NUMBER OF PAST AND FUTURE BUNCHING EVENTS BY CURRENT LTV
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Notes: The figure shows the average number of past and future bunching events as a function of current LTV choice.
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FIGURE A.5: STRUCTURAL EIS VS REDUCED-FORM ELASTICITY

EIS (<)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

LTW = 1

LTW = 1/2

LTW  = 0

Notes: The figure shows the reduced-form borrowing elasticity ε as a function of the structural EIS σ, assuming that
δ = R = 1. The correspondence between the two follows from equation (11). The three curves correspond to three values
of the loan-to-wealth (LTW ) ratio, which is the ratio of the mortgage loan to total future housing and human wealth. The
reduced-form elasticity is increasing in σ, but is also affected by LTW . A given reduced-form estimate is thus consistent
with a wide range of structural estimates of the EIS.
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FIGURE A.6: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WHEN CALIBRATING NON-EIS
PARAMETERS

Panel A: σ = 0.06; Realistic δ, y,P
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Panel B: σ = 1; Calibrated δ, y,P
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Notes: The figure shows two simulations of a model introduced in Section 3. In the upper panel, the EIS is calibrated (to
σ = 0.06) to minimize the MSE of the bunching moments, while other parameters are externally calibrated to realistic
values. In the lower panel, the EIS is set to σ = 1 and remaining parameters are calibrated to minimize the MSE of
the bunching moments. The blue lines show the predicted LTV distribution if households choose leverage optimally
according to the model. The black lines show the empirical LTV distribution. The model can match the LTV distribution
when calibrating the EIS alone, but has difficulty in doing so when σ = 1, even if all other parameters are set for
this purpose. Further, the parameter values arising from this latter calibration are unrealistic, with a discount factor
of δ = 0.24, house price expectations of −12% annually and income growth expectations of −42% annually.
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FIGURE A.7: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WITH FRICTION ADJUSTMENT

Panel A: σ = 0.12 Panel B: σ = 0.5
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Panel C: σ = 1 Panel D: σ = 2
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Notes: The figure shows simulations of a model introduced in Section 3 for a range of EIS values. The simulations include
a friction adjustment so that a fraction a∗of non-bunching households are assumed to be “non-optimizers”, who behave
as though they face the counterfactual interest rate schedule (and thus choose the corresponding counterfactual LTV). The
blue lines show the predicted LTV distribution from the model. The black lines show the empirical LTV distribution. The
upper left hand corner has σ = 0.12, which is the EIS that minimizes the MSE of the predicted bunching masses. Higher
EIS values predict far greater bunching masses than found in the data, with a large share of households jumping more
than one notch in the LTV distribution to exploit lower interest charges. The distribution largely hollows out between
notches, in contrast to the data.
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FIGURE A.8: LTV DISTRIBUTION IN THE NO-NOTCH SAMPLE

Panel A: No-Notch Sample vs Full Sample
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Panel B: Round-Number Bunching in the No-Notch Sample
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Notes: This figure shows frequency of refinancers in the neighborhood of notches, in bank-month observations where the
bank didn’t feature a interest rate jump at the notch. Panel A show this distribution alongside the frequency of refinancers
in the neighborhood of notches, in bank-month observations where a notch was present. It demonstrates that “no-notch
banks” are a relatively small portion of our sample. Panel B zooms in on the distribution of mortgages at “no-notch
banks”, together with the counterfactual distribution. It shows a small amount of round number bunching. We correct
our estimates of bunching in response to interest rates with the magnitude of round number bunching.
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FIGURE A.9: INTEREST RATE SCHEDULES IN BANKS WITH AND WITHOUT NOTCHES
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Notes: This figure shows the average interest rate in the neighborhood of the pooled notch for bank-months that featured
a notch and those that did not. The interest rate is estimated using equation (1) for these subsamples. Relative to “no-
notch banks”, banks with notches offer a discount at LTVs below the notch.“notched
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TABLE A.1: PARAMETER VALUES IN THE FULL STRUCTURAL MODEL

Parameter Value Source

Refinancing Cost Ω £1,000 Moneyfacts

House Price Process
Autocorrelation ρh 0.875 Nationwide

Trend p1 0.006 mortgage data
Variance σ2

p 0.006 1974–2016

Quadratic lifecycle linear 1,360 Her Majesty’s
income profile coefficients quadratic 14 Revenue & Customs

Unemployment probability 5% Historical average

Replacement Rate 60% Benefit formulas

Future Bank of England policy rate Calibrated to yield curve

Inflation expectations 2% Bank of England target

Bequest motive Γ 0.1 Internally calibrated

Mortgage amortization rate µt 1 / (70 - Age + 1) Moneyfacts

Risk aversion γ 2 Literature

Housing depreciation d 0.025/annum Harding et al. (2007)

Discount factor δ 0.96 Literature

Notes: This table shows calibrated parameters, their values, and source. A detailed description is found in Section D.2.
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B Proofs of Propositions in the Simple Model

B.1 Proposition 1

The Euler equation (4) and the budget constraints (2) and (3) imply:

y1 −RλP0H + (1− d)P1H = (δR)σ [W0 + y0 − (1− λ)P0H ] . (B.1)

Applied to the marginal buncher at the counterfactual, this gives (5). Applied at the optimal interior

LTV it gives

λIP0H =
y1 + (1− d)P1H − (δ (R+ ∆R))σ (W0 + y0 − P0H)

(δ (R+ ∆R))σ + (R+ ∆R)

Then consumption in period zero at the optimal interior LTV is given by

cI0 = W0 + y0 −
(
1− λI

)
P0H

=
1

(δR)σ
((δR)σ +R+ ∆R)

(
y1
P0H

+ (1− d)Π1

)
− (R+ ∆R) ((δR)σ +R) (λ∗ + ∆λ)

(δ (R+ ∆R))σ + (R+ ∆R)
P0H. (B.2)

Using the Euler equation, the value of bunching at the interior is given by

V I =
σ

σ− 1

(
1 + δσ (R+ ∆R)σ−1

) (
cI0
) σ−1

σ .

Plugging (B.2) into this last equation gives the value of the best interior LTV in (6).

Using the budget constraints (2) and (3), with LTV at the notch, λ∗, gives consumption of

cN0 = W0 + y0 − P0H + λ∗P0H

=
y1
P0H

+ (1− d)Π1 −Rλ∗ − ((δR)σ +R)∆λ
(δR)σ

P0H

and

cN1 = y1 −Rλ∗P0H + (1− d)P1H

=

(
y1
P0H

+ (1− d)Π1 −Rλ∗
)
P0H.

Together, these give lifetime utility as in (7). The marginal buncher is defined as one who is indif-
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ferent between the optimal interior c_{0}=c_{1}LTV and bunching at the notch, so that V N = V I ,

giving the statement in Proposition 1.

B.2 Proposition 2

At an optimal interior LTV choice, (2) to (4) give

λ =
y1 + (1− d)P1H + (δR)σ (P0H −W0 − y0)

((δR)σ +R)P0H
.

Differentiating this equation with respect to the interest rate R gives (11).

B.3 Proposition 3

As σ → 0, the Euler equation gives c1 = c0. Lifetime utility converges to Leontief preferences and

utility is equal to the smaller of c0 and c1. The Euler equation holds at the best interior LTV so that

lifetime utility is given by period zero consumption cI0. Bunching at the notch requires forgoing cur-

rent consumption for future consumption, so that cN0 < cN1 and lifetime utility at the notch is given

by cN0 . Thus households are better off bunching at the notch even with a zero EIS for counterfactual

LTVs that give cI0 < cN0 .

Applying the Euler equation c1 = c0 and the budget constraints (2) and (3) at the counterfactual

with σ = 0 imply that initial wealth satisfies:

W0 + y0 − P0H = y1 + (1− d)P1H − (R+ 1) (λ∗ + ∆λ)P0H.

At this level of initial wealth cI1 = cI0 and the budget constraints imply that the best interior LTV is

λI =
R+ 1

R+ ∆R+ 1 (λ∗ + ∆λ) .

Applying this to (2) gives period zero consumption of

cI0 = y1 + (1− d)P1H −
(R+ 1) (R+ ∆R)

R+ ∆R+ 1 (λ∗ + ∆λ)P0H.

Applying (2) at the notch, where λ = λ∗ and the interest rate is R gives

cN0 = y1 + (1− d)P1H + (λ∗ − (R+ 1) (λ∗ + ∆λ))P0H.
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As noted above, a region of the counterfactual distribution is strictly dominated by bunching if

cN0 > cI0 even as σ → 0. Applying the last two equation to this inequality gives

λ∗ + ∆λ
λ∗

≤ R+ ∆R+ 1
R+ 1 ,

or

λ∗ + ∆λ <
(

1 + ∆R
R+ 1

)
λ∗,

giving the dominated range in (12).

C Multi-Period Version of the Simple Model

The two-period model in section 3 can easily be extended to have many periods, t = 0, 1, ...,T . In the

multi-period version of the model, we assume that households face a notched interest rate schedule

in period 0, but do not face notches after this time. We also assume that house price growth net of

depreciation is constant. Households maximize their lifetime utility from non-housing consumption
σ
σ−1 ∑T

t=0 δ
t
(
cit
) σ−1

σ and face a sequence of budget constraints given by

ct =


y0 +W0 − (1− λ1)P0H0 if t = 0

yt −RtλtPt−1Ht−1 + λt+1PtHt if 1 ≤ t < T

yT −RTλTPT−1HT−1 + PTHT if t = T

(C.3)

In the absence of notches, household maximization yields the Euler equation

ct = (δRt)
σ ct−1 1 ≤ t ≤ T − 1. (C.4)

Combining this with the budget constraints from period 1 onward, period 1 consumption satisfies

c1 =
Y + (RH −R1λ1)P0H0

R̃
(C.5)

where R̃ ≡ ∑T
t=1 (δ

σ)t−1 ∏t−1
s=1 (Rs+1)

σ−1 is a sufficient statistic for the future path of interest rates,

RH ≡
(
∏T
s=2R

−1
s ΠT

)
gives the value of house price appreciation to period T , and Y ≡ ∑T

t=1 yt ∏t−1
s=1R

−1
s+1

is the net present value of the household’s income from period 1 inwards. Note that if interest

rates are constant at R these become R̃ =
[
1−

(
δσRσ−1)T ] /

[
1−

(
δσRσ−1)], RH = RT−1ΠT , and

64



Y =
(
1−R−T ) /

(
1−R−1).

To derive the indifference condition of the marginal buncher in the multi-period model, we start

by analyzing the marginal bunching household’s counterfactual LTV choice at a constant interest

rateR1, λ∗1 + ∆λ1. This choice satisfies the Euler equation (C.4) in period 1 and using (C.5) allows us

to express the marginal bunching household’s wealth as a function of the other parameters of the

model through

W0 = P0H0 − y0 +

Y
R̃
+
[
RH
R̃
−
(
R1
R̃

+ (δR1)
σ
)
(λ∗1 + ∆λ1)

]
P0H0

(δR1)
σ (C.6)

The marginal buncher’s optimal interior choice of LTV λI at the higher interest rateR1 +∆R also

satisfies the Euler equation in period 1. Inserting the period-0 budget constraint (C.3), the period-1

budget constraint (C.5) and the expression for wealth (C.6) yields

λI1P0H =
Y
R̃
+ RH

R̃
P0H0 − [δ (R1 + ∆R)]σ (y0 +W0 − P0H)

R1+∆R
R̃

+ [δ (R1 + ∆R)]σ
(C.7)

Inserting equations (C.6) and (C.7) into the period-0 budget constraint, this choice of LTV yields

consumption of

cI0 = y0 +W0 − P0H + λI1P0H

=

(
Y
R̃
+ RH

R̃
P0H0

) [
(δR1)

σ + R1+∆R
R̃

]
− (λ∗1 + ∆λ1)

R1+∆R
R̃

[
R1
R̃

+ (δR1)
σ
]
P0H0

(δR1)
σ
[
R1+∆R

R̃
+ [δ (R1 + ∆R)]σ

] (C.8)

and so the lifetime non-housing consumption utility of the marginal buncher at the interior choice

λI is given by

V I =
σ

σ− 1

[(
cI0
) σ−1

σ + δR̃
(
cI1
) σ−1

σ

]
=

σ

σ− 1

[(
cI0
) σ−1

σ + δR̃
(
[δ (R1 + ∆R)]σ cI0

) σ−1
σ

]
=

σ

σ− 1
R̃

R1 + ∆R

[
R1 + ∆R

R̃
+ [δ (R1 + ∆R)]σ

] 1
σ

(δR1)
1−σ

×
([

Y

R̃
+
RH

R̃
P0H0

] [
(δR1)

σ +
R1 + ∆R

R̃

]
− (λ∗1 + ∆λ)P0H0

R1 + ∆R
R̃

[
R1

R̃
+ (δR1)

σ

]) σ−1
σ

(C.9)

If instead the marginal buncher chooses to be at the notch, the household’s period-0 consump-
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tion is gets

c∗0 = y0 +W0 − P0H + λ∗1P0H

=

Y
R̃
+
[
RH
R̃
−
(
R1
R̃

+ (δR1)
σ
)
(λ∗1 + ∆λ1)

]
P0H0 + λ∗P0H0 (δR1)

σ

(δR1)
σ (C.10)

where the second equality follows by substituting wealth using equation (C.6). Equation (C.5) im-

plies that their period-1 consumption is

c∗1 =
Y + (RH −R1λ

∗
1)P0H0

R̃
(C.11)

giving lifetime consumption utility of

V N =
σ

σ− 1


 Y

R̃
++

[
RH
R̃
−
(
R1
R̃

+ (δR1)
σ
)
(λ∗1 + ∆λ1)

]
P0H0 + λ∗P0H0 (δR1)

σ

(δR1)
σ


σ−1
σ

+δR̃

(
Y + (RH −R1λ

∗
1)P0H0

R̃

) σ−1
σ

]
(C.12)

The EIS in the extended model is therefore the solution to V N = V I .

We can also derive the reduced-form elasticity ε in the multi-period model by differentiating the

period-1 Euler equation with respect to the period-1 interest rate (holding all future interest rates

constant), yielding

ε ≡ − d log λ1
d logR1

=

(
R1/R̃

)
+ σ (δR1)

σ(
R1/R̃

)
+ (δR1)

σ −
σ (δR1)

σ P0H0−y0−W0
(Y +RHP0H0)/R̃

1 + (δR1)
σ P0H0−y0−W0

(Y +RHP0H0)/R̃

(C.13)

As σ → 0, ε→ R1/R̃
(R1/R̃)+1

' 1
1+T bounding ε from below in the generalized model.

D Solving the Full Structural Model

In each period, households face a choice between the liquid asset and consumption. At the end of

an existing mortgage (every m periods), or when moving, they refinance and also face a choice of

debt (or LTV). Finally, households face a discrete choice of housing quality (moving choice). We

analyze these three margins in turn.

LIQUIDITY CHOICE: A household that neither moves (Ht+1 = Ht) nor refinances (Dt+1 = (1− µt)Dt)
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chooses consumption ct and liquidity Lt+1 to maximize lifetime utility, i.e.

V L
t (Lt,Ht,Dt) = max

Lt+1,ct

σ

σ− 1
(
cαt H

1−α
t+1

) σ−1
σ + δEt {Vt+1 (Lt+1,Ht+1,Dt+1)}

subject to the budget constraint

ct = yt + (1− πt)Lt −Lt+1 − (rt + µt)Dt − dPtHt.

V L
t (.) gives the value to a borrower entering period t, if she chooses to remain in the same house

and with the same mortgage. Vt+1 (.) gives the value to a borrower entering period t + 1. This

maximization problem gives the following short-run Euler equation:

ψt = δEt {(1− πt+1)ψt+1}+ ζt, (D.14)

where ζt is the shadow value of relaxing the liquidity constraint, and ψt is the marginal utility of

non-durable consumption given by

ψt ≡ α
(
Ht+1
ct

)1−α (
cαt H

1−α
t+1

)− 1
σ . (D.15)

Equation (D.14) is a standard Euler equation that governs how a household draws down or accu-

mulates liquidity in order to smooth non-housing consumption. The non-negativity constraint on

liquidity creates a precautionary motive to hold liquid assets. In effect, a household that neither

moves nor refinances faces a cake-eating problem as it runs-down liquidity until the next time it

refinances.

MORTGAGE DEBT CHOICE: When refinancing an existing house, the household faces the following

decision problem

V R
t (Lt,Ht,Dt) = max

Lt+1,Dt+1,ct

σ

σ− 1
(
cαt H

1−α
t+1

) σ−1
σ + δEt {Vt+1 (Lt+1,Ht+1,Dt+1)} (D.16)

subject to the budget constraint

ct = yt + (1− πt)Lt −Lt+1 − dPtHt +Dt+1 −RtDt −Ω. (D.17)

Here V R
t (.) is the value to a borrower entering period t, conditional on refinancing. Recall that the
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interest rate in the following period(s) is a function of the choice of current LTV and therefore of

current debt. Specifically, it is a flat function of LTV between notches and features discrete jumps

at notches. Hence, the continuation value Vt+1 (Lt+1,Ht+1,Dt+1) is discontinuous at the critical

LTV ratios and therefore at critical values of debt Dt+1.45 The choice of debt Dt+1 can therefore

be separated into a discrete and continuous component. We define V I
t (Lt,Ht,Dt) as the value

of choosing the best interior value of debt, i.e. the value of maximizing (D.16) s.t. (D.17) while

ignoring the presence of notches. Moreover, we define V N
t (Lt,Ht,Dt) as the value of borrowing to

the notch, i.e. the value of maximizing (D.16) s.t. (D.17) when restricting to Dt+1 = λ∗PtHt+1. A

household chooses to bunch at the notch iff V N
t (Lt,Ht,Dt) ≥ V I (Lt,Ht,Dt). This is equivalent to

the bunching decision in the 2-period model of Section 3 that led to the indifference equation (8).

Hence V R
t (Lt,Ht,Dt) ≡ max

{
V N
t (Lt,Ht,Dt) ,V I (Lt,Ht,Dt)

}
gives the value of refinancing.46

Whether borrowing at the interior optimum or at the notch, liquidity choice is given again by

(D.14). When refinancing, a household chooses the liquid buffer stock it wishes to store in antici-

pation of the cake-eating it will face while locked in to the current mortgage. The interior choice of

debt is given by

ψt = −δEt
{
∂Vt+1 (Lt+1,Ht+1,Dt+1)

∂Dt+1

}
,

where Ht+1 = Ht (not moving). The envelope theorem cannot generally be used to evaluate the

marginal cost of debt (the right hand side of the equation), because of the fixed cost to refinancing

and the discontinuities in the value function due to the notched mortgage schedule. But conceptu-

ally, the marginal cost of debt is driven by the discounted marginal utility of non-durable consump-

tion at the next refinancing event. Specifically, if the time of next refinancing were known with

certainty and the household never ran of out liquidity between mortgages, the first order condition

would be rewritten as

ψt = δmEt {Rt,t+mψt+m} , (D.18)

where Rt,t+m is the cumulative marginal cost of a unit of debt carried until the next refinancing

year.47 This is a long-run Euler equation governing the choice of debt over the lifecycle. The long-

and short-run Euler equations echo those studied in Kaplan & Violante (2014). Using their termi-

nology, households in this model are wealthy hand-to-mouth: They have positive net worth, but
45This was also the case in the liquidity choice problem discussed above, but didn’t affect the analysis of liquidity

choice.
46The household may also choose to jump several notches, so formally this comparison must be done against all interest

rate notches.
47Rt,t+m is a function of the mortgage interest rate, the inflation rate and the amortization rate in the years of the

existing mortgage’s duration.
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can liquidate their wealth between refinancing episodes only at a cost. When they do not refi-

nance, households can only use their liquid wealth for intertemporal substitution. In contrast, in a

refinancing period, housing wealth becomes liquid again. Hence two separate Euler equations gov-

ern household behavior in these two instances. The short-term Euler equation governs the house-

hold’s liquidity management between mortgages and–when the liquidity constraint binds–their

quasi-hand-to-mouth behavior. The long-run Euler equation determines the household’s longer-

term lifecycle debt management choices.

How do the two Euler equations relate to each other? Assuming zero consumer good inflation

(to sharpen the intuition) and using the law of iterated expectations, the two combine to give

Et

{
m

∑
s=0

δsζt+s

}
= Et {Rt,t+mψt+m} −Et {ψt+m} . (D.19)

This equation equates the marginal benefit of paying down debt to that of holding liquidity. The left

hand side of the equation gives the marginal value of holding liquidity, given by the expected net

present value of the shadow cost of the liquidity constraint. The right hand side gives the marginal

benefit of paying down debt. It gives the excess return on (paying down) mortgage debt relative to

the (zero) return on liquid assets: The liquidity premium.

HOUSING CHOICE: A moving household faces the following decision:

VM
t (Lt,Ht,Dt) = max

Lt+1,Ht+1,Dt+1,ct+1

σ

σ− 1
(
cαt H

1−α
t+1

) σ−1
σ + δEt {Vt+1 (Lt+1,Ht+1,Dt+1)}

subject to

ct = yt + (1− πt)Lt −Lt+1

+ Pt ((1− d)Ht −Ht+1)

+Dt+1 −RtDt −Ω.

The first-order conditions (D.14) and (D.18) still hold: The household is on its short-run and long-

run Euler equations. In choosing a new mortgage, households face a similar bunching decision as

in the refinancing decision described above. Housing choice is given by

[
1− δ (1− d)Et

{
Pt+1
Pt

ψt+1
ψt

}]
PtHt+1
ct

=
α

1− α , (D.20)
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This first-order condition gives the relative expenditure on consumption ct and housing Ht+1. With

Cobb-Douglas preferences, relative expenditure on commodities is equal to the ratio of their load-

ings in the Cobb-Douglass function (in this case α and 1 − α). However, in evaluating housing

expenditure, the price of housing isn’t evaluated at its spot price Pt, but also includes an additional

term (given in in square brackets) that considers the asset value of housing.

MOVING CHOICE: The household moves if VM
t (Lt,Ht,Dt) exceeds V R

t (Lt,Ht,Dt) (when refi-

nancing) or V L
t (Lt,Ht,Dt) (when not refinancing). Conceptually, households will choose to move

when housing expenditure is sufficiently far from optimal, as per (D.20). When refinancing, house-

holds extract or inject equity when they are sufficiently far off of their long-run Euler equations.

This occurs when interest rates are low relative to the value of liquidity (equity extraction decision)

or interest rates are high and the household has sufficient liquidity (equity injection).

BEQUESTS: Finally, in period T , the households may no longer borrow and choose housing and

liquidity as follows:

VT (LT ,HT ,DT ) = max
LT+1,HT+1

σ

σ− 1

[(
cαTH

1−α
T+1

) σ−1
σ + δ (ΓVT+1)

σ−1
σ

]
.

The overall magnitude of bequests is largely driven by the bequest parameter Γ. We evaluate termi-

nal wealth at period T prices. Hence there is no reason to bequeath any amount of the liquid asset

unless house prices are expected to decline. Evaluating bequests at expected prices adds a portfolio

motivation to bequeath some quantity of the liquid asset as a hedge against declining house prices,

but doesn’t impact estimates of the EIS that are based on bunching decisions taken more than 30

years earlier.

D.1 Bunching and Solving for the EIS computationally

We now consider the bunching decision in more detail and how we confront it with the bunching

moments to estimate the EIS. The model is solved computationally via backward induction starting

from age 70 (bequest decision) and solving back to the age τ at which we observe households in the

data (age 38 on average in the full sample, but this varies across cuts of the data). For each guess

of σ, we iterate on the model to solve for the value function Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ). We use this

value function to evaluate households’ continuation value as they make their refinancing choice.

Households observed in the data are non-moving refinancers. In our model, they therefore face a

choice of debt, liquidity, and consumption at time τ . Given their debt choice Dτ+1 and using initial
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wealth Wτ , we can solve for optimal consumption and liquidity as the maximands of

Vτ (Wτ |σ) =
σ

σ− 1
(
cατH

1−α
τ+1

) σ−1
σ + δVτ+1 (Lτ+1,Hτ+1,Dτ+1|σ) ,

subject to the budget constraint

cτ = Wτ −Lτ+1 − (1− λτ+1)PτHτ+1, (D.21)

where λτ+1 = λ∗ when bunching and λτ+1 = λI is solved as the optimal interior LTV choice. In

either case, debt is given by Dτ+1 = λτ+1PτHτ+1. The solution of the liquidity-choice problem for

the two cases gives value functions V N
τ (Wτ |σ) (bunching) and V I

τ (Wτ |σ) (interior). The marginal

buncher is indifferent between bunching at locating at the optimal interior LTV. For this borrower,

the indifference equation

V B
τ (Wτ |σ) = V I

τ (Wτ |σ) (D.22)

holds and can be solved for σ. This is done by repeating the entire process for a range of σ values

and searching for the EIS that solves the indifference equation.

Of course, (D.22) contains parameters other than σ and a number of state variables. How, then,

is σ identified from this equation? The discount factor δ is an important determinant of the level

of borrowing, but has only second order implications for the marginal response to interest rates, as

discussed in Section 3. Accordingly, we find that our results are robust to a wide range of δ and

to hyperbolic discounting. Risk aversion γ could potentially play a role in bunching responses as

it governs the elasticity of demand for liquidity. We experiment with a wide range of values for

this parameter and show that for any degree of risk aversion, a low EIS is nevertheless necessary to

explain the magnitude of bunching moments. Expectations are affected by the stochastic processes

of house prices and income and the future path of interest rates (as well as the depreciation rate

and bequest motives). We discuss their calibration below. However, as we show in our robustness

analysis, our empirical methodology isn’t sensitive to the calibration of these processes. This is

because expectations shift both sides of (D.22) by similar amounts and roughly cancel out from the

estimating equation.

Finally, we do not observe initial wealth directly in our data, but use the method outlined in

Section 3 to estimate it. That is, we back out initial wealth Wτ from the optimality condition of the

marginal buncher at the counterfactual. In the context of the full model, we define initial wealth as
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the sum of housing net worth and the liquid asset, net of the refinancing fee:

Wτ ≡ (1− πτ )Lτ + (1− d)PτHτ −RτDτ −Ω.

In the extended model studied here, a closed-form solution for initial wealth is unavailable, but

we can solve computationally for initial wealth with the following steps.

1. Invert the Euler equations (D.14) and (D.18) and use the counterfactual LTV λ+ ∆λ from the

bunching moment to back out optimal consumption cτ and liquidity Lτ+1.

2. Use the budget constraint (D.21), the counterfactual LTV, cτ , and Lτ+1 to back out initial

wealth Wτ .

To see how this is applied in practice, let λ∗ + ∆λ be the counterfactual LTV estimated for the av-

erage marginal buncher. We observe house value PτHτ+1 in the data and can translate this into

debt Dτ+1 = (λ∗ + ∆λ)PτHτ+1. The solution of the lifecycle model gives us the value function

Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ) and the long- and short-run Euler equations give

ψτ = −δEτ
{

∂

∂Dτ+1
Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ)

}

and

ψτ = δEτ

{
∂

∂Lτ+1
Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ)

}
.

The marginal utility of consumption ψτ is a function of consumption cτ and housing Hτ+1 as in

(D.15). Given housingHτ+1, the two Euler equations can be solved (computationally) for consump-

tion cτ and liquidity choice Lτ+1.48 We can then use the budget constraint to back out initial wealth:

Wτ = cτ − yτ + Lτ+1 − (1− (λ∗ + ∆λ))Pτ+1Hτ+1. (D.23)

Initial wealth Wτ can then be applied to the budget constraint (D.21) when evaluating the indiffer-

ence equation (D.22).

48We observe the nominal value of housing PτHτ+1, but housing quality Hτ+1is unobservable. In our baseline esti-
mates, we assume households have the lowest house quality at the bunching choice, consistent with the lifecycle pattern
of housing choices. Results were robust to allowing any value of initial housing quality. This is partially due to the
unit elasticity between housing and non-housing consumption in our assumed preferences. Strong complementarities
between housing and non-housing consumption would lead to behavior that is observationally equivalent to a low EIS
in our model. See Flavin (2012) for a discussion. As we discuss below, strong complementarity between housing and
consumption are a potential alternative explanation for the low EIS estimated in our model.
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D.2 Calibration

Calibrated parameter values are summarized in Table A.1. We now detail how these parameters

were calibrated.

GENERAL ASSUMPTIONS: We assume that households always refinance when the reset rate kicks

in and setm = 3, based on the average time to refinance in our data. The household faces a liquidity

choice in all periods, as summarized by the short term Euler equation (D.14). In addition, the

household faces a refinancing (and potentially housing) choice every third period. These variables

are chosen in accordance with the the short term and long term Euler equations (D.14) and (D.18)

and housing choice (D.20). We set the fixed refinancing cost to Ω = £1, 000, which is the origination

fee on the typical mortgage product in the UK.

HOUSE PRICES: We assume house prices follow a log linear AR(1) process around a deterministic

growth rate. Accordingly:

lnPt = p0 + p1t+ ρh lnPt−1 + εpt

εpt ∼ N
(
0,σ2

p

)
Using data from the mortgage lender Nationwide from 1974 to 2016 we calibrated the parameters

of this process to ρh = 0.875, p1 = 0.006, and σ2
p = 0.006. We set p0 so as to match the house price at

the time of refinancing in our own data, i.e. we treat individual house prices as having a constant

level shift relative to the national house price process. We will show that our results are robust to

different assumptions about house-price growth and uncertainty.

INCOME: We assume that households face i.i.d. unemployment shocks around a deterministic age

profile yLCt . The i.i.d assumption reduces the state space and eases computation. We will show

that our results are robust to different degrees of income uncertainty and different lifecycle income

patters. Using HMRC data, the average lifecycle profile yLCt is roughly quadratic with

yLCt = 1, 360 ∗Age− 14 ∗Age2 − yi0. (D.24)

In the data the average intercept is yi0 = 6, 830. However, we observe households’ income and age

at time t = τ : The bunching decision. We can therefore match individual’s yi0 based on their age

in the data. In other words, we treat the household’s cross-sectional deviation from the average

age-income profile as a permanent level shift.

We set the probability of unemployment to 5%, roughly the historical average, although results
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are robust to different probabilities as we show in our robustness analysis. Applying formulae for

unemployment benefits to the typical household in our sample gave a replacement rate of approx-

imately 60% in the first year of unemployment when considering all available benefits, including

the universal credit and the job seeker’s allowance. Given our i.i.d. assumption, households rarely

face an unemployment spell exceeding a year.49

INTEREST RATES: We assume households face a fixed interest rate for the m = 3 years of the

mortgage. Mortgage interest rates have a risk premium ρ (λ) over the Bank of England Policy (real)

rate r0
t . We assume that the risk premium is a constant function of LTV as represented in the notched

LTV schedule shown in Figure 3, but that the reference policy rate varies over time. We assume that

the policy rate follows a deterministic time path to reduce the dimensionality of the problem and

ease computation. We forecast the (real) Bank of England policy rate with forward rates implied by

the UK yield curve. This implies a slowly increasing path of interest rates over time.

INFLATION (EXPECTATIONS): We assume inflation is 2% a year each year, as per the Bank of Eng-

land’s target. Higher or stochastic inflation has some implications for portfolio choice (high inflation

expectations make nominal liquid assets relatively less attractive), but little implication for the esti-

mated EIS.

BEQUEST MOTIVE: We experimented with a range of parameters for the bequest motive Γ. Bequests

are 30 years removed from the bunching decision for the average household in our sample and thus

have little impact on our estimates of the EIS. The median British household leaves no bequests and

the median British homeowner leaves only housing wealth as a bequest. The assumption Γ = 0.1

leads to bequests that are of similar magnitude to those observed in the data and we use this in our

baseline simulations.

RISK AVERSION: We estimate the model with Epstein-Zin-Weil preferences. In our baseline esti-

mates, we set risk aversion to γ = 2, as is common in the macro literature. We conduct robustness

analysis with respect to risk aversion, including the possibility of γ = 1
σ , e.g. CRRA preferences.

DEPRECIATION: Harding et al. (2007) estimate an annual depreciation rate of d = 0.025 per annum.

This rate is close to UK estimates of the office of the deputy prime minister, as reported by Attanasio

et al. (2012).

DISCOUNTING: We set δ = 0.96, as is common in the literature and conduct robustness checks with
49One might expect the probability of unemployment to be lower for homeowners than the general population. More-

over, couples comprise half our sample and their replacement rate is higher if only one breadwinner is unemployed.
Our results are robust to a wide range of unemployment probabilities and replacement rates. Generally, unemployment
affects liquidity choice, but not the estimated EIS.

74



respect to this parameter. We also allow for hyperbolic discounting in additional robustness checks.
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