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MODELING WITHIN-HOUSEHOLD ASSOCIATIONS IN
HOUSEHOLD PANEL STUDIES

By Fiona Steele∗, Paul Clarke† and Jouni Kuha∗

London School of Economics & Political Science∗ and University of Essex†

Household panel data provide valuable information about the ex-
tent of similarity in coresidents’ attitudes and behaviours. However,
existing analysis approaches do not allow for the complex associa-
tion structures that arise due to changes in household composition
over time. We propose a flexible marginal modeling approach where
the changing correlation structure between individuals is modeled di-
rectly and the parameters estimated using second-order generalized
estimating equations (GEE2). A key component of our correlation
model specification is the ‘superhousehold’, a form of social network
in which pairs of observations from different individuals are connected
(directly or indirectly) by coresidence. These superhouseholds par-
tition observations into clusters with nonstandard and highly vari-
able correlation structures. We thus conduct a simulation study to
evaluate the accuracy and stability of GEE2 for these models. Our
approach is then applied in an analysis of individuals’ attitudes to-
wards gender roles using British Household Panel Survey data. We
find strong evidence of between-individual correlation before, during
and after coresidence, with large differences among spouses, parent-
child, other family, and unrelated pairs. Our results suggest that these
dependencies are due to a combination of non-random sorting and
causal effects of coresidence.

1. Introduction. In the social sciences, there is considerable interest
in studying dependencies in the attitudes and behaviors of members of the
same household. Previous research on couples suggests that such dependen-
cies can be mainly explained by homogamy or a causal effect of coresidence
(Brynin, Longhi and Mart́ınez Pérez, 2008; Butterworth and Rodgers, 2006;
Davillas and Pudney, 2017). Homogamy is a form of assortative mating
wherein individuals select partners with similar social, cultural and demo-
graphic characteristics (e.g. Blackwell and Lichter, 2004; Kalmijn, 1998),
and is a special case of homophily which refers to the tendency for people
to form social connections with people like themselves (McPherson, Smith-
Lovin and Cook, 2001). In contrast, a causal effect of coresidence arises when
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the (possibly reciprocal) influence of one coresident partner on another, and
shared experiences and influences of family, friends and lifestyle factors,
causes their attitudes and behaviors to converge over time. There is evidence
of couple concordance in social and political attitudes (Brynin, Longhi and
Mart́ınez Pérez, 2008) and health indicators (Davillas and Pudney, 2017).
Moving beyond couples to include other coresidents, within-household corre-
lations have been found across a range of individual outcomes such as voting
in political elections (Johnston et al., 2005), happiness and well-being (Bal-
las and Tranmer, 2012), and self-rated health (Chandola et al., 2003; Sacker,
Wiggins and Bartley, 2006).

In this paper, we examine individuals’ views about the relative contri-
butions made by men and women to household income and looking after
home and family, using longitudinal data from the British Household Panel
Survey (BHPS). Previous studies of attitudinal change have focused on ei-
ther the effects of individual and household characteristics on these attitudes
(Berridge, Penn and Ganjali, 2009; Sweeting et al., 2014), or the concordance
of attitudes within couples (Brynin, Longhi and Mart́ınez Pérez, 2008). We
extend this work to explore whether the association between an individual’s
attitudes and those of other individuals changes before, during and after
they were members of the same household, and test whether the similarity
found between married and cohabiting partners found elsewhere (Brynin,
Longhi and Mart́ınez Pérez, 2008) extends to parents and their children,
other family pairs, and unrelated sharers.

The main methodological challenges are estimating covariate effects on
individual outcomes and modeling the complex association structures for
these outcomes. This complexity arises because of the changes in household
composition over time following, for example, union formation and dissolu-
tion, and children leaving or returning to the parental home. Such changes
are commonly reflected in the design of household panel studies, which fol-
low the original sample members and their new coresidents. This causes
problems because household clusters are defined entirely in terms of their
members (usually as groups of people sharing living accommodation or one
meal a day). In contrast, clusters such as schools and areas are uniquely
identified entities which remain fixed no matter what membership changes
occur. Hence, while identifiers for fixed entities like schools and areas are
naturally time-invariant, it is unclear how to define “longitudinal house-
holds” and attempts to do so have been described as “futile” (Duncan and
Hill, 1985). An alternative view of households, which we adopt in this pa-
per, is as “evolving social networks” (Murphy, 1996). Figure 1 illustrates
the formation of such a network over three waves. At the first wave, there
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is one household consisting of a couple (A,B) and their son C (Figure 1a).
The couple has split by the second wave, with the man A forming a new
single-person household and the woman B remaining with her son C. By the
third wave, A has formed a new partnership with D, C has left home to live
with friend E, and B’s household does not respond. The network at wave
3, containing all five individuals, is shown in the graph of Figure 1b. Other
examples of clusters that could also be viewed as evolving networks are peer
groups, defined as children taught in the same class or living in the same
neighbourhood, and friendship networks.

(a) Household membership at each wave with gender and age of each indi-
vidual at entry to the panel. Coresidents are grouped together.

(b) Network members with coresidence status at t = 3.

Fig 1: Illustration of the evolution of a household network over 3 waves.

The difficulty in defining longitudinal households is reflected in the meth-
ods commonly used for panel data analysis. The standard approach to the
analysis of an individual-level outcome is simply to ignore household effects,
and account for changes in coresidents through the inclusion of covariates
which index these changes. Those studies which have considered household
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effects have focused on outcomes from one wave (Chandola et al., 2003;
Ballas and Tranmer, 2012; Johnston et al., 2005), or restricted analysis to
households (usually couples) that have remained together for the entire ob-
servation period (e.g. Keizer and Schenk, 2012). The first of these approaches
does not fully exploit the available panel data, while the second leads to
highly selective analysis samples in long panels.

To date, the only approach explicitly allowing changes in household com-
position is the multiple membership random effects model (Goldstein et al.,
2000). We argue that this approach is too restrictive because it constrains
the association structure among coresidents in an unrealistic way and, more
generally, that random effects models are less suitable when clusters are de-
fined entirely by their members. Instead, we propose a more flexible marginal
modeling approach that allows us to directly model and estimate the asso-
ciation structure between coresidents. By taking the individual as the unit
of analysis, and incorporating household-composition changes directly into
the association model, it is unnecessary to define longitudinal households,
or restrict analyses to fixed-membership households. Our approach thus re-
flects the view that a household panel study is “a study of individuals in
their changing household contexts” (Buck and McFall, 2012, p.7).

2. Panel models. We now introduce notation and set out a general
panel model for the mean outcome and the between-outcome covariance
structure for panel data on individuals and their coresidents. Random ef-
fects and marginal formulations of this model are respectively described in
Sections 3 and 4.

Let Yti be the outcome at wave t (t = 1, . . . , T ), and Yi = (Y1i, . . . , YT i)
′

the vector of all outcomes, for individual i (i = 1, . . . , n). We make the usual
simplifying assumption that all individuals are interviewed at the same point
in calendar time, and that every between-wave interval is of equal length.
The outcomes are taken to follow the marginal model

(1) Yti = µt(xti) + rti

where xti is a vector of explanatory variables, µt(xti) = E(Yti|xti) is the
mean outcome, and rti is the zero-mean model residual. For the application
in this paper, we take the mean outcome to follow the linear model

(2) µt(xti) = x′tiβ

where β is a vector of regression coefficients. We are equally interested in
the between-outcome covariances

(3) cov(Yti, Yt′i′ |xti,xt′i′) = σti,t′i′(xti,xt′i′),
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including the pairs where i = i′ or t = t′. Note that µt and σti,t′i′ may involve
different components of xti because each model has separate covariates of
direct substantive interest.

The way in which household effects are accounted for in this model de-
pends on the modeling approach used. For the random effects models which
we discuss in Section 3, household enters through the decomposition of resid-
ual rti into distinct components which include one for household. Conversely,
for the marginal models we develop in Section 4, household enters through
parameterizing σti,t′i′ to reflect whether and how individuals i 6= i′ are con-
nected by coresidence.

Whichever modeling approach is used, we consider nonzero covariances
to be plausible in two situations: for variances and (auto)covariances on the
same individual (that is, when i = i′); and for different individuals connected
through having been residents in the same household(s). We elaborate on
this below, but first we introduce the coresidence-status indicator for i and
i′ at wave t:

(4) ct(i, i
′) =

{
1 if i and i′ are coresident at wave t
0 otherwise

where ct(i, i
′) = 1 if i′ = i. The members of individual i’s household at wave

t can thus be denoted by the set Mti = {i′ : ct(i, i′) = 1}, where Mti = Mti′

for all coresident pairs (i, i′). The households are labelled h = 1, . . . ,H where
hti ∈ {1, . . . ,H} is the label for Mti such that hti = hti′ for all coresidents.

3. Random effects models. We first review and critique random ef-
fects specifications of (1)–(3). We begin with hierarchical models that in-
corporate household effects for the situation where the composition of each
individual’s household remains fixed for the duration of the panel. This is
followed by a description of non-hierarchical multiple membership models
that allow for changes in household membership over time.

3.1. Three-level models for fixed household membership. Consider first
the special case where each household remains fixed across waves, so that
hti = hi for all t, i. Conventional random effects models can then be used to
fit (1)–(3) and its nonlinear generalisations (Goldstein, 2010). In particular,
the classical three-level hierarchical model takes observations Yti to be nested
within individuals, and individuals within the unchanging households. It
decomposes the residual term in (1) as rti = eti + ai + uhi

where eti is
an outcome-specific residual, ai an individual-level random effect and uhi

the random effect for household hi, and all of these terms are taken to
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have zero mean and to be homoscedastic and mutually uncorrelated. Letting
σ2u = var(uhi

) and σ2a = var(ai), the conditional covariances are then

(5) σti,t′i′(xti,xt′i′) = I(i = i′)σ2a + I(hi = hi′)σ
2
u.

This implies that there are two kinds of nonzero conditional dependencies of
the outcomes: the within-individual autocovariances σti,t′i(xti,xt′i) = σ2a+σ2u
for all t 6= t′, and the within-household covariances σti,t′i′(xti,xt′i′) = σ2u
between all individuals i 6= i′ in the same household.

Three-level random effects models have been proposed for the analysis of
repeated-measures data on individuals in couples or families (Atkins, 2005).
An alternative but closely related approach suitable for couples and other
family dyads is a bivariate two-level model (Raudenbush, Brennan and Bar-
nett, 1995). These approaches have been applied widely in couple research,
with analyses based on household panel data restricted to individuals who
remain with the same partner throughout the observation period (e.g. Keizer
and Schenk, 2012). A three-level model was also used in a study of house-
hold effects that included all adult respondents, rather than only couples,
but the treatment of households which change over time was not discussed
(Milner et al., 2014).

Another type of three-level model is the dynamic group model which in-
cludes time-varying group-level random effects (Bauer et al., 2013). While
changing group membership is potentially a reason to allow time-varying
random effects, the application of these models is limited to groups defined
by entities that remain fixed over time even if group membership changes.
Moreover, dynamic group models were explicitly formulated to answer re-
search questions about temporal patterns in group effects over time - for ex-
ample, the stability of school effects in Leckie and Goldstein (2009) - whereas
our focus is specifically on questions concerning correlations between group
members.

3.2. Multiple membership models for time-varying household membership.
We now return to the general situation where the composition of an indi-
vidual’s household may change over time. The only approach which has up
to now been available for this case is multiple membership random effects
modeling as proposed by Goldstein et al. (2000). These models are again
based on decomposing the residual rti in (1) as rti = eti + ai +uti, where uti
is now a random effect for the time-varying household. It is specified as

(6) uti =
H∑

h=1

wh(ti)u
∗
h
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where the u∗h are identically distributed zero-mean random variables for all
the distinct households, taken to have var(u∗h) = σ2u and to be independent
of each other and of the explanatory variables x. The weights wh(ti) are
specified by the analyst and are nonzero if i was a member of h for at least
one wave, and zero otherwise. In other words, the household effect uti for an
individual i at wave t is formed as a weighted sum of effects contributed by
the individual’s different households over time. If the variances of eti and ai
are constant, the variance of rti is also constant if

∑
hw

2
h(ti) = 1 (Goldstein

et al. (2000) assumed, instead, that
∑

hwh(ti) = 1).
In a multiple membership model, the conditional dependencies of observa-

tions Yti are implied by the choice of the weights wh(ti). For instance, suppose
that the household effect uti is defined as an equally weighted sum of the
effects of the dti distinct households that individual i has belonged to in the
observed waves up to t, so that wh(ti) = 1/

√
dti for these households and

wh(ti) = 0 otherwise. Then, for example, the conditional correlation between
Yti and Yti′ is proportional to st(ii′)/

√
dtidti′ , where st(ii′) is the number of

distinct households that individuals i and i′ have shared up to wave t.
Such implied correlation structures are not always substantively satisfac-

tory. In the case introduced above, for example, the correlation depends on
how many households the individuals have shared, but not when this sharing
took place. It also depends on the total numbers of households that have so
far been observed for the individuals. Since this can be no larger than the
current wave t, for a given st(ii′) the correlation is often higher for early waves
of the study than for later ones. Each of these features could be changed
by modifying the specification of the weights, but any such choice would
introduce problems of its own. We are not aware of any way of defining a
multiple membership household effect (6) which would not imply counter-
intuitive patterns of association in some situations.

Even if a multiple membership model always gave coherent associations,
it would still be poorly suited to our goals. This is because, as observed
by Prentice and Zhao (1991, p. 827), “a given random effects model and
distributional assumption implies a corresponding covariance structure on
the response vector. This structure may involve a parameterization that is
not sufficiently flexible or interpretable, especially if the covariances are of
substantive interest”. In our application the changing association structure
between individuals is of interest, and we want to model it directly and to
examine specific hypotheses about it. Instead of random effects models, this
goal is better achieved by using marginal modeling. In the rest of this article
we focus on this approach for data with time-varying household membership.
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4. A marginal modeling approach. We now set out a marginal mod-
eling approach for household panel data. The joint model comprises distinct
marginal models for the mean of each outcome, the variance of these out-
comes, and the pairwise correlations between the outcomes of different in-
dividuals (or of the same individual at different waves). A key component
of the correlation model specification is what we refer to as a superhouse-
hold. This is an artificial group constructed to contain individuals whose
outcomes are potentially correlated because they have experienced shared
influences from the same (cross-sectional) households over time; conversely,
there is no correlation between individuals in different superhouseholds. In
this way, superhouseholds impose a loose cluster structure on the correla-
tion matrix but, in contrast to standard marginal models for panel data, the
within-cluster structure can vary between superhouseholds.

4.1. Specification of the marginal models. Suppose there are nk individ-
uals and mk person-wave observations in cluster k (k = 1, . . . ,K) (noting
that

∑
k nk = n), and let Ytik be the response at wave t for person i in cluster

k. (The definition of the superhouseholds used to determine these clusters
is deferred until Section 4.3.) Define the conditional expectation, scale and
pairwise correlation as µtik = E(Ytik|x1,tik), φtik = var(Ytik|x2,tik)/vtik and
ρtik,t′i′k = cor(Ytik, Yt′i′k|x3,tik,t′i′k) where vtik is the variance function. The
covariate vectors x1,tik and x2,tik may contain a mix of time-varying and
individual-specific characteristics, while x3,tik,t′i′k may contain variables that
characterise the pair of person-wave observations (ti, t′i′), for example the
coresidence status of individuals i and i′ at waves t and t′.

Collating for cluster k, we let Yk = (Y11k, ..., YTnkk) be themk×1 response
vector for cluster k, and µk, φk and ρk be the corresponding mk × 1 mean
and scale vectors and mk(mk − 1)/2× 1 correlation vector, respectively. We
further let X1k, X2k and X3k be the covariate matrices for the mean, variance
and correlation functions respectively. Following Yan and Fine (2004), we
specify generalized linear models for the marginal conditional expectation,
scale and correlation of Yk as

g1(µk) = X1kβ(7)

g2(φk) = X2kγ(8)

g3(ρk) = X3kα(9)

where g1(·), g2(·) and g3(·) are link functions and β, γ and α are parameter
vectors. To ensure positive variance estimates and correlation estimates in
the interval (−1, 1), common choices for g2(·) and g3(·) are, respectively, the
exponential and hyperbolic tangent functions. However, when X2k and X3k



MODELING WITHIN-HOUSEHOLD ASSOCIATIONS 9

consist only of indicator variables, identity links may be adequate, and lead
to more interpretable parameters. In our application (see Section 7), the
parameters of (7) and (9) are of primary substantive interest and therefore
X2k is specified as a constant vector; X3k will contain a set of characteristics
for each pair of observations (Ytik, Yt′i′k) in cluster k, including indicators
that distinguish between observations on the same person (t < t′, i = i′) or
on two coresidents (t ≤ t′, i 6= i′); for coresidents, indicators are also defined
to denote their coresidence status (future, current or past) at t and t′.

4.2. Estimation. We use an extension of the generalized estimating equa-
tions (GEE) approach of Liang and Zeger (1986) for simultaneous estimation
of the marginal mean and association structure of a multivariate response
(Prentice and Zhao, 1991; Liang, Zeger and Qaqish, 1992). This approach,
commonly referred to as second-order GEE (GEE2), is appropriate in sit-
uations where the association structure is of primary substantive interest.
The advantage of standard first-order GEE over GEE2 is that it produces
estimates of the mean parameters which are robust to incorrectly specified
covariance models, but this is only an advantage if the parameters of the
covariance matrix are not of substantive interest.

We adopt the approach of Yan and Fine (2004) by modeling the associa-
tion structure with separate estimating equations for the scale and correla-
tion. One advantage of modeling correlations rather than covariances is that
correlation parameters have a more natural interpretation. The system of
three estimating equations for the mean, scale and correlation parameters is

u(β,γ,α) =
K∑
k=1

D1k 0 0
0 D2k 0
0 0 D3k


′V1k 0 0

0 V2k 0
0 0 V3k


−1 Yk − µk

sk − φk

rk − ρk


where sk and rk are the vectors of empirical variances and pairwise corre-
lations, D1k, D2k and D3k are matrices of first derivatives of µk, φk and
ρk with respect to parameters β, γ and α, and V1k, V2k and V3k are the
conditional working covariance matrices of Yk, sk and rk. The equations
may be solved using a modified Fisher scoring algorithm which has been im-
plemented in the R package geepack (Højsgaard, Halekoh and Yan, 2006).
Standard errors may be obtained using jacknife variance estimators, but less
computationally intensive robust sandwich variance estimators were found
to perform well in the simulation study and application that follow.

4.3. Superhousehold definition. We now formally define the superhouse-
hold clusters for the joint marginal model. As discussed in Section 1, in-
dividuals changing household over time can be thought of as an “evolving
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network” (Murphy, 1996). In this context, the social network evolves as in-
dividuals move from their original households at entry to the panel, and
we can define a superhousehold by grouping together individuals who are
connected by having ever been coresident. Figure 1 made clear that connec-
tions between individuals can be represented by a network graph in which
the coresidence of two individuals is indicated by an edge between them. In
general, a superhousehold is a group of individuals linked by pathways of
edges in the network graph; if no such pathway can be found between a pair
of individuals then they must necessarily be in different superhouseholds.
A pathway will thus exist if the pair were coresident at any wave (a direct
connection), or if they were never coresidents but one them was coresident
with a third person who was ever coresident with the other member of the
pair (an indirect connection). In Figure 1, for example, B and D have never
lived together, but are indirectly connected through their coresidence with A
at different waves. The cluster at t contains all observations contributed by
this set of individuals for waves 1, . . . , t. The clusters in the model specified
by (7)–(9) correspond to the superhouseholds at the final observed wave T .

Using this formulation, we can focus on parameterizing the correlation
between individuals in superhouseholds, in line with how each pair is con-
nected. The construction of a network graph and the identification of su-
perhousehold clusters only requires that we are able to identify the (cross-
sectional) coresidence status of individuals at each wave. In contrast to the
three-level modeling approach, we do not need to choose between unsatis-
factory definitions of a longitudinal household.

More generally, denote by N = (V, E) the undirected network graph
at wave T , where V = {1, ..., n} is the set of vertices/individuals, E =
{CT (i, i′) : for all i 6= i′ ∈ V} is the set of edges between them, and

(10) Ct(i, i
′) =

{
1 if

∑t
t′=1 ct′(i, i

′) > 0,
0 otherwise

for t = 1, ..., T is the superhousehold coresidence indicator at wave t. Using
this notation, the members of individual i’s superhousehold are Si = {i′ :
pathN (i, i′) = 1}, where pathN (i, i′) = 1 if N contains a pathway between
i and i′ or else zero, and pathN (i, i) = 1. If the superhousehold clusters are
indexed by k, then the index of superhousehold Si can be denoted by ki
such that ki = ki′ if Si = Si′ and ki 6= ki′ if Si 6= Si′ .

An important point to note is that the edges in N represent the presence
of conditional associations between pairs of individuals given the rest, and
not pairwise-marginal associations. This is not problematic for normally
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distributed residuals because although conditional covariances are nonzero
for pairs connected by pathways in N , and zero otherwise (e.g. Jones and
West, 2005), this implies that all marginal correlations between pairs of
individuals within the same superhousehold are nonzero.

4.4. Positive definite correlation matrices. As noted above, we can en-
sure that the GEE2 estimator of α yields estimates of the pairwise cor-
relations in the (−1, 1) range by using a hyperbolic tangent link function.
Nevertheless, the GEE2 estimator does not constrain the fitted correlation
matrix under model (9) to be positive definite. While other approaches are
available which could potentially do this, we argue that these are unsuitable
for the present application, in which household transitions lead to super-
households with distinct and unpatterned correlation structures.

Within the GEE framework, quasi least squares regression can be used
to ensure the fitted correlation matrix is feasible in the sense of being posi-
tive definite (Chaganty, 1997). However, the analyst must derive bounds for
the correlations based on the structure imposed on the correlation matrix.
Bounds have been derived for a range of longitudinal and nested struc-
tures (Shults and Hilbe, 2014), but in our case the feasible parameter space
cannot easily be calculated as superhouseholds do not have patterned cor-
relation structures. Most other approaches are based on constrained max-
imum likelihood estimation of joint mean-covariance models (e.g. Jennrich
and Schluchter, 1986; Pourahmadi, 1999), but to date the implementation
of these methods has been confined to patterns where the form of the
within-cluster covariance matrix is the same across clusters. More general ap-
proaches present substantial computational challenges (Chiu, Leonard and
Tsui, 1996), or are suitable for observations with a spatial or temporal struc-
ture (Gneiting, 2002).

We thus propose to use GEE2, despite its not being able to guarantee
positive-definite correlation matrices, because our substantive interest lies
in obtaining accurate estimates of the population correlation parameters
rather than the correlation matrix for each superhousehold. If our correlation
model were correctly specified (or at least not badly mis-specified) then
the impact of failing to constrain our estimates to produce positive-definite
correlation matrices would be an estimator with increased bias and lower
precision, but we could interpret our correlation-parameter estimates in the
same way even if one or more of the estimated superhousehold correlation
matrices were not positive definite. Conversely, if the correlation model were
badly mis-specified, Crowder (1995) showed that a mis-specified working
correlation matrix could result in non-positive-definite correlation matrices
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and inconsistent joint estimators for which the usual asymptotic results do
not hold. However, as Crowder (p.410) suggests, “in practice, statistical
judgement would normally be employed in an attempt to avoid such hidden
pitfalls.”

We investigate this issue empirically in the simulation study by consid-
ering the frequency with which non-positive definite estimates of the super-
household correlation matrices occur and, in the application to gender role
attitudes, by checking whether the estimated superhousehold correlation
matrices are positive definite or not (in the event, every correlation matrix
was estimated to be positive definite). Further discussion of positive-definite
correlation matrices can be found in supplementary materials.

4.5. Missing data. In the presence of missing data, our estimates use the
data from all respondent-wave observations where (Yti,xti) are completely
observed. GEE estimators based on these data are generally consistent only
if the data are missing completely at random, that is, nonresponse is inde-
pendent of any variable (covariate or outcome) in the model. Inferences from
missing at random data, where nonresponse depends only on the values of
the observed variables, can be obtained by incorporating a model for the
nonresponse probability into the estimating equations (Robins, Rotnitzky
and Zhao, 1995).

5. British Household Panel Survey. Our data are from the British
Household Panel Survey (BHPS), which began in 1991 with 10,300 adult
(aged 16 or over) residents in 5,500 households (ISER, 2009). These original
sample members (OSMs) are followed up and interviewed annually. People
who form households with OSMs after 1991 are referred to as temporary
sample members, unless they have children with OSMs in which case they
become permanent sample members (PSMs); children of OSMs also become
PSMs after turning 16. Like OSMs, PSMs are then followed regardless of
whether they remain coresident with an OSM. Tracking of OSMs and PSMs
and their households allows identification of correlations between future,
current and previous coresidents. We use data from waves 1-17 between
1991 and 2008.

5.1. Household structures. A major motivation for our modeling ap-
proach is that changes in household composition over time lead to complex
non-hierarchical structures where person-wave observations are not nested
in households. In BHPS, 12.7% of adult members of a sample household for
two consecutive waves experience a change in their adult coresidents between
waves t and t+ 1 (t = 1, . . . , 16; n = 204, 367 person-waves), where an adult
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is defined as a potential BHPS respondent. The proportion experiencing a
change increases to 31.8% over a 5-year interval (n = 106, 795), 44.0% for a
10-year interval (n = 41, 708) and 50.5% for a 15-year interval (n = 9, 779).
Thus there is appreciable churn in household membership during the period
of observation. Further analysis of the types of event that lead to household
change is given in supplementary material (Table S1).

The superhouseholds we use to define clusters are created using cross-
wave individual and cross-sectional household identifiers. These identifiers
allow us to infer the coresidence of any pair of respondents at waves t and
t′. In practice, the construction of superhouseholds is challenging because
household panel studies have complex designs. In particular, any algorithm
must account for new entrants (from single individuals to entire households)
at each wave, individuals who rejoin previous coresidents (e.g. children re-
turning to the parental home), and wave non-response of households and
individuals within households. Further details are provided in the supple-
mentary material.

5.2. Response variable and covariates for the mean and correlation func-
tions. The response variable is an index of attitudes towards gender roles
obtained from a principal components analysis of six ordinal items. The
items measure strength of agreement with statements such as “family life
suffers when the woman has a full time job” and “both the husband and wife
should contribute to the household income.” The response is the standard-
ized score for the first principal component, with high values corresponding
to more egalitarian attitudes. These questions were asked of the adult re-
spondents every two years so that each individual is observed for a maximum
of nine waves (although the mean is 3.9 waves due to a combination of late
entry into the study, wave nonresponse and attrition). The analysis sample
contains 27,033 adult individuals who contribute 106,060 person-wave ob-
servations. There are 11,460 superhousehold clusters at wave 17, ranging in
size from 1 to 100 person-wave observations (mean=9.4, SD=9.0).

The marginal model for the mean attitude includes the following co-
variates: age in years (centred at 45), gender, highest academic qualifica-
tions (none, below university level, university degree), marital status (mar-
ried/civil partnership, cohabiting, widowed, separated/divorced, never mar-
ried), housing tenure (own outright, own with mortgage, social housing,
private rental), and survey year. The choice of covariates was informed by
previous studies of gender role attitudes using BHPS data (e.g. Berridge,
Penn and Ganjali, 2009; Sweeting et al., 2014).

However, the correlation structure is the focus of our application. We wish
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to estimate the correlation between different individuals’ attitudes while
they are living together (‘current’ coresidents) and test whether this corre-
lation persists after coresidence ends (‘past’ coresidents). Specific research
questions, and details of the covariates X3k from (9) are given in Section 7.
This design matrix contains 891,951 pairs of person-wave observations across
the superhouseholds. A small number are of size 1 (single-person households
observed for only one wave) and so do not contribute to the estimation of
the correlation structure. The number of pairs per superhousehold ranges
from 1 to 4950 (=0.5×100×99 as 100 is the maximum cluster size).

6. Simulation study.

6.1. Design. As discussed earlier, there may be considerable between-
superhousehold variation in the correlation structure ρk. This can lead to
covariance matrices with irregular structures that can be problematic to
estimate (Dempster, 1972). We hence carry out a simulation study to assess
the performance of the GEE estimator across a range of complex correlation
structures.

We generate BHPS-like data with complex dependence structures using
a two-stage approach. The first stage involves generating superhouseholds
by sampling the actual changes in household membership observed in the
BHPS. This is done by listing the superhouseholds constructed in Section
4.3 and selecting superhouseholds from this list. Once a superhousehold is
selected, the time-varying household structure of its members is fixed for
the second stage of the simulation. The second stage involves generating
realisations of the outcome variable using a data generating model (DGM)
which respects the within-superhousehold correlation structure.

For balanced designs, one superhousehold is selected and the clusters
formed by generating M realisations from the DGM described below. For
unbalanced designs, M superhouseholds are sampled with replacement from
the 11,460 BHPS superhouseholds in the analysis sample, and a realisation
generated for each under the DGM. The sampling of superhouseholds was
repeated to generate each replicate of the simulation. The DGM itself is
a simplified version of the models we fit in Section 7. For each correlation
structure, it has a single parameter α1 for within-individual correlations and
three between-individual correlation parameters for individuals i and i′ at
waves t and t′ (t ≤ t′): α2 if coresident at both t and t′, α3 if coresident at
t but not t′, and α4 if past coresidents at both t and t′. As was discussed in
Section 4.3, it is unrealistic to generate zero correlations between individuals
in the same superhousehold, so we also specify α5 to be the correlation for
future or never coresidents (set to 0.15 in the DGM).
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The design matrix for the correlation model was formed from the observed
design matrices for the selected superhousehold(s). The DGM for the mean
model includes an intercept, a dummy for female, and a linear effect of age
(centred at 45 years), with associated parameters (β0, β1, β2). The mean
structure was generated using the observed values of these covariates for the
person-wave observations in the selected BHPS superhouseholds. The DGM
for the residual variance or scale function contains only an intercept term
(γ). The identity link was used for all three submodels. All parameter values
are based on the estimates obtained from fitting the true model to the full
BHPS sample with standardized gender-role attitudes as the response.

The results for each scenario described below are based on 500 simulated
datasets. A series of models with different correlation structures was fitted
to each simulated data set, ranging from M1 (within-individual autocorrela-
tion only) through to the correct model (M4). Each fitted model includes an
additional ‘other’ correlation parameter ᾱ (which equals α5 under M4) for
the complement of the other indicators in the model (that is, 1 minus the
sum of the other indicators). This additional parameter is not of substantive
interest, but avoids imposing any zero constraints on the within-cluster cor-
relations. The mean and scale functions were correctly specified in all fitted
models.

6.2. Results. We considered a number of balanced designs each based
on M = 5000 copies of one selected BHPS superhousehold (or M = 1000
copies for larger superhouseholds). The simplest superhousehold contained
a couple observed together at all waves with no other adult coresidents,
leading to a three-level hierarchical structure. More complex and irregu-
lar superhousehold structures arising from multiple changes in household
membership over the observation period were also considered. For example,
supplementary Table S2 shows the results for a superhousehold containing
25 person-wave observations from five individuals. For this and every other
balanced design considered, the convergence rate was 100%, the implied fit-
ted correlation matrix was always positive definite, estimates and standard
errors were unbiased, and the confidence interval coverage probabilities were
close to the nominal 95% level.

We now turn to the unbalanced case. Table 1 shows the results for repli-
cates where the fitted model converged (determined by the difference be-
tween successive iterations being less than 0.001 for every parameter). The
estimator and standard error are almost unbiased with good confidence
interval coverage. However, nonconvergence is possible even if the correct
model (M4) is specified (increasing the maximum number of iterations from
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25 to 50 does not improve the convergence rate). Model M1 always con-
verges because of its simple correlation structure. When convergence was
not achieved, there was a small bias for the parameter estimates, but a
large positive bias for the standard errors (see supplementary Table S3). As
discussed in Section 4.3, imposing zero constraints on correlations is unde-
sirable and doing so will lead to sparse superhousehold correlation matrices.
For the unbalanced design, the estimator shows a very high chance of non-
convergence when the ‘other’ parameter (ᾱ) is excluded from fitted models
M2–M4. Further discussion of the simulation results can be found in the
supplementary materials.

Table 1
Simulation results for an unbalanced design with r = 500 replicates of M = 5000

superhouseholds selected with replacement from the BHPS data. Results are shown for
the rC replicates for which convergence was achieved.

Mean function Scale Correlation function

β0 β1 β2 γ α1 α2 α3 α4

True -0.1 0.25 -0.015 0.9 0.6 0.3 0.2 0.2
M2 (rC = 323)

Mean -0.100 0.249 -0.015 0.899 0.599 0.296 – –
Mean SE 0.016 0.017 0.001 0.011 0.009 0.014 – –
SD 0.013 0.014 0.000 0.011 0.009 0.015 – –
95% coverage 0.960 0.957 0.954 0.947 0.935 0.913 – –

M3 (rC = 465)
Mean -0.099 0.249 -0.015 0.900 0.600 0.299 0.202 –
Mean SE 0.012 0.013 0.000 0.011 0.009 0.014 0.019 –
SD 0.012 0.013 0.000 0.011 0.010 0.015 0.020 –
95% coverage 0.951 0.951 0.957 0.955 0.935 0.914 0.938 –

M4 (rC = 390)
Mean -0.100 0.249 -0.015 0.899 0.599 0.298 0.202 0.200
Mean SE 0.012 0.013 0.000 0.011 0.009 0.014 0.019 0.027
SD 0.013 0.014 0.000 0.011 0.009 0.015 0.020 0.029
95% coverage 0.949 0.959 0.949 0.954 0.941 0.921 0.926 0.921

As noted in Section 4.4, the fitted correlation matrix implied by the GEE
estimates of α may not be positive definite. To explore how often this might
occur in practice, we computed the number of superhouseholds with a non-
positive definite correlation matrix for M1–M4 for the first 50 replicates
of the unbalanced design with 5000 superhouseholds. (For replicates where
a model did not converge, the correlation matrices after 25 iterations were
used.) The fitted correlation matrices are always positive definite for M1. For
the other models, the final estimates of α sometimes imply a non-positive
definite correlation matrix, but in each case this affected only a small number
of superhouseholds. The proportion of superhouseholds with a non-positive
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definite matrix for replicates where convergence was achieved ranges from
0% to 4.3% for M2, 0% to 2.3% for M3 and 0% to 1.5% for M4, and there is
no discernible effect on the performance of the GEE estimator for any param-
eter (Table 1). When a model did not converge, the maximum proportions
increase to 7.3%, 3.2% and 5.5% for M2–M4, so there is a weak association
between non-convergence and non-positive definite correlation matrices and
both problems can arise even when the model is correctly specified (M4).

7. Application: association structure of gender role attitudes in
Britain.

7.1. Research questions. The application is a longitudinal analysis of
gender role attitudes (GRA) using data from BHPS, with a focus on the as-
sociation structure of coresidents’ attitudes. Previous research on GRA has
used longitudinal models that either ignore household effects (e.g. Berridge,
Penn and Ganjali, 2009) or studied only the cross-sectional similarity be-
tween spouses (e.g. Brynin, Longhi and Mart́ınez Pérez, 2008). We allow
for temporal changes in a person’s coresidents, and exploit the panel design
to investigate questions about the nature of between-individual correlation
before, during and after coresidence. We also extend earlier analyses of cou-
ple concordance by including all adults in a household and testing for dif-
ferences in the between-individual correlation among family and unrelated
dyads. The analysis considers the following specific research questions:

(i) What is the extent of the correlation between coresidents at a given
wave t and across waves t 6= t′? Cross-wave correlations during cores-
idence may be explained by the presence of shared unmeasured time-
invariant influences on attitudes, or the causal effect of one individual’s
attitudes on another’s that persists over time.

(ii) Does between-individual correlation in GRA continue after coresidence
has ended? A decay in correlation with duration since the end of cores-
idence would be expected if similarity in GRA is largely due to recip-
rocal influences during coresidence.

(iii) How does the correlation in GRA differ for couples, other family dyads
and unrelated sharers? Parent-child correlation is most likely explained
by an influence of the parent on the child, while for unrelated dyads
homophily (non-random sorting) and reciprocal influences may both
play a role.

(iv) How do between-individual correlations change after accounting for
individual and household covariates in the model for mean attitudes?
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7.2. Specification of the within-cluster correlation structure. We consider
models of the form (7)–(9) with identity links for the mean, variance and
correlation functions. The model for the mean includes the individual and
household characteristics described in Section 5.2. Although the general
model of (8) allows the scale φk to depend on covariates, we assume a
constant residual variance. In this section we set out the specification of the
correlation structure, and the indicators that form the design matrix X3k in
(9), to investigate questions (i) to (iii) above.

The within-person autocorrelations are assumed to have a Toeplitz struc-
ture, starting with a separate parameter for each lag t′ − t (for t < t′),
measured in two-year intervals:

ρtik,t′ik = αW
t′−t, t′ − t = 1, 2 . . . , 8.

Next, we specify the between-person correlations for current, past and
future coresidents. For individuals i and i′ in the same superhousehold k, we
allow the correlation between their responses at waves t and t′ to depend on
their coresidence status at each wave. For t ≤ t′, we can distinguish the four
situations described below, which are illustrated in Figure 2 for individuals
(A,C,D) from Figure 1.

Fig 2: Classification of between-individual correlations at waves t and t′ (t ≤ t′) by
coresidence status for individuals A, C and D of Figure 1. Dashed borders indicate
coresidence at that wave, and paths represent one correlation of each of the following
types: (a) coresident at t and t′, (b) coresident at t but not t′, (c) past coresidents,
and (d) future coresidents at t.
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(a) Coresident at t and t′. Assuming a Toeplitz structure gives

ρtik,t′i′k = αB
1,t′−t, t′ − t = 0, 1 . . . , 8.

For the example in Figure 1, the set of person-wave observations (ti, t′i′)
with this property is {(1A, 1B), (1A, 1C), (1B, 1C), (2B, 2C),
(3A, 3D), (3C, 3E)}. We investigate question (i) by testing whether αB

1,0 =
0 and considering the change in the correlation with t′ − t.

For pairs where at least one of t and t′ is after or before the period of
coresidence, additive adjustments are made to αB

1,t′−t as described be-
low. This parameterisation differs from that used in the simulation study
where the correlations according to coresidence status at t and t′ were
estimated directly. A more general parameterisation is necessary when
the linear predictor for the correlation is extended to allow correlations
to vary across more than one dimension.

(b) Coresident at t but no longer at t′.

ρtik,t′i′k = αB
1,t′−t + αB

2 , t′ − t = 0, 1 . . . , 8,

where we expect αB
2 < 0 if the correlation is lower when i and i′ are cores-

ident at only t relative to (a) when coresident at both t and t′. In Figure
1, pairs with this property are {(1A, 2B), (1A, 2C), (1A, 3C), (1C, 2A),
(1C, 3A)}.

(c) Past coresidents: last coresident at s < t ≤ t′.

ρtik,t′i′k = αB
1,t′−t + αB

3,t−s, t− s = 1, 2, . . . ,

where we expect αB
3,t−s < 0 for all t − s and |αB

3,1| < |αB
3,2| < . . ., i.e.

the correlation is reduced when i and i′ are no longer coresident rela-
tive to when they were coresident, and the correlation decreases as t− s
increases. This applies to pairs {(2A, 2B), (2A, 2C), (2A, 3C), (2C, 3A)}.
Investigation of question (ii) involves tests of αB

2 = 0 and exploring the
change in αB

3,t−s with t− s.

(d) Future coresidents at t, current or past coresidents at t′. To allow
for the possibility that individuals with similar attitudes may select into
coresidence, the correlation function for individuals who live together
after t is

ρtik,t′i′k = αB
1,t′−t + αB

4 , t′ − t = 0, 1 . . . , 8.
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If individuals influence each others attitudes during coresidence, we ex-
pect αB

4 < 0 while αB
1,t′−t +αB

4 > 0 would be consistent with homophily.
For the example in Figure 1, at t = 1, 2 individuals A and C are future
partners of D and E who enter at t = 3, and pairs contributing to the
estimation of αB

4 are {(1A, 3D), (2A, 3D), (1C, 3E), (2C, 3E)}. Due to
the design of BHPS, it is extremely rare for future coresidents to both
be observed prior to living together, and thus for both t and t′ to be
before coresidence.

The elements of X3k which define the above correlation structure can
be expressed respectively in terms of the household and superhousehold
coresidence indicators ct(i, i

′) from (4) and Ct(i, i
′) from (10) (see Table 2).

Table 2
Within-superhousehold parameters and their corresponding indicator variables for
residual correlations between person-wave observations for individuals i and i′ at

occasions t ≤ t′.
α Covariates in x3,tik,t′i′k Description

αW
1l I(i = i′) I(t′ − t = l) Within person

l = 1, 2, . . .

αB
1l I(i 6= i′)ct(i, i

′)ct′(i, i
′) I(t′ − t = l) Coresident at both

l = 0, 1, . . . t and t′

αB
2 I(i 6= i′) ct(i, i

′) {1− ct′(i, i′)} Coresident at t but
not t′

αB
3l I(i 6= i′) {1− ct(i, i′)} {1− ct′(i, i′)} Not coresident at t

×Cs(i, i′) I(t− s = l) or t′ but were co-
l = 1, 2, . . . resident at s < t

αB
4 I(i 6= i′) {1− ct(i, i′)} Ct′(i, i

′) Not coresident at t,
only at or after t′

In addition to the indicators of coresidence status, we examine question
(iii) by defining indicators for the relationship between individuals i and
i′ (couple, parent-child, other family, or unrelated) with coefficient vector
αB

5 . Table 3 shows the distribution of pairs of person-wave observations
according to the timing of t and t′ with respect to the period of coresidence
and, among pairs contributed by ever coresidents, the distribution by their
relationship.
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Table 3
Classification of person-wave pairs within superhouseholds by coresidence status and

relationship type for occasions t ≤ t′.
Number of pairs Percent

Coresidence status at occasions t and t′ (n = 891, 951)
Same person (t 6= t′) 256,505 28.8
Never coresident during observation period 139,712 15.7
Future coresidents at t; current or past at t′ 28,302 3.2
Current coresidents at both t and t′ 272,229 30.5
Current coresidents at one wave, previous at other 102,683 11.5
Previous coresidents at both t and t′ 95,520 10.4

Relationship type among coresidents (n = 495, 734)
Partners 228,462 46.1
Parent-child 192,852 38.9
Other family 48,963 9.9
Unrelated 25,457 5.1

7.3. Model selection. As research questions (i)-(iii) in Section 7.1 are
concerned with the unconditional correlations in GRA among coresidents,
our modeling strategy was to first build the correlation structure with only
an intercept term in the mean function µk before adding covariates to in-
vestigate question (iv).

The correlation model was built gradually, introducing and testing the
parameters described in Section 7.2. For all fitted models convergence was
achieved and the implied correlation matrix was positive definite for ev-
ery superhousehold. The initial correlation structure ρk allowed for within-
person autocorrelation and between-person correlation for any pair of in-
dividuals who lived together during the observation period. A simplified
Toeplitz structure was fitted to allow ρtik,t′ik to depend on lag t′ − t, with
equal correlation assumed for grouped lags 1, 2-3, 4-6 and 7-8 (measured
in 2-year intervals). A Wald test of the equality of the four within-person
correlation parameters indicated strong evidence of autocorrelation (X2 =
306.9, df = 3).

For a pair of responses Ytik and Yt′i′k for individuals i and i′ who were
ever observed as coresidents, a simplification of the correlation structure
defined by (a)-(d) of Section 7.2 was fitted to examine how the between-
individual correlation depended on whether t and t′ were before, during or
after coresidence, with a separate parameter for the situation where t was
during and t′ after coresidence. Compared to when t and t′ are both during
coresidence, the correlation is significantly lower when one or both of t and
t′ is after (X2 = 64.8, df = 1) or before (X2 = 22.2, df = 1) coresidence.

Three generalisations to this basic correlation structure were then con-
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sidered in turn. First, to investigate question (i), ρtik,t′i′k was permitted to
depend on t′−t for individuals i and i′ who lived together at any time during
the observation period, assuming a Toeplitz structure with separate correla-
tion parameters for grouped lags 0, 1-2, 3-5 and 6-8. (The fitted parameters
are αB

1,t′−t in (a) of Section 7.2.) There was strong evidence of coresident au-

tocorrelation (X2 = 32.5, df = 3). The second extension, to explore question
(ii), was to allow the correlation among past coresidents to depend on the
time since they last lived together s (αB

3,t−s in (c)). However, there was little
indication of this form of time dependency (X2 = 1.8, df = 2, p=0.407),
possibly because of measurement error in the duration t − s due to gaps
in coresidence histories resulting from household nonresponse. The model
was therefore simplified to include a single parameter to differentiate past
and current coresidents. Finally, we investigated question (iii) by allowing
ρtik,t′i′k to depend on whether i and i′ were a couple, parent and child, other
family relations, or unrelated (parameters αB

5 ). There was strong evidence
that the between-coresident correlation varies according to relationship type
(X2 = 142.0, df = 3). There was no evidence that the effect of relationship
type depends on the timing of t and t′ relative to the period of coresidence.

7.4. Results. The estimates for the selected correlation structure are
shown in Table 4. The model also includes a parameter for the marginal
correlation between responses for individuals in a superhousehold who never
lived together, but who were nevertheless linked through their respective
coresidents. This parameter was included primarily to aid convergence and
is therefore not shown in Table 4, but its estimate is small and positive
(0.123, SE=0.026). In our parameterisation αB

1,0 is the coefficient of an indi-
cator of ever coresidence over the whole observation period and represents
the intercept in the correlation function for coresidents. All other coefficients
are interpreted as contrasts with the reference case of a couple at t = t′.

In line with questions (i)-(iii), we begin with an interpretation of the
unconditional correlations from the model with only an intercept in the
mean function. As expected, the within-person correlation ρtik,t′ik decreases
with t′ − t. The coresident correlation was modeled as a linear additive
function of indicator variables for grouped t′− t, relationship type, and past
or future coresidence.

In answer to question (i), there is substantial contemporaneous correla-
tion between the attitudes of coresidents (estimated as 0.384 for couples).
Although the negative estimates of (αB

1,1, α
B
1,3, α

B
1,6) imply that the between

coresident correlation declines with increasing t′ − t, the decrease is small
so there is strong evidence of cross-wave correlation. Among couples, for ex-
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Table 4
Analysis of gender role attitudes: estimates of correlation parameters for observations at
occasions t and t′ (t ≤ t′) within superhouseholds before and after including covariates in

the mean function.

Mean: intercept Mean: covariates

Correlation parameter (α) Est. (SE) Est. (SE)

Within-person by lag∗ t′ − t
1 (αW

1 ) 0.693 (0.005) 0.667 (0.005)
2-3 (αW

2 ) 0.642 (0.006) 0.616 (0.007)
4-6 (αW

4 ) 0.578 (0.010) 0.557 (0.010)
7-8 (αW

7 ) 0.512 (0.014) 0.490 (0.015)
Between coresident

Intercept (αB
1,0)† 0.384 (0.009) 0.368 (0.010)

Lag∗ t′ − t (ref=0)
1-2 (αB

1,1) -0.020 (0.004) -0.017 (0.004)
3-5 (αB

1,3) -0.042 (0.007) -0.030 (0.007)
6-8 (αB

1,6) -0.064 (0.011) -0.044 (0.011)
Past: coresident at t but not t′ (αB

2 ) -0.025 (0.014) -0.050 (0.013)
Past: last coresident before t (αB

3 ) -0.062 (0.018) -0.072 (0.017)
Future: coresident only after t (αB

4 ) -0.088 (0.017) -0.120 (0.018)
Relationship type (ref=couple)

Parent-child (αB
5,2) -0.184 (0.016) -0.107 (0.014)

Other family (αB
5,3) -0.096 (0.022) -0.169 (0.020)

Unrelated (αB
5,4) -0.011 (0.046) -0.163 (0.035)

Standard errors in parentheses; ∗Lags t′ − t are in 2-year intervals because
Yti is measured every two years;†Intercept parameter is the correlation for
observations on a couple at t = t′.

ample, the correlation between observations that are the maximum 16 years
apart is estimated as 0.384-0.064=0.320. The persistence of the correlation
suggests that there are time-invariant characteristics, such as similar social
backgrounds and values, that affect the attitudes of both coresidents across
time. Another possible source of the cross-time correlation is a ‘memory’ ef-
fect whereby one individual’s attitude at t continues to influence the other’s
at t′.

Turning to question (ii) we find that, compared to current coresidents,
the between-individual correlation is lower when at least one time point in
the pair is after the end of coresidence. However, as noted earlier, it does not
depend on the time since last coresidence. There is also a small reduction in
the correlation when t is prior to coresidence, but it remains non-negligible
which provides some support for homophily.

The magnitude of the correlation between coresidents depends strongly
on their relationship (question (iii)). The estimates of (αB

5,2, α
B
5,3, α

B
5,4) indi-
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cate that the correlation is highest for spouses and lowest for parent-child
pairs. Table 4 also shows estimates of the residual correlation parameters
after adjusting for the effects of various individual and household character-
istics on mean attitudes (question (iv)). The most notable change is in the
correlations by relationship type. For coresidents at t = t′, the parent-child
correlation increases from 0.20 to 0.26, while the correlations between other
family members and unrelated household members decrease from 0.29 to
0.20 and from 0.37 to 0.20 respectively. Further investigation reveals that
these changes in correlations are explained by the inclusion of individual age
in the mean function. Parent-child pairs are the most heterogeneous in age,
and so failure to control for age has a masking effect on the correlation. In
contrast, the correlation between the attitudes of individuals in other family
member (mainly sibling) and unrelated pairs is partly explained by their
similarity in age. Covariates also account for part of the correlation between
past and future coresidents.

Table 5
Analysis of gender role attitudes: covariate effects on standardized attitudes. Higher

values of the response indicate more egalitarian attitudes.

Percent/
Variable Est. (SE) mean (SD)∗

Female 0.226 (0.008) 54.5%
Age in years (centred at 45) -0.015 (0.0004) 1.07 (17.82)
Marital status (ref=married)

Cohabiting 0.083 (0.012) 10.8%
Widowed 0.082 (0.016) 7.6%
Separated/divorced 0.064 (0.014) 7.4%
Never married 0.120 (0.013) 17.9%

Highest academic qualification (ref=none)
Below degree level 0.054 (0.012) 54.5%
Degree 0.144 (0.017) 12.1%

Housing tenure (ref=owned outright)
Owned with mortgage 0.044 (0.009) 46.4%
Social rent -0.007 (0.013) 18.3%
Private rent 0.035 (0.013) 9.0%

Survey year (in 2-year intervals) 0.013 (0.0007) –
Constant -0.342 (0.015) –

Standard errors in parentheses; ∗Descriptive statistics show the distribution
of each covariate across n = 106, 060 person-waves: percentages for categor-
ical variables and mean (SD) for continuous variable age.

Parameter estimates for the mean function are given in Table 5. The fol-
lowing individual characteristics are associated with more egalitarian gender
role attitudes: female gender, younger age, marital status other than mar-
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riage (or same-sex civil partnership) and higher levels of education. There is
also evidence that attitudes have become less traditional over time. Housing
tenure is included, together with education, as a proxy for socioeconomic po-
sition. Individuals living in a house that is owned outright have on average
more traditional attitudes than homeowners with a mortgage or renters.

8. Discussion. Household panel surveys offer the potential to learn
about the nature of the associations among the outcomes of people who share
a household. Longitudinal data on individuals and their households permit
separation of within-individual and between-individual within-household vari-
ability, and investigation of between-individual correlations across time and
after coresidence ends. However, previous research has been unable to inves-
tigate these questions because of challenges arising from changes in house-
hold composition. While multiple membership multilevel models appeared
a promising way forward, we have demonstrated these impose strong and
unrealistic assumptions on the between-individual association structure. We
instead proposed a flexible marginal modeling approach where the correla-
tion between a pair of person-wave observations is modeled directly as a
function of characteristics of the pair. In our analysis of gender role atti-
tudes, we considered the effects of coresidence status at each wave and the
relationship between the individuals. Examples of other possible covariates
include the age of one member of the pair and their age difference, their
gender composition, and their religion.

Household panel surveys provide only limited information for disentan-
gling homophily and causal effects of coresidence as explanations for between-
coresident associations. To explore homophily requires data on individual
outcomes before they become coresidents but, in common with other house-
hold panels, the design of BHPS does not allow us to observe pairs of indi-
viduals prior to living together, so our estimate of the correlation between
‘future’ coresidents is based on pairs where one observation is before and the
other during the period of coresidence. Data on the duration of coresidence
are required to investigate causal effects of coresidence, where a pattern
of increasing correlation with duration would suggest a (reciprocal) influ-
ence of one individual on the other. Coresidence histories in BHPS are left-
truncated, although for couples it is possible to infer duration of coresidence
from retrospective union histories.

The proposed method can be applied to any household panel survey, many
of which have a similar design to BHPS with individuals and their coresi-
dents tracked over time. Longitudinal individual and household data are also
available from some national population registers. More generally, clusters
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with a network structure arise in cross-sectional and longitudinal studies
of peer group effects, and marginal models offer a flexible way of studying
the dependency in behavioural and educational outcomes for members of
the same network. Examples of potential applications include longitudinal
analyses of risk-taking among friendship groups (Pearson and West, 2003)
and happiness in family, friend and coworker networks (Fowler and Chris-
takis, 2008). Beyond the social sciences, examples of evolving networks can
be found in studies of animal populations. In veterinary epidemiology, for
example, movement of cattle between herds leads to a network structure
where animals who have shared contact are members of the same network
and may have correlated disease risks.

A potential disadvantage of GEE2 is that it has a higher chance of noncon-
vergence than GEE1 when estimating models with the same mean structure
(Hardin and Hilbe, 2012, p.152; Ziegler, Kastner and Blettner, 1998). In
our simulation study, we found that GEE2 performed well for balanced de-
signs, but nonconvergence was an issue when superhousehold clusters were
highly unbalanced. The convergence rate and behaviour of the estimator
was much improved by fitting an additional correlation parameter to cap-
ture all between-individual correlations that are not of direct scientific in-
terest, rather than constraining these to be zero. Following this strategy, no
convergence problems were encountered for the models considered in our ap-
plication. Alternative approaches to estimating marginal models where the
association structure is of interest are pairwise likelihood (PL) (Kuk and
Nott, 2000) or a hybrid of GEE1 for the mean parameters and PL for the
association parameters (Kuk, 2007). The GEE1-PL hybrid is highly flexi-
ble, avoids inversion of large cluster-specific covariance matrices, and yields
robust estimates of the mean parameters when the association structure is
misspecified.
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