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Chromatic Numbers of Exact Distance Graphs ∗

Jan van den Heuvel,† H.A. Kierstead ‡ and Daniel A. Quiroz †§

Abstract

For any graph G = (V,E) and positive integer p, the exact distance-p graph G[\p] is the

graph with vertex set V , which has an edge between vertices x and y if and only if x

and y have distance p in G. For odd p, Nešetřil and Ossona de Mendez proved that for

any fixed graph class with bounded expansion, the chromatic number of G[\p] is bounded

by an absolute constant.

Using the notion of generalised colouring numbers, we give a much simpler proof for

the result of Nešetřil and Ossona de Mendez, which at the same time gives significantly

better bounds. In particular, we show that for any graph G and odd positive integer p,

the chromatic number of G[\p] is bounded by the weak (2p − 1)-colouring number of G.

For even p, we prove that χ(G[\p]) is at most the weak (2p)-colouring number times the

maximum degree.

For odd p, the existing lower bound on the number of colours needed to colour G[\p]

when G is planar is improved. Similar lower bounds are given for Kt-minor free graphs.

Key Words: bounded expansion, chromatic number, exact distance graphs, generalised

colouring numbers, planar graphs

1 Introduction and Main Results

1.1 Powers, exact powers, and exact distance graphs

All graphs in this paper are assumed to be finite, undirected, simple and without loops. For a

graph G = (V (G), E(G)) (or just (V,E) if the graph under consideration is clear) and vertices

x, y ∈ V , let dG(x, y) denote the distance between x and y in G, that is, the number of edges

contained in a shortest path between x and y.
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For a positive integer p, the p-th power graph Gp = (V,Ep) of G is the graph with V

as its vertex set and Ep contains the edge xy if and only if dG(x, y) ≤ p. Problems related

to the chromatic number χ(Gp) of power graphs Gp were first considered by Kramer and

Kramer [14, 15] in 1969 and have enjoyed significant attention ever since. It is clear that for

p ≥ 2 any power of a star is a clique, and hence there are not many classes of graphs for

which χ(Gp) can be bounded by a constant. An easy argument shows that for a graph G

with maximum degree ∆(G) ≥ 3 we have

χ(Gp) ≤ 1 + ∆(Gp) ≤ 1 + ∆(G) ·
p−1∑
i=0

(∆(G)− 1)i ∈ O(∆(G)p).

However, there are many classes of graphs for which it is possible to find much better upper

bounds. Recall that a graph G is k-degenerate if every subgraph of G contains a vertex of

degree at most k.

Theorem 1.1 (Agnarsson & Halldórsson [1]).

Let k and p be positive integers. There exists a constant c = c(k, p) such that for every

k-degenerate graph G we have χ(Gp) ≤ c ·∆(G)bp/2c.

In this result, the exponent on ∆(G) is best possible (see below). In particular, χ(G2) is at

most linear in ∆(G) for planar graphs G. Wegner [27] conjectured that every planar graph G

with ∆(G) ≥ 8 satisfies χ(G2) ≤
⌊

3
2∆(G)

⌋
+1, and gave examples that show this bound would

be tight. The conjecture has attracted considerable attention since it was stated in 1977. For

more on this conjecture we refer the reader to [2, 16].

In [22, Section 11.9], Nešetřil and Ossona de Mendez define the notion of exact power

graph. Let G = (V,E) be a graph and p a positive integer. The exact p-power graph G\p

has V as its vertex set, and xy is an edge in G\p if and only if there is in G a path of length p

(i.e. with p edges) between the vertices x and y (the path need not be a shortest path).

Similarly, they define the exact distance-p graph G[\p] as the graph with V as its vertex set,

and xy as an edge if and only if dG(x, y) = p. Since obviously E(G[\p]) ⊆ E(G\p) ⊆ E(Gp),

we have χ(G[\p]) ≤ χ(G\p) ≤ χ(Gp).

For planar graphs G, Theorem 1.1 gives that the exact p-power graphs G\p satisfy χ(G\p) ∈
O
(
∆(G)bp/2c

)
. This result is best possible, even for outerplanar graphs, as the following

examples show. For k ≥ 2 and p ≥ 4, let Tk,bp/2c be the k-regular tree of radius
⌊

1
2p
⌋

with

root v. We say that a vertex z is at level ` if d(v, z) = `. For every edge xy between vertices

at levels ` and ` + 1 for some ` ≥ 1, we do the following: if p is even, then add a path of

length `+ 1 between x and y; if p is odd, then add paths of length `+ 1 and `+ 2 between x

and y. Call the resulting graph Gk,p. It is straightforward to check that ∆(Gk,p) ≤ 2k for

even p, that ∆(Gk,p) ≤ 3k for odd p, and that there is a path of length p between any two

vertices at level
⌊

1
2p
⌋
. Since there are k(k− 1)bp/2c−1 vertices at level

⌊
1
2p
⌋
, this immediately

means that χ(G\pk,p) ≥ k(k − 1)bp/2c−1 ∈ Ω(∆(Gk,p)
bp/2c).

Surprisingly, for exact distance graphs, the situation is quite different. In that case we

can prove that for planar graphs G and odd p we have χ(G[\p]) ∈ O(1), while for even p

we have χ(G[\p]) ∈ O
(
∆(G)

)
. These bounds are actually special cases of the following more
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general results. We will recall the concept of a graph class with bounded expansion in the next

subsection.

Theorem 1.2.

Let K be a class of graphs with bounded expansion.

(a) Let p be an odd positive integer. Then there exists a constant C = C(K, p) such that for

every graph G ∈ K we have χ(G[\p]) ≤ C.

(b) Let p be an even positive integer. Then there exists a constant C ′ = C ′(K, p) such that

for every graph G ∈ K we have χ(G[\p]) ≤ C ′ ·∆(G).

We will give two proofs of part (a). The two proofs give incomparable bounds. Also, both

proofs are considerably shorter and provide better bounds than the original proof of part (a)

of Nešetřil and Ossona de Mendez [22, Theorem 11.8]. Theorem 1.2 (b) is new, as far as we

are aware.

As we showed above, if we consider exact powers instead of exact distance graphs, then

we need to use bounds involving ∆(G) if we want to bound χ(G\p), even for odd p and if G is

planar. However, by adding the condition that G has sufficiently large odd girth (length of a

shortest odd cycle), χ(G\p) can be bounded without reference to ∆(G), for odd p. It follows

from Theorem 1.2 (a) that this is possible if the odd girth is at least 2p+ 1. This is because

odd girth at least 2p+ 1 guarantees that if there is a path of length p between u and v, then

any shortest uv-path has odd length. With some more care we can reprove the following.

Theorem 1.3 (Nešetřil & Ossona de Mendez [22, Theorem 11.7]).

Let K be a class of graphs with bounded expansion and let p be an odd positive integer. Then

there exists a constant M = M(K, p) such that for every graph G ∈ K with odd girth at least

p+ 1 we have χ(G\p) ≤M .

Theorem 1.2 (a) is quite surprising, since already for planar graphs G, the exact distance

graphs G[\p] can be very dense. To see this, for i ≥ 2 let Li be obtained from the complete

graph K4 by subdividing each edge i − 1 times (i.e. by replacing each edge by a path of

length i). For k ≥ 1, form Li,k by adding four sets of k new vertices to Li and joining all k

vertices in the same set to one of the vertices of degree three in Li. See Figure 1 for a sketch

of L1,k.

It is easy to check that Li,k is a planar graph with 4 + 6(i−1) + 4k vertices, while L
[\(i+2)]
i,k

has 6k2 edges. So for fixed i and large k, the graph L
[\(i+2)]
i,k has approximately 3/4 times

the number of edges of the complete graph on the same number of vertices. Apart from

having unbounded density, the graphs L
[\(i+2)]
i,k have unbounded colouring number (and even

unbounded list chromatic number), since L
[\(i+2)]
i,k contains a complete bipartite graph Kk,k

as an (induced) subgraph. This makes the fact that these graphs have bounded chromatic

number even more surprising.

It is interesting to see what actual upper and lower bounds we can get for the chromatic

numbers of G[\p] for G from some specific classes of graphs and for specific values of (odd) p.

Using the proof in [22], it follows that for p = 3 and for planar graphs G we can get the upper
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Figure 1: A graph L1,k such that L
[\3]
1,k has edge density approximately 3/4.

bound χ(G[\3]) ≤ 5·220,971,522 (see also Subsection 1.3). On the other hand, [22, Exercise 11.4]

gives an example of a planar graph G with χ(G[\3]) = 6.

Our new proof of Theorem 1.2 (a) already gives a much smaller upper bound for χ(G[\3])

for planar graph G. By a more careful analysis, we can reduce that upper bound even

further, giving the bound in the following result. We also managed to increase the lower

bound, although by one only. Details can be found in Section 4.

Theorem 1.4.

(a) For every planar graph G we have χ(G[\3]) ≤ 105.

(b) There exists a planar graph G5 such that χ(G
[\3]
5 ) = 7.

For outerplanar graphs G we have that χ(G[\3]) ≤ 10, while there exists an outerplanar

graph G4 such that χ(G
[\3]
4 ) = 5 (see the results in Sections 3 and 4).

1.2 Generalised colouring numbers and main results

When solving an optimisation problem it is often useful to preorder the input so as to minimise

some parameter. One such parameter is the colouring number col(G) of a graph G. This is

the minimum integer k such that there is a linear ordering L of V such that every vertex y

has at most k − 1 neighbours x with x <L y. (So the colouring number is one more than the

degeneracy of a graph.) It is well-known and easy to see that the chromatic number χ(G)

of a graph G satisfies χ(G) ≤ col(G). Although this bound is far from being tight in many

cases, it is often used to show that a specific class of graphs has bounded chromatic number.

Different generalisations of the colouring number can be found in the literature. Chen and

Schelp [5] proved that the class of planar graphs has linear Ramsey number by also controlling,

for all vertices v, the number of smaller vertices that can be reached by a path of length two,

whose middle vertex is larger than v. Various versions of their idea were applied by Kierstead

and Trotter [11], Kierstead [9], and Zhu [28] to problems concerning the game chromatic

number of graphs and gave rise to the 2-colouring number defined below. In their study of

oriented game chromatic number of graphs, Kierstead and Trotter [12] considered paths of

length four with different configurations of “large” internal vertices, which later motivated

the notions of 4-colouring number and weak 4-colouring number. Kierstead and Yang [13]
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bounded the game colouring number in terms of the 2-colouring number, and Kierstead and

Kostochka [10] applied game colouring number to a (non-game) packing problem.

All of these notions are encompassed in the concepts of the k-colouring number and the

weak k-colouring number of a graph, both of which were first introduced by Kierstead and

Yang [13].

Let G = (V,E) be a graph, L a linear ordering of V , and k a positive integer. We say that

a vertex x ∈ V is k-accessible from y ∈ V if x <L y and there exists an xy-path P of length

at most k such that y <L z for all internal vertices z of P . Similarly, if all internal vertices z

of P satisfy the less restrictive condition that x <L z, then we say that x is weakly k-accessible

from y. Let RL,k(y) be the set of vertices that are k-accessible from y, and QL,k(y) the set

of vertices that are weakly k-accessible from y. The k-colouring number colk(G) and weak

k-colouring number wcolk(G) of a graph G are defined as follows:

colk(G) = 1 + min
L

max
y∈V
|RL,k(y)|,

wcolk(G) = 1 + min
L

max
y∈V
|QL,k(y)|.

If we allow paths of any length (but still have restrictions on the position of the internal ver-

tices), we get RL,∞(y), QL,∞(y), the∞-colouring number col∞(G) and the weak ∞-colouring

number wcol∞(G).

We now state the main results of this paper.

Theorem 1.5.

(a) For every odd positive integer p and every graph G we have χ(G[\p]) ≤ wcol2p−1(G).

(b) For every even positive integer p and every graph G we have χ(G[\p]) ≤ wcol2p(G)·∆(G).

Theorem 1.6.

Let p be an odd positive integer and G a graph. Set q = wcolp(G).

(a) We have χ(G[\p]) ≤
(⌊

1
2p
⌋

+ 2
)q

.

(b) If G has odd girth at least p+ 1, then χ(G\p) ≤
(⌊

1
2p
⌋

+ 2
)q

.

An interesting aspect of generalised colouring numbers is that these invariants can also be

seen as gradations between the colouring number col(G) and two important minor monotone

invariants, namely the tree-width tw(G) and the tree-depth td(G) (which is the minimum

height of a depth-first search tree for a supergraph of G, see [20]). More explicitly, for every

graph G we have the following relations.

Proposition 1.7.

(a) col(G) = col1(G) ≤ col2(G) ≤ · · · ≤ col∞(G) = tw(G) + 1;

(b) col(G) = wcol1(G) ≤ wcol2(G) ≤ · · · ≤ wcol∞(G) = td(G).

The equality col∞(G) = tw(G) + 1 was first proved in [6]. The equality wcol∞(G) = td(G) is

[22, Lemma 6.5].

Relations between the two sets of numbers exist as well. Clearly, col1(G) = wcol1(G)

and colk(G) ≤ wcolk(G). For the converse, Kierstead and Yang [13] proved that wcolk(G) ≤
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(colk(G))k. Note that this means that if one of the generalised colouring numbers is bounded

for a class of graphs (for some k), then so is the other one.

Shortly after Nešetřil and Ossona de Mendez [21] introduced the notion of classes with

bounded expansion, Zhu provided, in [29], a way of characterising these classes in terms of the

weak k-colouring numbers. We will use this characterisation as a definition.

Definition 1.8.

A class of graphs K has bounded expansion if and only if there exist constants ck, k = 1, 2, . . .

such that wcolk(G) ≤ ck for all k and all G ∈ K.

By this definition, Theorem 1.2 (a) follows directly from both Theorems 1.5 (a) and 1.6 (a).

We give the proofs of Theorems 1.5 and 1.6 in the next section. The proof of Theorem 1.6

actually proves a stronger result. For two graphs G = (V,E) and G′ = (V,E′) on the same

vertex set, define G ∪G′ = (V,E ∪E′). Then the upper bound in both parts of Theorem 1.6

holds for χ(G[\1] ∪G[\3] ∪ · · · ∪G[\p]) and χ(G\1 ∪G\3 ∪ · · · ∪G\p), respectively.

A natural question is if for even p we can generalise the bound in Theorem 1.5 (b) by

a similar bound χ(G\2 ∪ G\4 ∪ · · · ∪ G\p) ≤ C · ∆(G), where C depends on the generalised

colouring numbers. But this is not possible. Let T∆,2 be the ∆-regular tree of radius 2.

Then we have wcol1(T∆,2) = 1 and wcolk(T∆,2) = 2 for all k ≥ 2. It is easy to check that

χ(T \2∆,2) = χ(T \4∆,2) = ∆, but χ(T \2∆,2 ∪ T∆,24\) = ∆(∆− 1) + 1. These examples generalise to

larger distances.

The results in Theorem 1.6 are best possible in the sense that they give upper bounds

of χ(G[\p]) and χ(G\p) that depend on wcolp(G) only, whereas no such results are possible

that depend on wcolk(G) with k < p. To see this, for n, p ≥ 2 let Sn,p be the (p − 1)-

subdivision of the complete graph Kn (that is, the graph formed by replacing the edges of Kn

by paths of length p). Then we obviously have χ(S
[\p]
n,p ) = n. On the other hand we have

wcolp−1(Sn,p) ≤ p + 1. To verify this, order the vertices of Sn,p as follows. First order the

branch vertices (the vertices in the original clique), and then order the subdivision vertices

in any way. Clearly, each branch vertex will not weakly (p− 1)-access any other vertex. An

internal vertex of a subdivided edge can only weakly (p − 1)-access the other p vertices on

the path that replaced the edge (including the two end-vertices of the path). So for fixed odd

p ≥ 3 we cannot bound χ(S
[\p]
n,p ) by an expression that involves wcolp−1(Sn,p) only.

The bound on the odd girth in Theorem 1.6 (b) is also best possible. To show this, for

k, p ≥ 1 let Ak,p be formed by taking the path Pp−1 of length p−2, and adding k new vertices

that are adjacent to both end-vertices of Pp−1 only. It is clear that if p is odd, then Ak,p has

odd girth p. Since between any of the k extra vertices there is a path of length p, we have

χ(A\pk,p) ≥ k. The ordering obtained by taking the two end-vertices of Pp−1 first, and then

ordering the other vertices in any way, shows that wcolp(Ak,p) ≤ p−1. So for fixed odd p ≥ 3

we cannot bound χ(A\pk,p) by an expression that involves wcolp(Ak,p) only.

Nešetřil and Ossona de Mendez [22, Section 11.9.3] give examples that even if we replace

“there exists a path of length p between x and y” by “there exists an induced path of length p

between x and y” in the definition of G\p, it is not possible to reduce the bound on the odd

girth in Theorem 1.6 (b).
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Finally, we point out a connection between the bound on χ(G\1 ∪G\3 ∪ · · · ∪G\p) in the

proof of Theorem 1.6 (b) and results of Naserasr et al. [19]. For a positive integer p and graph

G = (V,E), let the p-th walk power G(p) of G be the graph with vertex set V and where xy

is an edge if and only if there exists a walk of length p between x and y. It is easy to see

(see also Lemma 2.3) that for odd p, if G has odd girth at least p + 1, then for any two

vertices x, y ∈ V (G) there exists a walk of length p between x and y if and only if there

exists a path of odd length at most p between x and y. Hence for odd p, if G has odd girth

at least p + 1, then G(p) is isomorphic to χ(G\1 ∪ G\3 ∪ · · · ∪ G\p). So it follows from [19,

Theorem 13] that for odd p there exist planar graphs G with odd girth at least p + 1 such

that χ(G\1 ∪G\3 ∪ · · · ∪G\p) = χ(G(p)) ≥ 2p+1.

1.3 Explicit upper bounds

The upper bounds obtained by Nešetřil and Ossona de Mendez in their proof of Theo-

rem 1.2 (a) are very large, even for p = 3. Their proof relies on the concept of p-centred

colourings of graphs. A (proper) colouring of a graph G is a p-centred colouring if for each

connected induced subgraph H of G, either one colour appears exactly once on H or H gets

at least p colours. This is what is proved in [22].

Theorem 1.9 (Nešetřil & Ossona de Mendez [22]).

Let p be an odd positive integer. If a graph G has a p-centred colouring that uses at most

N = N(p) colours, then χ(G[\p]) ≤ N2N2N .

Given a graph G, the star chromatic number χs(G) is the smallest number of colours needed

to properly colour G such that every two colours induce a star forest (a forest where every

component is isomorphic to a star K1,m). It is easy to see that a colouring of a graph is

3-centred if and only if every two colours induce a star forest. Albertson et al. [3] showed

that the star chromatic number of planar graphs is at most 20, and there exist planar graphs

with star chromatic number equal to 10. This means that the best upper bound known for

χ(G[\3]) for planar graphs G given by Theorem 1.9 is 5 · 220,971,522, while the best possible

upper bound for planar graphs that can be found using that theorem directly is 5 · 210,241.

An alternative bound can be obtained from Theorem 1.9 using the following result.

Theorem 1.10 (Zhu [29]).

Every graph G has a p-centred colouring that uses at most wcol2p−2(G) colours.

Corollary 1.11.

Let p be an odd positive integer and G a graph. Setting W = wcol2p−2(G) we have χ(G[\p]) ≤
W2W2W .

More recently, Stavropoulos [26] improved Corollary 1.11.

Theorem 1.12 (Stavropoulos [26]).

For every odd integer p ≥ 3 and every graph G we have χ(G[\p]) ≤ wcol2p−3(G)2wcol2p−3(G).

The best upper bound known for the weak colouring numbers of planar graphs is given by

the following result.
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Theorem 1.13 (Van den Heuvel et al. [8]).

For every positive integer k and planar graph G we have wcolk(G) ≤
(
k + 2

2

)
· (2k + 1).

So wcol2(G) ≤ 30 and wcol3(G) ≤ 70 for planar G, which, when combined with Corollary 1.11,

unfortunately gives a worse bound for χ(G[\3]) than the one using the star chromatic number

obtained earlier. Theorems 1.12 and 1.13 together give χ(G[\3]) ≤ 70 · 270 for every planar

graph G, while combining Theorems 1.5 (a) and 1.13 already gives the significantly better

upper bound χ(G[\3]) ≤ 231. In Section 3 we will show that this bound can be lowered

further to 105.

The remainder of this paper is organised as follows. In the next section we prove our

main results, Theorems 1.5 and 1.6. We use the results from that section in Section 3 to find

explicit upper bounds for the chromatic number of exact distance graphs for some specific

classes of graphs, including graphs with bounded genus, graphs with bounded tree-width, and

graphs without a specified complete minor. In Section 4 we describe the graph promised in

Theorem 1.4 (b). We close with a number of open problems and directions for further study.

2 Proofs of the main results

We need a few more definitions. For a positive integer k, we denote [k] = {1, 2, . . . , k}. For a

vertex v ∈ V , we will denote by Nk(y) the k-th neighbourhood of y, that is, the set of vertices

different from v with distance at most k from v; and we set Nk[v] = Nk(v) ∪ {v}. As is

standard, we write N(v) for N1(v).

2.1 Proof of Theorem 1.5

For later use, we actually prove a slightly stronger result, which involves a more technical

variant of the generalised colouring numbers. Let G = (V,E) be a graph, L a linear ordering

of V , and k a positive integer. For a vertex y ∈ V , let DL,k(y) be the set of vertices x such

that there is an xy-path Px = z0, . . . , zs, with x = z0, y = zs, of length s ≤ k, such that x is

the minimum vertex in Px with respect to L, and such that y ≤L zi for
⌊

1
2k
⌋

+ 1 ≤ i ≤ s. We

define the distance-k-colouring number dcolk(G) of a graph G as follows:

dcolk(G) = 1 + min
L

max
y∈V
|DL,k(y)|.

Since RL,k(y) ⊆ DL,k(y) ⊆ QL,k(y) for every ordering L, distance k and vertex y, we obtain

colk(G) ≤ dcolk(G) ≤ wcolk(G). On the other hand, we also have QL,bk/2c+1(y) ⊆ DL,k(y),

which implies that wcolbk/2c+1(G) ≤ dcolk(G).

We will prove the following sharpening of Theorem 1.5.

Theorem 2.1.

(a) For every odd positive integer p and every graph G we have χ(G[\p]) ≤ dcol2p−1(G).

(b) For every even positive integer p and every graph G we have χ(G[\p]) ≤ dcol2p(G) ·∆(G).
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Proof. (a) For an odd positive integer p and graph G = (V,E), set q = dcol2p−1(G) and let L

be an ordering of V that witnesses max
y∈V
|DL,2p−1(y)| = q−1. Moving along the ordering L we

assign to each vertex y ∈ V a colour a(y) ∈ [q] that is different from a(x) for all x ∈ DL,2p−1(y).

Next, define µ(y) as the minimum vertex with respect to L of the vertices in N bp/2c[y], and

define h : V → [q] by h(y) = a(µ(y)). We claim that h is a q-colouring of G[\p].

Consider an edge uv ∈ E(G[\p]). So there exists a path P = z0, z1, . . . , zp with z0 = u and

zp = v. Clearly, N bp/2c[u]∩N bp/2c[v] = ∅, and hence µ(x) 6= µ(y). Without loss of generality,

assume µ(u) <L µ(v). Since µ(u), zbp/2c ∈ N bp/2c[u], there exists a path S1 between µ(u)

and zbp/2c of length at most 2
⌊

1
2p
⌋

= p − 1 such that V (S1) ⊆ N bp/2c[u]. Similarly, there

exists a path S2 between zbp/2c+1 and µ(v) of length at most p−1 such that V (S2) ⊆ N bp/2c[v].

Since N bp/2c[u]∩N bp/2c[v] = ∅ and zbp/2czbp/2c+1 ∈ E, we can combine these paths to a path S

between µ(u) and µ(v) of length at most 2p− 1.

Note that if we write S = w0, w1, . . . , wt with w0 = µ(u) and wt = µ(v), then the

vertices wi for
⌊

1
2k
⌋

+ 1 ≤ i ≤ t all lie on S2, hence are in N bp/2c[v]. Since µ(v) is the

minimum vertex in N bp/2c[v], we have µ(v) ≤L wi for those wi. Thus S witnesses that

µ(u) ∈ DL,2p−1(µ(v)). We conclude that h(u) = a(µ(u)) 6= a(µ(v)) = h(v), as required.

(b) For an even positive integer p and graph G = (V,E), set q = dcol2p(G) and let L be

an ordering of V that witnesses max
y∈V
|DL,2p(y)| = q − 1. Moving along the ordering L we

assign to each vertex y ∈ V a colour a(y) ∈ [q] that is different from a(x) for all x ∈ DL,2p(y).

Additionally, for each vertex y, choose an injective function cy : N(y)→ [∆(G)].

Next, define µ(y) as the minimum vertex with respect to L of the vertices in Np/2[y]. We

also choose an arbitrary vertex in N(µ(y)) ∩ Np/2−1(y); call it β(y). To each vertex y we

assign as its colour the pair (a(µ(y)), cµ(y)(β(y)). It is clear that this colouring uses at most

q ·∆(G) colours, and we claim that it is a proper colouring of G[\p].

Consider an edge uv ∈ E(G[\p]). First suppose that µ(u) 6= µ(v). Then we can follow the

proof of part (a) to conclude that a(µ(u)) 6= a(µ(v)), and hence the colours of u and v differ

in the first coordinate.

So we are left with the case µ(u) = µ(v). Since dG(u, v) = p, we have that µ(v) ∈
Np/2(u)∩Np/2(v), while Np/2−1(u)∩Np/2−1(v) = ∅. This means that β(u) 6= β(v). Together

with the fact that β(u), β(v) ∈ N(µ(v)), we obtain that cµ(v)(β(u)) 6= cµ(v)(β(v)). This gives

that the colours of u and v differ in the second coordinate, which completes the proof.

2.2 Proof of Theorem 1.6

In the proof of Theorem 1.6 we use the following lemmas.

Lemma 2.2.

Let G = (V,E) be a graph and L a linear ordering of V . Let x, y, z be distinct vertices

in G. If x is weakly k-accessible from y, and z is weakly `-accessible from y, then x is weakly

(k + `)-accessible from z or z is weakly (k + `)-accessible from x.

Proof. Since x is weakly k-accessible from y, there is a path x, v1, v2, . . . , vr−1, y of length

r ≤ k for which all internal vertices vi satisfy x <L vi. Also, since z is weakly `-accessible
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from y, there is a path y, u1, u2, . . . , us−1, z of length s ≤ ` for which all internal vertices uj
satisfy z <L uj . Then, if x <L z, there is an xz-path of length at most k+ ` with all internal

vertices greater than x in L; hence, x is weakly (k+ `)-accessible from z. Similarly, if z <L x,

then z is weakly (k + `)-accessible from x.

Lemma 2.3.

Let p be a positive integer and G a graph with odd girth at least p+ 1

(a) Every closed walk of odd length has length at least p+ 1.

(b) Let x, y be different vertices and W a walk between x and y of length r ≤ p. Then there

exists a path between x and y of length s ≤ r such that s and r have the same parity.

Proof. The proof of (a) is straightforward, since a closed walk of odd length contains a cycle

of odd length. For (b), let W = w0, . . . , wr, with x = w0 and y = wr. If W itself is not a

path, then some vertex z appears more than once in W . The part of W between the first

and last appearances of z is a closed walk W ′ of length t ≤ r. Using (a) we obtain that t

must be even. Hence, if we remove W ′ from W , we get a shorter walk between x and y of

length r − t ≡ r (mod 2). Additionally, the resulting walk has fewer vertices that appear

more than once than W does. Hence, if we do not immediately obtain a path, we can repeat

this procedure inductively until we obtain an xy-path with the desired property.

Proof of Theorem 1.6.

For both parts of the theorem we use the same colouring. Let L be an ordering of V such that

max
y∈V
|QL,p(y)| = q − 1. We first create an auxiliary colouring a(y) ∈ [q] by moving along the

ordering L, and assigning to each vertex y ∈ V a colour a(y) ∈ [q] that is different from a(x)

for all x ∈ QL,p(y). Next, for a vertex x ∈ QL,bp/2c(y), let d′y(x) be the minimum integer k

such that x is weakly k-accessible from y, and set d′y(y) = 0.

Define the function by : [q]→
[⌊

1
2p
⌋]
∪ {−1, 0} as follows. For a colour c ∈ [q], let

by(c) =

{
d′y(x), if there exists an x ∈ QL,bp/2c(y) ∪ {y} with a(x) = c;

−1, otherwise.

By Lemma 2.2 and the definition of a(x), we see that if x ∈ QL,bp/2c(y)∪{y} satisfies a(x) = c,

then x is the only vertex in QL,bp/2c(y)∪{y} with colour c. That implies that by is well defined.

The number of possible functions by : [q]→
[⌊

1
2p
⌋]
∪{−1, 0} is

(⌊
1
2p
⌋

+ 2
)q

. We will prove

that labelling each vertex y ∈ V with by gives a proper colouring for the graphs and situations

described in parts (a) and (b) of the theorem. It is more convenient to do part (b) first.

(b) Consider two vertices u, v for which there exists a path of length p between u and v.

Without loss of generality we assume u <L v. If u is weakly p-accessible from v in L, then

we know that a(u) 6= a(v), and hence bu(a(u)) = 0 6= bv(a(u)).

So we are left with the case in which u is not weakly p-accessible from v in L. Let k

be the length of the shortest odd-length path between u and v. We obviously have k ≤ p.

Because u is not weakly p-accessible from v in L, we also have k 6= 1, hence k ≥ 3. Let

P = z0, z1, z2, . . . , zk−1, zk be a path of length k between u = z0 an v = zk. Let z` be the
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vertex of P that is minimum with respect to the ordering L. Since u <L v, we get that z` 6= v,

and, since u is not weakly p-accessible from v, we see that z` 6= u. Therefore, z` is weakly

`-accessible from u and weakly (k − `)-accessible from v.

First consider the case that ` < k − `. Then ` < 1
2k. We want to prove that d′u(z`) = `.

For this, assume that d′u(z`) = m < `. Hence there is a path A between u and z` of length m.

If ` and m have different parity, then the union of A and the path z0, z1, . . . , z` gives a closed

walk of odd length m + ` < 2` < k ≤ p, which contradicts Lemma 2.3 (a). So m and ` have

the same parity. Now if we replace in the path P the part z0, z1, . . . , z` with A, we get a walk

between u and v of length k − ` + m < k, hence with odd length. By Lemma 2.3 (b), this

walk contains a path between u and v of odd length at most k− `+m < k, which contradicts

the choice of P .

So we know that d′u(z`) = `. Notice that since there is a path of length k − ` between z`
and v, we have that d′v(z`) ≤ k− ` ≤ p− `. Since ` < 1

2k ≤
1
2p, we have that z` ∈ QL,bp/2c(u),

and hence bu(a(z`)) = `.

Now consider a vertex x ∈ QL,bp/2c(v) with d′v(x) = `. We first prove that x 6= z`. For

suppose this is not the case, then there is a path from v to z` of length `. Together with the

part of z`, z`+1, . . . , zk = v from the path P , this gives a closed walk of length k ≤ p. Since k

is odd, this contradicts Lemma 2.3 (a).

Since d′v(x) = `, d′v(z`) ≤ p − ` and x 6= z`, by Lemma 2.2 we get that x is weakly p-

accessible from z` or z` is weakly p-accessible from x. This gives a(x) 6= a(z`), which implies,

by choice of x, that bv(a(z`)) 6= `.

If k − ` < `, we can prove in a similar way that bu 6= bv, which completes the proof of

part (b) of the theorem.

(a) This time we consider two vertices u, v that have distance k in G, for some odd integer

k ≤ p. (To prove the statement, it would be enough to prove the case k = p, but we prefer to

give the proof of a more general statement.) We can more or less follow the proof of part (b)

above, working with a shortest path P = z0, z1, z2, . . . , zk−1, zk between u = z0 and v = zk.

Since P is a shortest path, we immediately get that d′u(z`) = dG(u, z`) = ` and d′v(z`) =

dG(v, z`) = p − `. This also means that x 6= z`, since dG(v, x) ≤ d′v(x) = ` < p − `. For the

remainder, the proofs are exactly the same.

The proofs of Theorem 1.6 (a) and (b) above give results that are stronger than the statements

in the theorem. We already discussed in Subsection 1.2 that in fact we prove upper bounds

on χ(G[\1] ∪ G[\3] ∪ · · · ∪ G[\p]) and χ(G\1 ∪ G\3 ∪ · · · ∪ G\p). Additionally, in part (a) we

could replace the condition that we add an edge uv to G[\p] if dG(u, v) = p, i.e. “there is

a shortest path of length p between u and v”, by the weaker condition “there is a path P

of length p between u and v such that any shorter path between those vertices is internally

disjoint from P”.
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3 Explicit upper bounds on the chromatic number of exact

distance graphs

In this section we use Theorem 2.1 (a) to find explicit upper bounds for the chromatic number

of exact distance graphs for certain types of graphs, including planar graphs, graphs with

bounded tree-width, and graphs without a complete minor. Obtaining these bounds involves

finding upper bounds for the distance-k-colouring numbers dcolk(G). More explicitly, we will

prove the following results.

Theorem 3.1.

Let k be a positive integer.

(a) For every planar graph G we have dcolk(G) ≤
(
bk/2c+ 3

2

)
· (2k + 1)− k.

(b) For every graph G with genus g we have dcolk(G) ≤
(

2g+

(
bk/2c+ 3

2

))
· (2k+ 1)− k.

Theorem 3.2.

Let k and t be positive integers. For every graph G with tree-width at most t we have

dcolk(G) ≤
(
t+ bk/2c+ 1

t

)
.

Theorem 3.3.

Let k and t be positive integers with t ≥ 4. For every Kt-minor free graph G we have

dcolk(G) ≤
(
t+ bk/2c − 1

t− 2

)
· (t− 3)(2k + 1).

Since outerplanar graphs G have tree-width at most 2, combining Theorems 2.1 (a) and 3.2

gives χ(G[\3]) ≤ 10. Similarly, from Theorem 3.1 we see that for planar graphs G we have

χ(G[\3]) ≤ 105, while for graphs G embeddable on the torus we have χ(G[\3]) ≤ 127.

We will prove those theorems in the remainder of this section. They are based on the

methods developed in Van den Heuvel et al. [8] to obtain bounds for the generalised colouring

numbers.

3.1 Graphs with bounded tree-width

Recall that Proposition 1.7 tells us that col∞(G) = tw(G) + 1. In [6], Grohe et al. provided

a sharp upper bound for the weak colouring numbers wcolk(G) of a graph G in terms of its

tree-width. The following result is implicit in the proof of [6, Theorem 4.2].

Lemma 3.4 (Grohe et al. [6]).

Let G be a graph and L a linear ordering of V (G) with max
y∈V (G)

|RL,∞(y)| ≤ t. For every

positive integer k and vertex y ∈ V (G) we have |QL,k(y)| ≤
(
t+ k

t

)
− 1.

Although we can define tree-width of a graph in terms of its ∞-colouring number, in order

to prove Theorem 3.2 we shall make use of a better known definition which is in terms of
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k-trees. A k-tree is a graph which is either a clique of size k+ 1 or is obtained from a smaller

k-tree by adding a vertex adjacent to k vertices which are pairwise adjacent. The tree-width

of a graph G is the smallest k such that G is a subgraph of a k-tree.

Let G be a k-tree. For a fixed way of constructing G from a (k + 1)-clique K0 we obtain

a linear ordering L of V (G) as follows. Let the vertices of K0 be the smallest in the ordering,

and order them in an arbitrary way. Then for y /∈ K0 we let x <L y if x was added to the

k-tree before y. We call this a simplicial ordering. For y /∈ K0 we note that, by definition

of L, RL,1(y) induces a k-clique.

Proof of Theorem 3.2. Since dcolk(G) cannot decrease if we add edges, we may assume that G

is a k-tree. Let L be a simplicial ordering derived as above, where we started with some (k+1)-

clique K0 in G. While in general we have QL,bk/2c+1(y) ⊆ DL,k(y), we shall prove that our

choice of G and L implies QL,bk/2c+1(y) = DL,k(y), for every k ≥ 1 and y ∈ V (G).

Our first step in this direction will be proving that every vertex y ∈ V (G) satisfies

RL,1(y) = RL,∞(y). Notice that if y ∈ V (G) belongs to K0, then RL,∞(y) only contains

vertices in K0 and, since K0 induces a clique in G, all of these vertices belong to RL,1(y). So

consider some y /∈ K0. From the construction of a k-tree, it follows that removing RL,1(y)

disconnects the graph, and that the component Cy containing y satisfies y <L z for all z ∈ Cy,
z 6= y. This tells us that any xy-path with x <L y and y <L z for all internal vertices z

must have its interior in Cy. In turn, this implies that for such a path to exist we must have

x ∈ RL,1(y). This shows RL,1(y) = RL,∞(y).

Suppose x, y ∈ V (G) satisfy x ∈ DL,k(y) for some integer k ≥ 1. By the definition of

DL,k(y), we have that there is an xy-path P = z0, . . . , zs, with x = z0, y = zs, of length

s ≤ k, such that x is the minimum vertex in P with respect to L, and such that y ≤L zi
for

⌊
1
2k
⌋

+ 1 ≤ i ≤ s. Let 0 ≤ d ≤ s be the largest index such that zd < y. The subpath

zd, . . . , zs of P guarantees that that zd ∈ RL,∞(y). Since RL,1(y) = RL,∞(y), we know that

zd ∈ N(y). By the definition of P and choice of d, we also know that d ≤
⌊

1
2k
⌋
. Therefore,

the path z0, . . . , zd, zs is an xy-path of length at most
⌊

1
2k
⌋

+ 1 with no other restriction than

the one that x is its minimum vertex with respect to L. This means that x ∈ QL,bk/2c+1(y).

Since the choice of x, y and k was arbitrary, we have that QL,bk/2c+1(y) = DL,k(y) for every

integer k ≥ 1 and every y ∈ V (G).

Since our ordering satisfies t ≥ RL,1(y) = RL,∞(y), the bound on DL,k(y) follows from

Lemma 3.4.

It is possible to modify the examples in Grohe et al. [6] to show that the upper bounds on

dcolk(G) in Theorem 3.2 for graphs with tree-width at most t are best possible.

3.2 Graphs with excluded complete minors

In order to provide upper bounds for the generalised colouring numbers for graphs that

exclude a fixed minor, Van den Heuvel et al. [8] constructed ordered vertex partitions where

each part has neighbours in only a bounded number of earlier parts and the intersection of

each part with the k-neighbourhood of an earlier part is also bounded. We will make use of

these decompositions for our proofs as well.
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A decomposition of a graph G is a sequence H = (H1, . . . ,H`) of non-empty subgraphs

of G such that the vertex sets V (H1), . . . , V (H`) partition V (G). The decomposition H is

connected if each Hi is connected.

Let H = (H1, . . . ,H`) be a decomposition of a graph G, i a positive integer, and C a

component of G −
⋃

1≤j≤i V (Hj). We define the i-th separating number of C as si(C) =

|{j ∈ [i] | E(C,Hj) 6= ∅}|, where E(C,Hj) is the set of edges with one end-vertex in C and

the other end-vertex in Hj . Let wi(H) = max si(C), where the maximum is taken over all

components C of G−
⋃

1≤j<i V (Hj). We define the width of H as W (H) = max
1≤i≤`

wi(H).

Let G be a graph, let H ⊆ G be a connected subgraph of G, and let f : N → N be a

function. We say that H f-spreads on G if, for every k ∈ N and v ∈ V (G), we have

|Nk[v] ∩ V (H)| ≤ f(k).

We say a decomposition H is f -flat if each Hi f -spreads on G−
⋃

1≤j<i V (Hj). We say H is

a flat decomposition if H is an f -flat decomposition for some function f : N→ N.

Van den Heuvel et al. [8] related the width of a connected decomposition to the tree-width

of the minor obtained by contracting each part.

Lemma 3.5 (Van den Heuvel et al. [8]).

Let G be a graph, and let H = (H1, . . . ,H`) be a connected decomposition of G of width at

most t. By contracting each (connected) subgraph Hi to a single vertex, we obtain a graph H

with ` vertices and tree-width at most t.

The proof of the lemma in [8] shows the power of generalised colouring numbers. It actually

gives a short argument that the contracted graph H satisfies col∞(H) ≤ t+ 1. The bound on

the tree-width then follows by Proposition 1.7. Moreover, the proof shows that the ordering L

of V (H) obtained by setting Hi <L Hj if i < j satisfies max
1≤i≤`

|RL,∞(Hi)| ≤ t. Using this

property we can prove that if the decomposition from which H was obtained is f -flat, then

we can find an upper bound on dcolk(G) in terms of f(k).

Lemma 3.6.

Let f : N → N and let t, k be positive integers. For every graph G that admits a connected

f -flat decomposition of width at most t we have dcolk(G) ≤
(
t+ bk/2c+ 1

t

)
· f(k).

Proof. The proof of this lemma is similar to that of [8, Lemma 3.5]. Let H = (H1, . . . ,H`)

be a connected f -flat decomposition of G of width t. Since H is connected, we know, by

Lemma 3.5, that contracting the subgraphs in H leads to a graph H with tree-width at

most t. We identify the vertices of H with the subgraphs Hi, and define a linear ordering L

on V (H) by setting Hi <L Hj if i < j. By the proof of [8, Lemma 3.1] we get that L satisfies

max
1≤i≤`

|RL,∞(Hi)| ≤ t. Using Lemma 3.4 this implies that |QL,bk/2c+1(Hi)| ≤
(
t+bk/2c+1

t

)
− 1

for any vertex Hi ∈ V (H). Arguing as in the proof of Theorem 3.2, we see that for every

Hi ∈ V (H) we have |DL,k(Hi)| ≤
(
t+bk/2c+1

t

)
− 1.

From L we define an ordering L′ on V (G) in the following way. For u ∈ Hi and v ∈ Hj

with i 6= j, we let u <L′ v if i < j. Then, for every 1 ≤ i ≤ `, we order the vertices of Hi in
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any order. It is easy to see that any vertex v ∈ Hi satisfies

DL′,k(v) ⊆ Nk[v] ∩
(
Hi ∪ {Hj | Hj ∈ DL,k(Hi) }

)
.

Hence, we have that there are at most
(
t+bk/2c+1

t

)
subgraphs among H1, . . . ,H` in G that

contain vertices from DL′,k(v). Since H is f -flat, we know that the intersection of each of

these subgraphs with Nk[v] is at most f(k). Finally, since DL′,k(v) is a proper subset of Nk[v]

(as v /∈ DL′,k(v)), the result follows.

Also in [8], it was proved that graphs that do not contain a complete graph as a minor have

flat decompositions of small width.

Lemma 3.7 (Van den Heuvel et al. [8]).

Let t ≥ 4 and let f : N→ N be the function f(k) = (t− 3)(2k + 1). For every Kt-minor free

graph G we have that there is a connected f -flat decomposition of G with width at most t− 2.

Combining Lemmas 3.6 and 3.7 immediately gives Theorem 3.3.

We say a path is optimal if it is a shortest path between its end-points. The following

easy result states that a decomposition H = (H1, . . . ,H`) in which each subgraph Hi is an

optimal path in G−
⋃

1≤j<i V (Hj) is f -flat for f(k) = 2k + 1. We call such a decomposition

an optimal-path decomposition.

Lemma 3.8 (Van den Heuvel et al. [8]).

Let G be a graph, y be a vertex of G, and P be an optimal path in G. Then P contains at

most 2k + 1 vertices of the closed k-neighbourhood Nk[y] of y.

Optimal-path decompositions of small width were found in [8] for planar graphs.

Lemma 3.9 (Van den Heuvel et al. [8]).

Every maximal planar graph has an optimal-path decomposition of width at most 2.

This lemma allows us, through Lemma 3.6, to prove Theorem 3.1.

Proof of Theorem 3.1. We begin by proving part (a). Since dcolk(G) cannot decrease when

edges are added, we may assume that G is maximal planar. By Lemma 3.9, there exists

an optimal-path decomposition H = (H1, . . . ,H`) of G of width at most 2. The proof of

Lemma 3.6 tells us that since G admits a connected decomposition of width at most 2, there

is an ordering L′ of V (G) such that at most
(bk/2c+3

2

)
subgraphs among H1, . . . ,H` contain

vertices from DL′,k(v), for every integer k ≥ 1 and v ∈ V (G). This ordering is obtained from

an ordering L of the subgraphs H1, . . . ,H`, where vertices in the same subgraph are ordered

in an arbitrary way. This time we have that each subgraph Hi is an optimal path. We order

each Hi in its path order. Take y ∈ V (G). Then y ∈ V (Hi) for some 1 ≤ i ≤ `. Lemma 3.8

tells us that an optimal-path decomposition is (2k + 1)-flat. Therefore, DL′,k(y) contains at

most 2k + 1 vertices of each of the at most
(bk/2c+3

2

)
− 1 subgraphs, other than Hi, which

intersect DL′,k(y). Meanwhile, DL′,k(y) contains at most k vertices of Hi, since we have

ordered the optimal path Hi in its path order. We find that every vertex y in G satisfies

|DL′,k(y)| ≤ (

(
bk/2c+ 3

2

)
− 1) · (2k + 1) + k =

(
bk/2c+ 3

2

)
· (2k + 1)− k − 1,
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which concludes the proof of part (a).

The proof of part (b) is similar to the proof of [8, Theorem 1.5 (a)]. We assume g > 0, as

otherwise the result holds by Theorem 3.1 (a). It is well known (see e.g. [18, page 111] and

the proof of [24, Theorem 1]) that a graph of genus g > 0 contains a non-separating cycle C

that consists of two optimal paths and such that G−C has genus g−1. We construct a linear

order L of V (G) in the following way. The first vertices in L will be the vertices in such a

cycle C. If after removing that cycle the genus of the resulting graph is greater than 0, then

we choose another such cycle, make its vertices the next ones in the ordering, and remove

the cycle. We repeat this process inductively until the resulting graph is a planar graph G′.

The vertices of G′ are placed at the end of L, ordered in the way that gives the bound on

dcolk(G
′) from Theorem 3.1 (a).

Lemma 3.8 tells us that for any vertex y and optimal path P we have |Nk[y] ∩ V (P )| ≤
2k + 1 for every k. Hence |DL,k(y) ∩ V (P )| ≤ 2k + 1 for every vertex y and optimal path P .

It follows that for any vertex y in G, the set DL,k(y) can have at most 2g(2k + 1) vertices

on the removed cycles. (Each of the two optimal paths that form a cycle is optimal after the

earlier cycles are removed, and vertices cannot belong to DL,k(y) through vertices in older

cycles.) Only a vertex x in the planar graph G′ can have other vertices of G′ in DL,k(x) and

Theorem 3.1 (a) gives us a bound on the number of such vertices. Hence, we obtain that every

vertex y in G satisfies

|DL,k(y)| ≤ 2g · (2k + 1) +

(
bk/2c+ 3

2

)
· (2k + 1)− k − 1.

The result follows.

4 A lower bound on the chromatic number of exact distance-3

graphs of planar graphs

x11 x15 x12 x14 x13 x23 x24 x22 x25 x22

w1 w2

y1 z y2

Figure 2: An outerplanar graph G4 with χ(G
[\3]
4 ) = 5.

In [22, Exercise 11.4] a planar graph G such that χ(G[\3]) = 6 is given (see also [23]). As

we will prove below, the outerplanar graph G4 in Figure 2 satisfies χ(G
[\3]
4 ) = 5. We will use
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that graph to construct a planar graph G5 such that χ(G
[\3]
5 ) = 7.

Theorem (Theorem 1.4 (b)).

There is a planar graph G5 such that χ(G
[\3]
5 ) = 7.

Proof. We will prove first that χ(G
[\3]
4 ) = 5, using the vertex labelling provided in Fig-

ure 2. Consider a proper colouring of G
[\3]
4 . Note that C1 = x1

1, x
1
2, x

1
3, x

1
4, x

1
5, x

1
1 and

C2 = x2
1, x

2
2, x

2
3, x

2
4, x

2
5, x

2
1 form disjoint 5-cycles G

[\3]
4 . Hence, the vertices in V (C1) ∪ V (C2)

need at least 3 colours. Given that V (C1) ∪ V (C2) ⊆ N(z) in G
[\3]
4 , if we use more than 3

colours on V (C1)∪V (C2), then we already use at least 5 colours. So assume that the vertices

in V (C1)∪ V (C2) are coloured with 3 colours only. Since V (Ci) ⊆ N(yi) in G
[\3]
4 for i = 1, 2,

and y1y2 ∈ E(G
[\3]
4 ), we need at least 2 extra colours. So we always use at least 5 colours in

a proper colouring of G
[\3]
4 . Figure 2 gives a colouring of G4 with 5 colours which is a proper

colouring of G
[\3]
4 . This shows that χ(G

[\3]
4 ) = 5.

Now let F1 and F2 be two disjoint copies of G4. Let H be a path on 5 vertices, disjoint

from F1 and F2, with vertices y′1, w
′
1, z
′, w′2, y

′
2 in that order, together with the edge w′1w

′
2.

(This is exactly the graph formed by the vertices {y1, w1, z, w2, y2} in Figure 2.) The graphG−5
has vertex set and edge set:

V (G−5 ) = V (F1) ∪ V (F2) ∪ V (H);

E(G−5 ) = E(F1) ∪ E(F2) ∪ E(H) ∪ { b1w′1 | b1 ∈ V (F1) } ∪ { b2w′2 | b2 ∈ V (F2) }.

Finally, the graph G5 is obtained from G−5 by subdividing once all the edges of the form b1w
′
1

and b2w
′
2 (replacing each edge by a path of length 2). Since G4 is outerplanar, it is easy to

check that G5 is planar.

If u, v ∈ V (F1) and P is a uv-path in G5 but V (P ) * V (F1), then w′1 ∈ V (P ). Thus the

length of P is at least 4. We conclude that if two vertices u, v have distance 3 in G5, then

any shortest uv-path has all its vertices in V (F1). Therefore, the number of colours needed

to colour the vertices of F1 in G
[\3]
5 is 5, and the same applies to F2. We now can argue as in

the proof of χ(G
[\3]
4 ) = 5 above to reach the conclusion χ(G

[\3]
5 ) = 7.

Since the graph G4 in Figure 2 is outerplanar, it does not have K4 as a minor. Also, the

graph G5 we constructed above is planar, so does not have K5 as a minor. We can iterate the

construction to obtain graphs Gt that are Kt-minor free, for t ≥ 4, and for which χ(G
[\3]
t ) ≥

2(t − 2) + 1. To obtain Gt+1 from Gt, we take two copies of Gt, one copy of the graph H

from above, and add paths of length 2 between all vertices in the first copy of Gt and w′1, and

between all vertices in the second copy of Gt and w′2. It is straightforward to check that if Gt

is Kt-minor free, then Gt+1 is Kt+1-minor free, and that G
[\3]
t+1 needs at least 2 more colours

than G
[\3]
t does.

The property that for t ≥ 5 there exists a graph G that is Kt-minor free and satisfies

χ(G[\3]) ≥ 2(t− 2) + 1 does not extend to t = 3. To see this, note that the only graphs that

are K3-minor free are acyclic graphs (i.e. forests), which implies they are bipartite. And for

bipartite graphs G we have that G[\3] is bipartite as well (in fact, even the exact p-power

graph G\p is bipartite for every odd p), hence χ(G[\3]) ≤ 2.
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Notice that one can construct the graph G4 of Figure 2 (and the graphs Gt for t ≥ 4) by

using operations similar to those of used in the Hajós construction [7]. Consider the graph S

induced on G4 by (N(w1) \w2)∪ {w1, x
1
1, x

2
2, . . . , x

1
5}. The main connected component of the

graph S[\3] consists of a cycle and two apex vertices, z and y1, that are adjacent to all the

vertices in the cycle. One can obtain G4 by taking two copies of S, identifying the two vertices

that correspond to z, and adding an edge between the two vertices that correspond to w1.

In the exact distance-3 graph, we see that one of the apex vertices has been identified, while

those that correspond to y1 have been joined by an edge. However, the operation of deletion,

used in the Hajós construction, is not used in our construction. This is mainly because we

want to obtain a graph with chromatic number strictly larger than that of the parts it is

formed of.

5 Discussion and open problems

In this paper we give bounds on the chromatic number of exact distance graphs for some

classes of graphs. In general, the difference between the best lower and upper bounds is still

quite large, so we can’t really claim we have an insight of what the correct best possible

bounds are.

When considering odd distances, one, trivial, example for which there are tight bounds is

the class of bipartite graphs. We noted at the end of Section 4 that every bipartite graph G

satisfies χ(G[\p]) ≤ χ(G\p) ≤ 2 for every odd p.

Since our upper bounds are expressed in terms of generalised colouring numbers they

increase with the distance. In contrast, we do not provide lower bounds which increase

with the distance. Because of the difficulty in providing lower bounds which depend on the

distance, the following question, attributed to Van den Heuvel and Naserasr, was asked in

[22, Section 11.9.3] (see also [23]): “Is there a constant C such that for every odd integer p

and every planar graph G we have χ(G[\p]) ≤ C ?” Very recently, Bousquet et al. [4] gave a

negative answer to this question by constructing a sequence of outerplanar graphs U3, U5, . . .

such that for every odd p ≥ 3 we have χ(U
[\p]
p ) ∈ Ω

( p
log p

)
. In Section 3 we proved that if G

has tree-width at most t then χ(G[\p]) ∈ O(pt−1). This means that graphs G of tree-width at

most 2 satisfy χ(G[\p]) ∈ O(p). Therefore, for graphs of tree-width at most 2 (which includes

outerplanar graphs), our upper bounds are close to having the right order in terms of the

distance.

As we mentioned in Section 1, the proof of Theorem 1.6 actually gives that for a class of

graphs K with bounded expansion we can find a constant N = N(K, p) such that χ(G[\1] ∪
G[\3] ∪ · · · ∪ G[\p]) ≤ N . There are constructions that show that this constant must grow

with p, even if K is the class of outerplanar graphs. One such construction appears in [23].

A very simple one, which we sketch in Figure 3, can be found in [25].

For a graph G, a natural generalisation of G[\1]∪G[\3]∪· · ·∪G[\p] is the graph Godd, which

has the same vertex set as G, and xy is an edge in Godd if and only if x and y have odd

distance. Both constructions in the previous paragraph tell us that for outerplanar graphs G

the chromatic number of Godd can be arbitrarily large because the clique number ω(Godd) can

18



Figure 3: Outerplanar graphs G for which ω(Godd), and hence χ(Godd),

can be arbitrarily large.

be arbitrarily large. This motivates the following open problem of Thomassé, which appears

in [22, Section 11.9.3] (see also [23]).

Problem 5.1 ([22, Problem 11.2]).

Is there a function f such that for every planar graph G we have χ(Godd) ≤ f(ω(Godd)) ?

Another area that is ripe for further research is the chromatic number of exact distance graphs

with even distance, for specific classes of graphs. Theorem 1.5 (b) gives a first result for even

distances. There is very little we know about the dependencies between χ(G[\p]) and wcolp(G)

for even p.

It is well-known, and easy to prove (see, e.g., [17]), that for every graph G we have

χ(G2) ≤ (2col(G)− 3) ·∆(G), hence certainly χ(G[\2]) ≤ (2col(G)− 3) ·∆(G). This suggests

that there might exist a function ϕ such that χ(G[\p]) ≤ ϕ(wcolp−1(G)) · ∆(G), or even

χ(G[\p]) ≤ ϕ(wcolp/2(G)) · ∆(G). We have not been able to prove such a result. Neither

do we know what the best value of r(p) should be such that a result of the form χ(G[\p]) ≤
ϕ(wcolr(p)(G)) ·∆(G) is possible for even p.

Acknowledgement

The authors would like to thank the anonymous referees for careful reading and for their

corrections and suggestions.

References
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