THE LONDON SCHOOL
oF ECONOMICS AnD
POLITICAL SCIENCE

LSE Research Online

lan Martin
Options and the Gamma Knife

Article (Accepted version)
(Refereed)

Original citation:
Martin, lan (2018) Options and the Gamma Knife. Journal of Portfolio Management. ISSN 0095-
4918 (In Press)

© 2018 Pageant Media Ltd

This version available at: http://eprints.Ise.ac.uk/88077/
Available in LSE Research Online: May 2018

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.Ise.ac.uk) of the LSE
Research Online website.

This document is the author’s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

http://eprints.lse.ac.uk


http://jpm.iijournals.com/
http://eprints.lse.ac.uk/88077/

Options and the Gamma Knife

lan Martin*

April, 2018

Abstract

I survey work of Steve Ross (1976) and of Douglas Breeden and Robert Litzen-
berger (1978) that first showed how to use options to synthesize more complex
securities. Their results made it possible to infer the risk-neutral measure asso-
ciated with a traded asset, and underpinned the development of the VIX index.
The other main result of Ross (1976), which shows how to infer joint risk-neutral
distributions from option prices, has been much less influential. I explain why,
and propose an alternative approach to the problem. This paper is dedicated
to Steve Ross, and was written for a special issue of the Journal of Portfolio

Management in memory of him.

Why do options have such a central place in finance? One reason is that options
arise “in nature.” A job offer letter gives its recipient the right, but not the obligation,
to accept a job; the owner of an asset has the right, but not the obligation, to sell
it; the owner of a plot of empty land may have the option to develop it; and so on.
Another reason was provided in a classic paper of Ross (1976) and later elaborated
by Breeden and Litzenberger (1978): options help to complete markets. This insight
has become one of the most useful—and one of the few robust—tools in the financial
economist’s toolkit.

Suppose, for example, that the gold price is currently $1000. How much would you
pay to receive the cube root of the price of gold in a year? How much would you pay
for the inverse of the price of gold in a year? If offered the opportunity to trade these
contracts at $10 and $1/1000 respectively, should you buy or sell?

*London School of Economics. http://personal.lse.ac.uk/martiniw/.



Remarkably, it turns out that these questions have precise and unambiguous an-
swers if you can observe the prices of European call and put options on gold. I explain
why, in an exposition of the Ross-Breeden-Litzenberger papers. More generally, their
results show that it is possible to infer the risk-neutral distribution of a random variable
from the prices of European options on that random variable.

Equally remarkably, these and related questions—which at first sight might seem
dryly academic—have, indirectly, had tremendous influence on financial markets. A
leading example is the VIX index, whose definition is based! on the price of a claim
to the logarithm of the level of the S&P 500 index. The Ross—Breeden—Litzenberger
result is also conceptually important: as an example, I use it below to show (in a
considerably more general setting than that of the Black and Scholes (1973) model)
why volatility is central to option pricing.

Unfortunately the result only applies in one dimension: it shows how to determine
the risk-neutral distribution of, say, the price of gold in a year’s time. But it does not
help to determine the joint distribution of the price of gold and the price of platinum;
nor the joint distribution of the dollar-euro and dollar-yen exchange rates; nor the joint
distribution of a given stock and the market index.

In the remainder of the paper, I address the question of whether there is a higher-
dimensional version of the result that would reveal joint distributions such as these.
On the face of it, the “main result,” Theorem 4, of Ross (1976) does exactly this;
and yet that result has had surprisingly little impact. I suggest an explanation for
this fact, and propose an alternative approach that may be better suited for empirical
implementation in practice. It is loosely inspired by the design of a device called a
gamma knife that is used in neurosurgery to irradiate tumors while minimizing the

damage to surrounding tissue.

The Ross—Breeden—Litzenberger result

The risk-neutral expectation operator, E;, has the property that the price (at time )
of a tradable payoff X7 (received at time T') is

1
—E Xp.
ft—=T

!The definition is based on the key contributions of Neuberger (1994) and Carr and Madan (2001),
who built on the work of Ross (1976) and Breeden and Litzenberger (1978).
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Exhibit 1: The Breeden-Litzenberger logic. As e — 0 in panel (b), the blue dotted
lines converge to the red dashed lines.

The asterisk means that this is the risk-neutral expectation; the subscript ¢ indicates
that it is the expectation conditional on all information known at time t. Ry p is
the gross riskless return from time ¢ to T, which is determined by the corresponding
zero-coupon bond yield. (Technically, therefore, E} is the conditional expectation with
respect to the (T' — t)-forward measure.)

Breeden and Litzenberger (1978) built on Ross (1976) in showing how to compute

risk-neutral expectations of the form
E; 9(S7)

for any random variable Sp—typically an asset price—on which European options are
traded. So if we observe the prices of options on gold then we can calculate the risk-
neutral expectation of some arbitrary function of the price of gold at some future time
T. For instance, we can use option prices to calculate the risk-neutral distribution of
Srt, as

Py (Sr e |k, k+6]) =E; (1{Sr € [k, k+4]}),

which we can evaluate by applying the Breeden-Litzenberger logic to the function
g(x) = 1{x € [k, k + 6]}. Then divide by ¢ and let § — 0 to compute the risk-neutral
density of St at k.

The basic idea is illustrated in Exhibit 1. Panel a shows the function g(S7), viewed
as an analog signal that can be digitized by being cut into “pixels” of width §.

Next, we construct each pixel out of call options, as shown in panel b: to generate

a payoff of 1 if Sy € [k, k + 0] and 0 otherwise, buy % calls with strike k — ¢, sell %



calls with strike k£ and % calls with strike k + ¢, and buy % calls with strike k + 6 + €.

Letting ¢ — 0, we have built the pixel.
The price of the pixel illustrated in panel b is therefore

callyr(k —¢) —callyr(k)  callyr(k+0) — callyr(k +6 +¢)
s~r>r(l) 9 3

= call 7 (k + 6) — calli p(k)

~ cally 7(k)9,

where the approximation becomes perfect as § — 0, and where we write call; (k) for
the time t price of a European call with strike k that expires at time 7. The price of

the digitized function in panel a is thus approximately
Z g(k;) cally 7 (k;)o.

Finally, we can increase the “resolution” of the resulting digitization by sending § — 0

to find the exact price of the original (analog) function illustrated in panel a:
price of a claim to g(S7) = / 9(K) call{ 1(K) dK. (1)
0

This is the Breeden and Litzenberger (1978) result.?

Exhibit 2 shows a hypothetical collection of call and put option prices; they intersect
at the forward (to time T') price of the underlying asset, F;r. Equation (1) shows that
the price of a claim to g(Sr) depends on the second derivative (in the mathematical
sense) of the call price as a function of strike, call, 7(K). Following Carr and Madan
(2001), we can now integrate by parts twice® to find a more intuitive expression in

terms of out-of-the-money option prices:

F Ft,T o0
price of aclaim t0 g(51) = S5 4 [ g1 put )k + [T g ) callg (1)
Ryt K=0 ’ K=Fy r
W—/ N — J/
naive guess convexity correction

(2)

2Breeden and Litzenberger imposed a further assumption that call; 7 should be twice differentiable.
This is not needed, because Merton (1973) showed, in another classic paper, that call and put option
prices (considered as a function of strike) are convez. It follows, by Alexandrov’s theorem, that their
second derivatives exist almost everywhere, which is all that is needed for (1) to make sense.

3In more detail: split the range of integration into two pieces, [0, F; 1) and [F} 7, 00), and use put-
call parity to write callt = putf‘j o in the lower range. Then integrate by parts twice, using put-call
parity to cancel some of the resulting terms (assuming that the function g behaves sufficiently nicely
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Exhibit 2: The prices, at time ¢, of call and put options expiring at time 7.

Suppose, then, that the (1-year-forward) price of gold is $1000, and that interest
rates are zero (that is, for convenience, Ry, ,r = 1). How much is a claim to the
cube toot of the price of gold worth? The first term in (2) is $3/1000 = $10. The
second and third terms supply the “convexity correction” to this naive first approxi-
mation. Without knowing anything at all about option prices—other than that they
are nonnegative—we can be sure that the price of the cube root contract is less than
$10 because the function g(K) = v/K is concave, so that ¢”(K) < 0. Conversely, the
price of an “inverse contract” that pays 1/S7 must be more than $1/1000, because the
function g(K) = 1/K is convex. In both cases, the convexity correction will be large
if option prices are high.

Equation (2) reveals a general relationship between option prices and (some notion
of) volatility. Setting g(K) = K? and neglecting dividends (so that E; S; = S; Ry 7

and we can write Ry = Sp /S, for the return on the asset), we find

2
Si K=0 K=F, 1

2Rf t—T Fer o
var; Ry = —=— / put, 7(K) dK +/ call, r(K) dK ;. (3)

Option prices reveal the risk-neutral variance of the underlying asset’s price at time 7"
the integrals inside the curly brackets are equal to the shaded area in Exhibit 2. Aside
from its theoretical interest, this result has proved useful empirically. In Martin (2017),
I defined the so-called SVIX index based on this calculation, and provided applications
to forecasting the return on the S&P 500 index. Martin and Wagner (2018) defined
SVIX indexes for individual stocks and show that they can be used to forecast returns

on individual stocks.*

at zero and infinity). The result is (2).

4We also applied this idea in Martin and Ross (2018) to show that under the assumptions made by
Ross (2015), put and call options on a (very) long-dated zero-coupon bond should, in principle, forecast



The name of the SVIX index is intended to recall the VIX index, which emerges
from (2) on setting g(K) = —log K:

Ft,T 1 o0

* * 1
2 (log Et RT — Et log RT) = 2Rf,t—)T { ﬁ putLT(K) dK —+ ﬁ CalltT(K) dK} .
0 Fir
(4)

If we take the underlying asset to be the S&P 500 index, then the right-hand side of (4)
is the definition of the VIX index (squared), while the left-hand side is a measure of the
variability of the return on the S&P 500 index that has been called its (risk-neutral)
entropy (Alvarez and Jermann, 2005; Backus et al., 2011).

The original motivation for the definition of the VIX index was that if S follows

a diffusion, we would have

T F, o0
E; / odr=2R; { " % put, (K) dK + % call, (K) dK} . (5)
=t 0 Fyr
where o, is the instantaneous volatility of the underlying asset at time 7. That is, the
formula that defines the VIX index (squared) would also provide the fair strike for a
variance swap if S followed a diffusion.

Unfortunately the diffusion assumption is strong and demonstrably false; as, there-
fore, is equation (5).5 By contrast, the results of Ross, Breeden, and Litzenberger—and
in particular equations (1)—(4)—rely only on the logic of static replication and there-
fore allow the underlying asset prices to follow essentially any arbitrage-free process.
In contrast, dynamic replication arguments of the type often invoked in the theory
of option pricing, leading up to and beyond the famous formula of Black and Scholes
(1973), require far stronger assumptions about asset price behavior and the ways in

which uncertainty evolves.

the bond’s returns. Testing this prediction is challenging, however, as tolerable approximations to the
long bond option prices that the theory asks for are hard to come by.

5This can be seen directly by looking at financial asset prices, which jump both at predictable
times (eg, when important economic numbers are released) and at unpredictable times (eg, when a
plane hits the World Trade Center); or indirectly, from the fact that variance swap strikes diverge, in
practice, from (5).



Ross—Breeden—Litzenberger in two dimensions

Ross, Breeden, and Litzenberger tell us how to calculate the risk-neutral distribution of
dollar-yen in a month’s time, or how to calculate the risk-neutral distribution of dollar-
euro in a month’s time. But how do the two interact? What is the joint risk-neutral
distribution of dollar-yen and dollar-euro?

More generally, a practical method of computing quantities of the form Ey f(S1 7, Sa.r)
would have many applications. Most obviously, joint risk-neutral distributions would
be of direct interest in themselves, as they are in the one-dimensional case. A less obvi-
ous example is provided by Kremens and Martin (2018), who argue that the risk-neutral
covariance of a given foreign currency with the S&P 500 index should (in theory) and
does (in practice) forecast the currency’s excess return. As it happens, precisely the
assets whose prices must be observed to reveal this risk-neutral covariance—quanto
forward contracts on the S&P 500 index—are traded. But this is something of a coin-
cidence. Along similar lines, the approach of Martin and Wagner (2018) to forecasting
individual stock returns would be greatly simplified if the risk-neutral covariances of
individual stocks and the S&P 500 index were directly observable. This would be true
if (in addition to stock and index options) outperformance options on stock i, relative
to the index, were widely traded and liquid; as they are not, Martin and Wagner use
a linearization to relate the desired risk-neutral covariances to risk-neutral variances,
which are observable via (3).

The following result of Ross (1976) handles the case in which there are only finitely
many states of the world. I provide a different proof that reveals that the result is
fragile, in a sense that will become clear below. (For that reason, I specialize to the

two-dimensional case for simplicity.)

Result 1 (Ross (1976), two-dimensional case). With finitely many states of the world,
all Arrow—Debreu prices can be inferred from the prices of Furopean calls and puts on

a single, appropriately chosen, linear combination Sy + ASer for some fized A € R.

Proof. Suppose there are N states, which can be viewed as points in R%. There are at
most (]g) lines joining these points in pairs; on each, S 7 + p;S2 1 is constant for some
iyt =1,..., (];) Let A be a number not equal to any of the u;; then any line of the
form S;p + ASy 1 = constant intersects at most one of the points. By trading options

on the portfolio Sy + ASsr, we can create an Arrow security for an arbitrary state



(s1.r,S27). Let ¢ = sy + Asap. The payoff on a “butterfly spread,”

1
g [max {0, Sl,T + /\527T — (C — 8)} — 2max {O, Sl,T + )\SQ’T — C} +

+ max {0,517+ ASar — (c+¢€)}], (6)

equals 1 if (Sir, S 71) = (S1,7,827) by the definition of ¢. Furthermore, by taking
e > 0 sufficiently small, we can guarantee that |S; 7 + ASar — ¢| > ¢ (and hence that
the payoft (6) is zero) for all (Syr,S27) # (s1.7, s2.1). The result follows. O
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Exhibit 3: An illustration of Ross’s (1976) result that with finitely many states of the
world, options on S 7 4+ ASz r will complete markets, if A is chosen appropriately. The
dashed line passes through (101, 104) and avoids all other points on the grid; and any
line parallel to the dashed line intersects at most one dot on the grid.

The proof is illustrated in Exhibit 3 with (S 1, S27) lying on a grid. (The proof
does not require the points to lie on a grid, but it is the relevant case in practice.)
Along the dashed line, S; 7 4+ ASa7 = c for some constants A and c. As drawn, A
lies between 1 and 2, while ¢ ensures that the dashed line passes through the point
(101,104). The key to the proof is that we can arrange things (i.e., choose \) so that
any line parallel to the dashed line picks out at most one of the dots: that is, for any
given c,

Sir 4+ ASer = ¢ in at most one of the states of the world. (7)

Notice that if a line intersects two or more points, then its slope is a rational number.



Thus, if we choose A to be any irrational number,® property (7) will hold; in Exhibit
3, \ is equal to v/2. (At this point, the sense in which the result is fragile is starting
to become clear.)

As in the one-dimensional case illustrated in Exhibit 1b, it is possible to buy a
butterfly spread on S; 7 + ASyr that pays off precisely on the dashed line; and as the
line only intersects the state (101, 104), we have synthesized the Arrow—Debreu security
for (101,104). By the same logic, options on this linear combination can be used to
synthesize all the other Arrow—Debreu securities (by varying the strikes of the options
in the butterfly spread, i.e., by varying ¢ in the above construction).

Why, then, has the approach not been useful in practice? The construction fails
if options are only traded on linear combinations for a limited set of A, or if the state
space is not finite. If we only observe options on combinations with, say, A = £1 or
i%, then the butterfly spread construction will not “separate the dots”: we cannot set
things up so that the dashed lines only intersect a single dot. The larger and finer the
grid, the more difficult it is to ensure that the dashed line threads between points and,
correspondingly, the more extreme are the requirements on A. If S;r and Sy take
values on an infinite grid, then the construction will not work for any rational \; and

it S1 7 and Sy vary continuously, the result fails even if A is allowed to be irrational.

The gamma knife

With the earlier results in mind, it is natural to try to synthesize a two-dimensional
pixel, that is, a payoff of $1 if both S;r € [s1,s1 + 0] and Sor € [s2,s2 + 0] for
some small 0. It turns out that by taking a different approach, we will be able to
work out the prices of individual pixels so long as we can observe options on multiple
linear combinations of S; r and Sy 7. Moreover, the construction will work even in the
case in which S; 7 and Sy can vary continuously. The key idea is analogous to the
gamma knife technology used by neurosurgeons, in which multiple beams of radiation
are shone at a single target—perhaps a tumor—so that surrounding tissue receives
relatively little harm; and similar ideas arise more generally in X-ray tomography.
Exhibit 4 illustrates how one could use this approach to find the price of a two-
dimensional pixel (as shown, the price of an Arrow—Debreu security that pays off if

Si1r = 3and Sy = 5) in an idealized example with perfect data. The line in Exhibit 4a

6This gives a direct way to see that almost any (in a measure-theoretic sense) choice of A will do,
as was shown by Arditti and John (1980).



(c) N =16 | (d) N =64

Exhibit 4: Using options on linear combinations of the two state variables to create
approximate Arrow—Debreu securities.

corresponds to the dashed line of Exhibit 3: it illustrates the set of points at which a
butterfly spread on S, 1, constructed as in Exhibit 1b, has unit payoff. Exhibit 4b shows
what happens when we also buy a butterfly spread on S; 7, together with butterfly
spreads on Sy 1+ S2 7 and S 17— Sy 1. Strikes are chosen so that all four lines intersect
at the single point of interest. Here, the payoff on the portfolio of butterfly spreads
is four times as great as the payoff on an individual butterfly spread, so we can scale
back position sizes by a factor of 4. Continuing this process, Exhibits 4c and 4d use
options on 16 and 64 different linear combinations of S and S, r, respectively, to
pick out the point of interest, where the payoff is 1. The resulting payoff approaches

the desired pixel payoff as the number of linear combinations approaches infinity.

10



(c) EUR/JPY butterfly (d) All together

Exhibit 5: Using options on linear combinations of the state variables to create ap-
proximate Arrow—Debreu securities.

Exhibit 5 shows a more realistic example, with S; 7 corresponding to the USD/EUR
exchange rate and Sy 7 to the USD/JPY exchange rate. Using options on USD/EUR,
we can create a butterfly spread that pays one unit only if S; 7 equals some pre-specified
value, say 1; and using options on USD/JPY, we can create a butterfly spread that
pays one unit only if Sy r equals, say, 100. (The exhibits show approximations to these
securities.) Using options on EUR/JPY we can create a butterfly spread that pays one
unit only if So /517 = 100, i.e., Sopr = 1005, 7. Finally, adding the three together,
and scaling the position sizes by %, we obtain the approximate Arrow—Debreu security
illustrated in Exhibit 5d.”

"Basket options, which have payoffs of the form max {0, a; USD/EUR + a,USD/JPY — K} for a
variety of a; and as, move us closer to the examples depicted in Exhibit 4.

11



In the interest of completeness, we have the following result. I write f(z,y) for the
joint risk-neutral density of S} r and S, r; and assume that we can observe the prices
of options on arbitrary linear combinations of S r and SZT.S We can then construct a
butterfly spread, as in (6), that pays off along an arbitrary line L parametrized by p,
its distance from the origin, and « € [0, 7), the angle of the normal to L. The butterfly

spread associated with L reveals
Rf(L)=2Zf(p,a) = / f(pcosa — tsina, psina + t cos a) dt.

Result 2 (The gamma knife, two-dimensional® case). If the prices of options on ar-
bitrary linear combinations aSy r + bSar are observable then we can treat Zf(L) as
observable for all lines L and reconstruct the joint risk-neutral density of S1r and Sar

via the formula

1

/ / RZf(p—xcosa—ysina,a)G(p)dpdao, (8)
0 —00

where
1

1
Gelp) = — ( 1—62/p2> if [pl > e
and G.(p) = 1/(we?) otherwise.

Proof. Observability of Z f(L) follows as in the one-dimensional case. The resulting
butterfly spread prices are Radon transforms of the risk-neutral distribution, which can
be recovered by inverting the Radon transform as in equation (8) (see, for example,
Nievergelt, 1986a,b). O

Result 2 is an idealization, of course. Practical implementations will have to deal
with a finite (and small) number of “slices,” along the lines illustrated in Exhibit 5.
The analogy with medical practice may be helpful here, as X-ray tomography confronts
precisely the same issue, which has, therefore, received considerable attention in the

literature: see, for example, Shepp and Kruskal (1978).

8This is a strong assumption, though arguably closer to the contracts one observes in reality
than that of Nachman (1989), who proposed an alternative that requires observability of options on
portfolios of options on Si 7 and So 7. While Nachman’s approach is theoretically interesting, prices
of the relevant options-on-options are not observable, even approximately, in practice.

9Result 2 can be extended to N dimensions using higher-dimensional Radon transforms (or the
closely related X-ray transforms), but this extension is unlikely to be implementable in practice.

12



Conclusion
David Foster Wallace once told this story:

There are these two young fish swimming along and they happen to
meet an older fish swimming the other way, who nods at them and says,
“Morning, boys. How’s the water?” And the two young fish swim on for
a bit, and then eventually one of them looks over at the other and goes,
“What the hell is water?”

As it happens, he was not ruminating on financial economics at the time.'® But
the quotation captures something of the influence of Steve Ross on economists of my
generation. Steve’s way of looking at the world is now enshrined in thousands of papers
and textbooks, and continues to organize the thinking of financial economists. His work

lives on in them, and us.

10The story was part of his 2005 commencement speech to the graduating class at Kenyon College.
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