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Abstract

Misinvoicing is a major tool in fraud including money laundering.

We develop a method of detecting the patterns of outliers that in-

dicate systematic mis-pricing. Since the data only become available

year by year, we develop a combination of very robust regression and

the use of ‘cleaned’ prior information from earlier years which leads to

early and sharp indication of potentially fraudulent activity that can

be passed to legal agencies to institute prosecution. As an example

we use yearly imports of a specific seafood into the European Union.

This is only one of over one million annual data sets, each of which

can currently potentially contain 336 observations. We provide a so-

lution to the resulting big data problem which requires analysis with

the minimum of human intervention. Keywords: big data, data clean-

ing, forward search, MM-estimation, misinvoicing, money laundering,

seafood, timeliness.
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1 Introduction

It is estimated (Economist, 2014) that, in 2011, $950 billion flowed illegally

out of poor countries into rich ones, mostly due to money laundering associ-

ated with the traffic in illegal drugs and arms trading. A basic technique is

misinvoicing. In our paper we develop a form of very robust regression that

uses “cleaned” data from previous years to give improved analyses of the

data for the current year. In addition to the importance of improved meth-

ods for fraud detection, our paper extends a form of Bayesian regression to

incorporate different amounts of prior information about the parameters of

the linear model and the error variance.

As an example we look at data on three years importation of a specific

seafood into the European Union from one country on the American con-

tinent. There are 165 monthly observations in the first year. However the

problem is vast, with around 220 potential source countries, monthly data

and over 1,000 categories of goods (although not all countries are sources of

all goods). To cope with this example of Big Data we need robust methods

that function semi-automatically on our relatively small problem, without

the need for close personal intervention. In this way the big data problem of

analysing a very large number of such data sets becomes feasible.

The observations are regression data of quantity against value with a few

missing observations. In our particular example there is a linear relationship

followed by the majority of the data, a few outliers and a second, lower,

line with fewer observations. This line is an indication of potential fraud -

by incorrectly recording import prices, import duties and taxes such as VAT

can partially be avoided. Conversely, in other sets of data we see suspiciously

high invoice prices, which allow illicit money to be laundered into legal bank

accounts. In economic theory, the efficient-market hypothesis asserts that, in

a well organized, reasonably transparent market, the market price is generally

equal to or close to a fair value. Marked departures from this value are an

indication of inefficiency in the market, in this case fraud.

To prosecute such behaviour it is necessary to demonstrate, as far as
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possible, the incontrovertible existence of outliers. This is very different

from the standard intent of robust data analyses, where the purpose is to

establish a single relationship between much of the data and a model; the

remaining data are then either downweighted or trimmed.

As a method of very robust regression, we use the Forward Search (FS)

(Atkinson and Riani, 2000). Atkinson et al. (2010) describe more recent

developments in the theory of the FS. Comparisons of the most recent version

with other forms of robust regression are in Riani et al. (2014). Johansen and

Nielsen (2016) focus on outlier detection. An advantage of the FS is that it is

fully automatic, avoiding the specification of such parameters as breakdown

points or efficiencies. Also, since the FS uses least squares to fit a regression

model to carefully chosen subsets of data, it is relatively straightforward to

adapt the method for the incorporation of prior information.

Our paper starts in §2 with a description of the frequentist FS, which is

used to analyse the data from 2002. This analysis indicates that 15 of the 165

observations are outliers. However, a scatterplot of the data suggests that

not all of these are fraudulent, let alone being sufficiently outlying to provide

judicially convincing evidence of fraud. We use the sufficient statistics from a

cleaned version of the data to provide prior information for the analysis of the

data from 2003, continuing the process from year to year until overwhelming

evidence of fraud has accumulated.

We have two ways of cleaning the data, one for the model for the mean

and the other for the variance. In the next year we use the non-outlying

observations from the FS to determine the parameters β of the linear model

which provide an estimate of the fair value. Trimming so many observations

however indicates too many outliers to be helpful in fraud detection. Ex-

perience from those preparing legal evidence suggests that courts are most

comfortable with evidence presented in the form of raw residuals, that is dif-

ferences between observed and fitted values without scaling for leverage and

the estimate of error variance. Accordingly, we use a relatively generous fixed

threshold around the fitted regression line to indicate which of the outliers
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should be excluded from the central part of the data. We use all observations

within this threshold to provide the prior estimate of the error variance σ2.

Use of a fixed threshold is justified since there is little interest in detecting

fraudulently declared small transactions. This choice of the estimated vari-

ance is motivated by the analysis in the on-line supplement (Riani et al.,

2018) which shows that the error distribution gives rise to a large number of

very small residuals, which can cause robust procedures to identify a large

number of outliers.

For least squares without trimming, incorporation of prior information

from previous years comes by inclusion of the sufficient statistics of the previ-

ous regression. This is also well-established in Bayesian regression (Chaloner

and Brant, 1988). However, there are two difficulties in the application of

this method in the present case. One is that the estimate of σ2 from the

FS is based on a central subset of observations, and so has to be adjusted

before combination with the prior estimate, an adjustment which leads to a

weighted form of least squares. The other difficulty is that we have one prior

sample for the estimate of β and a larger one for the estimation of σ2. In §3

we describe the incorporation of prior information into the FS.

The Bayesian analysis of data for 2003 and 2004 is in §4. At the end of

the analysis of three years’ data, a set of potentially fraudulent observations

is clearly established in a sufficiently unambiguous form to be passed to the

agency responsible for legal proceedings. Convincingly, they all relate to im-

ports into one member state of the European Union. We show in §4.3 that

choice of the threshold is not crucial to the identification of these observa-

tions, a wide range of values providing evidence of the outliers, provided the

threshold is not too small. The value is to be decided in consultation with

subject-matter experts. In the on-line supplement (Riani et al., 2018) we

summarise some other analyses of the data from 2002. These comparisons

illustrate the dependency of S and MM estimates on the parameters, such

as breakdown point, used in the algorithms. The forward search does not

require such specifications. It is important that throughout we are develop-
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ing a method for general departures from the regression model, rather than

being interested in modelling the linear structure of departures we find in

our data.

We conclude in §6 with some comments on other methods of robust re-

gression that allow for the incorporation of prior information. We further

comment on fair value, which may not be constant over time, on quan-

tity and value, and on other forms of trade data, including some in which

heteroskedasticity is present. We also mention recent developments of the

forward search which render it highly efficient for the analysis of single large

sets of regression data.

An important aspect of our solution is timeliness. We are now able to

analyse the data in real time. But, when the data we analyse were collected,

member states of the European Union only made data available (through

Eurostat) on a monthly basis, with about three months delay. It is intended

that, from the end of 2018, the data will be provided with greatly enhanced

speed and regularity. Our methods will allow efficient exploitation of this

improved flow of data.

2 The Frequentist Forward Search

2.1 Parameter Estimation

For analysis of data from the first year, we use a forward search without prior

information.

In the regression model

y = Xβ + ǫ, (1)

y is the n× 1 vector of responses, X is an n× p full-rank matrix of known

constants, with ith row xT
i , and β is a vector of p unknown parameters. The

normal theory assumption is that the errors ǫi are i.i.d. N(0, σ2). As we

show in the on-line supplement, this assumption needs some modification for

the trade data.
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The least squares estimator of β is β̂. Then the vector of n least squares

residuals is e = y− ŷ = y−Xβ̂ = (I−H)y, where H = X(XTX)−1XT is the

‘hat’ matrix, with diagonal elements hi and off-diagonal elements hij . The

residual mean square estimator of σ2 is s2 = eTe/(n− p) =
∑n

i=1 e
2
i /(n− p).

In order to detect outliers and departures from the fitted regression model,

FS uses least squares to fit the model to subsets ofm observations. The initial

subset of m0 observations is chosen robustly, for example by least trimmed

squares. The subset is increased from size m to m + 1 by forming the new

subset from the observations with the m+ 1 smallest squared residuals. For

each m (m0 ≤ m ≤ n − 1), we calculate deletion residuals ri(m), defined

in (5) of Appendix 2, for observations not in the subset. The presence of

outliers is detected using the smallest absolute residual rimin(m) from these

n−m values (6).

To provide a test for outliers with known properties, we need a reference

distribution for the ri(m). Under normal theory assumptions, if we estimated

σ2 from all n observations, the statistics would have a t distribution on n−p

degrees of freedom. However, in the search we select the central m out

of n observations to provide the estimate s2(m), so that the variability is

underestimated. To allow for estimation from this truncated distribution, the

estimated variance has to be scaled up to give the approximately unbiased

estimate of variance σ̂2(m) = s2(m)/c(m,n). In the robustness literature,

the important quantity c(m,n) is called a consistency factor. See Riani et al.

(2009) for a derivation from the general method of Tallis (1963) and §3 for

the extension to a Bayesian analysis.

The central feature of the forward search is the conceptual use of forward

plots of minimum deletion residuals in the detection of outliers and other

anomalous behaviour. These plots are calibrated against pointwise distri-

butions of the order statistics of the deletion residuals. For normal theory

errors the distribution of the order statistics is found applying standard re-

sults to the absolute values of t-distributed variables. To avoid the large

effect of repeated testing for outliers, simple rules on the number of point-
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Figure 1: 2002 data. Scatter plot of value, in thousands of Euros, against

quantity, in tons, for monthly imports of seafood Q into EU member states

from a single exporting country

wise exceedances of percentage points are used to give samplewise rules for

the detection of outliers with known size, in our case 1%. We follow the

rule used for multivariate data by Riani et al. (2009). However, with the

non-normal error structure of our data in which over half of the observations

often have very small residuals, this procedure gives rise to the identification

of a large number of small outliers that are not of interest. We instead use a

Bonferroni correction.

If σ2 is estimated on ν degrees of freedom, when the errors are normally

distributed the deletion residuals ri(m) follow a t distribution on ν degrees

of freedom. Since the test is for an outlier in a sample of size m + 1, we

use the Bonferroni bound t{ν,α/(m+1)} with, in our calculations, α = 1%.

However, we test using rimin(m), the absolute value of the residual, so that

the appropriate envelope is the folded t distribution. The difference from

using a folded normal is negligible.

7



2.2 Data Analysis

Figure 1 shows a scatter plot of the data from the first year (2002). There

are 165 observations on the value and quantity of monthly imports of seafood

Q into the European Union from the single country on the American conti-

nent. Since not all member states report data for all months, there are some

missing values. As would be expected, the value increases with quantity.

However, there appear to be at least two lines in the plot, the lower one,

including around twelve observations, may be an indication of fraudulent

under-recording of the true value of the shipments.

The upper panel of Figure 2 shows the results of the FS with Bonferroni

bounds. There is a marked increase in the value of the minimum deletion

residual at m = 150, indicating that there are 15 outliers in the data. How-

ever, it is not clear from this plot that all these observations are indeed

important as outliers.

In the lower panel of the plot, the non-outlying observations that are

accepted by the FS are marked with crosses. However, there are three in-

dicated outliers that are close to the main upper line, including one of the

two observations with a quantity around 340. We need a way to augment

the statistical indication of outlyingness with a practical measure, the fixed

threshold around the regression line described in §1.

In this analysis we take this threshold as 300. In §4.3 we investigate the

sensitivity of the method to the value of this threshold which, of course, will

depend on the goods generating the data being analysed.

In Figure 2 we have marked with the symbol X (magenta in the pdf

version) intermediate observations which were identified as outliers by the

FS but have raw residuals less than 300. Circles (red) are used to mark

indicated outliers that have larger raw residuals. As the plot shows, the

three observations close to the majority relationship are no longer suspected

of being fraudulent. We also lose some outliers for small quantities, but still

note the largest five observations on the lower line as outliers, indicated by

circles.
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Figure 2: 2002 data. Upper panel: forward plot of minimum deletion resid-

uals. The Bonferroni bound indicates 15 outliers. Lower panel: scatter plot.

+ non-outlying observations, X intermediate observations within a threshold

of ±300, O outliers
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The non-outlying observations in year 2002 (blue and magenta) provide

prior information for the analysis of data from the next year. As a result

of the data analysis of this section, we have two forms of prior information.

That for β only uses the 150 ‘good’ observations determined by the FS to

be non-outlying. However, we have argued that the variance of this set of

observations is too small. We therefore augment this set by the intermedi-

ate observations lying within the threshold, to give a set of 160 observations

marked in the figure by crosses and the symbol X. These serve as prior ob-

servations for σ2 in our analysis of the data from 2003.

3 Prior Information from Previous Observa-

tions

3.1 Fictitious Observations and the Posterior Distri-

bution of β

The conjugate prior distribution for the parameter β in the regression model

(1) is multivariate normal and that for the variance σ2 is inverse gamma. It is

standard, for example, Koop (2003, p. 18), to treat this prior information as

coming from n0 fictitious observations analysed by least squares. However,

as a result of the analyses of data from previous years, we have two different

sets of non-fictitious prior observations. There are n0,1 prior observations

for the value of β and n0,2 prior observations for σ2, with n0,2 ≥ n0,1. The

n0,k observations y0,k (k = 1, 2) arise from a matrix of explanatory variables

X0,k. Then the two sets of data consist of the n0,k prior observations plus n

actual observations. The search in this case now proceeds from m = 0, when

the prior observations provide the parameter values for all n residuals from

the data. The search then continues as outlined above but with the prior

observations always included amongst those used for parameter estimation;

their residuals are ignored in the selection of successive subsets.

In addition to the two sets of prior data, there is one further complication
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in this procedure. The n0,k prior observations are treated as a sample with

variance σ2
0 . However, the m observations in the FS subset of the actual

data are, as in §2, from a truncated distribution of m out of n observations

and so asymptotically have a variance σ2/c(m,n). An adjustment must be

made before the two samples are combined. This becomes a problem in

weighted least squares (for example, Rao 1973, p. 230). Let y+k be the (n0,k+

m)× 1 vector of responses from the prior data and the subset, with X+
k the

corresponding matrix of explanatory variables. The covariance matrix of the

independent observations is σ2G, with G a diagonal matrix; the first n0,k

elements of the diagonal of G equal one and the last m elements have the

value c(m,n). The information matrix for the n0,k +m observations is

(X+T
k WX+

k )/σ
2 = {XT

0,kX0,k +X(m)TX(m)/c(m,n)}/σ2, (2)

where W = G−1. In the least squares calculations we need only to multiply

the elements of the sample values of y and X by c(m,n)−1/2.

Let the prior estimate of β be β̂0, that is the least squares estimate of β

from n0,1 prior observations. The estimate including m sample observations

can, from (2), be written

β̂(m) = (X+T
1 WX+

1 )
−1X+T

1 Wy+1

= {XT
0,1X0,1 +X(m)TX(m)/c(m,n)}−1 ×

{XT
0,1y0,1 +X(m)Ty(m)/c(m,n)}. (3)

3.2 Estimation of Variance in the Forward Search

The estimate of σ2 requires S0,2, the residual sum of squares of the n0,2 good

and intermediate observations around the model with linear parameter value

β̂0. This prior estimate is adjusted for regression of y(m) on X(m) to give

the posterior estimate σ̂2(m).

Let τ = 1/σ2. The prior distribution of τ is gamma with parameters a

and b, that is p(τ) ∝ τa−1e−bτ . The mean of this gamma distribution is a/b.
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The estimate of σ2 from the n0,2 observations is σ2
0 = S0,2/ν0 on ν0 =

n0,2 − p degrees of freedom. Then, in the gamma distribution for τ the prior

values of the parameters are

a0 = (n0,2 − p)/2 and b0 = S0,2/2,

whence σ2
0 = b0/a0. The prior distribution of β conditional on τ isN{β, (1/τ)R−1},

where R = XT
0,1X0,1.

Then, in an extension of the results of Chaloner and Brant (1988),

a(m) = (n0,2 +m− p)/2 and

b(m) = b0 +
1

2

[

{y(m)−X(m)β̂(m)}Ty(m)/c(m,n) + {β̂0 − β̂(m)}TR β̂0
]

,

so that σ̂2(m) = b(m)/a(m).

3.3 Algebra for the Bayesian Forward Search

The algebra for the FS with prior information is similar to that of the frequen-

tist search, except that information from the n0,1 and n0,2 prior observations

is always included in the search. Subsets are selected from the n observations

for the current year.

Let S∗(m) be the subset of size m found by FS, for which the matrix of

regressors is X(m). Weighted least squares on this subset of observations

(3) yields parameter estimates β̂(m) and σ̂2(m), the mean square estimate

of σ2 on n0 +m− p degrees of freedom. The residuals for all n observations,

including those not in S∗(m), are

ei(m) = yi − xT
i β̂(m) (i = 1, . . . , n). (4)

The search moves forward with the augmented subset S∗(m + 1) consisting

of the observations with the m + 1 smallest absolute values of ei(m). To

start, except for the first year, we take m0 = 0, since the prior information

specifies the values of β and σ2.
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To test for outliers the deletion residuals are calculated for the n − m

observations not in S∗(m). These residuals are

ri(m) =
{yi − xT

i β̂(m)}{c(m,n)−0.5}
√

σ̂2(m){1 + hi(m)}
=

ei(m){c(m,n)−0.5}
√

σ̂2(m){1 + hi(m)}
, (5)

where, from (3), the leverage hi(m) = xT
i {X

T
0,1X0,1+X(m)TX(m)/c(m,n)}−1xi,

except for the first year when hi(m) = xT
i {X(m)TX(m)}−1xi. Let the ob-

servation nearest to those forming S∗(m) be imin where

imin = arg min
i/∈S∗(m)

|ri(m)|.

To test whether observation imin is an outlier we use the absolute value of

the minimum deletion residual

rimin(m) =
eimin(m){c(m,n)−0.5}
√

σ̂2(m){1 + himin(m)}
, (6)

as a test statistic. If the absolute value of (6) is too large, the observation

imin is considered to be an outlier, as well as all other observations not in

S∗(m).

This FS provides the value of β̂, based on n0,1 +m∗
1 observations, and so

the fitted regression line to which the threshold is applied. For the next year

we set n0,1 ← n0,1 + m∗
1. The variance σ2 is estimated from the n0,2 prior

observations plus the m∗
2 observations lying within the threshold, without

any further search, and n0,2 ← n0,2 +m∗
2.

4 Data Analysis with the Bayesian Forward

Search

4.1 2003

We incorporate the posterior information from the analysis of the data from

2002 into the analysis of the 167 observations for 2003, which have a similar

structure to those for 2002. From the Bayesian analysis of data for that
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year we thus take n0,1 = 150 and n0,2 = 160. The resulting forward plot of

deletion residuals is in the upper panel of Figure 3. The first outlier is at

m = 153. The bottom-hand panel of the figure shows the 153 observations

not indicated as outliers during the search, again plotted with a cross. The

figure also shows that there are 6 observations that lie within the threshold

of ±300 from the robust line. These again are marked X. The interesting

observations, from the perspective of fraud detection, are the 8 observations

marked O which lie on a line with a lower slope than the others.

4.2 2004

Finally,we consider in greater detail the Bayesian analysis of data from 2004,

for which there are 168 observations. We now have prior information from

the non-outlying observations from both 2002 and 2003; thus n0,1 = 303 and

n0,2 = 319.

The upper plot of Figure 4 shows the central observations and outliers

from the Bayesian FS for the 168 observations for 2004. This search suggests

17 outliers. However, four of them lie within the threshold of ±300, leav-

ing 13 outliers, one of which lies close to the upper line. The remaining 12

observations lie on an extremely clear line which warrants further investiga-

tion. This investigation showed that all 12 observations came from a single

member state. This pattern was so striking that a successful prosecution was

eventually instituted. See our earlier comments on timeliness.

Comparison of this analysis with the frequentist analysis using just the

data from 2004 amply illustrates the clarity obtained by the incorporation

of prior information. The scatterplot of outliers from the analysis without

prior information in the lower panel of Figure 4 shows 19 outliers. These

include the observations falling on the lower line also revealed in the upper

panel. However, the remaining outlying observations lie both above and

below the upper line, thus obscuring the structure of the main relationship.

Although thresholding reveals the structure, the procedure is arbitrary and

may have reduced impact as legal evidence. An important advantage of
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Figure 3: 2003 data, Bayesian search. Upper panel: forward plot of mini-

mum deletion residuals. The Bonferroni bound indicates 14 outliers. Lower

panel: scatter plot. + non-outlying observations, X intermediate observa-

tions within a threshold of ±300, O outliers
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incorporation of prior information is the greater weight of evidence, compared

to the analysis of each year separately, leading to more powerful tests of

hypotheses about the evidence of fraud provided by the analysis of outliers.

This effect is especially important if there are years when a particular good

is only lightly traded.

The forward plots of deletion residuals for the two searches are given in

Figure 5. The left-hand panel shows the frequentist search, in which the

values of the residuals rise to a peak and then decline. This is clear evidence

of masking caused by a cluster of outliers; as the observations from the

lower line enter the FS subset, the parameter estimates are distorted and the

remaining outlying observations seem less remote. There is no such feature

in the Bayesian analysis in the right-hand panel where the prior information

is sufficiently strong that the points on the lower line remain outlying.

4.3 Determining the Threshold.

An important part of our data analysis has been the threshold for physically

significant outliers, to be determined by subject matter specialists. The

determination is only required once for each good. The value has been taken

equal to 300. We show the importance of the threshold by analysing the data

with two other values, 100 and 500.

The left-hand panel of Figure 6 shows the scatterplot of data and residuals

when the threshold is set at 100, when 26 outliers are suggested by the FS.

The threshold indicates that 7 of these are to be taken as representative data.

The remaining outliers include not only the lower line but five observations

that the larger threshold of 300 indicates belong to the main population

around the upper line. In this case the threshold is too small.

In the right-hand panel of the figure, the threshold is 500. Now all the

points near the upper line are accepted and the lower line is clear. However,

compared with the threshold of 300 that we used, the four smallest observa-

tions from the lower line are also accepted as genuine, as opposed to one in

our analysis. Although visual inspection of such plots enables adjustments to
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using prior information from 2002 and 2003. Lower panel: frequentist FS. +
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Figure 5: 2004 data, forward plots of minimum deletion residuals. Left-hand

panel, frequentist search, showing the effect of masking. Right-hand panel,

Bayesian search. Note the difference in vertical scales

be made to the behaviour of the procedure, we require a method that works

automatically to indicate anomalous structures.

However, the analysis is not sensitive to the precise value of the threshold.

Repeating our analysis with values of 240 and 340 leads to identical results to

those when the threshold equalled 300. Too small a threshold indicates too

many outliers and may obscure the structure of the data whereas too large

a threshold may lead to procedures with reduced statistical power. Analysis

with several values for the threshold may be informative.

5 2002: Other Analyses

A major argument both for the use of a Bonferroni correction to identify

outliers and the inclusion of a threshold in the analysis was that much of

the data lay virtually on a straight line with almost no error. In the online

supplement (Riani et al., 2018) we use least squares regression to illustrate

this property of the error distribution. Then we consider two robust estima-

tion procedures recommended by Maronna et al. (2006) which are potential

alternatives to our FS-based analysis. Our results for S estimation show the

strong dependence of the number of outliers detected on the breakdown point
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outliers. Left-hand panel, threshold = 100, right-hand panel, threshold =

500. + non-outlying observations, X intermediate observations within the

threshold, O outliers

specified in advance of the analysis. These results are in line with those from

the monitoring of different forms of robust regression in Riani et al. (2014)

which show, for three examples, just how sensitive the S-estimate can be

to the choice of breakdown point. For MM estimation it is necessary to

specify the efficiency of estimation of the parameter β. As this efficiency

varies from 0.85 to 0.95 the number of declared outliers decreases from 39 to

32. In this context, the diagnostic advantage of least squares compared to

straightforward robust procedures is that it does not produce large residuals

from well-behaved data. See Cook and Hawkins (1990) for an example in

multivariate analysis where a robust method leads to “outliers everywhere”.

6 Discussion

The critical dependence of MM and S estimates on constants chosen by the

data analyst renders them problematic for semi-automatic routine use in

monitoring large data sets. However, the use of prior information from year

to year should serve to stabilize these methods. Some Bayesian methods for

robust regression, for example Liu (1996), replace normally distributed errors
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with longer tailed ones, such as the t-distribution. These methods have lower

breakdown points than the maximum value of 50% for the methods compared

here. In contrast, we suggest a two-stage procedure in which the weights of

the observations from frequentist very robust regression are combined with

prior information. In our context of using prior information from previous

observations, it is straightforward to modify the expressions for information

matrices and parameter estimates in §3 to include weights from estimation

methods other than FS. If WR is the n × n diagonal matrix of the weights

from a robust regression we replace the information matrix for the subset

m, that is X(m)TX(m) by XTWRX and the sufficient statistic X(m)Ty(m)

by XTWRy. A comparison of their procedure with the FS is in section 6

of Atkinson et al. (2018). For the particular set of data analysed, the two

analyses find virtually identical sets of outliers.

Robust methods, including the FS, can be computationally intensive.

Here we have used the FS for relatively small individual sets of data. How-

ever, Riani et al. (2015) describe a version suitable for the analysis of large

data sets. The principal improvements in speed come from a recursive im-

plementation of the procedure which exploits the information of the previous

step. The output is a set of efficient routines for fast updating of the model

parameter estimates, which do not require any data sorting, and fast compu-

tation of likelihood contributions, which do not require matrix inversion or

QR decomposition. It is shown that the new algorithms enable a reduction

of the computation time by more than 80%. Furthermore, the running time

now increases almost linearly with the sample size

Part of our argument for the thresholding procedure was that of the idea

of a fair value for the goods being imported. Figure 7 illustrates this idea

through scatter plots of the data for the three years. All have a similar

structure and the upper line, calculated by the FS, has virtually constant

slope: for the three years the values are 13.50, 13.29 and 12.57. Although

the slope of the line for the majority of the data varies little over the years,

the structure of the outliers is different. All are linear, but that for 2003
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Figure 7: 2002-2004 data. Fair value. Annual regression lines from the FS.

There are respectively 165, 167 and 168 observations

has the lowest slope, 5.880, with the others being 9.5875 and 6.7491. These

are blatant departures from the fair value - a saving of 56% for 2003. The

values of R2 for these regressions, 92, 97 and 99% indicate that no attempt

was made to disguise the fraud. However, our procedure is unaffected by the

form of the outlying observations, depending on the their distance from the

line of fair value, provided we successfully identify this. A surprising feature

of the period over which the data were collected is the stability of the fair

value. For goods for which this value is not so constant over years, a sector

inflation (or deflation) factor can be used to adjust the value of the good

before analysis. In other applications it has been found helpful also to have

a moving window for the fair value, typically calculating it from data from

no more than three consecutive years.

A strange feature of the trade data is the number of different forms en-

countered. The seafood data analysed in this paper have a relatively simple

structure of two lines, a very few other outliers and an error distribution

giving a large number of small observational errors. Data for other goods

may have something of the same structure, perhaps with more outliers, but

show appreciable heteroscedasticity, the variance increasing with the mean.

The FS can also be used to provide heteroskedastic very robust regression,
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but currently without the incorporation of prior information.
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1 Other Analyses of the Data from 2002

1.1 Least Squares

A major argument both for the use of a Bonferroni correction to identify

outliers and the inclusion of a threshold in the analysis was that much of the

data lay virtually on a straight line with almost no error. We use a least

squares regression to illustrate this property of the error distribution. Then

we consider two robust estimation procedures recommended by Maronna

et al. (2006) which are potential alternatives to our FS-based analysis. In

this context, the diagnostic advantage of least squares compared to robust

procedures is that it does not produce large residuals from well-behaved data.
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Figure 1: 2002 data, least squares analysis with arbitrary letters indicating

member state. Upper panel, QQ-plot of standardized residuals, lower panel

scatter plot of data

See Cook and Hawkins (1990) for an example in multivariate analysis where

a robust method leads to “outliers everywhere”.

The QQ-plot of standardized residuals for year 2002 in the upper panel

of Figure 1, clearly shows this structure; the central part of the data (around

130 observations) is virtually horizontal. At the lower-end of the distribution

there is what appears to be a clear set of outliers. The larger observations in

the upper tail of the distribution are less obviously outlying, although they

clearly come from a distribution with a larger standard deviation than the

central observations.

Although the successful prosecution mentioned by Riani et al. (2018) led

to the identification of European Union member state E, the data from the

other member states remain unattributed; the symbols in the plot are marked

with an arbitrary letter for each member state. The 12 most negative residu-

als all come from member E. The lower panel of Figure 1 shows a scatterplot

of the data. The separation of the E group is clear, forming the lower line

we have been continuously identifying. For the highest values, a single ob-
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servation from member state F lies above a closely related observation from

member state B. However, because the E group slightly reduces the slope of

the overall least squares regression line, there is a large positive residual from

F in the upper panel of the figure.

Although the least squares analysis has allowed us to interrogate two plots

and discover part of the structure of the data, the significance of the results

is not adequate for legal purposes. The upper panel of Figure 2 shows the

plot of deletion residuals in observation order. The symbols reveal that the

12 observations from each member state are given together, in fact in time

order. The E group give a set of negative residuals. There is also the positive

residual we have noted for F. However, the Bonferroni bounds in the figure

(to give an overall 1% test size for the sample) only reveal three outliers. The

comparison with the results of the frequentist FS in the right-hand panel of

Figure 2 of Riani et al. (2018) is revealing. There 15 outliers were revealed

and the concern was that too many were being found. Here, the masking to

which LS regression is subject shows how the residuals for the outliers have

been rendered less extreme by use of a test in which the estimate of σ2 is too

large. The plot also exhibits the prevalence of small residuals.

Interesting insight into the structure of the data comes from the lower

panel of the figure, which shows the quantities for each of the 165 transac-

tions. Apart from the two large transactions, half a dozen member states

account for nearly all the trade. The remaining observations are small (al-

though not identically zero). It is these small transactions that give rise to

the structure of the random variability, with many observations very close to

the line fitted in the first part of the FS.

1.2 S Estimation

We now briefly describe the results of other robust analyses of the data from

2002 and compare them with that from the FS. Section 2 of Riani et al.

(2014) summarizes the common structure and differences of the methods of

very robust regression described in detail by Maronna et al. (2006). In the
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Figure 2: 2002 data, least squares analysis with member state indicators.

Upper panel, index plot of deletion residuals with 99% Bonferroni bound;

lower panel monthly value of imports

final section we sketch how prior information can be incorporated into these

methods.

In least squares estimation, the value of β̂ does not depend on the estimate

of σ2. The same is not true in M estimation and derived procedures in

which observations with large residuals are downweighted by a function ρ,

the extent of downweighting depending on the value of σ. In our calculations

in this paper we take ρ as the Tukey biweight. Other choices could have

been the hyperbolic or Hampel functions (Hampel et al., 1981; Hoaglin et al.,

1983). S-estimates are a special case of M estimates introduced by Rousseeuw

and Yohai (1984) in which the scale estimate is optimized for a specified

breakdown point which cannot be less than 0.5.

First we analyse the data from 2002 with the breakdown point of the S

estimator set to 0.25. When we use the simultaneous 99% confidence interval

for outlier detection we obtain a pattern of outliers that is exactly identical

to that from the frequentist FS. There are the same three outliers from the

upper line and all the observations from country E. Of course, as we argued
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Figure 3: 2002 data, scatterplots with outliers (O). Left-hand panel, S es-

timator with breakdown point 0.5; right-hand panel, MM estimator with

efficiency 0.95.

when introducing the threshold, this set of outliers is too large.

The breakdown point is a parameter to be chosen by the data analyst.

We now repeat the analysis with a value of 0.5, the maximum value with

physical meaning. There are now an amazing 44 outliers. The scatterplot

in the left-hand panel of Figure 3 shows that the largest 5 observations from

the main line are determined to be outlying as well as many more on that

line and all those from country E and others lying just below the fitted line.

This behaviour is somewhat disturbing. When the breakdown point is

0.25 the analysis is in line with that of the FS, which adaptively chooses

the amount of trimming in the light of the data and can, when appropriate,

have a breakdown point of 0.5. However, 0.5 is not appropriate here; when

the S-estimator is forced to have such a high breakdown point, outliers are,

indeed, found everywhere. Figure 4 plots the number of outliers found as a

function of breakdown point over the range 0.1 to 0.5. The number of outliers

increases steadily with the breakdown point, with an abrupt change around

a value of 0.38. These results are in line with those from the monitoring

of different forms of robust regression in Riani et al. (2014) which show, for

three examples, just how sensitive the S-estimate can be to the choice of

breakdown point.
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Figure 4: 2002 data, S estimation. Number of units declared as outliers as

the breakdown point (bdp) varies. Upper curve, individual confidence level

of 0.99, lower line simultaneous confidence level of 0.99

1.3 MM Estimation

Explicit asymptotic relationships between the breakdown point and efficiency

of S estimators are presented by Riani et al. (2014, §2.2); as one increases,

the other decreases. In an attempt to break out of this relationship, Yohai

(1987) introduced MM estimation, which extends S estimation. In the first

stage the breakdown point of the scale estimate is set at 0.5, thus providing

a high breakdown point. This fixed estimate is then used in the estimation

of β, which is chosen to have high efficiency.

Maronna et al. (2006, p. 126) suggest a value of 0.85 for the efficiency

parameter in MM-estimation. When we combine this with the simultaneous

interval for outlier testing we obtain 39 outliers. Increasing the efficiency to

0.9 gives 37 outliers, with a final increase to 0.95 indicating 32 outliers. The

scatterplot of this last set of outliers is in the right-hand panel of Figure 3.

The sets of outliers found by the two procedures plotted in the figure are,

not surprisingly, very similar, given the similarity in the number found. A

strange, although unimportant, difference is that MM estimation with an
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efficiency of 0.95 does not identify the large observation from F as an outlier.
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