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Gabriel	M.	Ahlfeldt	

Weights	to	address	non‐parallel	trends	in	
panel	difference‐in‐differences	models	

Abstract:	Causal	inference	using	the	difference‐in‐differences	(DD)	method	relies	on	the	untestable	assumption	of	

parallel	counterfactual	trends	across	units	that	are	assigned	to	different	treatments.	To	facilitate	the	application	of	

the	method	in	settings	where	the	parallel‐trends	assumption	is	seemingly	violated,	I	suggest	weighting	observa‐

tions	such	that	the	conditional	correlations	between	treatments	and	pre‐treatment	outcome	trends	are	minimised,	

i.e.	weighted	trends	are	parallel.	I	evaluate	the	performance	of	a	weighted	parallel	trends	(WPT)	DD	estimator	in	a	

Monte	Carlo	study	and	provide	an	application	to	a	case‐study	context	in	which	a	benchmark	estimate	exists.	The	

WPT	DD	approach	can	be	applied	in	settings	with	multiple	continuous	treatment	variables	as	well	as	to	estimating	

time‐varying	treatment	effects.		
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1 Introduction	

Difference‐in‐differences	(DD)	analysis	(Ashenfelter	and	Card,	1985)	has	become	a	standard	pro‐

gramme	evaluation	technique	due	to	its	potential	to	control	for	unobserved	individual	effects	and	

time	effects.	The	effect	of	a	programme,	a	policy,	or	another	exogenous	event	usually	referred	to	as	

a	treatment,	on	an	outcome	is	identified	from	a	comparison	of	subjects	with	different	exposures	to	

a	programme	(first	difference)	before	and	after	(second	difference)	the	programme	is	implemented.	

The	key	identifying	assumption	in	this	comparison	is	that	of	parallel	counterfactual	trends.	In	the	

simplest	 case	of	a	binary	 treatment	 (either	 treated	or	not	 treated),	 the	 treated	and	non‐treated	

(control)	subjects	are	assumed	to	follow	the	same	outcome	trend	in	the	absence	of	a	treatment.	This	
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assumption,	however,	is	not	only	ambitious	it	is	also	not	testable	because	the	counterfactual	cannot	

be	directly	observed.	Arguably,	the	closest	approximation	of	the	counterfactual	trend	is	the	“pre‐

trend”,	the	trend	observed	before	the	effects	of	a	treatment	can	be	anticipated.		

This	paper	is	a	companion	paper	to	Ahlfeldt	et	al.	(2016)	who	estimate	the	land	price	capitalisation	

effects	of	the	metro	rail	system	in	Berlin	today	and	a	century	ago,	using	different	identification	strat‐

egies.	At	one	stage	of	the	analysis,	the	authors	conduct	a	DD‐based	intervention	study	of	the	land	

price	effects	of	Line	A,	the	first	electrified	metro	line	in	Germany,	which	opened	in	1902	in	Berlin.	

They	are	interested	in	separately	identifying	the	presumably	positive	effects	of	being	close	to	a	sta‐

tion	and	the	presumably	negative	effects	that	originate	from	the	noise	of	the	elevated	rail	line.	They	

wish	to	 identify	 the	 temporal	structure	of	 the	 treatment	effects,	 i.e.	 treatment	effects	before	 the	

opening	due	to	anticipation	effects	and	temporal	trends	in	the	treatment	effects	after	the	opening	

due	to	a	presumably	non‐instantaneous	adjustment	to	a	new	equilibrium.	Thus,	they	face	the	chal‐

lenge	of	conducting	an	intervention	study	in	a	setting	with	multiple	continuous	treatments	whose	

effects	are	continuous	in	space	and	time.		

In	this	empirical	setting,	they	encounter	that	the	treatments	(noise	and	proximity	to	a	station)	are	

strongly	correlated	with	pre‐trends	 in	 land	prices,	creating	an	 identification	problem	due	to	the	

likely	violation	of	the	parallel‐trends	assumption.	A	weighted	DD	is	suggested	to	address	the	prob‐

lem.	The	idea	of	the	estimator	is	to	use	time‐invariant	weights	to	reweight	land	parcels	in	such	a	

way	that	the	correlation	between	noise	and	station	distance	on	the	one	hand	(the	treatment	varia‐

bles)	and	the	pre‐treatment	trend	in	land	price	(the	pre‐trend)	on	the	other,	is	minimised.	It	is	ar‐

gued	that	if	this	objective	is	achieved	in	a	targeted	pre‐treatment	period,	as	well	as	in	other	(non‐

targeted)	pre‐treatment	periods	that	have	not	been	used	in	the	weights	construction	(an	overiden‐

tification	test),	the	correlation	will	likely	also	be	mitigated	in	the	remaining	(post‐treatments)	pe‐

riods.	As	a	result,	the	parallel‐trend	assumption	required	for	the	identification	of	the	treatment	ef‐

fects	is	more	plausible.	

Since	in	this	approach	the	key	assumption	is	that	(counterfactual)	outcome	trends	across	subjects	

exposed	to	different	treatment	intensities	are	parallel,	conditional	on	weighting,	I	refer	to	the	esti‐

mator	 as	weighted‐parallel‐trends	 (WPT)	DD	 in	 the	 remainder	 of	 this	 paper.	 I	 complement	 the	

Ahlfeldt	et	al.	(2016)	case	study	application	of	WPT	DD	in	two	respects.	First,	I	introduce	the	iden‐

tification	problem	in	the	context	of	a	Monte	Carlo	study,	in	which	I	evaluate	the	WPT	DD	perfor‐

mance.	Second,	I	expand	on	the	case	study	by	comparing	OLS	DD	and	WPT	DD	and	exploring	the	

sensitivity	of	the	WPT	DD	results	to	changes	in	covariates,	objective	functions,	and	algorithms	used	
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in	the	parallel	trends	weights	construction.	The	Monte	Carlo	results	suggest	that	the	WPT	DD	has	

the	potential	to	reduce	OLS	bias	to	the	extent	that	the	objective	of	minimising	treatment‐trend	cor‐

relations	(over	a	pre‐treatment	period)	is	achieved.	In	the	case	study	application,	the	WPT	DD	pro‐

vides	results	that	are	more	plausible	than	the	OLS	results	given	theoretical	expectations	and	exist‐

ing	evidence.	In	particular,	the	noise	effects	estimated	by	WPT	DD,	unlike	those	from	OLS	DD,	are	

close	to	estimates	that	exploit	plausibly	exogenous	variation	from	a	spatial	discontinuity	in	noise	at	

a	tunnel	entrance	(Ahlfeldt	et	al.,	2016).	Reassuringly,	different	implementations	of	the	WPT	DD	

yield	similar	results.	

This	paper	contributes	to	a	growing	literature	concerned	with	violations	of	the	non‐parallel	trends	

assumption	in	DD	where	the	idea	of	using	weights	in	DD	is	not	new.	In	a	closely	related	theoretical	

paper,	Abadie	(2005)	discusses	how	a	semi‐parametric	DD	estimator	can	be	used	to	address	the	

identification	problem	that	arises	if	selection	into	treatment	is	correlated	with	individual	trends.	

Heckman	 et	 al.	 (1998),	 Heckman	 et	 al.	 (1997),	 Smith	 and	 Todd	 (2005),	 Kline	 (2011),	 and	

Hainmueller	(2012)	also	discuss	estimators	that	rely	on	the	reweighting	of	observations	to	improve	

balancing	conditions.	Such	weighting	approaches	differ	from	alternative	approaches	to	controlling	

for	 time‐varying	 confounding	 factors	 that	 rely	 on	 time‐differencing	 (Lee,	 2015),	 controlling	 for	

treatment‐trend	interactions	(Ahlfeldt,	Moeller,	et	al.,	2017),	or	interactive	fixed	effects	(Bai,	2003;	

Gobillon	and	Magnac,	2016).	Other	relevant	papers	devoted	to	studying	and	relaxing	the	standard	

DD	 identification	 restrictions	 include,	Meyer	 (1995),	 Angrist	 and	 Krueger	 (1999),	 Blundell	 and	

Macurdy	(1999),	Besley	and	Case	(2000),	Blundell	et	al.	(2004),	and	Athey	and	Imbens	(2006).1	In	

terms	of	the	approach	to	evaluating	the	WPT	DD,	this	paper	is	related	to	a	literature	using	Monte	

Carlo	simulations	 to	establish	small	 sample	properties	of	estimators	 (see	e.g.	Conley	and	Taber,	

2011).	The	approach	to	benchmarking	DD	results	against	more	local	estimates	that	exploit	plausi‐

bly	exogenous	variation	is	similar	to	Kline	(2011)	and	Ahlfeldt,	Koutroumpis,	et	al.	(2017).	

In	general,	the	causal	inference	literature	has	by	now	made	considerable	progress	in	developing	

estimators	with	well‐developed	properties	that	solve	the	fundamental	identification	problem	con‐

ditional	on	some	restrictions.	There	are	also	several	user‐written	programmes	that	help	applied	

researchers	in	taking	these	estimators	to	the	data	(e.g.	Gomez,	2015;	Guardabascio	and	Ventura,	

2013;	Hainmueller	et	al.,	2011;	Hainmueller	and	Xu,	2013;	Leuven	and	Sianesi.,	2003).	However,	
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empirical	challenges	are	manifold,	so	sometimes	the	standard	tools	may	not	fit	the	needs	in	a	spe‐

cific	case	study.		

The	Line	A	studied	by	Ahlfeldt	et	al.	(2016)	serves	as	an	example.	Since	the	empirical	problem	the	

authors	face	is	that	of	a	correlation	between	a	treatment	and	a	time	trend	in	the	outcome,	a	natural	

consideration	would	be	to	control	for	the	confounding	trend.	The	generalised	DD	suggested	by	Lee	

(2015)	addresses	the	presence	of	confounding	trends	by	means	of	time	differencing.	Triple	differ‐

ences	(DD	in	first	time	difference)	allow	arbitrary	linear	trends	to	be	controlled	for,	while	quadru‐

ple	differences	accommodate	quadratic	trends,	etc.	In	the	present	case,	a	judgement	on	the	appro‐

priate	order	of	the	trend,	however,	is	difficult	because	even	the	direction	of	the	treatment‐trend	

correlation	changes	already	from	the	first	period	to	the	second.	For	the	same	reason,	the	inclusion	

of	parametric	treatment‐trend	interactions	is	ambitious.	The	interactive	fixed	effects	estimator	uses	

an	algorithm	to	identify	interactions	of	to‐be‐identified	individual	effects	(a	factor	loading)	and	time	

effects	(a	factor)	to	control	for	confounding	trends.	However,	in	the	presence	of	a	treatment	effect	

that	potentially	builds	up	over	much	of	the	treatment	period,	the	separate	identification	of	time‐

varying	treatment	effects	on	the	one	hand,	and	factor	loadings	that	interact	with	time	effects	on	the	

other,	represents	a	tough	challenge.		

Empirical	approaches	that	rely	on	reweighting	represent	a	seemingly	attractive	alternative.	Exam‐

ples	include	the	inverse	probability	weighting	(Hernán	et	al.,	2001)	and	the	special	case	of	entropy	

balancing	(Hainmueller,	2012),	the	propensity	score	matching	(Rosenbaum	and	Rubin,	1983),	or	

the	synthetic	control	method	(Abadie	and	Gardeazabal,	2003).	The	main	problem	with	the	applica‐

tion	of	these	tools	to	the	present	case	is	that	they	serve	the	purpose	of	evaluating	singular	treat‐

ments	and	not	multiple	correlated	treatments.	Moreover,	it	is	not	straightforward	to	apply	them	to	

settings	with	 continuous	 treatment	 variables	 and	 intervention	 study	 designs	with	 time‐varying	

treatment	effects	(as	e.g.	in	Autor,	2003).	

The	 focus	 of	 the	 literature	 on	 singular	 binary	 treatments	 suggests	 that	 the	 challenges	 faced	 by	

Ahlfeldt	et	al.	(2016)	are	quite	specific	to	their	case	study.	However,	countervailing	externalities	

can	be	expected	not	only	for	infrastructures	such	as	highways	or	airports,	but	also	public	facilities	

such	as	police	and	fire	stations.	Multiple	correlated	treatments	can	also	occur	in	completely	differ‐

ent	contexts,	e.g.	if	individuals	are	supported	by	multiple	social	programmes	(job	training,	educa‐

tion	programmes,	or	housing	improvements).		
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The	purpose	of	this	paper	is	to	illustrate	how	in	a	relatively	simple	and	transparent	approach,	time‐

invariant	weights	that	minimise	the	treatment‐trend	correlation	in	the	pre‐period	help	to	address	

non‐parallel	trends	in	a	setting	where	the	literature,	as	far	as	I	know,	does	not	offer	off‐the‐shelf	

solutions.	I	am	largely	agnostic	about	the	computation	of	the	weights	used	in	WPT	DD,	an	aspect	

that	is	often	at	the	centre	of	methodological	contributions.	At	this	stage,	I	do	not	wish	to	promote	

any	of	the	algorithms	used	in	this	paper	(or	in	the	companion	paper).	It	is	easy	enough	to	evaluate	

whether	an	algorithm	achieves	its	purpose	of	minimising	the	treatment‐trend	correlation	in	a	given	

period.	And	it	is	also	straightforward	to	overidentify	the	result	using	another	period	that	has	not	

been	used	in	the	weights	construction.	The	researcher	can	also	easily	check	the	selectivity	of	the	

weighted	sample	to	avoid	an	external	validity	problem	if	heterogeneity	in	the	treatment	effect	is	

expected.	As	long	as	these	tests	are	passed,	it	is,	 in	principle,	up	to	the	researcher’s	creativity	to	

develop	a	weighting	strategy	that	works	in	an	empirical	setting.	Of	course,	this	does	not	preclude	

making	use	of	existing	computational	procedures.	As	an	example,	Hainmueller	(2012)	notes	that	

entropy	balancing	weights	could	be	paired	with	standard	estimators.	

The	remainder	of	the	paper	is	split	into	the	Monte	Carlo	study	in	section	2	and	the	case‐study	ap‐

plication	in	section	3.	The	final	section	4	concludes.	

2 Monte	Carlo	study	

To	illustrate	the	empirical	context	and	shed	some	light	on	the	properties	of	the	WPT	DD,	it	is	useful	

to	apply	the	WPT	DD	to	a	setting	in	which	the	true	effect	to	be	estimated	is	known.	Therefore,	I	

conduct	 a	 motivating	 simulation	 study.	 A	 replication	 directory	 is	 available	 at	 the	 Harvard	

Dataverse.2	

2.1 Data‐generating	process	

Consider	a	data‐generating	process	(DGP)	of	the	following	form:	

௧ݕ ൌ  ߙ ௧ܲܦ



 ߤ  ߮௧  ݂߱ሺݐሻ߳௧,	 (1)	

where	ݕ௧	 is	an	outcome	observed	 for	a	unit	 i	=	1,…,I	at	period	t	=	1,…,T,	ܦ
	 is	one	of	n	=	1,…,N	

treatment	variables,	and	 ௧ܲ ൌ ܲሺݐ  ‐peri	all	for	one	of	value	the	taking	variable	indicator	an	is	ሻ	ݖ

																																																													

2		 Published	at	:	https://doi.org/10.7910/DVN/7FJEE1	
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ods	t≥z	in	which	the	treatment	is	in	place,	and	zero	otherwise.	ߙ	is	one	of	N	difference‐in‐differ‐

ences	parameters	to	be	estimated.	 In	 the	application	 introduced	in	Section	3,	ݕ௧	corresponds	to	

parcel	land	prices	observed	in	different	years,	ܦ
ୀଵ	and	ܦ

ୀଶ	correspond	to	distance	from	the	near‐

est	station	and	exposure	to	noise,	and	 ௧ܲ	indicates	all	years	when	Line	A	is	in	operation.	ߤ	and	߮௧	

are	individual	and	time	fixed	effects	and,	critical	for	the	point	being	made,	there	is	an	interaction	of	

an	unobserved	individual	trend	effect	߱	(a	factor	loading)	with	a	time	trend	݂ሺݐሻ	(a	factor),	with	

݂′ሺݐሻ ് 0.		

For	the	݂߱ሺݐሻ	interaction	to	represent	a	threat	to	identification	of	ߙ,	߱	must	be	correlated	with	

ܦ
.	I	create	an	imperfect	correlation	between	߱	and	ܦ

	by	choosing	the	following	functional	form:	

where	ܪ	is	a	to‐be‐specified	variable	that	is	not	observed	by	the	researcher	and	ߴ	 is	a	random	

variable.	From	an	estimation	point	of	view,	the	problem	is	that	the	difference	between	the	marginal	

effect	of	ܦ
	in	the	before	and	in	the	after	period,	which	is	identified	by	the	standard	panel	DD	re‐

gression	omitting	a	control	for	݂߱ሺݐሻ,	is	contaminated	by	the	general	time	trend:	

where	a	bar	indicates	the	mean	value	within	the	pre‐treatment	(ݐ ൏ ݐ)	post‐treatment	the	or	(ݖ 

	estimators	Weighted	problem.	trends	non‐parallel	well‐known	the	of	instance	an	is	This	period.	ሻݖ

are	generally	thought	to	remove	bias	due	to	non‐random	sampling	(Shaun	and	Ian,	2011).	To	moti‐

vate	the	WPT	approach,	I	build	on	this	idea	and	first	generate	a	population	j	=	1,…,J	in	which	ܪ	has	

a	 zero	mean	 so	 that	 the	DD	estimator	would	 identify	ߙ.	Then,	 I	 draw	 the	non‐random	sample	

i	=	1,…,I	using	sampling	fractions	ܨ	that	are	correlated	with	ܪ,	which	introduces	the	estimation	

problem.	The	task	that	I	delegate	to	the	algorithms	introduced	in	section	2.3	is	then	simply	to	iden‐

tify	the	sampling	weights	 ܵ ൌ ܨ
ିଵ	in	the	observed	sample	i	=	1,…,I	that	remove	the	sampling	bias.	

If	the	correct	set	of	weights	is	identified,	the	correlation	between	the	pre‐treatment	outcome	trend	

ܦ	and	,ݕ∆
	is	eliminated.	If	the	latent	variable	ܪ	is	time‐invariant	as	assumed	here,	the	corre‐

lation	between	the	outcome	trend	∆ݕ,௦௧	in	the	post‐treatment	period	and	ܦ
	is	also	eliminated,	

and	so	is	the	estimation	problem.		

To	ensure	 that	 the	algorithms	described	 in	section	2.3	stand	a	chance	of	 identifying	 the	correct	

sampling	weights	 ܵ ൌ ܨ
ିଵ,	I	define	the	sampling	fractions	in	the	population	as	ܨ ൌ 1/∑ ݎ ݄


 	

߱ ൌ ߴ 
1
ܰ
ܪ ܦ




,	 (2)	

ܧ ቆ
,௧ஹ௭ݕ߲
ܦ߲

 െ
,௧ழ௭ݕ߲
ܦ߲

 ቇ ൌ ߙ 
1
ܰ
ሻ൫݂̅,௧ஹ௭ܪሺܧ െ ݂̅,௧ழ௭൯	 (3)	
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and	the	latent	variable	in	equation	(2)	as	ܪ ൌ െ2/ܯ  ∑ ݄


 ,	where	 ݄
	is	one	of	m	=	1,…,M	vari‐

ables	that	correspond	to	some	locational	attributes	such	as	distance	from	the	CBD	in	the	applica‐

tion.	As	discussed	in	the	next	section,	the	attributed	variables	 ݄
	are	constructed	so	to	ensure	that	

൯ܪ൫ܧ ൌ 0.	With	this	definition,	 the	sampling	bias	and	the	trend	interaction	that	give	rise	to	the	

estimation	problem	are	a	function	of	the	same	variables.	The	algorithms	introduced	in	section	2.3	

will	exploit	this	feature	to	approximate	 ܵ .		

2.2 Simulations	

I	draw	individual	ߤ	and	time	effects	߮௧	and	the	independent	component	in	the	trend	effect	ߴ	from	

independent	uniform	(0,1)	distributions	once	and	for	all	(i.e.	they	are	the	same	in	all	experiments).	

For	the	time	trend,	I	use	polynomial	specifications	of	the	orders	o=1,2,3,	i.e.,	݂ሺݐሻ ൌ ∑ ݐ߁ 	(see	

Figure		A1	in	the	appendix	for	an	illustration	of	the	functional	forms	chosen).	I	set	ߙ ൌ ܫ	,1 ൌ 1000,	

ܶ ൌ 10,	and	ݖ ൌ 0.5ܶ.	In	line	with	the	empirical	application	in	section	3,	I	set	ܰ ൌ 2	and	M	=	3.	The	

ܰ ൌ 2	treatment	variables	ܦୀଵ	and	ܦୀଶ	and	the	M	=	3	attribute	variables	݄ୀଵ,	݄ୀଶ,	and	݄ୀଷ	

are	drawn	from	independent	uniform	(0,1)	distributions	at	the	beginning	of	each	experiment.	In	

each	experiment,	I	first	generate	the	data	for	the	data	universe	ሺ݆	 ൌ 	1, . . , 	sample	a	draw	then	and	ሻܬ

(i	=	1,…,I)	with	the	probability	of	an	observation	being	sampled	of	ܨ ൌ 1/∑ ݎ ݄


 ,	where	ݎଵ,	ݎଶ,	

and	ݎଷ	are	scalars	drawn	from	an	independent	uniform	(0,1)	distribution	in	each	experiment.	Fi‐

nally,	I	add	 ߳௧,	which	is	drawn	from	a	normal	distribution	with	a	mean	of	zero	and	standard	devia‐

tion	of	0.1	in	each	experiment.		

Once	the	data	for	an	experiment	have	been	generated,	I	estimate	equation	(1)	using	an	OLS	DD	and	

different	versions	of	WPT	DD,	in	each	case	omitting	any	control	for	݂߱ሺݐሻ.	Because	in	the	Monte	

Carlo	setting,	I	have	control	over	the	sample	fractions,	it	seems	natural	to	use	the	sampling	weights	

ܵ ൌ ܨ
ିଵ	in	one	set	of	experiments.	By	construction,	this	definition	removes	the	non‐parallel	trends	

problem	in	the	reweighted	sample,	so	that	it	serves	as	a	sanity	check	for	the	Monte	Carlo	setting.	In	

reality,	sampling	fractions	will	not	be	observed	by	the	researcher,	so	an	approximation	of	the	sam‐

pling	weights	needs	to	be	inferred	from	the	observed	data.	I	discuss	two	approaches	to	approxima‐

tion	these	weights	next.	

2.3 Algorithms	

There	are	various	potential	approaches	to	finding	a	suitable	set	of	weights	to	be	used	in	a	WPT	DD,	

and	the	relative	performance	is	likely	context‐dependent.	Basically,	any	algorithm	that	succeeds	in	

finding	weights	that	minimise	treatment‐trend	correlations	in	the	pre‐treatment	period	could	be	
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deemed	suitable.	In	section	3.3.1	I	discuss	how	the	validity	of	a	set	of	weights	can	be	evaluated	in	

an	empirical	application.	While	I	take	advantage	of	the	Monte	Carlo	setting	to	evaluate	the	average	

performance	of	two	different	approaches	to	approximating	 ܵ ,	I	do	not	claim	that	any	of	them	are	

theoretically	superior	to	any	other.	

2.3.1 Grid	search	

In	the	first	approach,	I	begin	by	defining	the	set	of	potential	weights	as	 መܵ ൌ ∑ ݄ݍ
	 .	The	empir‐

ical	task	then	is	to	find	the	vector	of	parameters	ܳ ൌ ሺݍୀଵ, ,ୀଶݍ 	conduct	I	purpose,	this	For	ୀଷሻ.ݍ

a	grid	search	over	the	parameter	space	defined	by	ݍଵ ൌ 0, 0.1, 0.2, … ଶݍ	,1, ൌ 0, 0.1, 0.2, … ଷݍ	,1, ൌ

0, 0.1, 0.2, … ,1.	I	note	that	I	have	defined	݄
	so	that	non‐negativity	of	 መܵ	is	ensured	for	any	Q.	In	a	

case‐study	application,	a	transformation	of	observed	variables	may	be	required,	such	as	the	Gauss‐

ian	transformation	introduced	in	section	3.2.2.	In	each	iteration	of	the	grid	search,	I	recover	the	

marginal	effect	of	each	treatment	variable	ܦ
	on	the	outcome	trend	from	a	regression	of	the	follow‐

ing	form:		

పଵሶݕ∆ ൌ ܿொ
  ܿொ

ܦሶ 



 Յொ 	 (4)

where	∆ݕଵ	is	the	change	in	the	outcome	from	the	first	to	the	second	period	and	the	point	accent	

indicates	normalisation	by	standard	deviation,	so	that	ܿ ொ
	is	the	marginal	effect	of	treatment	variable	

ሶܦ
	in	units	of	standard	deviations.	Targeting	the	change	from	the	first	to	the	second	period	(instead	

of	the	change	over	the	entire	pre‐treatment	period)	is	in	line	with	the	application	in	section	3,	where	

the	non‐targeted	periods	before	the	treatment	are	used	to	over‐identify	the	WPT	weights.		

In	each	regression	Q,	observations	are	weighted	by	a	set	of	weights	 መܵሺܳሻ.	I	select	the	parameter	

combination	that	minimises	the	“additive”	objective	ܤ ൌ ∑ ൫ܿ̂ொ
൯

ଶ
 .	As	already	discussed	in	2.1,	I	

expect	this	approach	to	perform	well	in	the	Monte	Carlo	setting	because	the	weights	 ܵ 	I	search	for	

are	the	inverse	of	the	sample	fractions	ܨ ൌ 1/∑ ݎ ݄


 .	

2.3.2 Iterative	approach	

In	the	second	approach,	I	am	agnostic	about	the	structure	of	the	sampling	fractions	ܨ.	I	assume	that	

the	researcher	observes	݄
.	However,	the	researcher	does	not	know	how	these	variables	relate	to	

the	sampling	fractions.	To	identify	a	suitable	set	of	weights	 መܵ,	I	follow	an	iterative	process	in	which	

I	start	from	an	initial	set	of	weights	 መܵ
௦ୀଵ 	ൌ 1	in	iteration	s=1.	Each	iteration	s	begins	with	an	esti‐

mation	of	the	marginal	effect	ܿ௦	of	each	treatment	on	the	outcome	trend	over	the	first	period.	
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ሶଵݕ∆ ൌ ܿ௦  ܿ௦ܦሶ 



 Ψ௦ 	 (10)

Next,	I	run	an	augmented	regression	in	which	I	allow	for	heterogeneity	in	the	marginal	effects	by	

adding	ܦሶ 
 ൈ ݄

	interaction	terms.	

ሶଵݕ∆ ൌ ܾ௦  ܾ௦ܦሶ 



  ܾ௦

,ܦሶ 
 ൈ ݄




 Ն௦,	

(11)

where	ܾ௦	and	ܾ௦
,	are	parameters	of	interest	to	be	estimated.	The	estimated	marginal	effect	of	a	

treatment	is	ߨො
 ൌ ሶܦ߲/ሶଵݕ∆߲ 

 ൌ ܾ
௦
  ∑ ∑ ܾ

௦
,݄


 .	I	acknowledge	that	a	distribution	of	marginal	

effects	 could	 be	 estimated	 non‐parametrically	 without	 requiring	 ݄
,	 e.g.	 by	 means	 of	 locally	

weighted	regressions	(see	e.g.	McMillen,	1996).	To	reduce	the	computational	requirements	in	the	

Monte	Carlo,	I	opt	for	a	parametric	approach.		

The	algorithm	then	follows	a	simple	tree	structure.	If,	for	any	treatment	n,	ܿ̂௦ ൏ 0,	I	create	 መܵ
௦ୀଶ, ൌ

݃ሺ መܵ
௦ୀଵ, ොߨ

ሻ,	a	set	of	weights	that	positively	depends	on	the	initial	weights	and	the	marginal	effect	

of	 the	treatment,	 thus	the	 first‐order	conditions	satisfy	݃ௌ  0	and	݃గ  0.	Likewise,	 if	 ܿ̂௦  0,	 I	

create	weights	 መܵ
௦ୀଶ, ൌ ݃ሺ መܵ

௦ୀଵ, ොߨ
ሻ	that	positively	depend	on	the	initial	weights	and	negatively	on	

the	marginal	effect,	i.e.	݃ௌ  0	and	݃గ ൏ 0.	For	the	next	iteration,	I	then	create	a	new	set	of	weights	

መܵ

௦ୀଶ ൌ ∑ ݄ሺ|ܿ̂௦|ሻ መܵ

௦ୀଶ,
 ,	where	h’	>0,	i.e.,	weights	are	adjusted	more	strongly	for	treatments	with	a	

larger	absolute	ܿ̂௦.	The	intuition	is	that	the	new	weights	vector	 መܵ
௦ୀଶ,	compared	to	 መܵ

௦ୀଵ,	attaches	

greater	weights	to	observations	where	the	marginal	effect	is	positive	if	the	average	marginal	effect	

is	negative,	and	vice	versa.	This	ensures	that	the	algorithm	generally	converges	towards	a	set	of	

weights	that	minimise	|ܿ̂௦|.	The	iterations	are	repeated	until	an	objective	is	achieved.	Here,	I	define	

as	the	objective	that	the	largest	of	the	standardised	partial	correlation	is	below	a	threshold	value	v,	

i.e.	I	minimise	ܤெ 	ൌ max ቀ|ܿଵ | , |ܿ௦ଶ| ቁ	and	stop	the	algorithm	if	in	iteration	s	where	ܤ௦ெ ൏ 	refer	I	.ݒ

to	this	objective	function	as	the	“min‐max”	objective	function.		

The	algorithm	generally	achieves	the	objective	quickly,	but	to	keep	the	Monte	Carlo	speedy,	I	set	a	

maximum	number	of	iterations	after	which	I	proceed	to	the	next	Monte	Carlo	experiment.	I	note	

that	this	naïve	algorithm	does	not	necessarily	converge	to	a	global	minimum	in	the	objective	func‐

tion.	To	prevent	it	from	drifting	off	into	an	undesirable	local	minimum	(given	the	global	objective),	

I	build	in	a	loop	that	sets	back	 መܵ
௦	to	a	weighted	combination	of	the	current	 መܵ

௦,	the	previous	 መܵ
௦ିଵ	

and	the	“best”	(in	terms	of	lowest	ܤெ)	weights	found	across	previous	iterations	if	ܤ௦ெ	exceeds	the	

smallest	ܤெ	achieved	in	past	iterations	by	a	sufficiently	large	margin.	I	will	spare	the	reader	the	
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detailed	functional	forms	and	thresholds	that	I	use	in	the	algorithm.	I	refer	the	interested	reader	to	

the	replication	directory.		

2.4 Results	

Figure	1	illustrates	the	distribution	of	the	estimated	marginal	 treatment	effects	ߙො	by	treatment	

and	estimation	method.	In	the	reported	experiments,	individual	trend	effects	interact	with	changes	

in	the	outcome	through	a	linear	time	trend	f(t)=t.	Table	1	reports	the	mean,	the	median,	and	the	

standard	deviation	(s.d.)	for	the	same	distributions.	It	also	shows	the	results	for	a	similar	series	of	

experiments	in	which	I	impose	a	quadratic	or	a	cubic	trend	(see	Figure	A1	in	the	appendix	for	an	

illustration).	Given	the	DGP,	a	distribution	of	ߙො	from	an	unbiased	estimator	will	have	a	unity	mean.	

As	expected,	the	OLS	DD	ߙො	estimates	are	way	below	unity,	on	average.	In	contrast,	the	distribution	

of	ߙො	from	the	WPT	DD	models	are	centred	on	values	that	are	much	closer	to	unity.	The	WPT	DD	

	recovered	weights	and	weights	sampling	using	estimates	ොߙ from	the	grid	search	algorithm	are	

close	 to	unity,	on	average.	This	 is	not	surprising,	given	that	 the	weights	were	constructed	using	

procedures	that	leverage	the	knowledge	of	the	sampling	process.	In	comparison	to	the	other	WPT	

DD	estimators,	the	WPT	DD	estimates	with	the	weights	generated	by	the	iterative	algorithm	are	

more	dispersed.	The	estimates	are	also	smaller	on	average.	But	the	estimates	are	generally	much	

closer	to	unity	than	the	OLS	DD	estimates.		

In	this	context,	it	is	worth	recalling	that	I	stop	the	interactive	process	after	100	iterations	to	speed	

up	the	Monte	Carlo,	even	if	the	absolute	standardised	marginal	effects	of	the	treatments	on	the	pre‐

treatment	outcome	trends	(ܿ௦
)	exceed	a	threshold	of	ܤெ ൌ maxቀ|ܿ௦ଵ| , |ܿ௦ଶ| ቁ ൏ ݒ ൌ 0.005	(the	objec‐

tive	that	would	normally	stop	the	algorithm).	It	is	possible	that	the	Monte	Carlo	results	would	im‐

prove	further	if	the	algorithm	was	given	more	time	to	achieve	its	objective,	but	the	experiments	in	

which	the	objective	is	not	achieved	are	interesting	in	their	own	right.	In	the	experiments	with	a	

linear	time	trend	in	the	DGP,	the	mean	value	of	ܿ௦
ୀଵ,ଶ 	(pooled	across	treatments)	is	െ0.012,	i.e.	the	

distribution	is	skewed	to	the	left.	Across	the	about	50%	of	the	cases	in	which	หܿ௦
ୀଵ,ଶห ൏ 0.01	(the	

objective	 is	 nearly	 achieved),	 the	mean	ߙොୀଵ,ଶ	are	 almost	 exactly	 unity.	 The	 effects	 of	 failing	 to	

achieve	the	objective	become	even	more	apparent	in	the	experiments	with	the	more	demanding	

cubic	trend	in	the	DGP.	The	mean	estimated	ߙොୀଵ,ଶ	across	all	experiments	(pooled	treatments)	is	

0.58,	so	way	below	unity.	But,	again,	the	mean	ߙොୀଵ,ଶ		is	almost	exactly	unity	across	the	experiments	

in	which	หܿ௦
ୀଵ,ଶห ൏ 0.01.		
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Fig.	1.	 Distribution	of	estimated	marginal	treatment	effects	with	linear	trend	interaction	

	
Notes:	 Reported	distributions	are	the	estimated	ߙො	from	1000	estimations	of	equation‐(1)	type	DD	models,	which	do	

not	control	for	݂߱ሺݐሻ.	The	marginal	treatment	effect	in	the	DGP	is	ߙ ൌ 1	(in	the	data	universe).	Monte	Carlo	
experiments	are	run	on	a	subsample	that	is	selective	with	respect	to	characteristics	that	determine	individual	
trends.	Sampling	weights	are	the	inverse	of	the	sampling	probabilities	used	in	creating	the	selective	subsam‐
ple.	 “Grid	 search”	 are	weights	 recovered	 from	 the	 algorithm	described	 in	 section	2.3.1.	 “Iterative”	 are	 the	
weights	recovered	by	the	algorithm	described	in	section	2.3.2.	Two	positive	outliers	in	both	distributions	are	
omitted	in	the	bottom‐right	panel	to	improve	the	presentation.		

The	upper	panels	of	Figure	2	further	support	the	argument	made	here	that	failure	to	ensure	orthog‐

onality	between	a	treatment	and	the	pre‐treatment	outcome	trend	will	result	 in	biased	DD	esti‐

mates.	Within	a	Monte	Carlo	experiment	(all	values	drawn	are	the	same),	the	difference	between	

the	WPT	DD	with	weights	from	the	iterative	algorithm	and	the	WPT	DD	with	sampling	weights	can	

be	considered	a	proxy	for	the	bias	of	the	former	because	the	letter	is	unbiased	by	construction.	The	

upper	panels	illustrate	how	the	performance	of	the	WPT	DD	critically	depends	on	the	achievement	

of	the	objective.	If	ܿ௦
ୀଵ,ଶ 	is	large,	the	bias	is	large.	Equivalently	important,	provided	ܿ௦

ୀଵ,ଶ 	is	suffi‐

ciently	small,	little	bias	can	be	expected.		

The	lower	panels	of	Figure	2	exploit	the	information	generated	by	having	multiple	treatments	in	

the	Monte	Carlo	experiments.	They	show	that	if	the	algorithm	fails	to	minimise	ܿ ௦
	for	one	treatment,	
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it	usually	succeeds	on	the	other	treatment.	This	suggests	a	trade‐off	in	minimising	multiple	condi‐

tional	correlations	at	the	same	time.	One	interpretation	is	that	it	will	be	more	challenging	to	achieve	

unbiased	treatment	estimates	with	WPT	DD	the	larger	the	number	of	treatments	is,	although	other	

algorithms	may	be	less	sensitive	to	this	problem.	

Overall,	it	seems	fair	to	conclude	that	in	this	Monte	Carlo	setting,	the	WPT	DD	generally	reduces	

OLS	bias	owing	to	violations	of	the	parallel‐trends	assumption.	To	the	extent	that	the	correlation	

between	a	treatment	and	the	pre‐outcome	trend	is	eliminated,	the	bias	is	also	eliminated.		

Tab.	1.	Distribution	of	estimated	marginal	treatment	effects:	Summary	of	all	experiments	

	 Polynomial		
order	of	f(t)a	

Treat‐
ment	n	

Experi‐
ments

Estimated	marginal	treatment	effects	ߙො
Weights	 Mean Median	 S.D.
Uniform	(OLS)	 1	 1 1000 0.402 0.401 0.387
Uniform	(OLS)	 1	 2 1000 0.378 0.395 0.401
Sampling	weights	 1	 1 1000 0.986 0.989 0.326
Sampling	weights	 1	 2 1000 0.990 0.993 0.324
Grid	search	 1	 1 1000 0.979 0.980 0.254
Grid	search	 1	 2 1000 0.982 0.990 0.249
Iterative	 1	 1 1000 0.884 0.954 0.365
Iterative	 1	 2 1000 0.877 0.961 0.356
Uniform	(OLS)	 2	 1 1000 0.230 0.260 0.490
Uniform	(OLS)	 2	 2 1000 0.267 0.266 0.507
Sampling	weights	 2	 1 1000 0.987 1.005 0.415
Sampling	weights	 2	 2 1000 1.005 1.003 0.428
Grid	search	 2	 1 1000 0.966 0.975 0.323
Grid	search	 2	 2 1000 0.979 0.995 0.342
Iterative	 2	 1 1000 0.817 0.914 0.486
Iterative	 2	 2 1000 0.851 0.942 0.465
Uniform	(OLS)	 3	 1 1000 ‐0.907 ‐0.914 1.281
Uniform	(OLS)	 3	 2 1000 ‐0.982 ‐0.949 1.289
Sampling	weights	 3	 1 1000 1.037 1.007 1.065
Sampling	weights	 3	 2 1000 0.952 0.929 1.079
Grid	search	 3	 1 1000 0.989 0.991 0.809
Grid	search	 3	 2 1000 0.931 0.955 0.807
Iterative	 3	 1 1000 0.638 0.954 1.092
Iterative	 3	 2 1000 0.517 0.890 1.107

Notes:		 Reported	distributions	are	the	estimated	ߙො	from	1000	equation‐(1)	type	DD	models,	which	do	not	control	
for	݂߱ሺݐሻ.	The	marginal	treatment	effect	in	the	DGP	is	ߙ ൌ 1	(in	the	data	universe).	Monte	Carlo	experiments	
are	run	on	a	subsample	that	is	selective	with	respect	to	characteristics	that	determine	individual	trends.	Sam‐
pling	weights	are	the	inverse	of	the	sampling	probabilities	used	in	creating	the	selective	sub‐sample.	“Grid	
search”	are	weights	recovered	from	the	algorithm	described	in	section	2.3.1.	“Iterative”	are	the	weights	re‐
covered	by	the	algorithm	described	in	section	2.3.2.	a	See	Figure	A1	in	the	appendix	for	an	illustration	of	the	
functional	form	of	the	polynomial	functions.		
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Fig.	2.	 Bias	and	achievement	of	objective	in	WPT	DD	with	iterative	weights	

	
Notes:		 Circles	[crosses]	in	the	upper	panel	refer	to	treatment	1	[2].	Linear	fits	in	the	upper	panels	are	pooled	across	

treatments	1	and	2.	All	observations	are	from	experiments	using	the	WPT	DD	with	weights	from	the	iterative	
algorithm	described	in	section	2.3.2.	The	time	trend	in	the	DGP	is	defined	as	indicated	in	each	panel.		

3 Application		

In	this	section,	I	apply	the	WPT	DD	approach	to	a	case	study	that	draws	from	and	expands	on	Ahl‐

feldt	et	al.	(2016).	I	provide	a	brief	description	of	the	institutional	setting	and	the	data	below	and	

refer	to	Ahlfeldt	et	al.	(2016)	for	details.		

3.1 Background	and	data	

3.1.1 The	case	study	

In	1895,	Berlin’s	(Germany)	city	government	(Magistrat)	granted	a	concession	for	the	establish‐

ment	of	an	electrified	elevated	metro	rail	connecting	the	eastern	parts	of	Berlin,	at	the	station	War‐

schauer	Brücke,	and	the	wealthy	western	city	of	Charlottenburg,	at	the	station	Zoologischer	Garten.	

At	that	time,	the	Magistrat	considered	the	project	to	be	too	risky	and	non‐profitable	and	decided	

not	to	participate	in	its	final	execution	(Baltzer,	1897).	Therefore,	in	1897	(only	five	years	before	
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the	 inauguration	of	 the	 line),	 Siemens	&	Halske	 founded	 the	Elevated	Railway	Company	 (Hoch‐

bahngesellschaft)	in	cooperation	with	the	Deutsche	Bank	to	guarantee	the	funding.		

The	construction	began	 immediately,	starting	 from	the	eastern	parts.	However,	Berlin	residents	

quickly	realised	how	unpleasant	the	viaduct’s	appearance	would	be.	As	a	result,	the	city	of	Charlot‐

tenburg	managed	to	ensure,	in	a	last‐minute	move,	that	the	tracks	would	run	beneath	the	street	

surface	once	the	line	reached	its	boundaries.	The	line	was	inaugurated	in	1902	and	was	called	“Line	

A”	(Linie	A	or	Stammstrecke).	The	final	routing,	depicted	in	Figure	1,	was	later	described	by	histori‐

ans	as	an	outcome	of	agreements	and	accidents	(Bousset,	1935).		

Fig.	3.	 Routing	of	Berlin’s	first	metro	line	(Linie	A)	

	
Source:		Ahlfeldt	et	al.	(2016).	

3.1.2 Data	

Land	Prices	

The	measure	of	land	price	is	extracted	from	various	editions	(1881,	1890,	1896,	1900,	1904,	1910	

and	1914)	of	assessed	land	value	maps	created	by	the	chartered	surveyor	Gustav	Müller	in	cooper‐

ation	with	official	planning	authorities.	Müller’s	maps	provide	data	at	a	remarkably	disaggregated	

level	of	individual	plots.	The	stated	objective	was	to	provide	official	and	representative	guides	for	

both	private	and	public	investors	participating	in	Berlin’s	real	estate	market.	For	the	considered	

area	of	Berlin,	our	data	set	contains	the	full	wealth	of	information	provided	by	the	maps.	After	cre‐

ating	a	balanced	panel	for	the	final	analyses,	the	data	set	contains	close	to	40k	parcel‐year	observa‐

tions.	
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While	Müller	himself	did	not	describe	in	detail	the	exact	procedure	of	land	valuation,	the	imperial	

valuation	law	(Reichsbewertungsgesetz)	of	the	German	Reich	contained	a	strict	order	to	use	capital	

values	for	the	assessment	of	commercial	plots	based	on	fair	market	prices.	In	line	with	the	valuation	

laws	for	commercial	land,	Müller	claims	that	his	assessment	refers	to	the	pure	value	of	land,	which	

is	adjusted	for	all	building	and	even	garden	characteristics.	He	also	corrected	values	 for	specific	

location	characteristics	 such	as	 single	and	double	corner	 lots,	 subsoil	and	courtyard	properties.	

Nowadays,	Müller’s	maps	are	an	established	data	source.	They	have	been	used,	among	others,	by	

Ahlfeldt	et.	al	(2015),	who	also	provide	an	extensive	data	appendix	that	describes	in	detail	the	na‐

ture	of	the	data.		

Noise		

To	assess	 the	disamenities	 from	increasing	noise	 levels,	we	consult	a	highly	disaggregated	map,	

obtained	 from	the	Berlin	Senate	Department	 for	Urban	Development,	which	contains	2007	esti‐

mates	of	the	continuous	sound	level	by	the	source	of	noise	on	a	10x10‐metre	grid.	Given	that	the	

built‐up	structure	within	the	affected	area	remained	virtually	unchanged	after	the	inauguration	of	

the	line,3	it	can	reasonably	be	argued	that	contemporary	noise	levels	reflect	the	dissemination	of	

sound	in	relative	terms	about	100	years	ago.	As	discussed	by	Ahlfeldt	et	al.	(2016),	there	are	several	

reasons	why	the	noise	exposure	might	have	been	higher	in	absolute	terms	(e.g.	poor	noise	insula‐

tion,	absence	of	automobile	noise).	This	should	not	affect	the	significance	levels	of	the	noise	esti‐

mates	reported	below,	but	 it	gives	 the	estimated	per‐db	noise	effects	of	 the	character	of	upper‐

bound	estimates.	Arguably,	this	is	an	issue	of	subordinate	relevance	for	the	purposes	of	this	paper,	

so	I	refer	to	Ahlfeldt	et	al.	(2016)	for	a	detailed	discussion	of	the	implications.		

Routing	of	Line	A	

Historical	network	plans	provide	sufficient	information	on	tracks	and	individual	stations	along	the	

route	to	extract	and	digitise	the	whole	line.4	The	elevated	section	of	the	line	consists	of	11	stations,	

while	 the	 entire	 line	 (including	 the	 underground	 section)	 consists	 of	 20	 with	 a	 total	 length	 of	

15.2km		

																																																													

3		 Note	that	for	very	few	plots,	where	the	building	structure	changed,	we	impute	historic	noise	levels	using	
adjacent	plots.	

4		 Network	plans	are	also	available	online;	 see,	 for	 instance,	http://www.berlineruntergrundbahn.de	and	
http://www.berliner‐verkehr.de.	



Ahlfeldt	–	Weights	to	address	non‐parallel	trends	in	panel	difference‐in‐differences	 16	

3.2 Empirical	strategy	

3.2.1 Baseline	difference‐in‐differences	

The	baseline	empirical	strategy	combines	hedonic	(Rosen,	1974)	and	DD	methods	(Ashenfelter	and	

Card,	1985).	With	the	hedonic	approach	the	price	of	a	parcel	of	land	is	expressed	as	a	function	of	

various	attributes,	 including	rail	noise	and	rail	access,	and	their	 implicit	prices.	The	DD	method	

identifies	a	treatment	effect	(e.g.	of	rail	access	or	rail	noise)	by	differentiating	across	space	(differ‐

ent	degrees	of	exposure)	and	time	(before	and	after	exposure).	The	baseline	empirical	specification	

takes	the	following	form:	

lnሺܴܲܧܥܫ௧ሻ ൌ ܵܫܦூௌ்ሾߚ ܶ ൈ ܲሺݐ  1902ሻ௧ሿ  ܧܵܫேைூௌாሾܱܰߚ ൈ ܲሺݐ  1902ሻ௧ሿ

 ߚൣ
ூௌ்ܵܫܦ ܶ ൈ ܲሺݐ ൌ ሻ௧ܣ  ߚ

ேைூௌாܱܰܧܵܫ ൈ ܲሺݐ ൌ ሻ௧൧ܣ
ୀሺଵ଼ଽ,ଵଽሻ

 ߤ  ߮௧  	,௧ߝ

(12)

where	PRICEit	is	the	land	price	of	a	parcel	i	at	time	t,	ߤ	is	a	parcel	fixed	effect	controlling	for	unob‐

served	time‐invariant	heterogeneity	onto	which	I	cluster	standard	errors	(Bertrand	et	al.,	2004),	߮௧	

is	a	year	fixed	effect	controlling	for	common	macroeconomic	shocks,	and	ߝ௧	is	a	random	error	term.	

ܵܫܦ ܶ	 is	 the	straight‐line	distance	 from	the	nearest	Line	A	station	and	 the	emitted	noise	 level	 is	

NOISEi.	Both	are	time‐invariant	and	measured	after	the	metro	opening.	A=(1896,	1900)	is	a	vector	

of	scalars	defining	pre‐opening	years	in	which	anticipation	effects	could	occur.	ܲሺݐ  1902ሻ௧	and	

ܲሺݐ ൌ ‐other	zero	and	met	are	conditions	the	if	one	of	values	the	taking	variables	indicator	are	ሻ௧ܣ

wise.	ߚூௌ்	and	ߚேைூௌா	are	the	DD	parameters	of	interest,	which	correspond	to	ߙୀଵ	and	ߙୀଶ	in	

the	DGP	in	section	2.1.	Because	there	was	no	metro	rail	noise	prior	to	the	elevated	train	line,	the	

noise	measure	 reflects	 the	 increase	 in	 noise	 due	 to	 the	 elevated	 rail	 line	 (such	 that	 ܧܵܫܱܰ ൌ

‐first	a	provides	መேைூௌாߚ	,Therefore	noise).	in	change	before‐after	the	is	ܧܵܫܱܰ∆	where	,ܧܵܫܱܰ∆

difference	estimate	of	the	effect	of	rail	noise	on	land	prices	that	can	be	interpreted	as	a	hedonic	

implicit	price.	ߚመூௌ்	gives	the	change	in	the	hedonic	implicit	price	of	station	distance	from	the	be‐

fore	(t<1902)	to	the	after	(t>1902)	period,	i.e.	ߚመூௌ் ൌ ௧வଵଽଶߜ
ூௌ் െ ௧ழଵଽଶߜ

ூௌ் ,	where	ߜ௧
ௌ	is	the	hedonic	

implicit	price	in	the	respective	period.	ߚመூௌ்	can	also	be	interpreted	as	the	hedonic	implicit	price	

௧வଵଽଶߜ
ூௌ் 	of	station	distance	since	during	the	before	period	the	stations	could	not	be	anticipated	and,	

thus,	 ௧ழଵଽଶߜ
ூௌ் ൌ 0.	 The	 terms	 in	 brackets	 ߚൣ

ூௌ்ܵܫܦ ܶ ൈ ܲሺݐ ൌ ሻ௧ܣ  ߚ
ேைூௌாܱܰܧܵܫ ൈ ܲሺݐ ൌ 	ሻ௧൧ܣ

control	for	anticipated	rail	effects	in	1896	and	1900	to	avoid	attenuation	bias	(Ahlfeldt	et	al.,	2016).		
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3.2.2 Parallel‐trend	weights	

The	untestable	assumption	of	any	DD	analysis	 is	that,	 in	the	absence	of	a	treatment,	all	subjects	

(irrespective	of	the	intensity	of	treatment)	would	have	followed	the	same	trend.	A	selection	prob‐

lem	exists	if	the	treated	and	the	non‐treated	subjects	differ	in	observable	or	unobservable	dimen‐

sions	in	a	way	that	is	correlated	with	the	treatment	intensity,	and	this	heterogeneity	interacts	with	

time.		

The	idea	of	the	WPT	DD	estimator	introduced	here,	is	to	find	weights	that	minimise	the	conditional	

correlations	between	treatments	and	pre‐treatment	outcome	trends	(the	objective).	The	identify‐

ing	assumption	is	that	if	there	is	no	correlation	during	the	pre‐treatment	period,	there	is	also	no	

correlation	between	treatments	and	trends	in	potential	outcomes	in	the	absence	of	a	treatment	(the	

counterfactual)	during	the	post‐treatment	period.	Finding	weights	that	achieve	this	objective,	 is,	

thus,	a	critical	task	in	the	application	of	WPT	DD.		

I	 follow	the	assumption	conceptualised	 in	 the	DGP	 in	section	2	 that	suitable	weights	can	be	ex‐

pressed	as	a	function	of	observable	parcel	characteristics.	I	use	the	first	period	in	the	data	–	1881–

1890	as	the	period	to	be	targeted	by	an	algorithm	that	identifies	a	set	of	weights	 መܵ.	In	the	baseline,	

I	use	a	grid	search	approach	similar	to	the	one	described	in	section	2.3.1	because	–	with	a	suffi‐

ciently	fine	grid	–	it	is	likely	to	get	close	to	a	global	minimum	in	the	objective	function	(within	a	

defined	parameter	space).	Concretely,	I	define	weights	as:	

መܵ ൌ
ܹ

∑ ܹ
, ܹ ൌ  ܭݍ


ሺߣ, ݄

ሻ,	 (13)

where,	as	in	section	2.3.1,		ܳሺݍଵ,… , 	the	in	Unlike	identified.	be	to	ݍ	parameters	of	vector	a	is	ሻݍ

Monte	Carlo	experiments,	݄
,	one	of	M	variables	capturing	observable	time‐invariant	parcel	char‐

acteristics,	enters	the	weights	in	a	Gaussian	transformation	defined	as	follows:	

,݉ߣ൫ܭ ݄݅
݉൯ ൌ

1
ߨ2√݉ߣ

expቌെ
1
2
൭
݄݅
݉ െ ഥ݄

݅
݉

݉ߣ
൱

2

ቍ,	 (14)

where	the	bandwidths	ߣ	are	set	according	to	the	Silverman	(1986)	rule	and	the	upper	bar	indi‐

cates	the	mean	of	a	distribution.	I	use	the	Gaussian	transformation	because	I	presume	that	parcels	

that	are	more	“normal”	with	respect	to	a	plot	characteristic	݄
	are	more	likely	to	be	on	a	similar	

trend.	Furthermore,	I	presume	that	parcels	that	are	representative	with	respect	to	different	char‐

acteristics	݄
	are	likely	on	different	trends.	This	approach	has	been	chosen	so	as	to	mix	these	dif‐

ferent	trends	in	a	way	that	ensures	that	the	average	trend	in	the	weighted	sample	is	orthogonal	to	

the	treatments.	A	positive	collateral	of	the	Gaussian	transformation	is	that	all	ܭ, ൌ ,ߣሺܭ ݄
ሻ	are	
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non‐negative	and	 in	 the	same	dimension.	 I	note	 that	 the	Gaussian	transformation	works	well	 in	

terms	of	the	tests	presented	in	section	3.3.1.	However,	I	do	not	suggest	it	as	a	general	rule.	Different	

transformations	may	lead	to	better	results	in	other	applications.		

In	searching	for	a	vector	ܳ	that	minimises	the	objective	function,	I	use	a	finer	grid	than	in	the	Monte	

Carlo.	 The	 parameter	 space	 over	 which	 I	 search	 is	 defined	 by	 ଵݍ ൌ 0, 0.01, 0.02, … ,1,	 ଶݍ ൌ

0, 0.01, 0.02, … ,1,	 ଷݍ ൌ 0, 0.01, 0.02, … ,1,	which	 equates	 to	101^3=1,030,301	 combinations.	 I	 use	

the	additive	objective	function	introduced	in	section	2.3.1	in	the	baseline	and	consider	the	“min‐

max”	function	(introduced	in	section	2.3.2)	and	a	multiplicative	function	൬∏ ቀܿ
ቁ

ଶ

 ൰		In	a	further	al‐

teration,	I	also	use	the	iterative	algorithm	(section	2.3.2).	

3.2.3 Benchmark	estimates	

Ahlfeldt	et	al.	(2016)	provide	estimates	of	the	causal	effect	of	noise	on	land	prices,	exploiting	the	

noise	discontinuity	at	the	tunnel	entrance	where	Line	A	vanishes	below	the	surface	to	become	an	

underground	line	in	Charlottenburg.	Their	boundary	discontinuity	design	in	time	differences	con‐

trols	for	arbitrary	unobserved	time‐invariant	effects	and	unobserved	changes	in	land	prices	over	

time	that	follow	a	smooth	trend	in	space	across	the	source	of	the	noise	discontinuity.	Their	results	

suggest	that	a	10‐db	increase	in	rail	noise	causes	a	decline	in	land	prices	of	5%.	This	is	an	estimate	

identified	from	plausibly	exogenous,	but	local	variation,	so	the	results	do	not	necessarily	generalise	

to	the	entire	elevated	part	of	Line	A	studied	here.	However,	given	that	the	area	connected	by	Line	A	

is	reasonably	homogeneous	in	terms	of	density,	building	structure,	and	amenities,	I	expect	the	av‐

erage	effect	along	Line	A	to	be	 in	the	same	ballpark.	Thus,	 I	view	the	5%‐figure	as	a	reasonable	

benchmark	against	which	the	OLS	DD	and	WPT	DD	estimates	can	be	benchmarked	for	a	plausibility	

check.		

A	similar	benchmark	is	not	available	for	the	station	distance	effect	in	the	present	case‐study	context.	

However,	there	is	a	wider	literature	that	has	estimated	the	capitalisation	effects	of	metro	rail	sys‐

tems	exploiting	spatiotemporal	variation.	This	literature	suggests	that	a	1km	reduction	in	distance	

from	the	nearest	station	increases	house	prices	by	2–9%	(Debrezion	et	al.,	2007;	Dubé	et	al.,	2013;	

Gibbons	and	Machin,	2005).	Assuming	competitive	markets,	a	Cobb‐Douglas	housing	production	

function	and	a	share	of	land	at	the	property	value	of	0.25,	the	house	price	capitalisation	effect	can	

be	translated	into	a	land	price	effect	of	8–36%	(Ahlfeldt	et	al.,	2015).	
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3.3 Results	

3.3.1 Parallel‐trend	weights	

Before	proceeding	to	the	DD	analysis	of	treatment	effects	it	is	critical	to	test	whether	the	non‐par‐

allel	trends	assumption	is	likely	violated	in	an	empirical	setting	and,	if	so,	to	what	extent	this	prob‐

lem	can	be	addressed	by	reweighting	observations.		

In	Table	2,	I	provide	two	tests	of	the	conditional	correlations	between	treatment	variables	and	pre‐

treatment	outcome	trends.	Models	(1–7)	regress	the	change	in	ln	land	price	over	the	1881–1890	

period	(the	period	 targeted	by	 the	algorithms)	against	both	 treatment	variables.	Models	 (9–14)	

replicate	the	exercise	using	the	change	in	ln	land	price	over	the	1890–1900	period	as	a	dependent	

variable.	This	(non‐targeted)	pre‐treatment	period	has	not	been	inputted	into	the	computation	of	

the	weights	 መܵ,	so	it	can	be	used	in	an	overidentification	test.		

Models	(1)	and	(8)	present	OLS	estimation	results.	There	is	a	significant	correlation	between	station	

distance	and	land	price	growth	over	the	targeted	period.	Compared	to	prices	right	next	to	a	to‐be‐

constructed	station,	prices	at	a	1km	distance	grow	at	a	0.221	log	points	higher	rate	(24%).	There	is	

also	a	significant	correlation	during	the	non‐targeted	period,	however,	with	the	opposite	sign,	sug‐

gesting	the	presence	of	unobserved	effects	that	interact	non‐linearly	with	time.	Conditional	on	the	

station‐distance	effect,	the	noise	effect	is	insignificant.	However,	station	distance	and	noise	are	cor‐

related,	which	explains	why	the	unconditional	correlation	between	noise	and	the	change	in	prices	

is	significant	(to	save	space,	I	omit	the	presentation	of	formal	tests).	The	main	takeaway	from	these	

results	is	that	the	parallel‐trends	assumption	is	violated	during	the	pre‐treatment	period,	thus,	it	

seems	likely	that	it	does	not	hold	during	the	post‐treatment	period.	

The	remaining	models	use	weights	to	address	this	problem,	which	are	constructed	using	different	

algorithms,	objective	functions	and	covariates.	All	approaches	succeed	in	achieving	their	formal	ob‐

jective	of	reducing	the	correlation	among	treatments	and	trends	during	the	targeted	period	(models	

2–7).	In	several	instances,	the	effects	of	both	treatment	variables	are	close	to	and	not	statistically	

distinguishable	from	zero.	The	models,	using	the	grid‐search	algorithm	and	the	Gaussian	transfor‐

mation	of	 land	price	growth	as	a	covariate,	perform	best	 in	terms	of	the	overidentification	tests	

reported	throughout	models	(8–14).	Apparently,	the	treatment‐trend	correlation	is	low	among	par‐

cels	that	experienced	“normal”	growth	over	the	targeted	period.	The	weights	obtained	using	the	

iterative	algorithm	described	in	section	2.3.2	reduce	the	treatment‐trend	correlation	to	virtually	

zero	(see	the	r2	close	to	zero)	over	the	targeted	period	(model	7).	However,	they	do	not	pass	the	
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overidentification	test	as	the	effect	of	station	distance	on	land	price	growth	over	the	non‐targeted	

period	is	not	reduced,	but	amplified.		

The	weights	used	in	models	(2)	and	(9)	are	the	most	promising	in	terms	of	addressing	non‐parallel	

trends	in	the	data,	as	they	minimise	the	treatment	variables’	effects	on	outcome	trends	over	the	

targeted	and	the	non‐targeted	period.	 I	will	use	 these	weights	 in	what	 I	refer	 to	as	 the	baseline	

specification	in	the	remainder	of	the	paper.	

Tab.	2.	Marginal	treatment	effects	on	pre‐outcome	trends	(placebos)	

	 (1)	 (2)	 (3) (4) (5) (6)	 (7)
	 Ln	land	price	1890 – ln	land	price	1881 (targeted	period)	
Distance	(km)	 0.221***	

(0.028)
‐0.007	
(0.010)	

‐0.024***
(0.009)

‐0.006
(0.076)

‐0.022**
(0.009)

‐0.009	
(0.010)	

0.002
(0.019)

Noise	(db)	 0.008	
(0.009)	

‐0.004	
(0.004)	

0.001
(0.003)	

‐0.036**
(0.015)	

0.000
(0.003)	

‐0.004	
(0.003)	

‐0.000
(0.009)	

r2	 .0146	 .0005	 .0051 .0071 .0031 .0004	 4.58e‐06
	 (8)	 (9)	 (10) (11) (12) (13)	 (14)
	 Ln	land	price	1900 – ln	land	price	1890	(not	targeted	period)	
Distance	(km)	 ‐0.052***	

(0.015)	
‐0.038	
(0.033)	

‐0.054
(0.033)	

‐0.172***
(0.058)	

‐0.051
(0.033)	

‐0.040	
(0.033)	

‐0.193***
(0.044)	

Noise	(db)	 0.007	
(0.006)

‐0.011	
(0.011)	

‐0.014
(0.012)

‐0.012
(0.011)

‐0.014
(0.011)

‐0.011	
(0.011)	

0.031
(0.021)

r2	 .0045	 .0011	 .0023 .0120 .0021 .0013	 .0474
Objective	 ‐	 Additive	 Additive Additive Multi. Min‐max	 Min‐max
Algorithm	 ‐	 Grid	

search	
Grid	
search

Grid	
search

Grid	
search

Grid	
search	

Iterative

Covariates	 ‐	 Land	
price	
growth,	
distance	
from	CBD,	
distance	
from	 sub‐
centre	

Land	
price	
growth,	
distance	
from	 sta‐
tion,	 rail	
noise	

Distance	
from	 rail	
track,	 dis‐
tance	
from	CBD,	
distance	
from	 sub‐
centre

Land	
price	
growth,	
distance	
from	CBD,	
distance	
from	 sub‐
centre

Land	
price	
growth,	
distance	
from	CBD,	
distance	
from	 sub‐
centre	

Land	
price	
growth,	
distance	
from	CBD,	
distance	
from	 sub‐
centre

N	 5,456	 5,456	 5,456 5,456 5,456 5,456	 5,456

Notes:	 Unit	of	observation	 is	parcel.	 Columns	 (1)	 and	 (8)	 show	results	 of	 separate	OLS	 regressions	of	 land	price	
growth	over	the	first	(1)	and	second	(2)	period	in	the	data	against	the	treatment	measures.	The	subsequent	
columns	show	results	of	weighted	regressions,	where	the	weights	are	recovered	using	the	algorithms,	objec‐
tive	functions,	and	a	Gaussian	transformation	of	the	covariates	indicated	in	the	bottom	of	the	table.	The	algo‐
rithms	are	outlined	in	sections	2.3.1.	and	2.3.2.	Robust	standard	errors	in	parentheses.	Additive	/multi./min‐
max	minimises	the	sum/product/the	largest	of	squared	standardised	coefficients	on	distance	and	noise.	*	p	<	
0.10,	**	p	<	0.05,	***	p	<	0.01 

Throughout	section	2,	I	have	assumed	that	the	treatment	effect	in	the	DGP	is	constant	across	all	

individuals.	Under	this	constant‐effects	assumption,	the	treatment	effect	estimated	by	the	WPT	DD,	

by	definition,	is	the	average	(marginal)	treatment	effect	(all	units	are	treated).	In	an	empirical	ap‐

plication,	however,	 there	may	be	heterogeneous	 treatment	effects.	 If	 the	weights	are	 correlated	

with	dimensions	in	which	the	treatment	effect	varies,	the	WPT	DD	naturally	does	not	give	the	aver‐
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age	treatment	effect,	but	a	weighted	average	that	corresponds	to	a	parcel	with	the	mean	character‐

istics	of	the	weighted	sample.	For	a	judgement	of	how	representative	this	weighted	average	is	for	

the	full	population,	it	is	useful	to	inspect	the	selectivity	of	the	weighted	sample.	

The	baseline	weights	are	mapped	in	Figure	4.	Overall,	parcels	with	high	weights	are	distributed	

relatively	evenly	across	the	study	area.	The	most	notable	pattern	is	that	of	areas	with	relatively	low	

parcel	weights	in	the	southern	central	section	and	the	north‐eastern	part	of	the	study	area.	Table	3	

compares	descriptive	statistics	of	the	weighted	sample	to	the	unweighted	population.	The	distribu‐

tions	are	fairly	similar.	In	line	with	Figure	4,	the	mean	parcel	in	the	weighted	sample	is	somewhat	

closer	to	the	CBD	(Stadtmitte,	in	the	north)	and	the	sub‐centre	(Kurfürstendamm	in	the	west).	But,	

overall,	the	weights	inspection	suggests	that	the	results	in	the	WPT	DD	will	not	be	driven	by	a	small	

number	of	non‐representative	parcels,	so	the	estimates	will	hopefully	be	not	too	far	from	an	aver‐

age	effect.	Most	likely,	the	WPT	DD	will	have	greater	external	validity	than	the	benchmark	estimate	

from	the	boundary	discontinuity	design	discussed	in	section	3.2.3,	which	is	identified	from	a	small	

number	of	parcels	around	the	tunnel	entrance.		

Fig.	4.	 Spatial	distribution	of	weights	

	
Notes:		 Weights	are	constructed	using	the	algorithm	described	in	section	2.3.1	and	Gaussian	transformations	of	the	

1881	to	1890	land	price	growth,	the	distance	from	the	CBD	and	the	distance	from	the	most	important	sub‐
centre	(Kurfürstendamm).	Classes	defined	based	on	quintiles.	Own	illustration	using	the	Urban	Environmental	
Information	System	of	the	Berlin	Senate	Department	(Senatsverwaltung	für	Stadtentwicklung	Berlin,	2006).	
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Tab.	3.	Descriptive	statistics	in	weighted	vs.	non‐weighted	sample	

	 Non‐weighted Weighted 	
	 Mean	 Median S.D. Mean Median	 S.D.
Ln	land	price	1881	 4.213	 4.094 0.605 4.388 4.094	 0.615
Ln	land	price	1914	 5.854	 5.768 0.521 6.058 5.991	 0.591
Station	distance	(km)	 0.502	 0.491 0.237 0.467 0.486	 0.226
Noise	(10	db)	 0.229	 0.010 0.553 0.321 0.013	 0.665
Distance	from	CBD	 2.018	 2.061 0.797 1.764 1.733	 1.033
Distance	from	sub‐centre 4.212	 4.258 1.725 3.999 3.703	 1.712
Distance	from	Line	A	track 0.543	 0.517 0.265 0.559 0.503	 0.310

Notes:	 Weights	are	constructed	using	the	algorithm	described	in	section	2.3.1	and	Gaussian	transformations	of	the	
1881	to	1890	land	price	growth,	the	distance	from	the	CBD	and	the	distance	from	the	most	important	sub‐
centre	(Kurfürstendamm).	

In	Figure	5,	I	compare	the	weights	obtained	by	using	different	covariates	and	objective	functions	in	

the	 grid	 search	 algorithm.	 While	 variations	 in	 the	 objective	 function	 tend	 to	 result	 in	 similar	

weights,	different	sets	of	covariates	result	in	more	substantial	variation.	The	weights	used	in	Ta‐

ble	2,	models	(4)	and	(11),	as	an	example,	are	virtually	uncorrelated	with	the	baseline	weights	from	

models	(2)	and	(9)	(correlation	coefficient:	0.076).	Ideally,	WPT	DD	results	will	be	replicable	using	

different	sets	of	uncorrelated	weights	as	this	suggests	that	identification	is	not	driven	by	a	limited	

number	of	units	receiving	high	weights.		

Fig.	5.	 Correlation	among	WPT	weights	

	
Notes:	 Figure	shows	weights	created	using	the	grid	search	algorithm	using	different	predictor	variables	and	objec‐

tive	functions	in	the	algorithm.		
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3.3.2 OLS	difference‐in‐differences	

In	Table	 4,	 I	 present	 (unweighted)	OLS	DD	estimation	 results	 from	variations	of	 the	model	de‐

scribed	by	equation	(1).	I	consider	distance	and	noise	estimates	separately	(1–2	vs.	3–4)	as	well	as	

versions	excluding	(1,3,5)	and	including	(2,4,6)	anticipation	effects.	The	preferred	full	specification	

is	model	(6).	The	results	are	clearly	not	within	a	plausible	range,	given	the	evidence	discussed	in	

section	3.2.3.	The	estimates	of	the	noise	effect	are	either	positive,	which	is	implausible,	or	insignif‐

icant.	The	station	distance	effects	are	generally	relatively	small	and	even	insignificant	in	the	pre‐

ferred	model	(6).	Controlling	for	anticipation	effects	reduces	the	treatment	effects,	whereas	the	op‐

posite	is	theoretically	expected.	In	sum,	the	OLS	DD	results	are	inconclusive,	which	seemingly	con‐

firms	that	DD	estimates	are	not	reliable	if	the	parallel	trends	assumption	is	violated.	

Tab.	4.	OLS	difference‐in‐differences	estimates	

	 (1)	 (2) (3) (4) (5)	 (6)	
	 Ln	land	price
Distance	(km)	x	(t	>	1900)	 ‐0.076***	

(0.013)	
‐0.038**
(0.018)	 	 	

‐0.070***	
(0.015)	

‐0.033
(0.021)	

Noise	(10	db)	x	(t	>	1900) 	
	

0.020***
(0.005)

0.012*
(0.006)

0.005	
(0.005)	

0.005
(0.007)

Parcel	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Year	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Anticipation	Effect	 ‐	 Yes ‐ Yes ‐	 Yes	
N	 38,192	 38,192 38,192 38,192 38,192	 38,192
r2	 .889	 .889 .889 .889 .889	 .889

Notes:		 Unit	of	observation	is	parcel‐year	(balanced	panel).	Announcement	effects	are	distance	and	noise	variables	
interacted	with	1896	and	1900	effects.	Balanced	panel	of	repeated	parcel	observations	for	1881,	1890,	1896,	
1900,	1904,	1910	and	1914.	Standard	errors	in	parentheses	are	clustered	in	parcels.	*	p	<	0.10,	**	p	<	0.05,	***	
p	<	0.01.	

3.3.3 Weighted‐parallel‐trends	difference‐in‐differences		

In	Table	5,	I	replicate	all	Table	4	models	in	the	same	order,	this	time	weighting	observation	by	the	

baseline	weights	tested	in	Table	2,	models	(2)	and	(9)	and	illustrated	in	Figure	4.	The	results	are	

much	more	intuitive	to	interpret.	Proximity	to	a	station	has	a	positive	effect	on	land	prices	and	the	

effect	increases	significantly	if	the	negative	effect	of	rail	noise	is	controlled	for	(5–6	vs.	1–2).	The	

noise	effect	is	significantly	negative	if	–	and	only	if	–	station	access	is	controlled	for	(5–6	vs.	3–4),	

as	expected	in	the	presence	of	strong	countervailing	spatial	externalities.	Controlling	for	anticipa‐

tion	effects	now	increases	the	treatment	effect	(6	vs	5)	as	expected.	Most	notably,	the	estimated	

per‐10‐db	noise	effect	in	the	preferred	specification	(6)	is	now	very	close	to	the	benchmark	(‐4.6%	

vs.	5%).	The	estimated	effect	of	0.191	log	points	(about	21%)	per‐station‐distance‐kilometre	effect	

(6)	is	well	within	the	8–36%	range	prevailing	in	the	literature	(see	section	3.2.3).	Overall,	the	WPT	

DD	results	are	more	plausible	than	the	OLS	results.		
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Tab.	5.	WPT	DD	estimates:	Baseline	models	(grid	search	weights)	

	 (1)	 (2) (3) (4) (5)	 (6)	
	 Ln	land	price	(1881‐1914)
Distance	(km)	x	(t	>	1900)	 ‐0.119***	

(0.025)	
‐0.116***
(0.032)

‐0.174***	
(0.030)	

‐0.191***
(0.039)

Noise	(10	db)	x	(t	>	1900) 	
	 	

‐0.001
(0.007)	

‐0.010
(0.009)	

‐0.034***	
(0.008)	

‐0.046***
(0.011)	

Parcel	effects	 Yes	 Yes Yes Yes Yes	 Yes	
Year	effects	 Yes	 Yes Yes Yes Yes	 Yes	
Anticipation	effects	 ‐	 Yes ‐ Yes ‐	 Yes	
N	 38,192	 38,192 38,192 38,192 38,192	 38,192
r2	 0.930	 0.930 0.930 0.930 0.930	 0.931

Notes:		 Results	replicated	based	on	models	reported	by	Ahlfeldt	et	al.	(2016).	Unit	of	observation	is	parcel‐year	(bal‐
anced	 panel).	WPT	DD	models	 use	weights	 constructed	 to	minimise	 the	 conditional	 correlations	 between	
noise	and	the	1881–1890	land	price	trend	as	well	as	access	(distance	from	station)	and	the	1881–1890	land	
price	trend.	Weights	are	constructed	using	the	algorithm	described	in	section	2.3.1	and	Gaussian	transfor‐
mations	of	the	1881	to	1890	land	price	growth,	the	distance	from	the	CBD	and	the	distance	from	the	most	
important	sub‐centre	(Kurfürstendamm).	Announcement	effects	are	distance	and	noise	variables	interacted	
with	1896	and	1900	effects.	Balanced	panel	of	repeated	parcel	observations	for	1881,	1890,	1896,	1900,	1904,	
1910	and	1914.	Standard	errors	in	parentheses	are	clustered	in	parcels.	*	p	<	0.10,	**	p	<	0.05,	***	p	<	0.01.	

In	Table	6,	I	present	results	from	the	same	models	in	the	same	order	as	in	Tables	4	and	5,	this	time	

using	weights	generated	by	the	iterative	algorithm	introduced	in	section	2.3.2.	The	pattern	of	re‐

sults	is	generally	similar	to	that	of	the	baseline	WPT	DD	results	in	Table	5.	In	particular,	the	esti‐

mated	noise	effects	in	the	preferred	specifications	(6)	are	close	to	each	other.	At	‐0.295	log	points	

the	effect	of	a	station	distance	increase	by	one	kilometre	is	larger	than	in	the	baseline,	but	much	

closer	than	in	the	OLS	DD	estimates.	As	discussed	above,	I	prefer	the	results	of	the	baseline	specifi‐

cation	(in	Table	5)	over	those	presented	in	Table	6	because	the	baseline	weights	do	better	in	terms	

of	the	tests	reported	in	Table	2.	Still,	I	consider	the	relative	similarity	of	the	results	in	both	tables	as	

reassuring.		

In	Table	7,	 I	replicate	models	(5)	(excluding	anticipation	effects)	and	(6)	(including	anticipation	

effects)	from	Table	5,	changing	the	set	of	covariates	used	in	the	weights	construction.	The	alterna‐

tive	specifications	yield	results	within	reasonably	close	range,	which	is	reassuring	given	the	low	

correlation	between	the	different	sets	of	weights	(see	in	Figure	5,	left	panel).	Using	different	objec‐

tive	functions	in	the	algorithm	in	Table	8	yields	similar	results,	as	expected	given	the	high	correla‐

tion	among	the	weights	(see	Figure	5,	right	panel).	
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Tab.	6.	WPT	DD	estimates:	Weights	from	iterative	algorithm	

	 (1)	 (2) (3) (4) (5)	 (6)	
	 Ln land	price	(1881‐1914)
Distance	x	(km)	x	(t	>	1900)	 ‐0.171***	

(0.026)	
‐0.246***
(0.036)

‐0.221***	
(0.035)	

‐0.295***
(0.049)

Noise	(10	db)	x	(t	>	1900) 	
	 	

0.007
(0.010)	

0.027*
(0.016)	

‐0.051***	
(0.015)	

‐0.050**
(0.022)	

Parcel	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Year	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Anticipation	 ‐	 Yes ‐ Yes ‐	 Yes	
N	 38,192	 38,192 38,192 38,192 38,192	 38,192
r2	 .919	 .920 .918 .918 .919	 .920

Source:		Unit	of	observation	is	parcel‐year	(balanced	panel).	WPT	DD	models	use	weights	constructed	to	minimise	the	
conditional	correlations	between	noise	and	the	1881–1890	land	price	trend	as	well	as	access	(distance	from	
station)	and	the	1881–1890	land	price	trend.	Weights	are	constructed	using	the	algorithm	described	in	sec‐
tion	2.3.2	and	Gaussian	transformations	of	the	1881	to	1890	land	price	growth,	the	distance	from	the	CBD	and	
the	distance	from	the	most	important	sub‐centre.	Announcement	effects	are	distance	and	noise	variables	in‐
teracted	with	1896	and	1900	effects.	Balanced	panel	of	repeated	parcel	observations	for	1881,	1890,	1896,	
1900,	1904,	1910	and	1914.	Standard	errors	in	parentheses	are	clustered	in	parcels.	*	p	<	0.10,	**	p	<	0.05,	***	
p	<	0.01.	

Tab.	7.	WPT	DD:	Varying	predictors	(grid	search	weights)	

	 (1)	 (2) (3) (4) (5)	 (6)	
	 Ln	land	price	(1881‐1914)
Distance	x	(km)	x	(t	>	1900)	 ‐0.174***	

(0.030)	
‐0.191***
(0.039)

‐0.183***
(0.031)

‐0.214***
(0.040)

‐0.256***	
(0.044)	

‐0.315***
(0.061)

Noise	(10	db)	x	(t	>	1900) ‐0.034***	
(0.008)	

‐0.046***
(0.011)

‐0.039***
(0.008)

‐0.051***
(0.011)

‐0.018*	
(0.010)	

‐0.037***
(0.014)

Parcel	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Year	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Anticipation	effects	 ‐	 Yes ‐ Yes ‐	 Yes	
Predictors	 Land	

price	
growth,	
distance	
from	
CBD,	dis‐
tance	
from	sub‐
centre	

Land	
price	
growth,	
distance	
from	
CBD,	dis‐
tance	
from	sub‐
centre	

Land	
price	
growth,	
distance	
from	sta‐
tion,	rail	
noise	

Land	
price	
growth,	
distance	
from	sta‐
tion,	rail	
noise	

Distance	
from	rail	
track,	dis‐
tance	
from	
CBD,	dis‐
tance	
from	sub‐
centre	

Distance	
from	rail	
track,	dis‐
tance	
from	
CBD,	dis‐
tance	
from	sub‐
centre	

N	 37,933	 37,933 37,898 37,898 38,192	 38,192
r2	 .931	 .931 .929 .93 .915	 .916

Notes:	 Unit	of	observation	is	parcel‐year	(balanced	panel).	WPT	DD	models	use	weights	constructed	to	minimise	the	
conditional	correlations	between	noise	and	the	1881–1890	land	price	trend	as	well	as	access	(distance	from	
station)	and	the	1881–1890	land	price	trend.	Weights	are	constructed	using	the	algorithm	described	in	sec‐
tion	2.3.1	and	Gaussian	transformations	of	the	listed	covariates.	Land	price	growth	is	the	deviation	from	the	
mean	1881	to	1890	land	price	growth.	Announcement	effects	are	distance	and	noise	variables	interacted	with	
1896	and	1900	effects.	Balanced	panel	of	 repeated	parcel	observations	 for	1881,	1890,	1896,	1900,	1904,	
1910	and	1914.	Standard	errors	in	parentheses	clustered	in	parcels.	*	p	<	0.10,	**	p	<	0.05,	***	p	<	0.01	
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Tab.	8.	WPT	DD:	Varying	objective	functions	(grid	search	weights)	

	 (1)	 (2) (3) (4) (5)	 (6)	
	 Ln	land	price	(1881‐1914)
Distance	x	(km)	x	(t	>	1900)	 ‐0.175***	

(0.030)	
‐0.192***
(0.039)

‐0.182***
(0.031)

‐0.211***
(0.040)

‐0.180***	
(0.031)	

‐0.205***
(0.040)

Noise	(10	db)	x	(t	>	1900) ‐0.034***	
(0.008)	

‐0.046***
(0.011)	

‐0.038***
(0.008)	

‐0.050***
(0.011)	

‐0.034***	
(0.008)	

‐0.047***
(0.011)	

Parcel	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Year	effect	 Yes	 Yes Yes Yes Yes	 Yes	
Anticipation	effects	 ‐	 Yes ‐ Yes ‐	 Yes	
Objective	function	 Additive	 Additive Multipli‐

cative
Multipli‐
cative

Min‐max	 Min‐max

N	 37933	 37933 38052 38052 37933	 37933
r2	 .931	 .931 .93 .93 .93	 .93	

Notes:	 Unit	of	observation	is	parcel‐year	(balanced	panel).	Weighted	models	use	weights	constructed	to	minimise	
the	conditional	correlations	between	noise	and	the	1881–1890	land	price	trend	as	well	as	access	(distance	
from	station)	and	the	1881–1890	land	price	trend.	Weights	are	constructed	using	a	Gaussian	transformation	
of	the	1881	to	1890	land	price	growth,	the	distance	from	the	CBD	and	the	distance	from	the	most	important	
sub‐centre.	Announcement	effects	are	distance	and	noise	variables	 interacted	with	1896	and	1900	effects.	
Balanced	panel	of	repeated	parcel	observations	for	1881,	1890,	1896,	1900,	1904,	1910	and	1914.	Standard	
errors	in	parentheses	clustered	in	parcels.	*	p	<	0.10,	**	p	<	0.05,	***	p	<	0.01	

4 Conclusion	

In	this	paper,	I	discuss	an	approach	to	improving	counterfactuals	in	difference‐in‐differences	(DD)	

analysis	when	 the	 parallel	 trends	 assumption	 is	 likely	 violated.	 In	 the	weighted‐parallel‐trends	

(WPT)	DD	estimator	discussed	here,	weights	are	used	that	minimise	the	conditional	correlation	

between	one	or	multiple	treatment	variables	and	pre‐treatment	trends	in	an	outcome.	I	argue	that	

if	the	researcher	is	able	to	identify	a	set	of	(time‐invariant)	weights	that	reduce	this	correlation	in	

several	pre‐treatment	periods,	it	is	also	likely	that	this	correlation	will	be	reduced	in	the	remaining	

(post‐treatment)	periods.	Thus,	it	is	more	likely	that	the	critical	parallel‐trends	assumption	holds.		

I	subject	this	intuition	to	a	test	in	a	Monte	Carlo	study	and	provide	an	application	to	a	case	study	

that	draws	from	and	expands	on	Ahlfeldt	et	al.	(2016).	The	Monte	Carlo	results	suggest	that	the	

WPT	DD	has	the	potential	to	reduce	OLS	bias	to	the	extent	that	the	objective	of	minimising	treat‐

ment‐trend	correlations	(over	one	or	several	pre‐treatment	periods)	is	achieved.	In	the	case	study	

application,	the	WPT	DD	provides	results	that	are	more	plausible,	given	theoretical	expectations	

and	previous	evidence,	than	the	OLS	DD.	Reassuringly,	different	implementations	of	the	WPT	DD	

yield	similar	results.	One	of	the	strengths	of	WPT	DD	is	that	it	is	applicable	to	a	wide	range	of	em‐

pirical	settings,	e.g.	cases	with	multiple	continuous	treatment	variables	and	intervention	studies	

that	aim	at	estimating	time‐varying	treatment	effects.	Moreover,	the	WPT	DD	is	relatively	straight‐

forward	to	implement	and	is	transparent	in	the	sense	that	its	ability	to	ensure	orthogonality	be‐

tween	treatments	and	individual	trends	over	targeted	and	non‐targeted	pre‐treatment	periods	is	
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easy	to	test.	It	is	also	straightforward	to	test	for	a	selectivity	of	the	weighted	sample,	which	may	

create	an	external	validity	problem	 if	 there	 is	heterogeneity	 in	 treatment	effects.	Therefore,	 the	

WPT	DD	represents	a	potential	avenue	to	be	explored	by	applied	researchers	in	instances	where	

the	ready‐made	tools	for	dealing	with	a	non‐parallel‐trends	problem	do	not	fit	the	empirical	setting.	

At	this	stage,	I	do	not	recommend	a	specific	procedure	for	the	identification	of	weights	that	serve	

the	aforementioned	objective.	My	view	is	that	it	is	up	to	the	researcher’s	creativity	to	develop	an	

approach	that	suits	a	particular	application.	As	discussed	above,	it	is	easy	enough	to	test	the	plau‐

sibility	of	proposed	weights.	I	leave	the	development	of	a	'one‐size‐fits‐all'	algorithm	to	future	re‐

search.		

Appendix	

Fig.	A1:	Polynomial	time	trend	specifications	

	
Notes:		 Linear	(solid)	trend:	f(t)=t	

Quadratic	(short	dash)	trend:	f(t)	=‐1.5t	+	0.25t²		
Cubic	(long	dash)	trend:	f(t)	=	2t	‐	0.35t²	+	0.025t³.	
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