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Abstract

We introduce a simple approach which combines Empirical Mode Decomposi-
tion (EMD) and Pearson’s cross-correlations over rolling windows to quantify
dynamic dependency at different time scales. The EMD is a tool to separate
time series into implicit components which oscillate at different time-scales.
We apply this decomposition to intraday time series of the following three
financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatil-
ity index USA), obtaining time-varying multidimensional cross-correlations
at different time-scales. The correlations computed over a rolling window
are compared across the three indices, across the components at different
time-scales and across different time lags. We uncover a rich heterogeneity
of interactions, which depends on the time-scale and has important led-lag
relations that could have practical use for portfolio management, risk esti-
mation and investment decisions.

Keywords: Time-scale-dependent correlation, time-dependent correlation,
empirical mode decomposition

Email address: t.aste@ucl.ac.uk (Tomaso Aste)

Preprint submitted to Elsevier April 12, 2018



1. Correlation structures in financial time series

Financial time series are correlated, and the structure of these correlations
reflects market properties [1, 2, 3, 4]. Analysis of correlations is important
for the construction of diversified portfolios, to reduce investment risks and to
orientate investment decisions. The correlation structure of financial markets
has been one of the major domain of studies in the last couples of decades
[5]. Researches have highlighted that the correlation structure is associated
with industry sectors, it is time dependent and it provides a dynamical map
of market states which it follows seasonalities, trends and has abrupt changes
during market instabilities [6, 7, 2, 8, 9, 10, 11, 12, 13, 14].

Financial markets operate at different time horizons [15], and character-
izing the relation between market prices at different time-scales is essential to
capture the complexity of market dynamics for portfolio management, risk
management and investments [16, 17, 18, 19, 20, 21, 22]. It is well established
and documented that correlations between stock returns vary over time (see
for instance [2, 23, 24, 25]). It is instead less understood and established
how correlations between financial assets vary over time-scales [26, 6]. Most
studies focus on the analysis of a specific time-scale. However, changes of cor-
relation at different time-scales have important practical consequences. For
instance, if the correlation between two assets varies across time-scales, then
market participants with short and long term-horizons have different risk ex-
posures and must adapt their strategies according to the different parts of the
correlation spectrum. Furthermore, investigating both the time dependent
and the time-scale dependent dynamics of correlations can provide insights
on the collective behaviour of traders with different strategies [23, 26]. This is
the topic of the present paper where we use a simple methodology to perform
this research.

In the literature several methodologies have been proposed to analyse
correlations and dependencies between time series at different frequencies.
Wavelets and the wavelet transform modulus maxima [27] are among the
first and most used methodologies to simultaneously analyse the correlation
and multiscale structures [28, 25, 24]. Another noticeable method is the mul-
tivariate extension of the multifractal detrended fluctuation analysis, which
combines established methods for multifractal characterisation of signals with
quantification of correlations by using local piecewise polynomial detrending
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[29, 30, 31].
The approach in this paper is a simple combination of the Pearson cross-

correlation with the decomposition of a time series at different time-scales
obtained with the Empirical Mode Decomposition [32]. The EMD method
decomposes the signal into a finite set of nearly orthogonal oscillating com-
ponents, called Intrinsic Mode Functions (IMF), and a residue. The obtained
components are retrieved from the local maxima and the local minima of the
data without imposing any kind of functional form or oscillation frequency.
This is an important difference with respect to the wavelet transform (see
[24, 25]) which instead requires to use a specific a priori filter function [33].
Therefore, the EMD relies on less assumptions, it is a fully data-driven de-
composition which can be applied to non-stationary and non-linear data [32].

Our approach is similar to the methodology recently introduced by Chen
et al. [34], who proposed to use the Empirical Mode Decomposition to es-
timate the so-called Time-Dependent Intrinsic Correlation (TDIC). In this
approach, two time series are first decomposed into a set of IMFs oscillating
at different time scales. Then, the Pearson correlation is calculated in an
adaptive window whose length depends on the instantaneous period of the
IMFs. In this paper, we introduce a simplified version of this approach. Sim-
plification consists of two main elements: first, we adopt a single size window
for each IMF; second, when decomposing the time series, we do not add
white noise. We verified that these simplifications do not affect significantly
our results providing however a more parsimonious approach that requires a
smaller numbers of parameters and assumptions.

We apply our methodology to intra-day data (30 seconds) of three in-
dices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index
USA). We compute cross-correlations and lagged cross-correlations between
the different IMFs. This yields to dynamic cross-correlations across time
scales. The results uncover the presence of cross-scale coupling between the
time series and identify some relevant led-lag relations at specific time-scales
which could be relevant for practical purposes in portfolio management.

This paper is organized as follows. In Section 2, we introduce the basic
concepts of the EMD and the IMF. In Section 3, the computation of cross-
correlations across time-scales, time-lags and time-windows is described. Sec-
tion 4 reports the application to real data on three indices: the S&P 500
(USA), the IPC (Mexico) and the VIX. The discussions and conclusions are
provided in Section 5.
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2. Empirical mode decomposition (EMD)

The EMD method identifies a finite set of oscillations with scale defined
by the local maxima and the local minima of the data itself. Each oscillation
is empirically derived from the data and is referred to as an Intrinsic Mode
Function (IMF). An IMF must satisfy two criteria [32]:

1. The number of extrema and the number of zero crossings must either
be equal or differ at most by one;

2. At any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

The first condition forces an IMF to be a narrow-band signal with no
riding waves. The second condition ensures that the instantaneous time-
scale will not have fluctuations arising from an asymmetric wave form [32].
The IMFs are obtained through a process called sifting process which uses
local extrema to separate oscillations starting with the highest time-scale.
Given a time series X(t), t = 1, 2, ..., T , the process decomposes it into a
finite number of components, the IMFk(t), k = 1, ..., n, and a residue rn(t).
The residue is the non-oscillating drift of the data. If the decomposed data
consists of uniform scales in the time-scale space, the EMD acts as a dyadic
filter and the total number of IMFs is approximately equal to n= log2(T )
[35]. At the end of the decomposition process, the original time series can be
reconstructed as:

X(t) =
n∑
k=1

IMFk(t) + rn(t). (1)

The EMD is implemented through the following steps [32]:

1. Initialize the residue to the original time series r0(t) = X(t) and set
the IMF index k = 1.

2. Extract the kth IMF:

(a) initialize h0(t) = rk−1(t) and set the iteration counter i = 1;
(b) find the local maxima and the local minima of hi−1(t) (see Figure

1(a));
(c) create the upper envelope Eu(t) by interpolating between the local

maxima and, analogously, create lower envelope El(t) by interpo-
lating the local minima (see Figure 1(b));
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(d) calculate the mean of both envelopes as mi−1(t) = Eu(t)+El(t)
2

(see
Figure 1(c));

(e) subtract the mean envelope from the input time series, obtaining
hi(t) = hi−1(t) −mi−1(t), see Figure 1(d);

(f) verify if hi(t) satisfies the IMF’s conditions:

• if hi(t) does not satisfy the IMF’s conditions, increase i = i+1
and repeat the sifting process from step (b) (see Figure 1(d));

• if hi(t) satisfies the IMF’s conditions, set IMFk(t) = hi and
define rk(t) = rk−1(t) − IMFk(t) (see Figure 2).

3. When the residue rk(t) is either a constant, a monotonic slope or con-
tains only one extrema stop the process, otherwise continue the decom-
position from step 2, setting k = k + 1.

In Figure 1, we exemplify some steps of the sifting process. After one
iteration of the sifting process, the function h1(t) is obtained (Figure 1(d)).
In this example, the resulting function is not symmetric and does not have
zero mean, hence it is not an IMF yet. Consequently, more iterations of the
sifting processes need to be applied to extract the first IMF of the input time
series. These further iterations are shown in Figures 2(a), 2(b) and 2(c) with
the last sifting iteration which extracts the first IMF, shown in Figure 2(d).

The sifting process eliminates the riding waves and smooths uneven am-
plitudes [32]. This process terminates when the local mean of the extracted
IMF is zero. The difficulty is that this condition can only be approximated
and in order to avoid over-sifting and converting meaningful IMFs into mean-
ingless fluctuations with constant amplitude, a stopping criterion needs to
be implemented.

It must be noted that the EMD is based on the timescale separation
and does not impose orthogonality, implying that in general the sum of the
variance of the components and the residue differs from the variance of the
input time series. Although the non-orthogonality is conceptually of great
relevance, in most practical cases the overlap between components is small
and the difference between the sum of the variance of the components and
the total variance remains small [32].

3. Cross-correlations on IMF

Let us consider two time series X(t) and Y (t) with t = 1, 2, . . . , T , with
equal length T and with equal intervals of time s between observations.

5



(a) Local maxima and minima. (b) Upper and lower envelopes.

(c) Envelope mean. (d) Time series after one sifting step.

Figure 1: Example of one sifting step in the construction of a IMF. (a) Input time series
highlighting the local maxima and the local minima. (b) Time series with the interpolated
upper and lower envelopes (slashed lines). (c) Time series with the envelopes and the mean
of both envelopes (red line). (d) First iteration of the sifting process. In this example,
the extracted function does not satisfy the IMF’s conditions and therefore another set of
sifting processes must be applied (see Fig.2).

3.1. Cross-correlations across time-scales

The proposed time-scale-dependent correlation computes the Pearson cor-
relation coefficients between two components IMFXi , IMFYj , i, j = 1, . . . , n
obtained from the decomposition of the time series X(t) and Y (t), respec-
tively:

ρXYi,j =
1

T

T∑
t=1

(
IMFXi (t) − IMFXi

)(
IMFYj (t) − IMFYj

)
σXi σ

Y
j

(2)
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(a) Local maxima and minima. (b) Upper and lower envelopes.

(c) Envelope mean. (d) IMF example.

Figure 2: Example of the few final sifting steps which produce a valid IMF. (a) Input
time series highlighting the local maxima and the local minima. (b) Input time series
with the interpolated upper and lower envelopes (slash lines). (c) Input time series with
the envelopes and the mean of both envelopes (red line). (d) Last iteration of the sifting
process, the extracted function is the first IMF.

where IMFXi denotes the sample mean over time of IMFXi and σXi denotes
the sample standard deviation of IMFXi .

Although the IMFs are not theoretically stationary, the IMFs satisfy the
condition of having local mean equal to zero and can then be considered to be
at least locally stationary [32]. Contrary, the residue does not need to satisfy
the IMF conditions, and particularly, if we decompose a non-stationary time
series, the extracted residue will contain the trend of the time series, mak-
ing it a non-stationary component. Thus, a correlation coefficient between
the residues is just a measure of linear dependency of the trends indicating
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their direction of co-movement. This correlation coefficient is likely to be
high and must not be directly compared with the correlations between the
IMFs. Nonetheless, it is a significant part of the analysis, quantifying relative
directions of the trends at the length scale of the time window.

3.2. Time-dependent lagged cross-correlation at the same time-scale over a
rolling window

We also compute lagged cross-correlations over a rolling window, which
for simplicity, we limit to the same time scale. The cross-correlations between
two different time series X(t) and Y (t), lagged by λ, over rolling windows of
size W and at the same time-scale component i is defined as:

ρXYi (t, λ) =
1

W − λ

t−λ∑
τ=t−W+1

(
IMFXi (τ) − IMFXi

)(
IMFYi (τ + λ) − IMFYi

)
σXi σ

Y
i

.

(3)
The time-lag λ is measured in units of the sampling time-scale. The window
approach has the advantage of only assuming local stationarity rather than
stationarity over the entire time series. Although this method is based on a
simple measure of correlation (Pearson correlation), it adapts to the nature
of the data and provides a dynamic measure of correlation across time-scales.

4. Correlation analysis of intraday financial data

We consider intraday data sampled at 30-seconds intervals for two stock
market indices and a volatility index, namely, the S&P 500 index (USA), the
IPC index (Mexico) and the VIX index (implied volatility index, calculated
by the Chicago Board Options Exchange, USA). The data was obtained from
Bloomberg [36]. The observation period includes 184 days, ranging from
September 2013 to July 2014 and it only considers the trading days available
for all the three indices. Each day has 780 data points (6.5 hours). The effect
of the sampling frequency was explored during a preliminary analysis and
then settled to 30s as a reasonable example of high frequency data. We did
not observe qualitative differences in the results when varying the frequency
from a few seconds to a few minutes. Note that the S&P 500 and the VIX
indices are closely related, being one a function of the other. Differently, the
IPC index is related to a separated economic system. We expect to observe
significant differences in the relative correlation structures across time scales
for this different indices.

8



27/09/13 19/11/13 29/01/14 27/03/14 22/05/14 21/07/14

S
&

P
 5

0
0

7.4

7.45

7.5

7.55

7.6

V
IX

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

IP
C

10.5

10.55

10.6

10.65

10.7

Figure 3: Intraday observations (sampled at 30-seconds intervals) for the S&P 500, the
IPC and the VIX indices for the time period September 2013 to July 2014.

Figure 3 reports the dynamics of these three indices over that time pe-
riod. We can observe that the S&P 500 and the IPC indices have similar
behaviours. They are indeed positively correlated with correlation coefficient
between log-returns equal to 0.21; this is in agreement with previous studies
[37, 38]. On the contrary, the risk-price relationship between the S&P 500
and the VIX indices shows negative correlation, as reported for example in
[39]. The correlation coefficient between these log-returns is equal to -0.26.
Finally, the IPC and the VIX indices are essentially uncorrelated with very
small negative correlations (the correlation coefficient between log-returns
equals to -0.02).

4.1. Intraday analysis of correlation, example for the day July 18th 2014

In order to easily visualize the results, let us exemplify the intraday anal-
ysis of the correlation on a randomly chosen day: July 18th 2014. This day
was chosen randomly and it appears as a very ordinary day, in this respect
representative of many others. However, let us stress that we also performed
the analysis for the complete dataset consisting of 184 days. The results are
reported later in Section 4.2. Figure 4 displays the logarithm of prices for
the three indices. Applying the EMD to each time series, we obtained five
IMFs and a residue which are reported in Figure 5. The oscillating period
of each IMFs is calculated by dividing the total number of points by the
number of peaks, with rounded values reported in Table 1.

9



 9:30AM 10:30AM 11:30AM 12:30PM  1:30PM  2:30PM  3:30PM

S
&

P
 5

0
0

7.58

7.582

7.584

7.586

7.588

7.59

7.592

V
IX

2.48

2.5

2.52

2.54

2.56

2.58

2.6

2.62

IP
C

10.688

10.69

10.692

10.694

10.696

10.698

10.7

Figure 4: Intraday log-prices for the S&P 500, the IPC and the VIX indices, example for
July 18th 2014.
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Figure 5: IMFs of the stock market indices and the volatility index, example for July 18th

2014. From top to bottom IMF1...IMF4 and residue. X-axes time from 9:30 to 16:00.

4.1.1. Time-scale-dependent correlation, example for July 18th 2014

We computed the time-scale-dependent correlation by means of Equation
(2). The results are represented as a matrix of pairwise correlations between
the IMFs where the magnitude of the correlation is visually represented by
a color-map. Figure 6(a) shows the correlation matrix between the S&P 500
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Index IMF1 IMF2 IMF3 IMF4 IMF5 Residue

S&P 4 8 20 44 88 –
IPC 4 8 16 40 88 –
VIX 4 8 20 40 88 –

Table 1: Oscillating period for the IMFs shown in Figure 5 and estimated by dividing the
total number of points by the number of peaks and rounding, example for July 18th 2014.

and the IPC indices. We observe positive correlations with mostly larger val-
ues on the diagonal (same time-scale components indices) with an increasing
magnitude for increasing IMF time-scale. The correlation between the S&P
and the VIX indices (Figure 6(b)) also reveals with larger values on the diag-
onal but instead with negative values between the residues and between the
long time horizon components up to 8 minutes. Conversely, IMF2 (4 minutes
time-horizon, see Table 1) and IMF1 (2 minutes time horizon) reveal instead
small positive correlations.

(a) S&P 500 index versus IPC index. (b) S&P 500 index versus VIX index.

Figure 6: Time-scale-dependent correlation structures, example for July 18th 2014.

4.1.2. Time-dependent correlation, example for July 18th 2014

We also estimated the time-dependent lagged correlation between the
S&P 500 and the IPC indices by using Equation (3). These correlations
are represented in Figure 7(a) as a color-map matrix in which each column
represents a successive window and each row represents a specific time-lag.
The intraday correlation values are reported after W observations, with W
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the size of the rolling-window. For the highest frequency components the
rolling window size is 10 minutes whereas for the lowest frequency the window
reaches one hour (see Table 2).

Lags are limited to λ ≤ max (PXi
, PYi), with PXi

and PYi denoting the os-
cillating period of IMFXi and IMFYi , respectively. Choosing λ larger than the
oscillating period results in repetitive patterns in the correlation structure.
On the other hand, a shorter time-lag may not reveal some correlations. The
window size is set at W = max(λ, 20).

From Figure 7(a), it is difficult to identify correlations patterns for the
highest time-scale IMFs. However, for IMFs with lower time-scale, IMF2,
. . . , IMF5, we observe intervals of stronger correlations characterized by the
nature of the oscillating IMFs, i.e., we observe lapses of positive correlation
lagged in time by negative values of correlation, making the lead-lag relation
between the IMFs almost symmetric with respect to the zero lag.

Figure 7(b) shows the correlation matrices for the S&P 500 and the VIX
indices. Contrary to the correlation between the S&P 500 and the IPC
indices, the correlation between the S&P and the VIX indices is negative
at all frequencies and during the entire trading day. At the highest time-
scale, IMF1, we observe a clear pattern of negative correlation at lag λ = 2
(1 min), indicating that the S&P 500 leads the VIX index by 1 minute.
When correlating the residue components, we observe a dominant blue band,
indicating a negative correlation region (a similar red band is observed for
the correlation between the S&P 500 and the IPC indices). Such a band
could be attributed to the linear and non-stationary characteristics of the
residues.

4.2. Intraday correlation, analysis on the complete dataset

Proceeding in the same way as illustrated in the previous examples for the
particular day July 18th 2014, we decomposed each daily time series into five
IMFs and a residue. We then computed the time-scale-dependent correlation
and the time-dependent correlation for each of the 184 days available in the
dataset.

4.2.1. Time-scale-dependent correlation

The statistics for the time-scale dependent correlation between the IMFs
with the same time-scale index for all trading days are reported in histograms.
In Figure 8, we report histograms for the S&P 500 and the IPC indices and
in Figure 9 for the S&P and the VIX indices. We observe prevalently positive
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(a) S&P 500 index versus IPC index. (b) S&P 500 index versus VIX index.

Figure 7: Intraday time-dependent correlation, example for July 18th 2014. (Rolling
window sizes reported in in Table.2.)

correlations for the S&P 500 and the IPC components and instead prevalently
negative correlations for the S&P 500 and the VIX. The histograms reveal
significant deviations from zero for all the components with larger positive
or negative correlations for components with longer time-scales.

Correlations between the IMF components with different time-scales in-
dices are reported in Figure 10 where the sample median correlations are also
reported. We use the sample median of the distribution since this statistic is
not influenced by outliers. The case S&P and IPC is shown in Figure 10(a)
and the S&P and VIX in Figure 10(b). The color-map matrices at the top
are the median correlations between different time-scales whereas the plots
below are the values of the diagonal elements (components with same-time
scale indices).

4.2.2. Rolling window analysis and lag relations

We analysed the median of the time-dependent correlation matrices, com-
puted as reported in Equation 3, over different rolling windows and various
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Figure 8: Distribution of the time-scale-dependent correlation between the IMFs of the
S&P 500 index and the IMFs of the IPC index.

lags. The window sizes and the time lags which were used are reported in
Table 2.

Component S&P vs IPC S&P vs VIX

Lag Window Lag Window
IMF1 4 20 4 20
IMF2 9 20 9 20
IMF3 19 20 21 21
IMF4 44 44 48 48
IMF5 110 110 124 124

Residue 110 110 124 124

Table 2: Average of the number of lags and the size of the rolling-window used for the
time-dependent correlation analysis. Numbers are in 30 seconds units.

The median, time-varying, lagged correlation matrix (Eq.3) between the
S&P 500 and the IPC indices is displayed in Figure 11(a). Overall, we
observe relatively small correlations with little lead-lag relationships at all
time-scales with larger values for the last two components and the residue
(bottom panels). We observe patterns in the intraday activity with less
persistent correlations around the middle of the day.
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Figure 9: Distribution of the time-scale-dependent correlation between the IMFs of the
S&P 500 index and the IMFs of the VIX index.

More intense negative correlation is observed between the S&P 500 and
the VIX indices, reported in Figure 11(b). Interestingly, in this case, we
observe significant lagged correlations at small time scales (IMF1, IMF2 and
IMF3) with the S&P 500 leading the VIX at one minute lag (λ = 2) with a
stable pattern across the day. This indicates that consistently changes in the
S&P 500 are followed by changes in the VIX after about 1 min and in the
opposite direction (negative correlations).

5. Discussions and conclusions

In this paper we propose a simple approach which demonstrates that
the Empirical Mode Decomposition can be used to investigate the correla-
tion between time series at different time-scales. This expands the concept
of correlations to a higher-dimensional level. We observed that, although
most of the correlation is between components of the same time-scales, there
are some significant correlations also between components of different time-
scales. A dynamical analysis performed over rolling windows shows that
correlations’ patterns are both time and time-scale dependent. We uncov-
ered lead-lag relations within components with the discovery of a persistent
and significant 1 min negative coupling between the S&P 500 and the VIX
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(a) S&P 500 index and the IPC index. (b) S&P 500 index and the VIX index.

Figure 10: Sample median of the time-scale-dependent correlation matrices over the time
period from September 2013 to July 2014. The color-map matrices above are the cross
correlations between components at different time-scales; the plots below report the values
of the elements in the diagonal with same time-scales indices.

indices, which can have practical relevance for trading strategies and risk
modeling.

In this paper we have proposed a simple methodology avoiding assump-
tions in the derivation of the intrinsic components and in the quantification
of the correlations. The methodology we introduced in this paper and our
findings are consistent with the coherence measure obtained with the wavelet
transform [25]. However, given the simplicity of our approach and its adapt-
ability to different time series without needing to specify any a priori filter
function, we believe that the proposed correlation measures offer a simpler,
computationally more efficient and easier to interpret approach.

The measures proposed in this paper and in particular Eqs. 2, 3 are the
simplest generalisations of the linear correlation measure to include time-scale

16



(a) S&P 500 index versus IPC index. (b) S&P 500 index versus VIX index.

Figure 11: Sample median of the time-dependent correlation matrices over the time period
from September 2013 to July 2014. (Rolling window sizes reported in in Table.2.)

components. We chose them as a natural extension of the cross-correlation
concept. However, there are some aspects of the present approach that would
be interesting to further investigate in future works. For instance, Eqs. 2, 3
perform averages over the variables, but time-series with different oscillation
scales lead to different averages even if the (scaled) nature of the variable
is the same. This is probably penalising the values associated with high
frequency components that we indeed observe to be consistently smaller.
Similarly, the Pearson correlations between the residues must be interpreted
with caution because -by construction- the residues are non-stationary and
their correlation coefficient is a measure of the relative trend rather than a
quantification of dependency.
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