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Sampling of pairs in pairwise likelihood estimation for latent

variable models with categorical observed variables

Ioulia Papageorgiou∗and Irini Moustaki†

12 April 2018

Abstract

Pairwise likelihood is a limited information estimation method that has also been
used for estimating the parameters of latent variable and structural equation mod-
els. Pairwise likelihood is a special case of composite likelihood methods that uses
lower order conditional or marginal log-likelihoods instead of the full log-likelihood.
The composite likelihood to be maximized is a weighted sum of marginal or con-
ditional log-likelihoods. Weighting has been proposed for increasing efficiency but
the choice of weights is not straightforward in most applications. Furthermore,
the importance of leaving out higher order scores to avoid duplicating lower order
marginal information has been pointed out. In this paper, we approach the problem
of weighting from a sampling perspective. More specifically, we propose a sampling
method for selecting pairs based on their contribution to the total variance from all
pairs. The sampling approach does not aim to increase efficiency but to decrease
the estimation time, especially in models with a large number of observed categori-
cal variables. We demonstrate the performance of the proposed methodology using
simulated examples and a real application.
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1 Introduction

Latent variable models (LVM) and structural equation models (SEM) are widely used
for analyzing multiple observed variables from social surveys and administrative data.
Our models treat jointly the observed variables as measures of unobserved (latent) con-
structs. Latent variable models are mainly used to explain associations between p ob-
served variables, denoted by Y1, . . . , Yp, that are assumed to be indicators of q (q < p)
latent variables denoted by ξ1, . . . , ξq (exploratory factor analysis), such as attitudes,
beliefs, and abilities, but also to test specific hypotheses driven by social or economic
theory (confirmatory factor analysis and SEM). Confirmatory factor analysis (CFA) pos-
tulates certain relationships among the observed and the latent variables by assuming
a pre-specified pattern for the model parameters (factor loadings). CFA is mainly used
for testing a hypothesis arising from theory and therefore, the number of latent vari-
ables and the variables that will be used to measure each latent variable are known in
advance (Bartholomew, Steele, Moustaki, and Galbraith, 2008). Substantive research
questions typically centre on associations involving the latent variables, for example how
an individual’s attitude depends on covariates such as age and education.

Questionnaire items in social surveys are often of a categorical nature (ordinal or
nominal). In the SEM literature, one common approach for the analysis of categorical
variables with factor models is the underlying variable approach (UVA) in which cate-
gorical variables are assumed to be generated by underlying continuous variables (e.g.,
see Jöreskog, 1990, 1994; Lee, Poon, and Bentler, 1990, 1992; Muthén, 1984). Under
the UVA, full maximum likelihood is not feasible for a large number of p and limited
information estimation methods have been proposed instead, such as the three-stage
least squares estimation method (Jöreskog, 1990, 1994; Muthén, 1984) and composite
estimation methods.

Composite likelihood estimation methods (CLM) (see e.g., Besag, 1974; Lindsay,
1988; Cox and Reid, 2004; Varin, 2008; Varin, Reid, and Firth, 2011) have been devel-
oped for when the full likelihood is too expensive or intractable to compute. The main
idea behind CLM is to construct a pseudolikelihood from marginal or conditional densi-
ties of lower dimension than the original data. Usually, the composite likelihood is given
as a weighted sum of lower-order marginal or conditional log-likelihoods. Composite like-
lihood estimators subject to regularity conditions have the desired properties of being
asymptotically consistent, and normally distributed. de Leon (2005) used the pairwise
maximum likelihood approach to estimate thresholds and polychoric correlations of ordi-
nal data. Jöreskog and Moustaki (2001) proposed an underlying bivariate normal method
that maximised the sum of all the univariate and bivariate log-likelihoods. Liu (2007)
proposed a multistage estimation method for SEM as an alternative to the commonly
used three-stage methods. Pairwise likelihood has also been found to work well and
to be computationally attractive over full information maximum likelihood (FIML) for
SEM for binary, ordinal and ranking variables (Katsikatsou, Moustaki, Yang-Wallentin,
and Jöreskog, 2012; Katsikatsou, 2013) and for factor analysis models for longitudinal
data where both latent variables and random effects are used to account for item depen-
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dencies (Vasdekis, Cagnone, and Moustaki, 2012). In all the above papers, composite
likelihood is defined as the sum of all pairwise log-likelihoods. Furthermore, Chan and
Bentler (1998) and Fieuws and Verbeke (2006) used the composite likelihood for a co-
variance structure analysis for ranking data and for estimating mixed effects models for
multivariate longitudinal outcomes respectively. In their implementation of the compos-
ite likelihood, each pairwise likelihood is maximized separately and the final parameter
estimates are obtained as a simple average of the estimates produced by the separate
bivariate maximizations. Recently, Vasdekis, Rizopoulos, and Moustaki (2014) proposed
a weighted estimator instead that improves parameter efficiency. Their method is also
based on separate maximizations of pairwise likelihoods and a weighted average of the
individual estimates with weights obtained by minimizing the variance of the estimates.

Pairwise likelihood estimation can be computationally demanding in problems with
a large number of variables. In this paper, we propose a sampling method for estimating
the model parameters from a sub-set of pairs selected from the population of all possible
bivariate densities to be included in the pairwise log-likelihood function to be maximized.
The methodology developed here can be also extended to other multivariate models for
which their model parameters can be identified by bivariate likelihoods, but the details
are illustrated here only for a latent variable model for categorical variables. Pairwise
likelihood estimation has been developed for the multivariate probit model with random
effects, a poisson-lognormal mixture model and a multi-normal copula model (Zhao and
Joe, 2005), for the spatial generalized linear mixed models (Varin, Host, and Skare,
2005), for ordinal categorical time series (Varin and Vidoni, 2006), for generalized linear
models with crossed random effects (Bellio and Varin, 2005), Poisson regression models
with time-varying Gamma frailty for modeling longitudinal count data (Henderson and
Shimakura, 2003) and for binary spatial data (Heagerty and Lele, 1998b). This list of
papers is not by any means exhaustive but provides an idea on how popular pairwise
likelihood estimation is for estimating complex multivariate models and the advantages
of developing methods that could potentially reduce even further the computational
complexity and time.

The paper is organized as follows. Section 2 presents some general results on pairwise
estimation, Section 3 provides a brief presentation of the estimation of the factor analysis
model for categorical variables using pairwise likelihood estimation, Section 4 discusses
the proposed sampling method of pairs, Section 5 studies the performance of the pro-
posed methods on estimation and section 6 on inference using simulations, Section 7
applies the proposed sampling methods to a real data set and Section 8 concludes.

2 General results on pairwise likelihood estimation

Suppose there is a p× 1 vector of observed variables: Y′ = (Y1, Y2, . . . , Yp). Let fy(.;θ)
denote the joint density of a parametric model for the data and fyi,yj (.;θ) the bivariate
marginal density, with parameter vector θ. Following Lindsay (1988), the pairwise log-
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likelihood for a random sample of size n is

pl =
n∑
h=1

∑
i<j

wij,h log fyih,yjh(yih, yjh;θ), (1)

where wij,h are non-negative weights and the parameter vector θ needs to be identifiable
from the set of bivariate margins. Unequal weights can be chosen to increase efficiency
and therefore depend on some measure related to asymptotic relative efficiency. Weight-
ing the likelihood components has been proposed in time series and spatial analysis
(Lindsay, 1988; Varin et al., 2005; Heagerty and Lele, 1998a; Varin and Czado, 2010)
and in clustered data (Joe and Lee, 2009). For example, for clustered data the weights
could take into account the degree of cluster homogeneity where, in longitudinal or spa-
tial data, the weights could downweight pairs that are far apart in time or space. For a
lengthy discussion on the topic see also Varin et al. (2011) and references therein. Lind-
say has also mentioned in seminars the need to use fewer of the higher order moments
in an attempt to avoid duplicating lower order marginal information. It is expected
that CLM can also be more robust under possible misspecification of the higher order
dimensional distributions and they can allow a less complex structure on the parameter
space that might lead to a smoother likelihood surface.

The central limit theorem for the composite likelihood score statistic implies that
the distribution of θ̂PL can be approximated by the Normal with mean θ and variance-
covariance matrix G−1(θ) where G(θ) is the Godambe information matrix (also known
as sandwich information) (Varin, 2008; Varin et al., 2011). In particular, G(θ) =
H(θ)J−1(θ)H(θ), where H(θ) is the sensitivity matrix,

H(θ) = E
{
−∇2pl(θ; x)

}
, and J(θ) is the variability matrix, J(θ) = V ar {∇pl(θ; x)}.

In general, the identity H(θ) = J(θ) does not hold in the case of composite likelihoods.
The assumed independence among the likelihood components forming the composite like-
lihood is usually not valid when the full likelihood is considered. The sample estimates
of H(θ) and J(θ) are

Ĥ(θ̂PML) = ∇2pl(θ̂PML; x), and
Ĵ(θ̂PML) = 1

n

∑n
h=1 (∇pl(θ; xh)) (∇pl(θ; xh))T respectively. The ratio of G(θ) to

the expected Fisher information I(θ) determines the asymptotic efficiency of θ̂PL.
Furthermore, Wald, score and LR test statistics under CLM are available (Pace,

Salvan, and Sartori, 2011) as well as AIC (Varin and Vidoni, 2005) and BIC model (Gao
and Song, 2010) selection criteria. Recently, LR test statistics and AIC and BIC have
been also developed for SEM under CLM (Katsikatsou and Moustaki, 2016).

3 Factor analysis models for categorical data

Let Y′ = (Y1, Y2, . . . , Yp) denote a vector of p ordinal/binary observed variables (items)
for a single respondent, where Yi has mi categories, i = 1, . . . , p. There are R =

∏p
i=1mi

possible response patterns. Categorical variables Y are generated by underlying unob-
served continuous variables Y ∗, assumed to be normally distributed. The connection
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between an observed categorical (ordinal) variable Yi and the underlying continuous
variable Y ?

i is

Yi = ci ⇐⇒ τ
(i)
ci−1 < Y ?

i < τ (i)ci , (2)

where τ
(i)
ci is the cthi threshold of variable Yi and −∞ = τ

(i)
0 < τ

(i)
1 < . . . < τ

(i)
mi−1 <

τ
(i)
mi = +∞. In the binary case, there is only one threshold for each observed variable.

Since only ordinal information is available, the distribution of Y ?
i is determined only up

to a monotonic transformation. In practice it is convenient to assume a standard normal
distribution. The Y variables are regarded as measures of a vector of latent variables,
representing some constructs of interest. The classical factor analysis model is of the
form

Y? = Λξ + δ , (3)

where Λ is the p × q matrix of factor loadings, ξ is the q × 1 vector of latent variables,
δ is the p-dimensional vector of unique variables. The elements of Λ play a key role
in interpreting the factors. In addition, it is assumed that ξ ∼ Nq(0,Φ) where Φ is a
q× q matrix that has ones on its main diagonal being this way, the correlation matrix of
latent factors, and δ ∼ Np(0,Θ) with Θ a p × p diagonal matrix, Θ = I − diag(ΛΦΛ′),
and Cov(ξ, δ) = 0. The diagonal elements of the matrix Φ are set to 1 for identifying
the scale of the latent variables. The parameter vector θ′ = (λ,ϕ, τ ) contains λ and ϕ
which are the free non-redundant parameters in matrices Λ and Φ, respectively, and τ
is a vector of all free thresholds.

For a random sample of size n the pairwise log-likelihood, pl(θ; y), is maximized with
respect to the parameter vector θ′ = (λ,ϕ, τ ) given by

pl(θ; y) =
∑
i<j

lnL (θ; (yi, yj)) =

∑
i<j

mi∑
ci=1

mj∑
cj=1

n(ij)cicj lnπ(ij)cicj (θ) (4)

where n
(ij)
cicj is the observed frequency of a response in category ci and cj for variables Yi

and Yj , respectively and

π(ij)cicj (θ) = π (Yi = ci, Yj = cj ;θ)

= Φ2

(
τ (i)ci , τ

(j)
cj ; ρij

)
− Φ2

(
τ (i)ci , τ

(j)
cj−1; ρij

)
− Φ2

(
τ
(i)
ci−1, τ

(j)
cj ; ρij

)
+ Φ2

(
τ
(i)
ci−1, τ

(j)
cj−1; ρij

)
,

(5)

where Φ2 (a, b; ρ) is the bivariate cumulative normal distribution with correlation ρ
evaluated at the point (a, b),

ρij(θ) = λiΦλ
′
j ,
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and λi are the factor loadings and Φ the q× q covariance matrix of the latent variables.
Details can be found in Katsikatsou et al. (2012). The factor analysis model for binary
observed variables is a special case with mi = 2. Furthermore, a mixture of binary and
ordinal variables can also be considered under this framework. The PML estimation for
SEM models developed in Katsikatsou et al. (2012) set the weights wij,h for all i, j, h in
Equation (1) equal to one. PML estimation and testing for SEM have been implemented
in the R package lavaan (Rosseel, 2012; Rosseel, Oberski, Byrnes, Vanbrabant, Savalei,
and Merkle, 2012). The advantage of PML over FIML estimation is that the former
requires the evaluation of up to two-dimensional normal probabilities, regardless of the
number of observed or latent variables.

4 Selecting a subset of pairs in pairwise likelihood

As shown in Section 3, for the construction of the PML in (4), all the possible bivariate
marginal densities out of p are being used. There are two potential drawbacks with
the use of all the possible pairwise likelihoods. The first relates to the increase of
computational time needed to estimate models with a large number of observed variables.
For example, the number of pairs needed to evaluate the pairwise likelihood for p = 20, 30
or 40 variables are 190, 435 and 780 respectively. The second issue relates more to
literature findings that pruning of higher order moments will result in less repetition of
the same variable occurring in many pairs and ultimately to an increase in efficiency.
To tackle the computational demands we propose to take a subset/ sample from the
population of bivariate densities that produce unbiased estimates. The selection of pairs
is done first and the model is estimated on the selected pairs only. This can be seen as
a weighted PML where the weights are fixed to zero or one prior to estimation.

We need to make a distinction between two different sample and population sizes,
namely, the sample size n that defines the number of sampled respondents from a pop-
ulation of N respondents and the sample size n∗ that defines the number of selected
pairs of variables selected from all the possible pairs of variables given by N∗ =

(
p
2

)
. In

our case, the population is defined as all the possible pairs of variables. The population
elements are not independent since they share common and correlated variables. For
the selection of pairs, a model-based sampling approach, in which a statistical model is
assumed for the population elements is considered first (Sarndal, 1978; Bolfarine and
Zacks, 1992). Our proposed approach consists of two stages. At stage 1, a subset of
pairs is selected using an appropriate sampling scheme and at stage 2, the factor model
given in (3) is estimated using PML (see Section 3) on the subset obtained from stage 1.
Therefore, the inference part is provided through the PML estimation framework rather
than the sampling scheme used to select the sample. An alternative to model-based
sampling is the design-based sampling approach which is a probability design and no
statistical model is assumed for the population.

Generally by adopting the model-based approach for sampling, we consider a popu-
lation of size N∗ distributed with a multivariate density with some population mean µ
and variance-covariance matrix Σ. Usually, the population mean is assumed unknown
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and the population quantity of interest depends on µ, whereas Σ is assumed known.
Let us denote with X = (X1, · · · , XN∗) the population random vector with elements

representing the complete set of all possible pairs of variables (Yi, Yj) and i 6= j. Under
the assumed model, the mean and covariance matrix of X are denoted by µ and Σ
respectively. In our case, the parameter vector µ is not relevant and can be disregarded.
Typically finding the optimal sampling design requires a minimization of the MSE which
can be infeasible in many applications, including ours. We adopt instead a method pro-
posed by Chao (2004) in which the sampling design results from an iterative algorithm
rather than a minimization. The idea behind this is to use the population covariance
matrix Σ and select those population elements that account for as much as possible of
the total population variance. The proposed algorithm is based on the spectral decom-
position of matrix Σ that corresponds to the known data reduction method of principal
component analysis (PCA). The selected sample, although not optimal according to the
strict definition of minimizing the MSE of the estimator, is proven to have good prop-
erties and it is an improvement on simple random sampling (SRS) where no particular
model for the population is being assumed. The objective is to select, for a fixed sample
size n∗, the units: s = (Xi1 , . . . , Xin∗ ) from N∗, for ij 6= ij′ ,∀j 6= j′. We discuss below
the steps of the proposed sampling scheme.

Let us denote with λ1 > λ2 > · · · > λN∗ and e1, e2, . . . , eN∗ the eigenvalues and
their corresponding eigenvectors of Σ. According to PCA, the ith principal component
is written as a linear combination of the X’s:

e′iX = ei1X1 + ei2X2 + · · ·+ eiN∗XN∗

where eij is the jth component in the ith eigenvector ei and i = 1, . . . , N∗. Each Xi cor-
responds to a pair of variables. The sampling units are selected based on the magnitude
and the sign of their corresponding components in the leading k eigenvectors.

The sample size n∗ is taken to be equivalent to the number of eigenvalues that are
greater than one. Therefore, the sample size is chosen through the sampling procedure
and depends on the correlation among the pairs. In case of confirmatory factor analysis
with more than one factor, the number of eigenvalues that are greater than one from the
total matrix is augmented by the number of eigenvalues that are greater than one for
the sub-matrices which correspond to each factor. The algorithm as described in Chao
(2004) is given below:

Step 1 The first step defines a set of elements denoted by s′ from which the first
element will be selected. However, the element to be selected is decided after all
the remaining elements have been selected.

Let s′ = (j1, j2, ..., jm), where m < N∗,

|e1j1 | ≥ |e1j2 | ≥ · · · ≥ |e1jm | ≥ · · · ≥ |e1jN∗ |

and m is an integer that indicates the number of units in s′. m can be appropriately
specified before the survey according to the population size N∗.
...
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Step k Let stmp = {l1, l2} where l1 and l2, satisfy:

l1, l2 not having been selected into s.

|ekl1 | = max
i
|eki|

|ekl2 | = max
j

ekjekl1<0

|ekj |

Units l1 and l2 will be added into s by

i2(k−1) = l1, i2k−1 = l2 if n ≥ 2k − 1

i2(k−1) = l1 if n = 2(k − 1)

• Repeat step k from k = 2 till n = 2k − 1 or n = 2(k − 1).

• Final adjustment for selecting the first element: Let s−i1 = {i2, . . . , in∗} and i1 =
jp, jp ∈ s′ such that jp satisfies

mcor(jp, s−i1) = min
jk∈s′,jk 6∈s−i1

mcor(jk, s−i1)

where mcor(jk, s−i1) is the multiple correlation coefficient between unit jk and the
set s−i1 .

It becomes apparent that the sampling units are selected based not only on the magni-
tude but also the sign of the corresponding components of the largest eigenvectors. The
algorithm is fast, and the only requirement is the population variance-covariance matrix,
Σ.

In our case, the population units are the pairs of variables and therefore, Σ refers to
the covariance matrix of those units. In the computation of the covariance matrix among
the population units we need to distinguish between two types of pairs; pairs that share
a common variable and pairs that do not share a common variable. We propose two
methods for obtaining the covariance matrix of the pairs, Σ. The first method is based
on the covariance matrix of the observed proportions. The total number of bivariate
probabilities is

(
p
2

)
× (m− 1)2 where m = 2 for binary variables.

For binary variables, let us define with

π
(ij)
11 = P (Yi = 1, Yj = 1) the population probability that (Yi, Yj) falls in the cell

(1, 1) or in other words of giving a positive response to variables i and j and with P
(ij)
11

the corresponding bivariate observed (sample) proportion. The covariances are given by

Cov(P
(ij)
11 , P

(ik)
11 ) = π

(ijk)
111 − π

(ij)
11 π

(ik)
11 (6)

Cov(P
(ij)
11 , P

(kl)
11 ) = π

(ijkl)
1111 − π

(ij)
11 π

(kl)
11 (7)
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where π
(ijk)
111 = P (Yi = 1, Yj = 1, Yk = 1) and

π
(ijkl)
1111 = P (Yi = 1, Yj = 1, Yk = 1, Yl = 1)

For ordinal variables with m categories where
c = 0, 1, . . . ,m − 1, the category 0 is not included in the covariance matrix but all

the other combinations of variables and categories are given by

Cov(P (ij)
ci,cj , P

(ik)
ci,ck

) = π(ijk)ci,cj ,ck
− π(ij)ci,cjπ

(ik)
ci,ck

(8)

Cov(P (ij)
ci,cj , P

(kl)
ck,cl

) = π(ijkl)ci,cj ,ck,cl
− π(ij)ci,cjπ

(kl)
ck,cl

(9)

where i, j, k, l = 1, . . . , p, and ci, cj , ck, cl = 1, . . . ,m − 1. π
(ij)
ci,cj is the population prob-

ability that (Yi, Yj) falls in the cell (ci, cj) and P
(ij)
ci,cj is the corresponding observed

probability. Similarly we define the population probabilities π
(ijk)
ci,cj ,ck and π

(ijkl)
ci,cj ,ck,cl . For

the calculation of Σ, the population probabilities are replaced by their corresponding
observed (sample) probabilities.

The second method is based on the RV-coefficient derived by Escoufier (1973) and
Robert and Escoufier (1976). The RV-coefficient is introduced as a measure of similarity
between two data matrices. If W and V are two data matrices the RV-coefficient is given
by

RV (W,V ) =
tr(S12S21)

(trS2
11trS

2
22)

1/2
(10)

where S11, S22 are the covariance matrices for W and V respectively and S12 is the
cross-covariance matrix.

In our context, W and V stand for two distinct pairs of variables, i.e. W = (Yi, Yj)
and V = (Yk, Yl). The RV-coefficient takes values in [0, 1] where a value close to 1
indicates a close pattern or co-structure for data sets W and V . Similarly, the higher
the RV value is, the better W can substitute V and vice versa. The RV-coefficient can be
seen as a measure of closeness of two configurations C(W ) and C(V ). It provides a single
number for measuring the relationship between two data sets with different dimensions
and it has been a useful tool in genetics, bioinformatics, ecology and high-dimensional
data in general.

Several modifications of the RV-coefficient have been suggested in the literature.
Most of them aim to improve its asymptotic properties. We mention here: the RV-
adjusted (Mayer and Horgan, 2011), where the r-adjusted Pearson sample correlation
coefficient instead of the Pearson coefficient is used in the calculations of S11, S22 and
S12; the RLS coefficient (Lingoes and Schönemann, 1974) given by

RLS(W,V ) =
(tr(S12S21))

1/2

(trS11trS22)1/2

and, lastly, the Lg coefficient defined as the RV but for the computation of S11 and S22
the two principal eigen values are used in the denominator instead of the trace of the
matrices.
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4.1 Optimal controlled sampling designs

In this section, we discuss two design-based sampling schemes that can be implemented
in addition to, or in combination with, the model-based design proposed in the previous
section aiming to improve the efficiency of the derived estimators. The first sampling
design, known as Sampford’s design (Sampford, 1967), belongs to the class of fixed
size sampling designs without replacement and inclusion probabilities proportional to
size. The inclusion probabilities are calculated with the help of an auxiliary variable
z. More specifically, if zi is the value of unit i measured on z, the probability of the
unit i to be selected in the sample, πi, is calculated as n∗zi/Z, where Z =

∑
zi, the

sum of z−values over all population units. pi = zi/Z is the probability of selecting
unit i at any draw of the n∗ in total. The Sampford’s design is an iterative rejection
procedure. More specifically, the first step is to select unit i with probability pi and
for the subsequent n∗ − 1 draws to select unit i with probability proportional to pi

1−n∗pi
and with replacement. When a unit is selected a second time, it is rejected and the
sampling starts again. The process ends when the sample size reaches the preassigned
sampling size. Sampford’s design has several theoretical advantages compared to other
inclusion probability proportional to size sampling designs (e.g. see Haziza, Mecatti,
and Rao, 2008). We adopted Sampford’s plan by assuming as population the set of
all possible pairs of variables and defining their sizes using as an auxiliary variable
their corresponding magnitude, in absolute value, defined by the elements of the first
eigenvector of the covariance matrix Σ. The sample size is assumed to be the same as
in Chao’s implementation.

The second design-based sampling method is known as the optimal control sampling
method. Control sampling is a methodology implemented to a sampling design with
the aim of reducing the probability of selecting non-desired samples among the possible
samples of the assumed sampling design. The associated sampling design before the
use of control is called the uncontrolled sampling design. The first and second order
inclusion probabilities of the uncontrolled sampling design, i.e. the probability of a
population unit being included in the sample or the probability of two distinct population
units both being included in the sample, are retained during the controlled sampling
procedure (see, Rao and Nigam, 1992, 1990). The samples of a sampling plan are
characterized as desired or undesired based on the sampling cost or the precision of
estimation. Optimality is defined by minimizing the probability of selecting non-desired
samples or, more generally, by optimizing a linear objective function such as a weighted
sum of probabilities of samples selection. Optimal sampling can be implemented by
using standard linear programming techniques.

We implement optimal control sampling as an attempt to combine Chao’s method
of sampling, which takes into account the correlation among population units, and the
Sampford’s sampling design, which is a proportional to size plan. More specifically,
we assume as our uncontrolled sampling plan the Sampford’s design with population
the set of variables and with possible samples all comprising possible pairs of variables.
To control the design we use Chao’s sampling method as implemented in the previous
section. A pair of variables is characterized as desired or undesired based on the fact
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whether it has been selected by Chao’s method or not. More analytically, the steps for
the control Sampford design are:

1. Assume as population the set of observed variables (Y1, . . . , Yp).

2. The uncontrolled sampling plan is Sampford’s plan for the above population and
sample size n′ = 2, so that each sample s corresponds to a pair of variables. Let S
be the set of all possible samples of size two each, S = {s1, s2, · · · s(p2)}

3. If V defines the p × p covariance matrix of the observed variables and e1 is the
eigenvector that corresponds to the largest eigenvalue of V , the inclusion probabil-
ities πi for implementing Sampford’s sampling are defined according to the largest,
in absolute magnitude, of each variable in e1. Second order probabilities πij can
consequently be calculated. The R package pps has been used for the calculation
of the inclusion probabilities.

4. Using inclusion probabilities πi we calculate the probability of selection, p(s), for
every sample s ∈ S according to Sampford’s plan.

5. Separate the set of possible samples (possible pairs of variables) into two categories:
the desired pairs, SD, and the non-desired ones, SND. The pairs selected from the
Chao’s sampling method will be the ones that belong in SD, and SND = S − SD.

6. The control optimal sampling plan is defined as the sampling plan with sample
probabilities pc(s), s ∈ S which result from the minimization problem of the ob-
jective function φ =

∑
s∈SND

p(s), with constraints (i)
∑

s3i,j p(s) = πij , (i < j =
1, 2, · · · , p) and (ii) p(s) ≥ 0 for all s ∈ S.
The linear programming technique is used for the minimization problem.

7. We draw n∗ samples (pairs of variables) from S according to probabilities pc(s).
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5 Simulation study on the performance of the proposed
sampling methods and a comparison with the PML es-
timator

5.1 Simulation study set-up

A simulation study has been conducted to study and compare the performance of the
proposed sampling schemes with the standard pairwise likelihood estimation (PML)
where all pairs are taken into account. All the simulations we conducted involve ex-
ploratory and confirmatory factor analysis models for binary (simulations 1 to 4) and
ordinal (simulations 5 and 6) observed variables. We also compare our proposed meth-
ods with simple random sampling (SRS), but the performance of SRS is rather poor in
simulations with more than one factor and therefore we do not show any of the results
here. A possible explanation is that the sample size specified by Chao’s method is not
sufficient for SRS for models with more than one factor.

Our experimental conditions vary with respect to the number of factors (q = 1, 2),
the number of variables (p = 15, 20, 30, 50), the sample size of individuals (n = 200, 500
and 1, 000) and the number of item categories (m = 2, 4). The number of replications is
set to r = 500 for each experimental condition. We fitted both one-factor model and a
confirmatory factor analysis model with two correlated factors (following the rationale
of a CFA discussed in the introduction, a number of loadings is constrained to be zero
on each factor, e.g. λij = 0 implies that the observed variable i does not measure
the latent variable j or that the latent variable j does not have a direct influence on
variable i). For simulations 1-4 the factor loadings of the assumed model have been
selected from a Uniform(0.6, 0.9) distribution and the thresholds for all variables are
chosen to be −0.5. For simulations 5 and 6 the factor loadings are in the range from
0.6 to 0.9 and the thresholds for all variables are chosen to be −1.25, 0 and 1.25. In
all experimental conditions the variances of the latent variables have been set to 1 for
identification purposes.

Chao’s sampling scheme is implemented on the estimated covariance matrix (cov)
of pairs (6,7, 8 and 9) and on the similarity matrix computed using the RV-coefficient
(RV) (10) as well as the other variants of the RV-coefficient such as the RV-adjusted (RV-
adj) and the Lg coefficient (Lg). The estimated covariance matrix method is the most
computationally demanding and therefore it has only been used in the small example
with 15 variables. All those methods are discussed in Section 4. Furthermore, we also
compare Chao’s sampling scheme with the design-based sampling schemes of Sampford
(S) and Controlled Sampford (C-S) discussed in Section 4.1. The design based schemes
are implemented in combination with Chao’s method and we expect them to have the
best performance.

5.2 Performance criteria

We are interested in studying the properties of the estimators and their corresponding
standard errors obtained under the proposed sampling schemes in terms of bias and mean
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square error. When the number of parameters is large, instead of presenting results for
each parameter estimate we compute the average relative bias (ARB) or percentage
bias and the average root mean square error (ARMSE) across all estimated parameters.
Previous simulations studies (Yang-Wallentin, Jöreskog, and Luo, 2010; Kaplan, 1989)
considered relative bias values less than 5% as trivial bias, values between 5% and 10%
as moderate bias and values greater than 10% as substantial bias. The average bias and
average root mean squared error are given below.

ARB = 100× 1

r

r∑
i=1

1

k

k∑
j=1

(
θ̂ij − θj
θj

)
,

and

ARMSE =
1

r

r∑
i=1

√√√√1

k

k∑
j=1

(
θ̂ij − θj
θj

)2

,

where r here is the number of valid replicates, k is the total number of parameters, θ̂ij
is the estimate of the jth parameter or of its asymptotic standard error at the ith valid
replication, and θj is the corresponding true value. In the case of standard errors, where
the true value θj is unknown, the standard deviation of parameter estimates across valid
replications is used. However, for simulation studies 1, 2, and 6 which have up to 20
variables, we also report bias and mean square error for each estimated parameter in ad-
dition to the ARB and ARMSE. We only report the ARB and ARMSE for the estimated
factor loadings, the estimated factor correlations and their corresponding standard er-
rors because the bias for the estimated thresholds in all simulations is negligible and of
similar magnitude across all methods including the PML applied to all pairs.

We also report the computational time efficiency across methods.

5.3 Results

In simulation studies 1 and 2, we generate data from a one-factor model with 15 observed
binary variables and sample sizes of 200 and 500 respectively. The average relative bias
and average root mean square error for the estimated factor loadings and their estimated
standard errors under all proposed methods are included in Table 1. For the estimated
factor loadings (top panel of Table 1), the ARB shows trivial bias (less than 5%) for
all methods and for both sample sizes. The ARMSE decreases with the increase of the
sample size and it is smaller for the PML, as expected, and of similar magnitude for the
proposed methods at both sample sizes. The results for the estimated standard errors
(bottom panel of Table 1) show trivial bias for most methods under n = 200 and trivial
for all methods under n = 500. The RV and RV-adj were found to perform the same and
both of them perform similar to the Lg method. The Cov method is computationally
intensive and it is not recommended for larger models. Figures 1 and 2 give the bias and
mean square error for each estimated factor loadings and its corresponding estimated
asymptotic standard errors for PML, RV, S, and C-S and for sample sizes 200 and 500
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Table 1: Simulations 1 and 2: Average Relative Bias (ARB) and Average Root MSE
(ARMSE) for estimated factor loadings (top panel) and estimated asymptotic standard
errors (bottom panel) under PML, RV-Chao (RV), RV-Chao adjusted (RV-adj), Lg-Chao
(Lg), Sampford (S), Controlled Sampford (C-S) and Covariance-Chao (Cov). One-factor
model, p = 15, q = 1, n = 200 and n = 500, N∗ = 105, r = 500

Average Relative Bias Average Root MSE
N = 200 N = 500 N = 200 N = 500

Factor loadings
PML -0.51 -0.10 0.08 0.05
RV -1.38 -0.49 0.11 0.07
RV-adj -1.38 -0.49 0.11 0.07
Lg -2.44 -0.91 0.12 0.07
S -0.76 -0.17 0.11 0.07
C-S -0.51 -0.12 0.11 0.07
Cov -1.09 -0.15 0.11 0.07
Standard errors
PML 0.81 0.002 0.14 0.10
RV 6.00 0.06 0.22 0.17
RV-adj 6.00 0.06 0.22 0.17
Lg 2.25 -0.78 0.22 0.18
S 1.31 -2.09 0.26 0.20
C-S 2.99 -3.13 0.25 0.21
Cov 4.71 1.70 0.22 0.18

respectively. In terms of bias the C-S and S methods were found to perform similarly,
close to PML and better than the RV. The MSE of the estimated factor loadings were
comparable among the three proposed sampling methods and PML gave the smallest as
expected. With the increase of the sample size from 200 to 500 both the bias and the
MSE decreased for all estimated factor loadings and their estimated standard errors. The
average number of pairs selected across the 500 replications for the different sampling
methods is given in rows 1 and 2 of Table 2. For simulations 1 and 2, PML uses all the
105 possible pairs where all the other methods select between 27 to 29 pairs.

In simulation study 3, we generate data from a one-factor model with 50 observed
binary variables and sample size of 1,000. Since the RV behaved similarly to the RV-adj
and Lg, and the C-S was among the best performing in Simulations 1 and 2, we only give
the results here for the PML, the RV-Chao and the Controlled Sampford. In Table 3,
the ARB shows trivial bias (less than 5%) for both the estimated factor loadings and the
estimated standard errors for the RV and C-S methods. The ARMSE for the estimated
factor loadings is comparable for all methods (PML, RV and C-S) and the PML gives
the smallest ARMSE for the estimated standard errors. The average number of pairs
selected across the 500 replications for the two different sampling methods is given in
the third row of Table 2. PML uses all the 1,225 possible pairs whilst the other two
methods select 99 pairs each.

In simulation study 4, we generate data from a two-factor confirmatory model with
30 binary observed variables and sample size of 500. Factor 1 loads on 20 variables and

14



Figure 1: Simulation 1: Bias and mean square error for the estimated factor loadings and
their corresponding estimated asymptotic standard errors under PML, RV-Chao (RV),
Sampford (S) and Controlled Sampford (C-S). One-factor model, p = 15, q = 1, n =
200, N∗ = 105, r = 500.
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Table 2: Average sample size of pairs (rounded) selected across the 500 replications
under RV-Chao (RV), RV-Chao adjusted (RV-adj), Lg-Chao (Lg), Sampford (S) and
Controlled Sampford (C-S) for the six simulation scenarios.

PML RV RV-adj Lg S C-S Cov
Simulation 1 105 27 27 27 27 27 29
Simulation 2 105 29 29 29 29 29 29
Simulation 3 1225 99 99
Simulation 4 435 120 120
Simulation 5 190 39 39
Simulation 6 190 39 39
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Figure 2: Simulation 2: Bias and Mean Square Error for the estimated factor loadings
and their corresponding estimated asymptotic standard errors under PML, RV-Chao
(RV), Sampford (S), and Controlled Sampford (C-S)). One-factor model, p = 15, q =
1, n = 500, N∗ = 105, r = 500.

0 5 10 15

−
0.

02
5

−
0.

01
5

−
0.

00
5

0.
00

5

Bias of Estimates

Index of Parameters

bi
as

● ●

●

●

●

●
● ●

●
●

●

●

●

● ●

●

PML
RV
S
C−S

0 5 10 15

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

MSE of Estimates

Index of Parameters

M
S

E

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

PML
RV
S
C−S

0 5 10 15

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Bias of Standard Errors

Index of Parameters

bi
as

 S
ta

nd
ar

d 
E

rr
or

s

●

●

●

● ●

●

●
●

●

●

● ●

●

● ●

●

PML
RV
S
C−S

0 5 10 15

0.
00

00
0

0.
00

01
0

0.
00

02
0

MSE of Standard Errors

Index of Parameters

M
S

E

●
● ●

●
●

●

●
●

●

●

● ●

●

●

●

●

PML
RV
S
C−S

Table 3: Simulation 3: Average Relative Bias (ARB) and Average Root MSE (ARMSE)
for factor loadings and for their standard errors under PML, RV-Chao (RV) and Con-
trolled Sampford (C-S).One-factor model, p = 50, q = 1, n = 1, 000, N∗ = 1, 225, r = 500

Factor Loadings Standard Errors
ARB ARMSE ARB ARMSE

PML 0.06 0.04 -0.28 0.07
RV -0.42 0.05 -1.02 0.15
C-S 0.09 0.05 -2.98 0.23
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Table 4: Simulation 4: Average Relative Bias (ARB) and Average Root MSE (ARMSE)
for factor loadings and for Standard Errors under PML, RV-Chao (RV) and Controlled
Sampford (C-S). Two-factor confirmatory model, p = 30, q = 2, φ = 0.4, n = 500, N∗ =
435, r = 500

Factor Loadings Standard Errors
ARB ARMSE ARB ARMSE

PML -0.08 0.05 -0.95 0.10
RV -0.56 0.09 4.66 0.23
C-S -0.37 0.08 -0.22 0.26

factor 2 on 10 variables. The true correlation between the two factors is set equal to
0.4. The specified model is identified according to the three-indicator rule which is a
sufficient but not necessary condition for identification. The rule requires that each factor
has at least three indicators, one non-zero element per row of Λ, no correlated errors (Θ
diagonal), and no restrictions on the covariance matrix Φ of the latent variables. For
further information on model identifiability see Bollen (1989). Again, here we present
the results for the PML, the RV-Chao and the Controlled Sampford. The ARB and
ARMSE for the estimated loadings and the estimated asymptotic standard errors are
given in Table 4. The C-S outperforms the RV in terms of ARB for both the loadings and
the standard errors, and in terms of ARMSE both proposed methods perform similarly.
Furthermore, the average estimated correlation between the two factors was found to be
0.415, 0.413 and 0.4 for PML, RV and C-S respectively. The average number of pairs
selected across the 500 replications for the two different sampling methods is given in
the fourth row of Table 2. PML uses all the 435 possible pairs whilst the other two
methods select 120 pairs.

In simulation studies 5 and 6, we generate data from a one-factor model with 20
observed ordinal variables with four response categories each and sample sizes of 200
and 500 respectively. We only show results for the PML, RV-Chao and Controlled
Sampford. In Table 5, ARB shows trivial bias (less than 5%) for both the estimated
factor loadings and the estimated standard errors for the PML, RV and C-S methods
for both samples sizes. The ARMSE for the estimated factor loadings is comparable for
all methods (PML, RV and C-S) and again here the PML gives the smallest ARMSE
for the estimated standard errors and even smaller for n = 500. The average number of
pairs selected across the 500 replications for the two different sampling methods is given
in the fifth and sixth row of Table 2. PML uses all the 190 possible pairs whilst the
other two methods select 39 pairs each. Figure 3 gives the bias and mean square error
for each estimated factor loading and its corresponding estimated asymptotic standard
errors for the three different methods and for sample size 500. For most parameters, C-S
sampling shows less bias for the loadings and their estimated standard errors compared
to RV but bigger MSE.

17



Table 5: Simulations 5 and 6: Average Relative Bias (ARB) and Average Root MSE
(ARMSE) for factor loadings (top panel) and for their standard errors (bottom panel)
under PML, RV-Chao (RV) and Controlled Sampford (C-S). One-factor model, ordinal
data, p = 20, q = 1, n = 200 and n = 500, N∗ = 190, r = 500

Average Relative Bias Average Root MSE
N = 200 N = 500 N = 200 N = 500

Factor loadings
PML 0.18 -0.11 0.06 0.03
RV -0.26 -0.33 0.07 0.05
C-S 0.22 -0.11 0.07 0.05
Standard errors
PML -2.26 0.76 0.13 0.09
RV 0.02 -1.65 0.19 0.16
C-S -3.78 -1.12 0.22 0.19

Figure 3: Simulation 6: Bias and Mean Square Error for the estimated factor loadings
and their corresponding estimated asymptotic standard errors under PML, RV-Chao
(RV), and Controlled Sampford (C-S). One-factor model, ordinal variables, p = 20, q =
1, n = 500, N∗ = 190, r = 500.
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Table 6: Exact average time of estimation per replication (averaged across 500 repli-
cations) of proposed sampling methods and relative time compared under PML (in
parentheses), RV-Chao (RV), RV-Chao adjusted (RV-adj), Lg-Chao (Lg), Sampford (S)
and Controlled Sampford (C-S) for the six simulation scenarios.

PML RV RV-adj Lg S C-S Cov
1 24.77 19.33 19.35 21.37 18.57 18.47 527.6

(1.00) (0.78) (0.78) (0.86) (0.75) (0.74) (21.3)
2 17.80 14.97 14.97 16.54 15.09 15.13 338.5

(1.00) (0.84) (0.84) (0.93) (0.85) (0.85) (19.02)
3 718.2 446.8 507.1

(1.00) (0.62) (0.71)
4 108.9 83.65 84.71

(1.00) (0.77) (0.78)
5 60.64 46.74 48.02

(1.00) (0.77) (0.79)
6 38.69 28.44 28.37

(1.00) (0.73) (0.73)

The main purpose for introducing the sampling of pairs in pairwise likelihood esti-
mation for latent variable models is to improve the computational time for large-scale
problems. Table 6 gives the average time in seconds per replication and relative time of
estimation (in brackets) of all the proposed methods compared to PML in the six sim-
ulation studies. The computational time for each method has been averaged across the
500 replications for each experimental condition. The times for each replication include
the estimation of the model parameters and their corresponding estimated asymptotic
standard errors. For the proposed sampling methods, the times also include the time
required to select the pairs. It is worth noting that the actual average computational
time decrease for all simulations and all methods (including the PML) with the increase
of sample size. The Chao method, which, uses the sampling covariance to compute co-
variances among pairs, is very intensive and should be avoided. The RV and the C-S
have very similar performances and reduce overall computational time by approximately
20% to 35%. Table 6 also shows that computational gains of the RV method compared
to PML depend on model complexity and sample size. In particular, in simulations 1
and 2 (one-factor model with 15 binary items) the relative gains of RV over PML de-
creased from 22% to 16% for sample sizes 200 and 500 respectively. On the contrary, in
simulations 5 and 6 (one-factor model with 20 ordinal variables of four response cate-
gories) the corresponding relative gains increased from 23% to 27% with the increase of
the sample size from 200 to 500. The simulations have shown that both the absolute and
relative computational gains of the proposed sampling methods over PML are bigger for
larger and more complex models (e.g. variables with more response categories, multidi-
mensional factor models). Moreover, estimation of more complex models requires larger
sample sizes and convergence can be achieved faster with the increase of the sample
size. In those cases, the computational gains of using sampling methods such as the RV
become even more evident.
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The estimation time varies across the different methods, however, the number of iter-
ations needed does not. For example, in Simulation 2, the average number of iterations
(across the 500 simulations) required to achieve convergence are 188.0, 184.8, 186.8 and
185.0 for PML, RV, S and C-S respectively. For Simulation 4, the numbers are 379.3,
378.4 and 383.1 for PML, RV and C-S respectively. The time per iteration of the op-
timization procedure takes less time under the sampling methods, but the reduction in
time is not proportional to the reduction in the number of bivariate components included
in the likelihood.

6 A simulation study on the performance of the sampled
pairwise on fit statistics and model selection criteria

Katsikatsou and Moustaki (2016) have developed pairwise likelihood ratio test statistics
(PLRT) under the PML estimation for testing the overall fit of a model and for compar-
ing nested models. They have shown that asymptotically the PLRT statistic both for the
overall fit and for testing nested models, is a weighted sum of independent chi-squared
variables. To determine the asymptotic distribution of PLRT the Satterthwaite approx-
imation is used which leads to the mean-and-variance adjusted PLRT. Details can be
found in their paper. They found that the type I error and power of the PLRT statistics
are satisfactory for various experimental conditions and their performances improve with
the sample size.

Furthermore, model selection criteria have been developed under the composite like-
lihood framework. Varin and Vidoni (2005) proposed the Akaike information criterion,
AICPL:

AICPL = −pl
(
θ̂; y

)
+ tr(Ĵ(θ̂)Ĥ−1(θ̂)), (11)

and, Gao and Song (2010), the Bayesian information criterion, BICPL:

BICPL = −2pl
(
θ̂; y

)
+ tr(Ĵ(θ̂)Ĥ−1(θ̂))× log n , (12)

where θ̂ is the PML estimate under the hypothesized model, and tr(Ĵ(θ̂)Ĥ−1(θ̂)) defines
the number of effective parameters. The model with the smallest AICPL or BICPL is
selected.

Since the controlled-sampford method was found to outperform the other sampling
methods, we conducted a small simulation to study the effect of the C-S pairwise likeli-
hood on inference such as the type I error of the likelihood ratio test statistic for overall
fit and on the AICPL and BICPL model selection criteria. The PLRT has been adjusted
to take into account that a subset of all the possible pairs is selected. The simulation
scenario is the same with simulation 2 (15 binary items, 1 factor) and sample sizes 500
and 1000. The number of replications is 500. Table 7 gives the empirical type I error
rates for the PLRT for overall fit of the one-factor model under the PML and the C-S
for two nominal significance levels. The results indicate that the PML gives empirical
type I error rates close to the nominal ones for both sample sizes where the C-S improves
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with the increase of the sample size from 500 to 1000. The confidence intervals are only
given when the nominal significance level is not included.

Table 7: Empirical type I error rates for the overall-fit test statistic under PML and
Controlled Sampford (C-S) for nominal significance levels 5% and 1%; in parenthesis
95% confidence intervals are provided only when the nominal value of type I error is not
included. One-factor model, p = 15, q = 1, n = 500 and n = 1000, N∗ = 105, r = 500.
Nominal level n = 500 n = 1000

PML C-S PML C-S
5% 0.064 0.082 0.042 0.054

(0.058,0.110)
1% 0.020 0.036 0.010 0.016

(0.0197,0.052)

For studying the performance of the AICPL and BICPL, we assumed the same two
candidate models as in Katsikatsou and Moustaki (2016). More specifically, the data
generator model (Model 1) is a confirmatory two-factor model with 20 items with four
response categories, where the first 10 items have non-zero loadings in the first factor and
items from 11 to 20 have non-zero loadings in factor 2. The two models are nested due to
parameter constraints (some factor loadings are set equal to zero) The loadings are 0.3,
0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.8, 0.9 for both factors and the correlation between the
factors is 0.4. Model 2, is also a confirmatory two-factor model with the only difference
that items 11, 12, and 13 load also to the first factor. Again we investigate two sample
sizes of 500 and 1000. The number of replications is set to 500 for both experiments.

Table 8: Rates of AICPL and BICPL, confirmatory factor model, p = 20, q = 2, n = 500
and n = 1000, r = 500.

n = 500 n = 1000
PML C-S PML C-S

AICPL 92.75% 78.88% 86.85% 79.34%
BICPL 100% 89.85% 100% 91.07%

As already reported in Katsikatsou and Moustaki (2016), for both sample sizes,
BICPL selects the right model with 100% success and performs better than AICPL. The
C-S method also shows higher rates for the BICPL but lower than the ones produced
under the PML.

Further investigations are needed to explore in detail the effect of the sampling
methods to inference under different experimental conditions that will vary the number
of items, the sample size and the number of response categories. The small simulation we
conducted here shows that the asymptotic results for the PLRT hold with the increase
of the sample size and the BICPL has a a 92% success rate in selecting the true model
when the sample size is 1000.
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7 Comparison of PML and Controlled Sampford using em-
pirical data

We use the same data that were analyzed in Katsikatsou et al. (2012) using PML.
Originally the data were collected by Selnes and Sallis (2003) who aimed to study whether
specific factors affect the learning capabilities of targeted customer-supplier relationships.
The 18 variables analyzed here serve as indicators of four factors. The four factors, as
named in their paper, are: collaborative commitment (ξ1), internal complexity (ξ2),
relational trust (ξ3), and environmental uncertainty (ξ4). The observed variables used
to measure each factor are given in the Appendix. All indicators were measured on a
seven-point scale; with 1 referring to “strongly disagree” or “low” and 7 to “strongly
agree” or “high” depending on the form of the question. The sample size is 286 after
listwise deletion. This is a confirmatory factor analysis model with no cross-loadings
(i.e. that each item is loaded on just one of the four factors). The correlation matrix
of the four latent variables is unrestricted. It should be noted that pairwise likelihood
does not guarantee a positive definite matrix and that this should be checked or a
positive definite constraint should be added to the numerical optimization. Along with
the thresholds, which are six for each variable, there are a total of 132 free parameters
to be estimated (6 × 18=108 thresholds, 18 factor loadings and 6 factor correlations).
Since the Controlled Sampford was found to be the best method and similar to RV
in the simulations we only compare it with the PML, which takes into account all the
135 possible pairs. The sample of pairs selected based on the Chao method is 57. The
‘internal complexity’ factor has only three indicators. For that factor only, we used two
pairs out of three because it has a small number of indicators and it is also the factor
with the smallest correlation with the other three factors. The estimated factor loadings
and factor correlations together with their estimated asymptotic standard errors for the
PML and C-S are given in Table 9. Overall, the PML and C-S give similar results for the
loadings and the correlations except for the estimated correlation between the factors
‘collaborative commitment’ and ‘internal complexity’, which has been overestimated by
the C-S method. The estimated standard errors are higher for the C-S method. The
computing time using the C-S method is reduced by 32% compared to the corresponding
time using PML.

8 Conclusions

In this paper, we propose a weighted pairwise likelihood estimation for estimating the
parameters of latent variable models for categorical observed variables in which weights
are computed using a sampling scheme. We studied both exploratory factor analysis
models with 15, 20 and 50 binary and ordinal observed variables and the confirmatory
factor analysis model with two factors and 30 observed binary variables. The weights
are either 1 or 0 and are decided by employing sampling of pairs of variables from
the population of all possible pairs. We propose three sampling methods, of which
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Table 9: Estimated factor loadings, correlations and standard errors (in brackets) under
PML and C-S method, Relationship learning data.

Loadings λ̂ij PML C-S
cc1 0.878 (0.025) 0.964 (0.058)
cc2 0.900 (0.018) 0.942 (0.025)
cc3 0.894 (0.018) 0.888 (0.021)
cc4 0.909 (0.016) 0.962 (0.016)
cc5 0.881 (0.021) 0.867 (0.025)
ic1 0.597 (0.108) 0.619 (0.176)
ic2 0.817 (0.082) 0.711 (0.175)
ic3 0.771 (0.084) 0.969 (0.226)
rt1 0.840 (0.025) 0.846 (0.031)
rt2 0.848 (0.027) 0.854 (0.034)
rt3 0.875 (0.025) 0.852 (0.037)
rt4 0.912 (0.017) 0.890 (0.035)
rt5 0.864 (0.022) 0.864 (0.050)
eu1 0.779 (0.035) 0.719 (0.050)
eu2 0.841 (0.030) 0.855 (0.030)
eu3 0.769 (0.042) 0.807 (0.043)
eu4 0.728 (0.045) 0.679 (0.054)
eu5 0.732 (0.044) 0.610 (0.057)

Correlation φcc,ic 0.229 (0.093) 0.456 (0.158)
φcc,rt 0.652 (0.049) 0.648 (0.053)
φcc,eu 0.681 (0.052) 0.667 (0.053)
φic,rt 0.117 (0.085) 0.118 (0.088)
φic,eu 0.227 (0.092) 0.233 (0.083)
φrt,eu 0.655 (0.053) 0.709 (0.048)

one is model-based sampling and two are design-based sampling schemes but they also
incorporate the information from the model-based sampling procedure. Various methods
have been investigated for computing the covariance matrix of the pairs required in the
model-based sampling scheme. The simulation studies have shown that the model-
based sampling, and in particular Chao’s method with RV and the Controlled Sampford
method combined with the RV method, behave very similar, to the standard PML, which
utilizes all pairwise likelihoods. More specifically, in all simulations for the estimated
factor loadings, the Controlled Sampford is found to have the smallest bias and the MSE
is very similar for both methods. For the estimated standard errors, the two methods
gave acceptable bias but neither of the two methods behaved consistently better than
the other. Again the MSE was of similar magnitude in all simulations for both methods.
The simulations have shown that applying the PML on the selected subset of pairs gives
estimated parameters and standard errors with trivial bias. However, the MSE’s under
the sampling methods compared to the ones obtained under PML with all pairs, are
larger since the proposed methods are using a subset of the whole population of pairs
and efficiency will be reduced. The simulation studies have shown that the proposed
sampling schemes improve computational time by at least 20%. The simulation studies
on the performance of the PLRT for overall fit and on the AICPL and BICPL show that
the asymptotic results hold with the increase of the sample size and that the BICPL
has a large rate of selecting the true model.

To the best of our knowledge, the paper is the first attempt to introduce sampling
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methods in composite likelihood estimation. The proposed methods are easy to im-
plement and have been found to work very similarly to the standard PML. Further
simulations are needed for more complex SEM (e.g. multigroup models, longitudinal
models). Ways to also improve the efficiency of the estimates need to be investigated
within the sampling framework.
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Appendix: The indicators for the Relationship Learning
data

Collaborative Commitment

cc1 To what degree do you discuss company goals with the other party in this relationship?

cc2 To what degree are these goals developed through joint analysis of potentials?

cc3 To what degree are these goals formalized in a joint agreement or contract?

cc4 To what degree are these goals implemented in day-to-day work?

cc5 To what degree have you developed measures that capture performance related to these
goals?

Internal Complexity

ic1 The products we exchange are generally very complex.

ic2 There are many operating units involved from both organizations.

ic3 There are many contract points between different departments or professions between the
two organizations.

Relational Trust

rt1 I believe the other organization will respond with understanding in the event of problems.

rt2 I trust that the other organization is able to fulfill contractual agreements.

rt3 We trust that the other organization is competent at what they are doing.

rt4 There is a general agreement in my organization that the other organization is trustworthy.

rt5 There is a general agreement in my organization that the contact people on the other
organization are trustworthy.

Environmental Uncertainty

eu1 End-users needs and preferences change rapidly in our industry.

eu2 The competitors in our industry frequently make aggressive moves to capture market share.

eu3 Crises have caused some of our competitors to shut down or radically change the way they
operate.

eu4 It is very difficult to forecast where the technology will be in the next 2-3 years in our
industry.

eu5 In recent years, a large number of new product ideas have been made possible through
technological breakthroughs in our industry.
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Yang-Wallentin, F., K. G. Jöreskog, and H. Luo (2010). Confirmatory factor analysis
of ordinal variables with misspecified models. Structural Equation Modeling 17,
392–423.

Zhao, Y. and H. Joe (2005). Composite likelihood estimation in multivariate data anal-
ysis. The Canadian Journal of Statistics 33, 335–356.

28


	Moustaki_Sampling of Pairs_Cover
	Moustaki_Sampling of Pairs_Author

