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Identifying Cointegration by Eigenanalysis∗

Rongmao Zhang Peter Robinson Qiwei Yao

Abstract

We propose a new and easy-to-use method for identifying cointegrated components of

nonstationary time series, consisting of an eigenanalysis for a certain non-negative definite

matrix. Our setting is model-free, and we allow the integer-valued integration orders of the

observable series to be unknown, and to possibly differ. Consistency of estimates of the

cointegration space and cointegration rank is established both when the dimension of the

observable time series is fixed as sample size increases, and when it diverges slowly. The

proposed methodology is also extended and justified in a fractional setting. A Monte Carlo

study of finite-sample performance, and a small empirical illustration, are reported.
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series.
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1 Introduction

Cointegration entails a dimensionality reduction of certain observable multiple time series that are

dominated by common components. In particular a multiple time series can be said to be (linearly)

cointegrated if there exists an instantaneous linear combination, or cointegrating error, with lower

integration order. Much of the vast literature, following Box and Tiao (1977), Granger (1981),

Engle and Granger (1987), has focused on unit root series which have one or more short memory

cointegrating errors, but there have been extensions to nonstationary series with other integer

orders of integration, allowing also for the possibility of some nonstationary cointegrating errors,

as well as to fractional nonstationary, and even stationary, observable series and cointegrating

errors, with unknown integration orders. Much of the early literature, in particular, assumed a

complete parameterization of second order properties, where in particular the observable series

are generated from short memory inputs that have finite autoregressive moving average (ARMA)

structure, but it has also been common to study semiparametric settings, with underlying short

memory inputs having nonparametric autocorrelation, see e.g. Stock (1987), Phillips (1991), in

some cases without sacrificing precision relative to a correctly specified parametric structure.

Given knowledge of the cointegration rank, r, of a p-dimensional observable series, that is

the number of cointegrating relations, various methods are available for estimating the unknown

parameters of the model, such as the coefficients of the cointegrating errors, and even of unknown

integration orders, and for carrying out asymptotically valid, and sometimes even efficient, sta-

tistical inference. However, r might not be known to the practitioner, and various approaches for

estimating r from the data have been developed, starting from Engle and Granger (1987), Jo-

hansen (1991), in their parametric, unit root vector autoregressive (VAR) setting, and continuing

with, for example, Aznar and Salvador (2002) and Saikkonen and Lütkepohl (2000). If, however,

the order of the VAR is underspecified, or all observable series do not have a single unit root, then

typically the resulting specification error will invalidate such approaches, not to mention rules

of statistical inference on unknown coefficients in the model. It is possible that one or more of

the nonstationary observable processes could have two or more unit roots, or indeed could have

fractional orders of integration, as supported by some empirical investigations. References that

allow for nonparametric autocorrelation and/or unknown integration orders include Phillips and

Ouliaris (1988, 1990), Bierens (1997), Stock (1999), Shintani (2001), Harris and Poskitt (2004),

Li, Pan and Yao (2009) in the case of integer integration orders, and Robinson and Yajima (2002),

Chen and Hurvich (2006), Robinson (2008) in case of fractional integration orders, including in the

latter setting cases where observables are stationary and the cointegrating errors are stationary

with less memory.
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Like Phillips and Ouliaris (1988), Robinson and Yajima (2002), Harris and Poskitt (2004),

Li, Pan and Yao (2009), we employ methods based on eigenanalysis. In our case, in the setting

of nonparametric autocorrelation and unknown (and possibly different) integration orders, we

employ eigenvalues of a certain non-negative definite matrix function of sample autocovariance

matrices of the observable series, for estimating cointegration rank, with the cointegration space

then estimated by selection of eigenvectors, and cointegrating errors thereby proxied. Though the

initial development assumes that observable series have integer orders and cointegrating errors

have short memory, we extend these results to allow for observables to be fractionally nonsta-

tionary, and cointegrating errors to be fractionally stationary. In both circumstances we establish

consistency of our estimates of cointegration rank and space with p fixed as the length n of our

time series diverges. In case of integer integration orders, we also establish consistency allowing

p to diverge slowly with n.

The rest of the paper is organized as follows. The proposed methodology is presented in Section

2. Asymptotic theory with integer orders of integration is developed in Section 3. In Section 4,

both the proposed method and part of the asymptotic theory are extended to the fractional case.

Simulations and a small real data example are reported in Section 5. All statements and proofs

are relegated to an Appendix, which also contains a number of technical lemmas.

2 Methods

2.1 Setting

We call a vector process ut weakly stationary if (i) Eut is a constant vector independent of t,

and (ii) E‖ut‖2 < ∞, and Cov(ut,ut+s) depends on s only for any integers t, s, where ‖ · ‖
denotes the Euclidean norm. Denote by ∇ the difference operator, i.e. ∇ut = ut − ut−1, and

∇dut = ∇(∇d−1ut) for any integer d ≥ 1. We use the convention ∇0ut = ut. Further, if ut has

spectral density matrix that is finite and positive definite at zero frequency we say ut is an I (0)

process. An example of an I (0) process is a stationary an invertible vector ARMA, and many I (0)

processes satisfy Condition 1 of Section 3.1 below, imposed for our asymptotic theory, including

the examples described immediately after Condition 1. Now denote by uit the ith element of ut

and define u+it = uit1 (t ≥ 1) , where 1 (·) is the indicator function. For an m-dimensional I (0)

process ut and non-negative integers d1, ..., dm, we say that vt =
(
∇−d1u+1t, ...,∇−dmu+mt

)′
is an

(m-dimensional) I (d1, ..., dm) process, with some abuse of notation when m = 1, d1 = 0. Note

that for d1 = ... = dm = 0, vt is not I (0) or even weakly stationary or equivalent to ut due to the

truncation (implying vt = 0, t ≤ 0) that is imposed in order to achieve bounded variance in case

of positive di, but it is ‘asymptotically’ weakly stationary and I (0) . When d1 = ... = dm = 1, all
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elements of vt have a single unit root, but we are concerned with processes for which di can vary

over i.

Now assume a p × 1 observable time series yt is I (d1, ..., dp) for non-negative integers, and

admits the form

yt = Axt, (2.1)

where A is an unknown and invertible constant matrix, xt = (x′
t1,x

′
t2)

′ is a latent p× 1 process,

xt2 is an r × 1 I(0) process, and xt1 is an I (c1, ..., cp−r) process, where each ci is an element of

the set {d1, ..., dp} . Furthermore no linear combination of xt1 is I(0), as such a stationary variable

can be absorbed into xt2. Each component of xt2 is a cointegrating error of yt and r ≥ 0 is

the cointegration rank. In the event that there exists no cointegration among the components

of yt, r = 0. When yt itself is I(0, · · · , 0), r = p. But these are two extreme cases. Note that

cointegration requires equality of at least two di. For many economic and financial applications,

there exist a small number of cointegrated variables, i.e. r ≥ 1 is a small integer.

The pair (A,xt) in (2.1) is not uniquely defined, as it can be replaced by (AH−1,Hxt) for

any invertible H of the form


 H11 H12

0 H22




where H11,H22 are square matrices of size (p − r), r respectively, and 0 denotes a matrix with

all entries equal to 0. Therefore there is no loss of generality in assuming A to be orthogonal,

because any non-orthogonal A admits the decomposition A = QU, where Q is orthogonal and

U is upper-triangular, and we may then replace (A,xt) in (2.1) by (Q,Uxt). In the sequel, we

always assume that A in (2.1) is orthogonal, i.e., A′A = Ip, where Ip denotes the p × p identity

matrix. Write

A = (A1,A2),

where A1 and A2 are respectively, p× (p− r) and p× r matrices. As now xt2 = A′
2yt, the linear

space spanned by the columns of A2, denoted by M(A2), is called the cointegration space. In

fact this cointegration space is uniquely defined by (2.1), though A2 itself is not.

To highlight the key idea of the new approach, we only consider in this section and also

Section 3 below the cointegration with xt2 ∼ I(0). The extension of our method to the cases

when xt2 ∼ I(d) with 0 < d < min1≤j≤p dj are presented in Section 4 which also allows dj ’s and

d to be fractional numbers.
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2.2 Estimation

The goal is to determine the cointegration rank r in (2.1) and to identify A2, or more precisely

M(A2). Then M(A1) is the orthogonal complement of M(A2), and xit = A′
iyt for i = 1, 2. Our

estimation method is motivated by the following observation. For j ≥ 0, let

Σ̂j =
1

n

n−j∑

t=1

(yt+j − ȳ)(yt − ȳ)′, ȳ =
1

n

n∑

t=1

yt.

For any a ∈ M(A2), a
′Σ̂ja is the sample autocovariance function at lag j for the weakly stationary

univariate time series a′yt, and it converges to a finite constant (i.e. the autocovariance function

of a′yt at lag j) almost surely under some mild conditions. However for any a /∈ M(A2), a
′yt is

I(d) for some d ≥ 1, and

a′Σ̂ja = Oe(n
2d−1) or Oe(n

2d), (2.2)

depending on whether E(a′yt) = 0 or not, see Theorems 1 & 2 of Peña and Poncela (2006). In

the above expression, U = Oe(V ) indicates that P (0 < |U/V | < ∞) → 1. Hence intuitively the r

directions in the cointegration space M(A2) make |a′Σ̂ja| as small as possible for all j ≥ 0.

To combine information over different lags, define

Ŵ =

j0∑

j=0

Σ̂jΣ̂
′

j , (2.3)

where j0 ≥ 1 is a prespecified and fixed integer with respect to n throughout. We use the product

Σ̂jΣ̂
′

j instead of Σ̂j to ensure each term in the sum is non-negative definite, and that there is

no information cancellation over different lags. Note that a′Σ̂ja = Oe(1) if a ∈ M(A2), and is

at least of the order of n2d−1 if a ∈ M(A1), where d is the minimum integration order of the

components xt1. It can be shown that the (p−r) largest eigenvalues of Ŵ are at least of the order

n2d−1, while the other r eigenvalues are Oe(1) (see (7.14), (7.15) below). Hence intuitively M(A2)

can be estimated by the linear space spanned by the r eigenvectors of Ŵ corresponding to the r

smallest eigenvalues, and M(A1) can be estimated by that spanned by the (p − r) eigenvectors

of Ŵ corresponding to the (p − r) largest eigenvalues.

Let (γ̂1, · · · , γ̂p) be the orthonormal eigenvectors of Ŵ corresponding to the eigenvalues ar-

ranged in descending order. Define

Â = (Â1, Â2), x̂t1 = Â′
1yt and x̂t2 = Â′

2yt. (2.4)

Then M(Â1) and M(Â2), the linear spaces spanned by the eigenvectors of Ŵ, are consistent

estimators for M(A1) and M(A2) respectively; see Theorem 1 below.

5



The idea of using an eigenanalysis based on a quadratic form of sample autocovariance matrices

has been used for factor modelling for dimension reduction (Lam and Yao 2012, and references

within), and for segmenting a high-dimensional time series into several both contemporaneously

and serially uncorrelated subseries (Chang et al. 2017). One distinctive advantage of using the

quadratic form Σ̂jΣ̂
′

j instead of Σ̂j in (2.3) is that there is no information cancellation over

different lags. Therefore this approach is insensitive to the choice of j0 in (2.3). Often small

values such as j0 = 5 are sufficient to catch the relevant characteristics, as serial dependence is

usually most predominant at small lags. Using different values of j0 hardly changes the results;

see Table 5 in Section 5 below, and also Lam and Yao (2012) and Chang et al. (2017).

2.3 Determining cointegration ranks

The components of x̂t = Â′yt ≡ (x̂1t , · · · , x̂pt )′, defined in (2.4), are arranged according to de-

scending order of the eigenvalues of Ŵ. Therefore, the order of the components reflects inversely

the closeness to stationarity of the component series, with {x̂pt } most likely being stationary, and

{x̂1t } most likely being I(d) with largest possible integer d ≥ 1. Let Si(m) =
∑m

k=1 ρ̂i(k), where

ρ̂i(·) is the sample autocorrelation function (ACF) of x̂it defined as

ρ̂i(k) =
( 1

n− k

n−k∑

t=1

(x̂it+k − x̂
i
)(x̂it − x̂

i
)
)/( 1

n

n∑

t=1

(x̂it − x̂
i
)2
)
, i = 1, 2, · · · , p,

where x̂
i
=
∑n

t=1 x̂
i
t/n.When x̂it is stationary and suitable additional conditions hold, limm→∞ Si(m) <

∞ in probility, however, when x̂it is non-stationary, ρ̂i(k) → 1 in probability for any fixed k. Hence

limm→∞ Si(m) = ∞. Therefore, we can estimate the cointegration rank r by

r̂ =

p∑

i=1

I{Si(m)/m < c0} (2.5)

for some constant 0 < c0 < 1 and large m. For a classical stationary ARMA time series, the

autocorrelation ρi(k) decays exponentially, i.e., there exists a ρ ∈ (0, 1) such that ρi(k) = O(ρk).

Hence it is usually sufficient to use a moderate m in (2.5). In our numerical experiments reported

in Section 5, we always set c0 = 0.3 and m = 20, and the estimator r̂ performs very well and is

robust across the different settings.

Remark 1. For unit-root processes, r̂ defined in (2.5) typically takes the value 0 with probability

approaching 1. To appreciate this, let yt = yt−1 + εt be a unit root process and ρ̂(k) be its sample

ACF ρ̂(k) = γ̂(k)/γ̂(0), where

γ̂(i) =
1

n

n−i∑

t=1

(Yt − Y )(Yt+i − Y ), Y =
n∑

i=1

Yi/n.
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Under some regularity conditions on εt, similar to those in Theorem 1 of Bierens (1993), it can

be shown that

n

m+ 1

(∑m
k=1 ρ̂(k)

m
− 1
)

d−→ −(W (1)−
∫ 1
0 W (t) dt)2 + (

∫ 1
0 W (t) dt)2 + dm

4[
∫ 1
0 W 2(t) dt− (

∫ 1
0 W (t) dt)2]

, (2.6)

where

dm =
1

σ2

(
c(0) + 2

m−1∑

i=1

(m− i)(m− i+ 1)

m(m+ 1)
c(i)
)
, c(i) = cov(ε0, εi), σ2 = lim

n→∞

1

n
E
( n∑

s=1

εs

)2
.

Thus
∑m

t=1 ρ̂(k)/m
p−→ 1, provided that n/m is large enough.

We may also estimate r by unit-root tests. For a given integer r0 ≤ 1, testing a hypothesis on

cointegration order H0 : r < r0 can be transformed to testing a unit-root hypothesis

H0 : x̂
p−r0+1
t ∼ I(d) for some integer d ≥ 1. (2.7)

We can apply the test method of Phillips and Ouliaris (1988) to test (2.7) as d may be greater

than 1. When the null hypothesis H0 is rejected, we conclude r is at least as large as r0.

2.4 Estimation for high integration orders

Let r1, · · · , rq be q positive integers, and r1+ · · ·+ rq = p− r. Let 1 ≤ a1 < · · · < aq be q integers

such that xt1 = (xt1q , · · · ,xt11) = (A′
1qyt, · · · ,A′

11yt), where xt1j is an rj × 1 I(aj) process. Let

Â1 = (Â1q, · · · , Â11), (2.8)

where Â1j has rj columns. Then x̂t1j = Â′
1jyt is the estimated component of xt1 of integration

order aj.

Similar to Section 2.3 above, a unit-root test can be adapted to estimate the sizes r1, · · · , rq
and the integration orders a1, · · · , aq. We illustrate the idea below by outlining the steps in

estimating (a1, r1), they can be repeated in order to estimate (a2, r2), (a3, r3), · · · .
For r̂ defined in (2.5), let â1 be the minimum integer d ≥ 1 such that a unit-root test rejects

H0 : ∇dx̂p−r̂
t ∼ I(1) against H1 : ∇dx̂p−r̂

t ∼ I(0). Then the size r1 can be estimated by applying

estimator (2.5) to the (p− r̂)× 1 series {∇â1 x̂jt , j = 1, · · · , p− r̂}.

3 Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed statistics. First, we show

that with r given, the linear space M(Â2) consistently estimate the cointegration space M(A2).

We measure the distance between the two spaces by

D(M(Â2),M(A2)) =

√
1− 1

r
tr(Â2Â

′
2A2A

′
2). (3.1)
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Then D(M(Â2),M(A2)) ∈ [0, 1], being 0 if and only if M(Â2) = M(A2), and 1 if and only if

M(Â2) and M(A2) are orthogonal. Furthermore, we show that the estimator r̂, defined in (2.5),

is consistent. We consider two asymptotic regimes: (i) p is fixed while n → ∞, and (ii) p → ∞
more slowly than n.

Put xt1 = (x1t , · · · , xp−r
t )′. Under (2.1), xjt is I(dj) for 1 ≤ j ≤ p − r and zjt ≡ ∇djxjt is I(0),

where dj ≥ 1 is an integer. Write zt = (z1t , · · · , zp−r
t )′ and εt = (z′t,x

′
t2)

′. Denote the vector of

partial sums of components of εt by

Sn(t) ≡ (S1
n(t1), · · · , Sp

n(tp))
′ =

( 1√
n

[nt1]∑

l=1

(ε1l − Eε11), · · · ,
1√
n

[ntp]∑

l=1

(εpl − Eεp1)
)′
,

where 0 < t1 < · · · < tp ≤ 1 are constants and t = (t1, · · · , tp)′.

3.1 When n → ∞ and p is fixed

We introduce a regularity condition first.

Condition 1.

(i) There exists a Gaussian process W(t) = (W 1(t1), · · · ,W p(tp))
′ such that as n → ∞,

Sn(t)
J1=⇒ W(t), on Dp(0, 1),

where
J1=⇒ denotes weak convergence under Skorohod J1 topology (Chapter 3 in Billingsley

1999), and W(1) has a positive definite covariance matrix Ω = (σij).

(ii) The sample autocovariance matrix of xt2 satisfies

max
0≤j≤j0

∥∥ 1
n

n−j∑

t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(x1+j,2,x1,2)

∥∥
2

p−→ 0,

where ‖H‖2 = max‖a‖=1 ‖Ha‖ is the L2-norm of matrix H, x̄2 is the sample mean of xt2,

and
p−→ denotes convergence in probability.

Note that our definition of cointegration is formally different from that of Johansen (1995)

which is based on ARIMA framework. There are some subtle technical differences between the re-

spective conditions. For example, Condition 1(i) above implies det(Var(εt)) 6= 0 while Johansen’s

setting allows the ARIMA process driven by a degenerate innovation process.

In fact, Condition 1 is mild. It is fulfilled when {εt} is weakly stationary with det(Var(εt)) 6= 0,

E‖εt‖2γ < C for some constants γ > 1 and C < ∞, and {εt} is also α-mixing with mixing

coefficients αm satisfying the condition
∑∞

m=1 α
1−1/γ
m < ∞; see Theorem 3.2.3 of Lin and Lu

(1997). It is also fulfilled when εt =
∑∞

j=0Cjηt−j , where ηt are i.i.d. with non-singular covariance

8



matrix and E‖ηt‖4γ < ∞ for some constant γ > 1, and det(
∑∞

j=0Cj) 6= 0,
∑∞

j=1 ||Cj|| < ∞. See

Fakhre-Zakeria and Lee (2000). Note that our setting accommodates the cases when yt contains

linear deterministic components, as we allow E(εt) 6= 0.

Theorem 1. Let r be known. Under Condition 1, D(M(Â2),M(A2)) = op(1). Furthermore,

(i) D(M(Â2),M(A2)) = Oe(n
−2a1+1) provided either (a) |I0| ≥ 2 or (b) |I0| = 1 and EzI0t = 0,

(ii) D(M(Â2),M(A2)) = Oe(n
−2a1) provided |I0| = 1 and EzI0t 6= 0, and

(iii) D(M(Â1j),M(A1j)) = Oe(n
−2αj ) for j = 1, · · · , q provided Ezt = 0,

where I0 = {i : xit ∼ I(a1), 1 ≤ i ≤ p − r}, |I0| denotes the number of elements in I0, αj =

min{aj − aj−1, aj+1 − aj}, a0 = 1/2 and aj , j = 1, · · · , q are defined in Section 2.4.

Remark 2. When Ezt 6= 0, we can express the components xit of xt1 as

(1−B)dixit = (zit − Ezit) + Ezit =: εit + µi.

Hence

xit = (1−B)−diεit + µi

di−1∏

l=0

(t+ l)/(di!) =: ξit + µi

di−1∏

l=0

(t+ l)/(di!).

This entails yt = Axt = A(ξ′t,x
′
t2)

′ + B(1, t, t2, · · · , taq )′, where B is a p × aq matrix. We can

estimate B by the least squares method based on {yt}, and identify the cointegration subspaces

spanned by A1j using the detrending series ỹt = yt − B̂(1, t, t2, · · · , taq )′. It can then be shown

that Theorem 1 (iii) still holds.

Theorem 2. Under Condition 1, limm→∞ P ( r̂ = r ) = 1.

3.2 When n → ∞, p → ∞ and p = O(nc)

We extend the asymptotic results in the previous section to the cases when p → ∞ and p = O(nc)

for some c ∈ (0, 1/2). Technically we employ a normal approximation method to establish the

results. See Condition 2(i) below.

Condition 2.

(i) Suppose that there exists an m-dimensional vector et with mean zero and independent

components such that zt = Bet, where B is a (p− r)×m matrix, m ≥ p− r and ‖B‖2 < ∞.

For each component eit of et, there exists an independent and standard normal sequence

{νit} for which as n → ∞,

max
1≤i≤m

max
0≤t≤1

E
[ [nt]∑

s=1

(eis − σiiν
i
s)
]2

= O(n2τ ), (3.2)
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where 0 < τ < 1/2 is a constant, b1 ≤ σ2
ii ≡ limn→∞Var

(∑n
s=1 e

i
s

)
/n ≤ b2 for any i, and

b1, b2 are two positive constants.

(ii) The sample autocovariance matrix of xt2 satisfies

max
0≤j≤j0

∥∥∥ 1
n

n−j∑

t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(x1+j,2,x1,2)

∥∥∥
2

p−→ 0.

(iii) Suppose {zt} and {xt2} are independent and for τ given above

max
p−r<j≤p

n∑

s,t=1

|E(εjsεjt )| = O(n1+2τ ).

Remark 3. The inequalities immediately below (3.2) holds when all components series of zt

are I(0) with spectral density continuous at zero frequency. This is guaranteed by the fact that

their variance is proportional to the Cesaro sum of the Fourier series of the spectral density at

zero frequency, and thus converges to the latter (which is positive and finite under I(0)) after

normalization.

Remark 4. The form zt = Bet in Condition 2 (i), has been used by Bai and Saranadasa (1996)

and Chen and Qin (2010). Many classic vector time series including stationary VAR, VARMA

and more generally the linear process

zt =
∞∑

j=0

Bjet−j

with
∑∞

j=0 ‖Bj‖2 < ∞ follow this from. We require m ≥ p − r, which ensures that no linear

combination of zt is I(0). The assumption on the independence between {zt} and {xt2} in Condi-

tion 2(iii) ensures that cross correlation of {zt} and {xt2} is negligible in deriving the properties

of the eigenvalues of Ŵ, which can be replaced by the condition that E(n−(di+1/2)
∑n

t=1 x
i
tx

h
t )

2 =

o(1/(pr)).

Remark 5. Let p = o(n1/2). Condition 2 is implied by any of the three assertions below.

(i) The components of εt are independent of each other, and each component series {εit} is a

martingale difference sequence with max1≤i≤pE|εit|q < ∞ for some q > 2. Furthermore, for

some 2 < q∗ ≤ min{4, q},

max
1≤i≤p

E

∣∣∣∣∣
n∑

t=1

[(εit)
2 − σ2

ii]

∣∣∣∣∣ = O(n2/q∗).

(ii) The components of εt are independent, Eεt = 0, and max
1≤i≤p

E|εit|κ < ∞ for some κ > q ∈
(2, 4]. The process {εt} is α-mixing with mixing coefficients αm satisfying

∞∑

m=1

α(κ−q)/(κq)
m < ∞. (3.3)
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(iii) The components of εt are independent. Each component εit satisfies the following conditions.

(a) There exists an i.i.d random sequence {ηit} such that

εit =

∞∑

j=0

cijη
i
t−j .

(b) Eεit = 0, E|εit|q < ∞ for some q > 2 and
∑∞

j=0 j|cij | < ∞.

Theorem 3. Let r be known and Condition 2 hold. If p = o(n1/2−τ ) and τ given in Condition 2,

D(M(Â2),M(A2)) = Op(p
1/2n−2a1+1(λ∗)−1),

where λ∗ is the smallest eigenvalue of
∫ 1
0 F(t)F′(t) dt defined in Lemma 9 in Section 7 below.

Remark 6. Theorem 3 is derived under the condition p = o(n1/2−τ ), while there are no direct

constraints on either r or p− r. However when p− r is fixed,
∫ 1
0 F(t)F′(t) dt is a (p− r)× (p− r)

positive definite matrix, and, hence, λ∗ is positive and Oe(1). When the integration orders of all

the nonstationary components are the same and equal to dmin, then (λ∗)−1 = Op((p− r)2dmin−1).

Theorem 4. Let Condition 2 hold and p = o(n1/2−τ ). Then

lim
n→∞

P ( r̂ = r ) = 1,

provided (λ∗)−1p1/2n−a1+1/2 = o(1).

4 Fractional cointegration

Fractional cointegration has attracted increasing attention in recent years, see, e.g., Robinson and

Hualde (2003), Chen and Hurvich (2006) and Robinson (2008). In this section, we generalize the

method presented in Section 2 to cases when the components of yt may be fractionally integrated.

For simplicity, we now assume p is fixed.

Let v+t = vt1(t > 0) and for any α ∈ R,

∆−α =

∞∑

j=0

aj(α)B
j , aj(α) =

Γ(j + α)

Γ(α)Γ(j + 1)

be formally defined as in Hualde and Robinson (2010), where B is the backshift operator. With

these definitions we can extend the definition of the I (d1, ..., dm) process vt in Section 2 to non-

negative real-valued di, such that di 6= k − 1/2 for any integer k. Note that for di < 1/2 the ith

element of vt is ‘asymptotically stationary’ (due again to the truncation in the definition of vt),

while di > 1/2 represents the ‘nonstationary’ region.
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With this extended definition to cover fractional time series we again consider a p×1 observable

I (d1, · · · , dp) time series yt satisfying (2.1), partitioning xt as before. However we also extend the

definition of cointegration, saying that yt is cointegrated if at least two di are equal and exceed

1/2 and there exists a linear combination giving nonzero weight to two or more of these that is

I (c) for 0 ≤ c < di. Thus, let a1 > 1/2 be the smallest integration order of elements of xt1

and let δ ∈ [0, a1) be the integration order of elements of xt2. Thus, each component of xt2 is a

cointegrating error of yt. Let A = (A1,A2) and M(A2) be defined as in Section 2. Then M(A2)

is called the fractional cointegration space and r is called the fractional cointegration rank. We

estimate M(A2) and r in the same manner as in Section 2.

Furthermore, let r1, · · · , rq be q positive integers with r1 + · · · + rq = p − r, and 1/2 < a1 <

· · · < aq. Suppose that xt1 consists of rj I(aj) components. Let

Â1 = (Â1q, · · · , Â11), (4.4)

where Â1j has rj columns. Then x̂t1j = Â′
1jyt is the estimated components of xt1 (i.e., xt1j =

A′
1jyt) of integration order aj .

Let εi = (ε1i , · · · , ε
p
i )

′ be the p-dimensional I(0) with mean zero such that ∇djxji = εji + µj .

Let Sn(t) =
∑[nt]

i=1 εi and I1 = {i : di < 1/2, 1 ≤ i ≤ p}.

Condition 3.

(i) E||εt||q2 < ∞ for some q > max(4, 2/(2a1 − 1)) and for any i, j ∈ I1, as n → ∞,

1

n

n∑

t=1

xitx
j
t

p−→ E[xi1x
j
1].

(ii) There exists an i.i.d mean zero p× 1 normal vector {wi} such that as n → ∞,

max
0≤t≤1

||Sn(t)−
[nt]∑

i=1

wi||2 = op(n
1/s), for some s > 2.

Remark 7. Condition 3 is mild and satisfied by either of the following processes.

1. Suppose εt follows a linear process:

εt =
∞∑

k=0

Cket−k, t = 1, 2, · · ·

and {et} are i.i.d vectors with mean zero, Eete
′
t = Σe > 0, E||et||q2 < ∞ for some q > 4, the

p× p coefficient matrices Ck satisfy

∞∑

k=0

k||Ck||2 < ∞. Then, by Lemma 2 of Marinucci and

Robinson (2000), we have (ii) of Condition 3 holds. (i) follows by ergodicity.
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2. Suppose εt follows a generalized random coefficient autoregressive model:

εt = Ctεt−1 + et (4.5)

and {(Ct, et)} are i.i.d random variables with E||C1||q2 < 1 and E||e||q < ∞ for some q > 2,

then (ii) of Condition 3 holds with s < min{q, 4}, see Corollary 3.4 of Liu and Lin (2009).

Similarly, (i) follows by ergodicity.

Theorem 5. Let r be known. Under Condition 3, D(M(Â2),M(A2)) = op(1). Furthermore,

(i) when δ < 1/2,

(a) D(M(Â2),M(A2)) = Oe(n
−2a1+1) provided either |I0| ≥ 2 or |I0| = 1 and µI0 = 0;

(b) D(M(Â2),M(A2)) = Oe(n
−2a1) provided |I0| = 1, µI0 6= 0;

(ii) when δ > 1/2 and µj = 0 for j ≥ p− r, D(M(Â2),M(A2)) = Oe(n
−2(a1−δ));

(iii) when µj = 0 for j = 1, · · · , p − r,

D(M(Â1j),M(A1j)) = Oe(n
−2αj ) for j = 1, · · · , q,

where I0 and αj are defined as in Theorem 1.

Theorem 6. Let Condition 3 hold. Then limn→∞ P ( r̂ = r ) = 1, provided 1 ≤ r < p.

5 Numerical properties

We illustrate the proposed method with 4 simulated examples and one real data set. Note that the

comparison with Johansen’s (1991) likelihood method is carried out for Example 1 and the real

data example only, as Examples 2 concerns different integration orders for different components,

Example 3 illustrate the method in the presence of an additional deterministic linear trend,

and Example 4 is a model of fractional cointegration. Johansen’s method is not applicable to

Examples 2-4.

Example 1. Let the first three components of yt be the same as Exercise 3.1 in Johansen (1995),

i.e.




yt1

yt2

yt3


 =




1 1 0

1/2 0 1

0 1 0







xt1

xt2

xt3


 =: A11




xt1

xt2

xt3


 ,

where xt1 is an I(1) process, xt2, xt3 and the innovations in xt1 are independentN(0, 1). For p > 3,

we add to yt1, yt2, yt3 above r−2 extra stationary AR(1) components and p− r−1 ARIMA(1,1,1)
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components. All the coefficients in AR(1) are 0.5, the coefficients in ARIMA(1,1,1) are (0.6, 0.8),

and all the innovations are independent N(0, 1). Except for the elements in A11 specified above,

all the other elements of A are generated independently from U(−3, 3). For each setting with

different combinations of p, r and n (see Table 1), we draw 500 samples. We set j0 = 5 in (2.3),

and estimate the cointegration rank r by (2.5) with c0 = 0.3 for each of the 500 samples. Then

with r = r̂, we estimate Â by (2.4). Since r̂ is not necessarily equal to r, and A is not a half

orthogonal matrix (as specified above), we extend the definition of discrepancy measure (3.1) as

follows:

D1(M(Â2),M(B2)) =
{
1− tr

(
Â2Â

′
2B2(B

′
2B2)

−1B′
2

)

max(r, r̂)

}1/2
, (5.1)

where B2 is the p× r matrix consisting of the last r columns of (A−1)′, as now xt2 = B2yt. Then

D1(M(Â2),M(B2)) ∈ [0, 1], being 1 if and only if M(Â2) and M(B2) are mutually orthogonal,

and 0 if and only if the two subspaces are the same. When r̂ = r and A′A = Ip, B2 = A2 and

D1(M(Â2),M(B2)) = D(M(Â2),M(A2)) defined in (3.1). The relative frequencies (RF) for

the occurrence of the event {r̂ = r} and the average value of D1 = D1(M(Â2),M(B2)) over 500

replications are listed in Table 1 under the name new method (New).

Also included in Table 1 are the results of Johansen’s likelihood estimation with cointegration

rank r estimated by the trace test; see Johansen (1991). We apply the method twice with testing

level set at 0.05 and 0.01, respectively, marked as Jo(0.05) and Jo(0.01) in Table 1. The null-

distribution of the trace test statistic is approximated by that of

[ T∑

t=1

εt(Xt−1 − X̄)′
][ T∑

t=1

(Xt−1 − X̄)(X t−1 − X̄)′
]−1[ T∑

t=1

(Xt−1 − X̄)ε′t

]
,

where εt = (εt,1, · · · , εt,p−r)
′,X0 = 0 and X t =

∑t
j=1 εt, and {εt,i} are independent N(0, 1). See

Johansen and Juselius (1990). This approximate distribution is calculated by simulation with

T = 1000 and 6000 replications.

Table 1 indicates clearly that the newly proposed method always outperforms Johansen’s

method. More precisely the estimator r̂ defined in (2.5) achieves higher relatively frequencies for

hitting the true value r than those achieved by the trace test with significance level at either 0.05

or 0.01. Note that the first part of Table 1 with p = 3 and r = 2 corresponds to the same setting

of Example 3 of Johansen (1995). The inference is more challenging when p and r increase. When

p = 30, r = 10, our new method works reasonably well when the sample size n = 1000 and it

works almost perfectly when n ≥ 1500. On the other hand, Johansen’s method, which is not

designed for large p, fails to perform even when n = 2000 or 2500.

Example 2. Now in model (2.1) let xt2 consist of r stationary AR(1) processes with coefficients

−0.4+i/r (i = 1, · · · , r), and let s components of xt1 be ARIMA(1,1,1) with coefficients 0.3+0.5i/s

14



Table 1: Relative frequencies (RF) of correct estimation of r and average distance D1 defined in (5.1) in
simulation with 500 replications for Example 1.

n=200 n=300 n=500 n=1000 n=1500 n=2000
Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

p=3 Jo(0.05) .930 .051 .964 .028 .944 .036 .954 .028 .942 .034 .966 .020
r=2 Jo(0.01) .980 .026 .996 .011 .990 .011 .992 .007 .994 .005 .984 .010

New .968 .032 .998 .009 1.00 .005 1.00 .002 1.00 .002 1.00 .001

p=6 Jo(0.05) .558 .276 .636 .226 .644 .217 .640 .215 .702 .177 .640 .214
r=2 Jo(0.01) .760 .184 .856 .117 .802 .123 .862 .083 .852 .088 .866 .079

New .388 .375 .838 .117 .982 .027 .994 .013 1.00 .004 1.00 .006

p=9 Jo(0.05) .200 .445 .216 .422 .312 .367 .344 .345 .352 .337 .380 .323
r=3 Jo(0.01) .558 .290 .598 .251 .666 .185 .708 .154 .742 .135 .752 .129

New .016 .605 .384 .341 .922 .066 .998 .018 1.00 .010 1.00 .006

p=12 Jo(0.05) .064 .539 .144 .466 .198 .416 .254 .375 .270 .362 .288 .352
r=4 Jo(0.01) .226 .426 .318 .354 .432 .282 .490 .243 .520 .225 .544 .212

New 0 .681 .054 .534 .794 .120 .996 .021 1.00 .011 .998 .009

p=18 Jo(0.05) 0 .653 .006 .586 .016 .535 .056 .478 .090 .448 .092 .443
r=6 Jo(0.01) .006 .595 .020 .522 .046 .468 .158 .379 .226 .349 .236 .333

New 0 .737 0 .675 .092 .429 .986 .032 1.00 .016 1.00 .011

p=24 Jo(0.05) 0 .742 0 .664 0 .580 .008 .507 .002 .488 .006 .480
r=8 Jo(0.01) 0 .703 0 .613 0 .532 .006 .468 .026 .438 .020 .435

New 0 .759 0 .719 0 .593 .898 .064 1.00 .022 1.00 .014

p=30 Jo(0.05) 0 .790 0 .732 0 .628 0 .556 0 .527 .002 .512
r=10 Jo(0.01) 0 .772 0 .691 0 .591 .004 .514 .004 .480 .004 .466

New 0 .771 0 .742 0 .662 .482 .186 .984 .030 1.00 .018

and 0.2 + 0.6i/s (i = 1, · · · , s), and the other p − r − s components be ARIMA(0,2,1) with

coefficients generated independently from U(−0.95, 0.95). Hence xt1 consists of a mixture of I(1)

and I(2) processes. All innovations involved are independent N(0, 1). Let the elements of A be

generated independently from U(−3, 3). We estimate the cointegration rank r by (2.5), and apply

the same method to the differenced x̂t1 to estimate s; see Section 2.4 above. For each setting, we

replicate the exercise 500 times. The relative frequencies for the occurrence of events {r̂ = r} and

{ŝ = s} are listed in Table 2.

Also included in Table 2 are the results from applying the Phillips-Perron unit-root test

(PP.test), with significance level set at 0.01, for estimating r; see (2.7). By applying the same

procedure to the differenced x̂t1, we also obtain the estimated s. When p is small, the PP.test

estimates r slightly better than (2.5) though both methods perform well. For estimating s, the

PP.test is much worse than (2.5). When p is large, (2.5) performs substantially better than the

PP.test. Also noticeable in Table 2 is the fact that the larger r/p is, the more accurate are the

estimates for r, and the larger s/(p − r) is, the more accurate are the estimates for s. Overall

(2.5) provides more a stable performance than PP.test.

Figs 1–2 present the boxplots of D1(M(Â2),M(B2)) and D1(M(Â11),
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Table 2: Relative frequencies of correct estimation of r and s by the Phillips-Perron test (PP.test) and
method (2.5) in simulation with 500 replications for Example 2.

n 200 300 500 1000 1500 2000
(p, r, s) Method r s r s r s r s r s r s

(6, 2, 2) PP.test .964 .412 .970 .440 .978 .420 .982 .416 .970 .448 .960 .460
(2.5) .614 .486 .908 .766 .962 .814 .944 .876 .942 .892 .924 .898

(6, 3, 1) PP.test .996 .288 1.00 .336 .996 .342 .992 .408 .998 .416 .998 .430
(2.5) .904 .604 .992 .782 .998 .896 .986 .924 .992 .940 .988 .958

(10, 4, 4) PP.test .840 .348 .874 .392 .854 .392 .852 .446 .842 .430 .824 .454
(2.5) .078 .162 .538 .480 .924 .798 .940 .866 .896 .858 .880 .870

(10, 6, 2) PP.test .984 .262 .986 .276 .978 .330 .984 .322 .978 .404 .974 .406
(2.5) .566 .488 .932 .740 .954 .826 .942 .874 .920 .876 .910 .884

(15, 8, 4) PP.test .780 .192 .792 .174 .812 .218 .750 .232 .726 .260 .658 .310
(2.5) .006 .110 .326 .372 .868 .684 .836 .708 .858 .770 .830 .768

M(B11)) for (p, r, s) = (6, 2, 2) and (10, 4, 4) respectively, where M(B11) is the true cointegra-

tion space specified by the I(1) components of xt1. As expected, the estimation errors decrease

as sample size n increases, and the errors with (p, r, s) = (10, 4, 4) are greater than those with

(p, r, s) = (6, 2, 2).
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Figure 1: Example 2: Boxplots of D1(M(Â2),M(B2)) (left panel) and D1(M(Â11),M(B11))
(right panel) when (p, r, s) = (6, 2, 2). The labels on the horizontal axis are sample size n.

Example 3. Now we consider an example in which the components of yt are I(1) with linear

trend, i.e.,

yt = µ1 + µ2t+Zt = Ax∗
t (5.2)

for some (x∗
t )

′ = (x∗
t1,xt2), where x∗

t1 = µ∗
1 + µ∗

2t + xt1, xt1 is nonstationary process and xt2

is stationary process. In our simulation, all component of µ∗
1 and µ∗

2 are taken as 0.3 and 0.5

respectively, all components of xt2 are AR(1) with coefficients generated from U(−0.8, 0.8), all

components of xt1 are ARIMA(1,1,1) with AR coefficients generated from U(0, 0.8) and MA

coefficients generated from U(0, 0.95), and all innovations are independentN(0, 1). Table 3 reports
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Figure 2: Example 2: Boxplots of D1(M(Â2),M(B2)) (left panel) and D1(M(Â11),M(B11))
(right panel) when (p, r, s) = (10, 4, 4). The labels on the horizontal axis are sample size n.

the relative frequencies of the occurrence of the event {r̂ = r} and the average distance (5.1) in a

simulation with 500 replications, where the cointegration rank is estimated by (2.5) with c0 = 0.3.

Also included in Table 3 are the results obtained from applying the Phillips-Perron unit-root

test to estimate r, see (2.7). Table 3 indicates that (2.5) works well even in the presence of a

deterministic linear trend, where our theoretical setting exclude. However the Phillips-Perron test

performs poorly for large p and small r/p.

Table 3: Relative frequencies of correct estimation of r and average distance in simulation with 500
replications for Example 3.

n=200 n=300 n=500 n=1000 n=1500 n=2000
(p,r) Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

PP.test .882 .087 .780 .143 .664 .200 .950 .030 .838 .096 .746 .150
(6, 2) New .452 .331 .858 .107 .982 .026 1.00 .002 1.00 .004 .998 .008

PP.test .988 .010 .988 .007 1.00 .002 .998 .002 .996 .002 .990 .005
(6, 4) New .974 .016 1.00 .002 1.00 .002 1.00 .001 1.00 .002 1.00 5e-4

PP.test .842 .092 .398 .293 .624 .182 .330 .324 .334 .319 .488 .244
(10, 4) New .066 .485 .328 .327 .966 .042 1.00 .021 1.00 .007 1.00 .012

PP.test .766 .107 .316 .279 .664 .132 .846 .062 .806 .076 .876 .048
(10, 6) New .432 .231 .796 .103 .998 .010 1.00 .006 1.00 .003 1.00 .002

PP.test .082 .454 .166 .377 .094 .424 .142 .388 .046 .468 .096 .436
(15, 6) New 0 .651 .004 .521 .506 .221 .996 .021 .998 .021 1.00 .005

PP.test .290 .240 .592 .137 .336 .217 .484 .157 .798 .064 .446 .177
(15, 10) New .066 .332 .646 .124 .964 .034 1.00 .003 1.00 .004 1.00 .007

PP.test 0 .628 0 .667 0 .671 0 .686 0 .696 0 .703
(30, 10) New 0 .769 0 .737 0 .655 .364 .234 .974 .062 .994 .040

PP.test 0 .346 .004 .329 .010 .324 .010 .314 .034 .294 .006 .329
(30, 20) New 0 .456 .002 .368 .344 .168 1.00 .019 1.00 .010 1.00 .010

Example 4. We consider fractional cointegration cases now. Let the components of xt1 be
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I(d) processes with a fractional order d = 4/5 or 3/4, the components of xt2 be AR(1) with

autoregressive coefficients 0.2i (i = 1, · · · , r), the elements of A be generated independently from

U(−3, 3), and all innovations be independent and N(0, 1). We consider various combinations

for p, r, s, and the sample size n. For each setting, we replicate the simulation 500 times and

estimate the cointegration rank r using (2.5) with c0 = 0.3. The relative frequencies for the

occurrence of the event {r̂ = r} and the mean of distance (5.1) over 500 replications are listed

in Table 4. While the proposed methodology works well, the accuracy is slightly lower than that

integer cointegration orders. See the examples above. We also notice that the estimation errors

with d = 3/4 are greater than those with d = 4/5.

To illustrate the impact of the choice of j0 on the estimation, we consider the above fractional

cointegration with p = 6, r = 4 and order d = 4/5, 3/4 and 2/3. By setting sample size n = 1000

and j0 between 5 and 100, the relative frequencies for the occurrence of the event {r̂ = r} and

the mean of the distance (5.1) are reported in Table 5. As mentioned in Section 2, using different

values of j0 hardly changes the results.

Table 4: Relative frequencies (RF) of the occurrence of event {r̂ = r} and average distance D1 defined in
(5.1) in simulation with 500 replications for Example 4.

n=200 n=300 n=500 n=1000 n=1500 n=2000
d (p, r) RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

(3, 2) .828 .134 .948 .068 .978 .040 1.00 .017 .998 .014 1.00 .010
4/5 (6, 2) .020 .664 .240 .507 .664 .294 .946 .119 .966 .101 .986 .070

(9, 3) 0 .721 .004 .656 .188 .488 .766 .250 .868 .181 .920 .156
(12, 4) 0 .743 0 0.701 .014 .596 .528 .380 .716 .307 .788 .275
(3, 2) .770 .174 .902 .098 .964 .058 .984 .033 1.00 .019 .998 .017

3/4 (6, 2) .018 .685 .132 .578 .488 .380 .866 .193 .916 .151 .942 .118
(9, 3) 0 .733 0 .680 .104 .549 .604 .336 .800 .240 .864 .205
(12, 4) 0 .754 0 .719 .006 .629 .328 .450 .606 .378 .696 .344

Table 5: Relative frequencies (RF) of the occurrence of event {r̂ = r} and average distance D1 defined in
(5.1) with n = 1000 in simulation with 500 replications for Example 4.

j0=5 j0=10 j0=15 j0=20 j0=50 j0=100
d RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

4/5 .964 .086 .984 .069 .982 .062 .982 .064 .982 .054 .980 .057
3/4 .934 .125 .950 .107 .952 .101 .956 .091 .954 .082 .960 .084
2/3 .788 .226 .788 .209 .788 .199 .804 .195 .814 .171 .806 .179

Example 5. We consider the 8 monthly US Industrial Production indices for January 1947 –

December 1993 published by the US Federal Reserve, namely the total index, manufacturing index,

durable manufacturing, nondurable manufacturing, mining, utilities, products and materials. The

original 8 time series are plotted in Fig.3. Applying the proposed method to these data, the

transformed series x̂t = Â′yt are plotted in Fig.4 together with their sample ACF. The proposed
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method (2.5) leads to r̂ = 4 with m = 40, c = 0.3 and j0 = 50 or 100.
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Figure 3: Time series plots of the 8 monthly U.S. Industrial Production indices in January 1947
- December 1993.
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Figure 4: Time series plots of the estimated x̂t by the proposed method and their sample ACF
for the 8 monthly U.S. Industrial Production indices.

We also apply Johansen’s (1991) likelihood method to this data set. Both the trace and the

maximum tests indicate r = 4. The corresponding transformed series together with their sample
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ACF are plotted in Fig.5.

Let Â2 denote the last 4 columns of Â and B̂2 consist of the loadings for the last 4 component

series displayed in Fig.5, i.e., the columns of Â2 are the loadings of the 4 cointegrated variables

identified by the proposed method in this paper, and the columns of B̂2 are the loadings of the 4

cointegrated variables identified by Johansen’s likelihood method. Then

D1(M(Â2),M(B̂2))
2 = 1− 1

4
tr{Â2Â

′
2B̂2(B̂

′
2B̂2)

−1B̂′
2} = 1− 0.9816 = 0.0184.

This indicates that the two sets of cointegrated variables identified by the two methods are

effectively equivalent.
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Figure 5: Time series plots of the estimated x̂t by Johansen’s method and their sample ACF for
the 8 monthly U.S. Industrial Production indices.

To illustrate the impact of the choice of c0 on the estimation, we consider model (2.1) with

p = 2 and the following three specifications for xt:

(i) r = 0, both components of xt are ARIMA(1, 1, 1) processes with coefficient (0.6, 0.4)

and (0.8, 0),

(ii) r = 1, xt1 is ARIMA(1, 1, 1) with (0.6, 0.4) and xt2 is AR(1) with coefficient 0.6,

(iii) r = 2, xt1 is AR(1) with coefficient 0.6 and xt2 is ARMA(1, 1) with coefficient (0.6, 0.4).
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The elements of A are generated independently from U(−3, 3) and c0 is taken from 0.05 to 0.95.

In each setting, we replicate the simulation 500 times with sample size n = 200, 300, 500 and 1000.

The relative frequencies for the occurrence of the event {r̂ = r} are reported in Table 6. When

r = 0, smaller c0 would lead to better performance, however when r = 2, larger c0 may result in

better performance. It is because that as r = 0, both the components are I(1), smaller c0 tends

to estimate r as 0, while as r = 2, both the components are I(0), larger c0 tends to estimate r

as 2, see Remark 1. Further, it is shown that when c0 is taken away from the endpoints, say

c0 ∈ (0.2, 0.5), then the proposed procedure works well for all cases, especially when n is large.

Table 7 reports the simulation results with p = 3, A generated in the same manner as the

above, and three settings for xt:

(i) r = 0, the components of xt are all ARIMA(1, 1, 1) with coefficients (0.6, 0), (0.3, 0.7)

and (0.8, 0.4),

(ii) r = 1, xt1 and xt2 are both ARIMA(1, 1, 1) with coefficients (0.5, 0), (0.8, 0.4), and xt3

is AR(1) with coefficient 0.6,

(iii) r = 2, xt1 is ARIMA(1, 1, 1) with coefficient (0.8, 0.4), xt2 is AR(1) with coefficient 0.6

and xt3 is ARMA(1, 1) with coefficient (0.5, 0.5).

The pattern of Table 7 is very similar to that of Table 6, i.e. the estimation is stable for c0 ∈
(0.2, 0.5).

Table 6: Relative frequencies (RF) of the occurrence of event {r̂ = r} for p = 2 with different c0 and 500
replications.

r n .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

200 1.00 1.00 1.00 .996 .988 .976 .946 .926 .872 .814 .722 .616 .480 .350 .218 .112 .036 .002 0

300 1.00 1.00 1.00 1.00 1.00 1.00 .998 .996 .984 .958 .932 .880 .796 .672 .522 .364 .180 .034 0

0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .990 .980 .946 .868 .754 .546 .232 .016

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .988 .922 .696 .226

200 .648 .878 .966 .992 .992 .994 .988 .976 .968 .952 .936 .902 .838 .766 .642 .538 .416 .264 .074

300 .514 .864 .984 .998 1.00 1.00 1.00 1.00 .998 .992 .984 .974 .952 .930 .858 .752 .620 .398 .152

1 500 .442 .882 .990 .998 .998 1.00 .998 .998 .998 .996 .994 .994 .988 .982 .952 .910 .844 .636 .336

1000 .210 .900 .992 .998 .998 .998 .998 .998 .998 .998 .998 .996 .996 .996 .994 .990 .980 .910 .634

200 .230 .616 .866 .970 .994 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

300 .150 .568 .884 .980 .990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 500 .088 .502 .910 .992 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 .018 .558 .978 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 Conclusions

We propose in this paper a simple, direct and model-free method for identifying cointegration

relationships among multiple time series of which different components series may have different

integration orders. The method boils down to an eigenanalysis for a non-negative definite matrix.

One may view that the components of the transformed series x̂t = Â′yt are arranged in ascending
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Table 7: Relative frequencies (RF) of the occurrence of event {r̂ = r} for p = 3 with different c0 and 500
replications.

r n .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

200 .986 .982 .962 .938 .896 .826 .744 .608 .490 .370 .276 .178 .096 .036 .008 .002 0 0 0

300 1.00 1.00 .998 .998 .994 .982 .962 .926 .866 .806 .702 .562 .390 .238 .118 .040 .006 0 0

0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .986 .972 .940 .864 .738 .526 .316 .112 .008 0

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .978 .876 .692 .282 .004

200 .732 .932 .958 .968 .954 .932 .908 .860 .788 .718 .632 .530 .430 .308 .188 .096 .032 0 0

300 .584 .900 .986 1.00 1.00 .996 .988 .974 .956 .924 .880 .816 .724 .600 .418 .268 .114 .022 0

1 500 .456 .896 .984 .994 .998 1.00 1.00 .994 .990 .988 .988 .972 .944 .908 .824 .676 .446 .198 .032

1000 .258 .900 .996 .996 .998 .998 1.00 .998 .998 .996 .996 .996 .994 .990 .990 .962 .884 .626 .194

200 .288 .780 .964 .998 1.00 1.00 1.00 1.00 1.00 1.00 .998 .990 .962 .942 .886 .828 .724 .522 .252

300 .448 .814 .944 .990 .998 .998 .998 .994 .992 .982 .962 .934 .878 .820 .756 .666 .500 .322 .126

2 500 .210 .786 .982 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .978 .950 .892 .726 .420

1000 .096 .848 .996 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .960 .714

order according to the “degree” of stationarity; reflected by the magnitude of the eigenvalues of

Ŵ.

7 Appendix: Technical proofs

7.1 Proof for Section 3.1

Let

Σx
j = diag

[(
1

n

n−j∑

t=1

(xt+j,1 − x1)(xt1 − x1)
′

)
,

(
1

n

n−j∑

t=1

(xt+j,2 − x2)(xt2 − x2)
′

)]

≡ diag(Σx
j1,Σ

x
j2),

Wx =
∑j0

j=0Σ
x
j (Σ

x
j )

′ =: diag(Dx
1 ,D

x
2) and Γx be the p× p orthogonal matrix such that

WxΓx = ΓxΛx,

where Λx is the diagonal matrix of eigenvalues of Wx. Since xt1 is nonstationary and xt2 is

stationary, intuitively 1
n

∑n−j
t=1 (xt+j,1 − x1) (xt1 − x1)

′ and 1
n

∑n−j
t=1 (xt+j,2 − x2)(xt2 − x2)

′ do not

share the same eigenvalues, so Γx must be block-diagonal. Define Wy = AWxA′, then

Wy = AWxA′ = AΓxΛxΓ
′
xA

′.

This implies that the columns of AΓx are just the orthogonal eigenvectors of Wy. Since Γx

is block-diagonal, it follows that M(A2) is the same as the space spanned by the eigenvectors

corresponding to the smallest r eigenvalues of Wy. As a result, to show the distance between the

cointegration space and its estimate is small, we only need to show that the space spanned by

the eigenvectors of Wy can be approximated by that of Ŵ. This question is usually solved by

perturbation matrix theory. In particular, let

Ŵ = Wy +∆Wy, ∆Wy = Ŵ −Wy,
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and

sep(Dx
1 ,D

x
2) = min

λ∈λ(Dx
1
), µ∈λ(Dx

2
)
|λ− µ|,

where λ(A) denotes the set of eigenvalues of a matrix A. When ||∆Wy|| = op(sep(D
x
1 ,D

x
2)), one

can use the perturbation results of Golub and Loan (1996) to establish the bound of Theorems

1, 3 and 5, see also Lam and Yao (2012) or Chang, Guo and Yao (2017). However, in our setting

sep(Dx
1 ,D

x
2) can be of smaller order than ||∆Wy||, i.e., sep(Dx

1 ,D
x
2)/||∆Wy || p−→ 0 as n → ∞

and the above method will not work.

To fix this problem, we adopt the perturbation results of Dopico, Moro and Molera (2000)

instead. A similar idea was used by Chen and Hurvich (2006) to recover their fractional cointegra-

tion spaces via the periodogram matrix, using a random diagonal block matrix instead. However,

because of the quadratic form of Wx (=
∑j0

j=1Σ
x
j (Σ

x
j )

′), we cannot find a normalizing constant

matrix Cn such that CnW
xCn = Oe(1) or CnW

yCn = Oe(1), so as a result, the argument of

Chen and Hurvich (2006) based on the perturbation bound of Barlow and Slapnicar (2002) cannot

be used. To this end, we first establish some lemmas (i.e. Lemmas 7-10 below) and we legate

their proofs to supplementary material.

For 1 ≤ i ≤ p− r, set f i
0(t) = W i(t), f i

di
(t) =

∫ t
0 f

i
di−1(s) dt, µi = Ezit and define

F i(t) = f i
di(t)−

∫ 1

0
f i
di(t) dt, Gd(t) =

∏d−1
j=0(t+ j)

d!
, Ḡd =

1

n

n∑

t=1

Gd(t).

Then, we have the following weak convergence result for the sample autocovariance.

Lemma 7. Let Ld(t) = Gd(t)− Ḡd. Suppose xit ∼ I(di), 1 ≤ i ≤ p− r, then under Condition 1,

(xit − x̄i − µiLdi(t)

ndi−1/2
, 1 ≤ i ≤ p− r

)
d−→
(
F i(t), 1 ≤ i ≤ p− r

)
and (7.1)

( 1

ndi+1/2

n∑

t=1

(xit − x̄i − µiLdi(t))(x
j
t − Exjt), i ≤ p− r, p − r + 1 ≤ j ≤ p

)
p−→ 0. (7.2)

Next, we establish a bound for the eigenvalues of Σx
j and A′Σ̂jA =: Σ̂

x

j .

Without loss of generality, we assume the first r1 components of xt1 are I(a1), the next r2

components are I(a2) and the last rq components of xt1 are I(aq), that is,

xt1 = (

I(aq)︷ ︸︸ ︷
x1t , · · · , x

rq
t ,

I(aq−1)︷ ︸︸ ︷
x
rq+1
t , · · · , xrq+rq−1

t , · · · ,

I(a1)︷ ︸︸ ︷
x
∑q

j=2
rj+1

t , · · · , x
∑q

j=1
rj

t )′,

where a1 < a2 < · · · < aq are positive integers and
∑q

i=1 ri = p − r. For 1 ≤ i ≤ q, define νq = 0

and νi =
∑q

j=i+1 rj . Then for any xt(ri) := (xνi+1
t , · · · , xνi+ri

t )′, if µi := (µνi+1, · · · , µνi+ri)
′ 6= 0,

there must exist a ri × (ri − 1) matrix Pi and ri × 1 vector µ̄i such that P′
iPi = I(ri−1), (Pi,µi)
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has full rank ri, P′
iµi = 0 and µ̄′

iµi = 1, where Ia denotes a× a matrix. Let Bi = (Pi, n
−1/2µ̄i)

′

if µi 6= 0 and Bi = Iri if µi = 0, and Θn = diag(Bq, · · · ,B2,B1, Ir). Define

Dn1 = diag
(

rq︷ ︸︸ ︷
naq−1/2, · · · , naq−1/2, · · · ,

r1︷ ︸︸ ︷
na1−1/2, · · · , na1−1/2

)
, Dn2 = (

r︷ ︸︸ ︷
1, · · · , 1),

and Dn =: diag(Dn1,Dn2). Let Hd(t) = td/d! − 1/(d + 1)!, F i(t) be given as in Lemma 7,

Fi(t) = (F νi+1(t), · · · , F νi+ri(t))′, Mi(t) = (F′
i(t)Pi,H

ai(t))′I(µi 6= 0) + Fi(t)I(µi = 0), and

M(t) = (M′
q(t),M

′
q−1(t), · · · ,M′

1(t))
′. Then Lemma 8 below follows from Lemma 7 and the

continuous mapping theorem.

Lemma 8. Let Γj(x) = diag
(

1
n

∑n
t=1(xt1 − x̄1)(xt1 − x̄1)

′, Cov(x1+j,2, x1,2)
)
. Under Condition

1, we have

D−1
n ΘnΓ

x
jΘ

′
nD

−1
n

d−→ diag
( ∫ 1

0
M(t)M′(t) dt, Cov(x1+j,2, x1,2)

)
.

Let F i(t), 1 ≤ i ≤ p−r be defined in Lemma 7, whereW i(t) = σiiB
i(t) and Bi(t), 1 ≤ i ≤ p−r

are independent Brownian motions. Let F(t) = (F 1(t), F 2(t), · · · , F p−r(t))′.

Lemma 9. Under condition 2 and p = o(n1/2−τ ) with 0 < τ < 1/2,

∥∥∥D−1
n Γx

jD
−1
n − diag

( ∫ 1

0
F(t)F′(t) dt, Cov(x1+j,2, x1,2)

)∥∥∥
2
= op(1). (7.3)

Further,
∫ 1
0 F(t)F′(t) dt is positive definite.

Lemma 10. Under Condition 1, or Condition 2 and p = o(n1/2−τ ), we have

max
0≤j≤j0

‖D−1
n Θn(Σ

x
j − Γx

j )Θ
′
nD

−1
n ‖2

p−→ 0 and (7.4)

max
0≤j≤j0

‖D−1
n Θn(Σ̂

x

j − Γx
j )Θ

′
nD

−1
n ‖2

p−→ 0. (7.5)

Proof of Theorem 1. Since

{D(M̂(A2),M(A2))}2 =
1

r
{tr[A′

2(Ip − Â2Â
′

2)A2]}

≤ ||A′
2(A2A

′
2 − Â2Â

′

2)A2||2 ≤ 2||Â2 −A2||22,

it follows from Theorem I.5.5 of Stewart and Sun (1990) (see also Proposition 2.1 of Vu and Lei

(2013)) that

D(M̂(A2),M(A2)) ≤
√
2||Â2 −A2||2 ≤

√
2||Â2 −A2||F ≤ 2

√
2|| sinΘ(Â2,A2)||F , (7.6)

where Θ(Â2,A2) = arccos[(A′
2Â2Â2A2)

1/2] is the canonical angle between the column spaces of

Â2 and A2. Let η = min
λ∈λ(Dx

1
), µ∈λ(D̃x

2
)
|λ − µ|/√λµ, where λ(D̃x

2) consists of the r smallest

eigenvalues of A′ŴA =: Ŵx. By Theorem 2.4 of Dopico, Moro and Molera (2000), we have

|| sinΘ(Â2,A2)||F ≤ ||(Wy)−1/2∆Wy(Ŵ)−1/2||F /η. (7.7)
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Note that

(Wy)−1/2∆Wy(Ŵ)−1/2 = (Wy)−1/2(Ŵ)1/2 − (Wy)1/2(Ŵ)−1/2. (7.8)

Thus, by equations (7.6), (7.7) and (7.8), we have

D(M̂(A2),M(A2)) ≤ (||(Wy)−1/2(Ŵ)1/2||F + ||(Wy)1/2(Ŵ)−1/2||F )/η.

Next, we show that||(Wy)−1/2(Ŵ)1/2||F = Op(1), which is equivalent to

||(Wx)−1/2(Ŵx)1/2||F = Op(1). (7.9)

Note that

0 ≤ Σx
0 ≤ (Wx)1/2 ≤

j0∑

j=0

{Σx
j (Σ

x
j )

′}1/2 and 0 ≤ Σ̂
x

0 ≤ (Ŵx)1/2 ≤
j0∑

j=0

{Σ̂x

j (Σ̂
x

j )
′}1/2. (7.10)

It follows from (7.10) that

||(Wx)−1/2(Ŵx)1/2||F ≤
j0∑

j=0

||(Σx
0)

−1{Σ̂x

j (Σ̂
x

j )
′}1/2||F .

Thus, for (7.9), it is enough to show the eigenvalues of (Σx
0)

−1
∑j0

j=0{Σ̂
x

j (Σ̂
x

j )
′}1/2 are Op(1),

which is equivalent to

the solutions λ of |{Σ̂x

j (Σ̂
x

j )
′}1/2 − λΣx

0 | = 0 are Op(1). (7.11)

Since diag
(∫ 1

0 M(t)M′(t) dt, Var(x1,2)
)
> 0, by Lemma 10 the solutions (λ) of equation

|D−1
n Θn{Σ̂

x

j (Σ̂
x

j )
′}1/2Θ′

nD
−1
n − λD−1

n ΘnΣ
x
0Θ

′
nD

−1
n | = 0 (7.12)

are bounded in probability. Thus, we have (7.11) and (7.9) as desired.

Similarly, we can show

||(Wy)1/2(Ŵ)−1/2||F = ||(Wx)1/2(Ŵx)−1/2||F = Op(1). (7.13)

Using equations (7.10) and (7.13), the remainder of the proof of Theorem 1 consists of showing

that there exist two positive constants c1, c2 such that in probability η ≥ c1n
2a1−1/

√
j0 provided

|I0| ≥ 2 or |I0| = 1 and EzI0t = 0 and η ≥ c2n
2a1/

√
j0 provided |I0| = 1 and EzI0t 6= 0.

Define λi(A) to be the i-th eigenvalue of a matrix A. Note that

diag

(∫ 1

0
M(t)M′(t) dt, Var(x1,2)

)
> 0.

By Lemmas 8 and 10, it follows that when |I0| ≥ 2 or |I0| = 1 and EzI0t = 0, λp−r(Σ
x
j ) =

Oe(n
2a1−1) and λp−r+1(Σ̂

x

j ) = Oe(1). Thus, there exist two positive constants c3, c4 such that in

probability

λp−r(W
x) ≥ λp−r(Σ

x
0(Σ

x
0)

′) ≥ c3n
2(2a1−1) (7.14)
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and

c3 ≤ λp−r+1(Σ̂
x

0(Σ̂
x

0)
′) ≤ λp−r+1(Ŵ

x) ≤
[
λp−r+1

( j0∑

j=0

{Σ̂x

j (Σ̂
x

j )
′}1/2

)]2
≤ c4j

2
0 . (7.15)

Hence, in probability

η ≥ |c3n2(2a1−1) − c4j
2
0 |/
√

c3n2(2a1−1)c4j
2
0 ≥ c′n2a1−1/j0.

Similarly, we have |I0| = 1 and EzI0t 6= 0, then in probability,

η ≥ c′n2a1/j0. (7.16)

Since j0 is fixed, combining (7.9), (7.16) and (7.16), we complete the proof of (i) and (ii). Conclu-

sion (iii) can be shown similarly by treating A1i as the role of A2, see also the proof of Theorem

1 of Chen and Hurvich (2006), we omit the details here. ✷

Let A1,0 = A2 and B̂1i = (γ̂νi+1, · · · , γ̂νi+ri) for i = 1, · · · , q and B̂10 = (γ̂p−r+1, · · · , γ̂p).

Lemma 11. Under Condition 1, we have

‖B1,lA1,h‖F = Op(n
−2|ah−al|), for l 6= h.

Proof. Let η(B1,l,A1,h) be defined as η above, i.e.,

η(B1,l,A1,h) = min
λ∈{λ̂νl+1,··· ,γ̂νl+rl

}, µ∈{λνh+1,··· ,λνh+rh
}
|λ− µ|/

√
λµ.

By Lemmas 8 and 10, using the same arguments as in Theorem 1, we have

η(B1,l,A1,h) ≥ cn2|ah−al| (7.17)

for some c > 0. It has been shown in Theorem 1 that ||(Wy)−1/2∆Wy(Ŵ)−1/2||F = Op(1),
thus by Theorem 2.4 of Dopico, Moro and Molera (2000) (see also Theorem 4.1 of Barlow and
Slapnic̆ar (2000)), we have

‖B1,lA1,h‖F ≤ ||(Wy)−1/2∆Wy(Ŵ)−1/2||F /η(Bl,Ah)

= Op(n
−2|ah−al|).

This completes the proof of Lemma11.

Proof of Theorem 2. First, we prove the consistency of r̂. For any 1 ≤ i ≤ p,

x̂it = γ̂′iyt = (γ̂′iA1qxt1q, · · · , γ̂′iA11xt11, γ̂
′
iA2xt2). (7.18)

Let νi be defined as in Lemma 7 and r0 = r. By Lemma 11, when νl + 1 ≤ i ≤ νl + rl, l 6= h,

γ̂′iA1h = Op(n
−2|ah−al|).
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Thus, by sup1≤t≤n |xt1h| = Op(n
ah−1/2) for h ≥ 1 (see Lemma 7), we have

γ̂′iA1hxt1h = Op(n
−ah+2al−1/2)I(h > l) +Op(n

−2al+3ah−1/2)I(1 ≤ h < l).

As a result, by (7.18), it follows that for any νl + 1 ≤ i ≤ νl + rl,

x̂it = γ̂′iA1lxt1l +Op(

q∑

h=l+1

n−ah+2al−1/2 +
l∑

h=1

n−2al+3al−1−1/2)

= γ̂′iA1lxt1l +Op(n
−al+1+2al−1/2 + n−2al+3al−1−1/2),

where xt10 = xt2. Thus, for any given m, we have

m∑

k=1

( 1

n− k

n−k∑

t=1

(x̂it+k − x̂
i
)(x̂t,i − x̂

i
)
)

=
γ̂′iA1l

n− k

m∑

k=1

n−k∑

t=1

(xt+k,1l − x1l)(xt1l − x1l)
′A′

1lγ̂i(1 + op(1)). (7.19)

By (7.19), we have that for any νl + 1 ≤ i ≤ νl + rl, l = 1, · · · , q
m∑

k=1

( 1

n− k

n−k∑

t=1

(x̂it+k − x̂
i
)(x̂t,i − x̂

i
)
)

= mγ̂′iA1l

( 1
n

n∑

t=1

(xt1l − x1l)(xt1l − x1l)
′
)
A′

1lγ̂i(1 + op(1)) = Oe(mn2al−1). (7.20)

On the other hand, by (7.19) and ‖∑m
k=1

1
n−k

∑n−k
t=1 (xt+k,2 − x2)(x

′
t,2 − x2)‖ ≤ C in probability,

it follows that for p− r + 1 ≤ i ≤ p,

m∑

k=1

( 1

n− k

n−k∑

t=1

(x̂it+k − x̂
i
)(x̂t,i − x̂

i
)
)
= Op(1). (7.21)

Equation (7.20) together with (7.21) yields the conclusion of Theorem 2 as desired. ✷

7.2 Proofs for Section 3.2

Proof of Theorems 3 and 4. Theorem 3 can be shown similarly to Theorem 1 by using

Lemma 9 instead of Lemma 8, except that when p → ∞,

||(Σx
0)

−1{Σ̂x

j (Σ̂
x

j )
′}1/2||F = Op



(

p∑

i=1

(λ̃i)
2

)1/2

 = Op(p

1/2),

where λ̃i, 1 ≤ i ≤ p are solutions of (7.11). As a result, (7.9) should be replaced by

||(Wy)−1/2(Ŵ)1/2||F = Op(p
1/2) and ||(Wx)−1/2(Ŵx)1/2||F = Op(p

1/2). (7.22)

Theorem 4 can be shown similarly to Theorem 2. We omit the details. ✷
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7.3 Proofs for Section 4

To prove Theorems 5 and 6, we first introduce some notation. Let kni = ndi−1/2I(di > 1/2) +

ndi+1/2I(di < 1/2) and λi(t− s) = (t− s)di−1/Γ(di)I(di > 1/2) + (t− s)di/Γ(di + 1)I(di < 1/2).

Define Kn = diag(kn1, · · · , knp), Λ(t, s) = diag(λ1(t− s), · · · , λp(t− s)) and

B0 = 0, Bt = (B1
t , · · · , Bp

t )
′ =

∫ t

0
Λ(t, s) dWs, Ut = Bt −

∫ 1

0
Bt dt,

whereWs is given in (ii) of Condition 3. Let ∇dlvlt = µl, I
c
1 = {i : di > 1/2} and xt,I = (xit, i ∈ I)′

and vt,I = (vit, i ∈ I)′

Lemma 12. Let Zn(t) = ((x[nt],Ic
1
− v[nt],Ic

1
)′,
∑[nt]

j=1(xj,I1 − vj,I1)
′)′. Under (ii) of Condition 3,

K−1
n Zn(t)

J1=⇒ Bt, on D[0, 1]p. (7.23)

Proof. Let dI1 = {di : i ∈ I1}, then
∑[nt]

j=1 xj,I1 is an integrated fractional process with order
dI1 + 1, and each of its components has order larger than 1/2. Using (ii) of Condition 3 instead
of Marinucci and Robinson (2000) Lemma 2, we can show this lemma similarly to their Theorem
1.

Let Θn and Mi(t) be defined as that after Lemma 7 by using Hd(t) = td/Γ(di + 1) −
1/Γ(di + 2) and Fi(t) = (Uνi+1(t), · · · , Uνi+ri(t))′, where U i

t be the i-th component of Ut. Let

Ln = diag(ln1, · · · , lnp), lni = ndi−1/2I(di > 1/2) + I(di < 1/2). Similar to Lemma 8, by Lemma

12 and the continuous mapping theorem, we have the following lemma.

Lemma 13. Let the conditions of Theorem 5 hold. Then the following assertions hold for any
0 ≤ j ≤ j0.

(i) If δ > 1/2, then

L−1
n ΘnΣ̂

x

jΘ
′
nL

−1
n

d−→
∫ 1

0
(M′

t,U
′
t2)

′(M′
t,U

′
t2) dt, and

L−1
n ΘnΣ

x
jΘ

′
nL

−1
n

d−→ diag
( ∫ 1

0
MtM

′
t dt,

∫ 1

0
Ut,2U

′
t,2 dt

)
,

where Ut,2 is corresponding to the last p components of Ut.

(ii) If δ < 1/2, then

L−1
n ΘnΣ̂

x

jΘ
′
nL

−1
n

d−→ diag

(∫ 1

0
MtM

′
t dt, Cov(xt+j,I1xt,I1)

)
, (7.24)

and

L−1
n ΘnΣ

x
jΘ

′
nL

−1
n

d−→ diag

(∫ 1

0
MtM

′
t dt, Cov(xt+j,I1xt,I1)

)
. (7.25)

By Lemma 13, Theorems 5 and 6 can be established in a similar manner as to Theorems 1

and 2. Therefore we omit the detailed proofs.
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