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PREFERENCES UNDER IGNORANCE∗

BY OLIVIER GOSSNER AND CHRISTOPH KUZMICS 1

CREST, CNRS, École Polytechnique, France, and London School of Economics, U.K.;
University of Graz, Austria

A decision maker (DM) makes choices from different sets of alternatives. The DM is initially ignorant of the
payoff associated with each alternative and learns these payoffs only after a large number of choices have been
made. We show that, in the presence of an outside option, once payoffs are learned, the optimal choice rule from
sets of alternatives can be rationalized by a DM with strict preferences over all alternatives. Under this model,
the DM has preferences for preferences while being ignorant of what preferences are “right.”

1. INTRODUCTION

Consider the problem of an agent who has to choose between different alternatives while
being uncertain about their consequences. A cornerstone approach is the expected payoff
approach, which originates in the work of Pascal (1670), and according to which the agent should
rank alternatives according to the expected payoff each of them generates. Albeit uncertain
about which alternatives fare better than others, the agent still forms a ranking over them. In
this case, preferences stem from beliefs; at the extreme, an agent who is completely ignorant
about payoffs is indifferent between all alternatives.2 In this article, we propose a setup in which
optimal behavior commands even a fully ignorant agent to act as if she had strict preferences
over alternatives. In our model, the ranking over alternatives is not driven by beliefs but by the
principle of maximization of an option value.

To fix ideas consider the following scenario: Two friends decide to go on a diet (with the
purpose to lose weight, to feel better, to feel less tired, to combat an illness, or for some such
goal), which they commit to following for a specified length of time. Each day both dieters
are offered food from different menus, but they are ignorant as to what choices are good to
achieve their objective. Independently of each other, they both choose a choice rule, i.e., a rule
that specifies what choice to make depending on each possible menu. After a while, they meet
and exchange their experience. The least successful dieter can then decide to adopt the more
successful dieter’s choice rule. How should each choose her diet to begin with?3
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2 GOSSNER AND KUZMICS

A model that is suitable to tackle this question must have the following ingredients: First,
we must have individuals making choices in a variety of decision problems. Second, there must
be some potentially attractive alternatives that individuals are ex ante uncertain about whether
they are “good” or “bad” choices. In fact, we can ignore all clearly inferior choices such as
eating stones or drinking salt water, and focus only on those choices that are potentially “good.”
Third, realistically individuals will not have to stick to one rule of behavior throughout their
whole life. They could learn something about the likely success of certain rules of behavior as
they go along. However, and fourth, this learning is incomplete.

The model we propose can be sketched as follows: A decision maker (DM) will be asked to
make repeated choices from subsets of a grand set of alternatives. The DM is asked to select
a choice rule that specifies what choice she would make for every possible subset of the set of
all alternatives. A choice rule can be strictly consistent, i.e., derived from a strict preference
ordering; it can also be nonconsistent in the sense of exhibiting cycles or other nontransitivities.
We allow all choice rules. At the time of this choice, the DM acts under a veil of ignorance
and knows nothing about the value of the various alternatives to her. Nature then randomly
chooses a gain function that attaches material gains to each alternative. After some time the
DM learns how well her choice rule is doing on average without learning how each alternative
contributes to the overall material gain, i.e., without learning the gain function itself. The DM
can then stick to her chosen rule and obtain the resulting average material payoff or select an
outside option, the value of which is chosen randomly and is possibly correlated with the gain
function. The outside option captures any form of outside opportunity to the DM. In particular,
it encompasses a reduced-form model of the possibility of (incomplete) social learning.

We show that, in order to maximize expected gains, a choice rule must be strictly consistent.
Moreover, we identify conditions under which all strictly consistent rules, and only those rules,
are equally optimal.

The argument for this claim is as follows: Under ignorance, it is easy to show that in such an
environment all choice rules produce the same expected material gain. We show, and this is the
crucial result, that strictly consistent rules are in a sense the riskiest rules. To be more precise,
observe that any choice rule induces a probability distribution over material gains. We prove
that for any nonstrictly consistent choice rule, there is a distribution over strictly consistent
choice rules that induces a distribution over material gains, which for any realized gain function
is a strict mean-preserving spread over the distribution of material gains induced by the given
choice rule.

The DM will then strictly prefer this distribution over strictly consistent rules over the given
choice rule, because increasing risk increases the value of the outside option.4 Thus, for any
nonstrictly consistent choice rule, the DM will find a strictly consistent choice rule that she
prefers strictly over the given choice rule.

The article proceeds as follows: In Subsection 1.1, we discuss a series of applications of our
model. In Section 2, we provide the model. In Section 3, we state the main theorem and sketch
its proof, in the course of which we establish two additional results that are of independent
interest. Section 4 provides a discussion of the exact role the assumptions play for the various
results. In Section 5, we use a simple example to help the reader and demonstrate the boundaries
of our results by highlighting what is not true in this model. Section 6 concludes with possible
extensions of the model.

1.1. Applications. Our model relies on several major assumptions. The first of them is the
DM’s ex ante ignorance as to what payoffs are associated with a list of potential items of choice.
The second one is that the DM faces a number of decisions problems. For convenience, this
number is assumed to be infinite in our main model, but it can be assumed finite or, if the
DM perfectly anticipates all decision problems, this number can even be relatively small; see

4 This is the same logic as in finance, e.g., in Merton (1973) and Rasmusen (2007), where increasing risk increases
option value.
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Section 6. As a third assumption, the DM does not learn the payoffs associated to the different
items available as different choices are made, or if she does learn, then she does not or cannot
use this information immediately. This assumption is in fact realistic in setups where all payoff
realizations and information occur at a stage following decision making as in two of the four
applications below. It is also realistic in setups where changing the choice rule is more costly
than the value of information from the feedback from a single decision problem as in the other
two applications below. And finally, the DM may have access to an outside option, which can,
for instance, take the form of a switch of rule or some insurance policy.

1.1.1. Dieting. According to the Boston Medical Group, “[a]n estimated 45 million US
Americans go on a diet each year,” mostly with the desire to look better, to lose weight, or to
be more healthy.

Although there is a growing consensus among nutritionists on the combination of diet, exer-
cise, and lifestyle that is best for goals of losing weight and being healthy, the number of diets
people have tried and are still trying is almost endless.5 Dieting is also very profitable for the
dieting industry, with estimated revenues of $64 billion in 2014.

How is the observed diversity of diets consistent with our model assumptions?
First, scientific evidence on what diets work best is sometimes inconclusive and poorly dissem-

inated to the public. Hence, the veil of ignorance. Second, the number of food decisions faced
by an individual is large, typically between three and five per day. Third, the variance in weight
measurements due, for instance, to different levels of hydration or medical conditions render
the appreciation of a diet’s efficiency difficult to assess in the short run, and other diet-related
medical conditions such as muscle loss may take a long time to detect. Overall, the long-run
effect of one’s diet on weight and health is difficult to assess in the short run. Finally, dieters
have outside options. If at the end of their diet they are not very successful, they can adopt
another diet, the diet of a more successful friend, or their old diet.

Our results suggest that the diversity of diets, all of which recommend consistent choices over
foods, may actually be driven by these features. They predict that chosen diets may well be
imperfect or maybe even detrimental for their goal. Thus, if we were to observe a dieter’s food
choices and if we were trying to infer her “preferences” from her food choices, we would not
recover her true preferences.

1.1.2. Farming. How does a farmer choose what seeds to plant and how to cultivate her
seeds? Farmers have a huge variety of seeds they could grow, and each piece of land may be
suitable only for a subset of them. Before the beginning of the year, many uncertainties are
unresolved; in particular, it is unknown what yields each type of crop would generate, as this
depends on future climatic conditions. Also, the future price of each crop is still uncertain.
Insurance, when available, opens the possibility of an outside option to the farmer. Absent
such insurance, a risk-averse farmer would prefer planting a variety of seeds to minimize risk.
However, when insurance is available, and even under uncertain future conditions, our results
show that a not too risk-averse farmer should plant as if having a ranking over crops: She will
choose the “best” crop according to this ranking in all fields that allow it and choose the “second
best” crop in all fields that do not allow the “best” crop but allow the “second best” and so on.

1.1.3. Education. What career should a young person pursue? How should this person best
prepare herself for the future job market she will be competing in? Many years before this
person will have a job and career, this person has to make a large array of decisions about which
(learning) activities to choose from a large set of possible activities. Her goal is to maximize her
eventual satisfaction in life with an appropriate career path. But at the time of decision making,
she is very uncertain about many aspects of this problem. She is uncertain about her own skills.
Perhaps she is an apparently talented musician, but is it really her comparative advantage?

5 See, e.g., https://en.wikipedia.org/wiki/List_of_diets
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Also, future market conditions are uncertain. She could specialize in internet technology, but
perhaps when she is finished with her education, market conditions are such that this does not
command a particularly high salary. So her question is this. Should she try to specialize as much
as possible (i.e., behave as if she had consistent preferences over learning activities) or should
she try to become a generalist?

Among the many decisions the agent has to make are which courses to follow, where the
payoff associated to these is realized only at a later stage, sometime after the curriculum is
completed. The outside option could be to start a new course from scratch or to work in the
parents’ business.

Our main result implies that, even if she does not know what career is ultimately the most
rewarding, she should consistently pursue one specific career path (if her outside option is
reasonable and she is not too risk averse) and make consistent choices. Even if the realized
outcomes may be bad in some cases, on average, she will maximize expected payoffs this way.

1.1.4. Medical treatment. There are many (smaller) ailments for which the medical profes-
sion has not yet found the perfect cure. For instance, back problems can come in many forms
and for many possible reasons. Furthermore, a wide variety of treatment options is available,
and it is still unclear which treatment option is best in which situation. Should it be surgery,
osteopathic maneuvers, acupuncture, physical exercise, or a combination of all of these? And,
supposing the answer is that it should by physical exercise, what kind of physical exercise should
it be? Walking, running, swimming, yoga?

As we mentioned, knowledge of the best medical treatment for each condition is not known.
Furthermore, learning from the success or failure of treatment from each single patient is surely
severely limited; the strong variance on the effect of each treatment on each patient tends to
render learning difficult. Good feedback is sometimes also limited if the doctor does not see
every patient again after prescribing treatment. One outside option that a doctor can adopt
after following her choice rule of treatments for some time is to adopt another choice rule of
treatments.

Our results suggest that it may be optimal for a doctor to behave as if she has strict preferences
over treatment options, even if her preferences are (or turn out to be) wrong. This could in this
context also be interpreted as the doctor having a firm belief, correct or not, over the efficacy
of the various treatments.

2. MODEL

2.1. Choice. Our setup is based on the classical model of choice from choice sets. Let K =
{1, . . . , |K|}, |K| > 1 be the set of all possible alternatives. Let L = P(K)\∅ denote the set of
all nonempty subsets of K. We call an element in L a choice set. A DM is repeatedly asked to
make a choice from different choice sets.

DEFINITION 1. A choice rule is a function R : L → L such that R(L) ⊆ L for all L ∈ L. Let
R denote the set of all such choice rules.

Following Uzawa (1956) and Arrow (1959), let � denote a binary (preference) relation over
elements in K with the interpretation that, when i � j , an individual holding this preference
relation weakly prefers i over j (see also Chapter 1.B in Mas-Collel et al., 1995). The relation �
is complete if for any two i, j ∈ K, i � j or j � i (or both), it is transitive if i � j and j � k imply
i � k. A complete and transitive relation is called consistent (often called “rational”; see, e.g.,
Definition 1.B.1 in Mas-Collel et al., 1995). In this article, a special case of consistent preferences
plays a prominent role, namely, strict preferences.

A relation � is antisymmetric if whenever i � j and j � i, then i = j . We call a preference
relation strictly consistent if it satisfies completeness, transitivity, and antisymmetry.

These definitions extend from preference relations to the corresponding individual’s behavior.
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DEFINITION 2. A choice rule R ∈ R is consistent if there exists a complete and transitive
preference relation � such that, for every L, R(L) is the set of maximal elements in L for �. It
is strictly consistent if it is consistent and R(L) is a singleton for all L ∈ L. Let Rs denote the
set of strictly consistent rules.

It is easily verified that a strictly consistent rule is one based on a strictly consistent preference
relation.

2.2. The Environment. An environment consists of two components. First, nature chooses
a (material) gain function that associates gain levels to possible choices. It is useful to consider
a fixed finite set of gain levels G ⊂ IR+. A gain function g : K → G is then a function from the
set of all possible choices to this set of possible gain levels, with the interpretation that g(k) ∈ G
is the gain an individual receives when choosing k ∈ K.

We extend any gain function to the set L of choice sets by setting

g(L) = 1
|L|

∑
k∈L

g(k)

for L ∈ L, with the natural interpretation that g(L) is the expected gain for the DM when L
is the set of accepted alternatives, assuming that each element in L is chosen by the DM with
equal probability.6

Second, a distribution over choice sets p ∈ �(L) describes the frequency with which choice
sets are presented to the DM. We assume that enough choice sets are available with positive
frequency, thus making the assumption that p has full support over the nonsingleton subsets of
L.

In some cases, it is useful to consider neutral distributions, for which all alternatives play the
same role.

DEFINITION 3. A distribution p over choice sets is neutral if, for every permutation π of K,
and every choice set L ⊆ K, p(L) = p(π(L)).

Obviously, the uniform distribution is neutral. Other examples of neutral distributions over
choice sets are the uniform distributions over choice sets of fixed size l, for 1 ≤ l ≤ |K|.

Given a gain function g and a distribution of choice sets p , the (average) material gain of any
rule R ∈ R is computed as

gp (R) = IEp g(R(L)) =
∑

L∈L
p(L)g(R(L)).

Let G be a finite set of gain functions, and let q ∈ �(G) be a distribution over gain func-
tions. For a permutation π : K → K and a gain function g : K → G, we let gπ : K → G be the
permutation of g defined by gπ(k) = g(π(k)) for all k ∈ K.

DEFINITION 4. A distribution over gain functions, q ∈ �(G), is symmetric if gπ ∈ G and
q(g) = q(gπ) for every gain function g ∈ G and for every permutation π : K → K.

The interpretation of the distribution q is that it is the DM’s belief as to the likelihood of
different gain functions. In what follows, we assume that the distribution q over gain functions
is symmetric and that its support contains at least one nonconstant gain function.

6 This is an innocuous assumption, which, however, provides us with the property that the set of all decision rules is
finite. The key lemma, Lemma 2, extends to all stochastic choice models.
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TABLE 1
TIMELINE OF EVENTS

2.3. Outside Options. After observing the “average” material payoff corresponding to the
rule R, the DM may either stick to the induced material payoff or switch to an outside option
with material gain g. The value g is random, and its distribution can depend on the realized
gain function g. The realized value of g is observed by the DM after she learns the average
material payoff induced by her chosen rule. We assume that g, conditional on any gain function
g, has a positive density in the interval [min G, max G]. This assumption excludes the trivial
cases in which g is either smaller than min G with probability 1 and the outside option is
never chosen, as well as the case in which it is larger than max G with probability 1 and the
outside option is always selected. Note, however, that it encompasses situations in which the
outside option is available with positive probability only, as they are captured by distributions
of g that put positive probability on values less than min G. For some results, we require the
additional assumption that g is statistically independent of the distribution of the gain function.
We indicate this when this is the case.

2.4. The DM’s Problem. The DM knows the set of alternatives K, the distribution p of
choice sets, the distribution q of gain functions, as well as the distribution of the outside option
g conditional on any gain function g. The timing of the decision problem is as follows: First,
the DM chooses a rule in R. Then, nature chooses a gain function according to q. This gain
function is unknown to the DM at this time. The DM makes choices according to her chosen
rule in every choice set L, which she faces with frequency p(L). The DM then learns the average
realized gain gp (R). The outside option value g is realized and is observed by the DM, who can
then choose the maximum of this average realized gain and g.7 In short, the DM chooses a rule
R ∈ R in order to maximize her ex ante expected gain

IEq,g

[
max

{
gp (R), g

} | g
]
.

The timing of events in the model is described in Table 1.

3. RESULTS

In this section, we first state the main result, Theorem 1, and then sketch its proof by providing
an intermediate result that is of interest in its own right, Theorem 2. The full proofs of all results
are given in the Appendix.

3.1. Optimal Choice. The main result of this article is the following theorem.

THEOREM 1.

1. For every p , every optimal rule is strictly consistent.
2. If p is neutral and the outside option is statistically independent of the distribution of the
gain function, then every strictly consistent rule is optimal.

7 For simplification, we abstain from considering Bayesian inferences on the gain function drawn from the observation
of gp (R). We show how such inferences can be included in the analysis in Subsection 6.1.
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First, we note that, given the assumption that q is symmetric, all choice rules yield the exact
same ex ante expected gain. In other words, absent an outside option, all rules are equally good.

LEMMA 1. Let R, R′ ∈ R be arbitrary decision rules. Then

IEqgp (R) = IEqgp (R′).

If all the rules give the same expected gain, they can still differ in the level of risk they provide.
Let R, R′ be two rules. We say that R is strictly riskier than R′ if the distribution of gp (R)

under q is a strict mean-preserving spread of the distribution gp (R′) under q. One distribution is
a strict mean-preserving spread of another if it is a mean-preserving spread of and not identical
to the other. If μ is a distribution over rules and R′ is a rule, we say that μ is strictly riskier
than R′ if the distribution of gp (R) under q and μ is a strict mean-preserving spread of the
distribution gp (R) under q.

The following result shows that the strictly consistent rules maximize risk in an unambiguous
sense.

THEOREM 2. Let R be any nonstrictly consistent rule. There exists a distribution μ over strictly
consistent rules such that μ is strictly riskier than R. If p is neutral, then every strictly consistent
rule is strictly riskier than any nonstrictly consistent rule.

By Theorem 2, the DM, when considering a nonstrictly consistent rule, will always find
a distribution over strictly consistent rules (a mixed strategy putting weight only on strictly
consistent rules) that she strictly prefers over the given rule. To complete the argument of
point (1) of Theorem 1, we note that, as the DM strictly prefers this distribution over strictly
consistent rules over the given rule, she must also strictly prefer one of these strictly consistent
rules over the given rule.

To show point (2) of Theorem 1, we use the fact that, under the given assumptions, all strictly
consistent rules are equivalent.

We have thus explained how Theorem 2 can be used to prove the main result, Theorem 1.
The proof of Theorem 2, identifying how rules can be partially ordered by the mean-preserving
spread order, rests on a key lemma, which we establish in the next subsection.

3.2. Choice Rules and Choice Distributions. A key to a better understanding of a choice
rule’s performance in the DM’s problem is to consider the probability distribution over choices
in K induced by this choice rule and by the distribution over choice sets. Given the distribution
p over choice sets and a choice rule R, let λp (R)(k) denote the overall probability with which
an element k ∈ K is selected under the rule R. It is given by

λp (R)(k) =
∑

L:k∈R(L)

p(L)
|R(L)| .

We call λp (R) the choice distribution associated to R. This choice distribution summarizes the
frequency with which each item in K is selected by R. This distribution is known to the agent.
For a fixed g, a rule’s average payoff is entirely determined by its choice distribution through
the following relation:

gp (R) =
∑

k

λp (R)(k)g(k).

For g unknown, the distribution of payoffs induced by R and g is entirely determined by λp (R)
and by the distribution of g. As we shall see, it is useful to think of the choice distribution
induced by her rule as the object of choice for the agent.
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For a given distribution p over choice sets, let �p denote the set of all choice distributions
available to the agent, i.e.,

�p = {λp (R), R ∈ R}.

Similarly, denote by �s
p the subset of �p consisting of distributions induced by strictly consistent

rules, i.e.,

�s
p = {λp (R), R ∈ Rs}.

The following result locates the choice distributions induced by consistent rules as extreme
points in the set of choice distributions. It shows that the extreme points of the convex hull of
�p consists of points in �s

p only.

LEMMA 2. Every choice distribution in �p is a convex combination of choice distributions in
�s

p .

This lemma provides the key insight needed to prove Theorem 2 by establishing that the
strictly consistent rules are, in the sense of the statement of the theorem, the most risky. This
lemma is proven in the Appendix. We here provide an intuition for this result.

Consider a strictly consistent rule Rs that ranks alternatives in decreasing order k1, . . . , kK.
Such a rule maximizes the frequency of its preferred item k1 among all rules. But this is
not necessarily the only one with this property, since every rule, strictly consistent or not,
that chooses k1 whenever it is available does the same. But, among all rules maximizing the
probability of choosing k1, Rs maximizes the frequency of k2, and so on. This argument shows
that every strictly consistent rule induces an extreme point in the set of achievable choice
distributions. To show the converse property, i.e., that every extreme choice distribution is
induced by a strictly consistent rule, it is important to remember that these extreme points are
those which, among all in �p , are the most extreme according to some direction, i.e., maximize
some linear functional of the form

∑
k∈K αkλp (k). Why is it that maximizing a linear functional

is always achieved by a strictly consistent rule? Let us consider an agent who associates utility
αk with choice k. For this agent, a choice of rule R carries an expected utility

∑
k∈K αkλp (R)(k).

It should be quite intuitive that a rule that maximizes this expected payoff is one that chooses
items in decreasing order of utilities (coefficients αk), where ties in these utilities can be broken
in any arbitrary way. Hence, an extreme point in the direction of the coefficients αk can be
achieved by a strictly consistent rule. Since this is true of all possible coefficients, all the extreme
points are achieved by strictly consistent rules.

To visualize the sets �p and �s
p in an example, consider the example depicted in Figure 1.

In this example, the choice distributions given by strictly consistent rules are depicted by solid
dots, whereas choice distributions of other nonstrictly consistent singleton rules are depicted
by hollow circles and squares. Note the extreme position of the choice distributions of strictly
consistent rules within the set of all choice distributions.

4. DISCUSSION OF THE ASSUMPTIONS

Here, we briefly discuss the role played by the different assumptions in our main results. We
first argue that the assumptions that p and g have full supports are not important, and relaxing
these changes the results only slightly. We then discuss why some results require the assumption
that p is neutral and how the results change if q is not symmetric.

4.1. The Full Support Assumption for the Distribution over Choice Sets. Section 2 assumes
that p has full support over nonsingleton choice sets. Now suppose that p does not have
full support. Note first that the conclusions of Lemmas 1 and 2 still hold. The conclusions
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NOTES: All singleton rules are depicted. Solid circles represent the choice distributions that correspond to the strictly
consistent rules.

FIGURE 1

THE SET OF CHOICE DISTRIBUTIONS �p FOR K = {A, B, C} AND p (NEUTRAL) SUCH THAT

p({A, B, C}) = p({A, B}) = p({A, C}) = p({B, C}) = 1/4

of Theorem 2 are slightly modified: It is true that for any nonstrictly consistent rule, there is
a distribution over strictly consistent rules that yields a mean-preserving spread in terms of
distributions of gains, but this spread does not have to be strict. The statement of Theorem 1
needs to be adapted. There still exists an optimal rule that is strictly consistent. This rule,
however, is not unique when p does not have full support, since choices outside the support of
p do not affect payoffs and, thus, are irrelevant. In this case, it can be shown that all optimal
rules must coincide with a strictly consistent rule on the support of p .

4.2. The Full Support Assumption for the Distribution of the Outside Option. We also as-
sumed that the outside option g, conditional on any gain function g, has full support over a
sufficiently large interval. Note that this assumption is only relevant for Theorem 1. Relaxing
this assumption changes the conclusion of Theorem 1 in the same way as relaxing the assump-
tion that p has full support does: There exists a strictly consistent optimal rule, but not only
strictly consistent rules may be optimal. To see this, observe, for instance, that if g takes only
values outside of the range of gp (R), all rules yield the same payoff and, hence, are optimal.

4.3. Statistically Independent Outside Option. The second part of Theorem 1 relies on the
assumption that the outside option is statistically independent of the realized gain function. To
see that this assumption is needed for this result, consider the simple example with K = {a, b}
and two equally likely gain functions ga, gb such that ga(a) = gb(b) = 1 and ga(b) = gb(a) = 0.
Let the outside option conditional on ga have a distribution with probability close to 1 for values
close to 0. Let the outside option conditional on gb have a distribution with probability close to
1 for values close to 1. Let finally p be such that p({a, b}) = 1.

In this case, the strictly consistent rule Ra that ranks a � b is superior to the strictly consistent
rule Rb that ranks b � a. The rule Ra achieves a payoff of 1 if ga realizes (with the outside option
not taken) and a payoff close to 1 also if gb realizes (because of the outside option). The rule
Rb, on the other hand, achieves a payoff of 1 when gb realizes and a payoff of close to 0 when ga

realizes. Note that this is essentially the situation a DM would be in, in our dieting example, if
she knows her friend chose rule Rb (which then serves as the outside option). Then, she should
choose rule Ra. Note also, that if she believes her friend chose one of the two rules with equal
probability, then both rules are equally good for her.
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4.4. Nonneutral Distributions over Choice Sets. The most interesting implication of p non-
neutral is the role p plays in Theorem 2 and in Theorem 1. The example in Section 5 shows
that, for p nonneutral, yet q symmetric, it is not the case that all strictly consistent rules are
most risky and that all strictly consistent rules are equally good and optimal. Also, different ps
imply different most risky rules (even keeping q the same).

4.5. Nonsymmetric Distribution over Gain Functions. We finally turn to the two assumptions
made on q. Assuming that there is at least one nonconstant gain function in the support of q only
avoids that the model is trivial. The second assumption, that q is symmetric, makes the model
interesting by assuming the DM has a veil of ignorance. We believe that it is under this condition
that results showing the optimality of strictly consistent rules are the most striking. Nevertheless,
it is still interesting to examine the implications of an asymmetric q. The first observation in this
case is that the conclusion of Lemma 1 does generally not hold if q is not symmetric. In this case
(for instance, in the trivial case in which q is supported by one payoff function only), some rules
can provide a higher expected gain than others. Interestingly, however, under the presence of
an outside option, the optimal rule is not generally the rule that maximizes the expected gain
under the most likely gain function under q, as we show in Section 5.

It is still true, however, that even if q is nonsymmetric, if p and g have full support, the
optimal rule (as in Theorem 1) is strictly consistent. The proof requires little adaptation. The
key argument is the following: By Lemma 2, for every nonstrictly consistent rule, there exists
a distribution over strictly consistent rules (as in Theorem 2) that produces a strict mean-
preserving spread in terms of choice distributions. This distribution also provides a strict mean-
preserving spread of payoffs for every q. Thus, the DM will, for any q, prefer this distribution
of strictly consistent rules over the given nonstrictly consistent rule. Hence, at least one of these
strictly consistent rules provides a higher expected payoff than the nonstrictly consistent rule.
Which of the strictly consistent rules is optimal can then depend on q and the distribution of
the outside option g.

5. AN EXAMPLE

We study an example in detail, showing in particular how the optimal choice rules can depend
on the data of the problem when p is not neutral. We assume here that the distribution of the
outside option g is statistically independent of the gain function.

Let K = {a, b, c}, and p be given by p({a, b}) = p({a, c}) = 1/4, and p({b, c}) = p({b}) =
p({c}) = 1/8, p({a, b, c}) = p({a}) = 1/16. Note that b and c are symmetrically treated in p , but
that p is not neutral.

Given the symmetries in the setup, there are, without loss of generality, only three strictly con-
sistent rules with potentially different payoff distributions. The strict preferences corresponding
to these rules are

Ra a � b � c,

Rb b � c � a,

Rc c � a � b.

Their corresponding choice distributions are

λ(Ra) = 5
8

a + 1
4

b + 1
8

c,

λ(Rb) = 1
16

a + 9
16

b + 3
8

c,
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λ(Rc) = 5
16

a + 1
8

b + 9
16

c.

Let us consider gain functions that attach gain 1 to one element in K and 0 to the other two,
and q the uniform distribution over these three gain functions. The payoff distributions of the
strictly consistent rules under q are given in the following table (one • represents a probability
weight of 1/3).

R 1
16

2
16

3
16

4
16

5
16

6
16

7
16

8
16

9
16

10
16

Ra • • •
Rb • • •
Rc • • •

It can be seen that the payoff distributions of Ra and Rb are mean-preserving spreads of
the payoff distribution of Rc, but that the payoff distribution of neither Ra nor Rb is a mean-
preserving spread of the other. It follows that it is always the case that one of the two rules Ra

or Rb is optimal.
We now show that which of Ra or Rb is optimal depends on the distribution of outside

options. First, consider a distribution of g with full support that puts high probability on some
value x ∈ (9/16, 10/16), and for simplification think of the limit case in which the distribution
puts probability 1 on x. Under Rb, the option is always chosen; hence the expected payoff
is x, whereas under Ra the option is chosen with probability 2/3 and the expected payoff is
1/3 · 10/16 + 2/3x > x. The option value is maximal under Ra, which is then the only optimal
rule. On the other hand, if the distribution of g puts high probability (think of it as being 1) on
some value x ∈ (1/16, 2/16), the option is never chosen under Ra, which then yields an expected
payoff of 1/3, while it is chosen with probability 1/3 under Rb, which yields an expected payoff
of 1/3x + 1/3 · 6/16 + 1/3 · 9/16 > 1/3. Hence, in this second case, the option value is maximal
under Rb, which is now the only optimal rule.

Note that ex ante all elements of K have the same chance of being the best choice. Neverthe-
less, it is not true that all (strictly consistent) rules are equally good. Together with our result
for p neutral and q symmetric, this implies that p has a subtle effect on which rules are good
and which are bad. The optimal rule depends on p (just as much) as on q.

Now consider the same example but with a slightly different distribution over gain functions,
denoted q′. Let q′ be such that it is derived from q by taking a small ε > 0 probability weight
from all gain functions other than the ga ∈ g with ga(a) = 1 and ga(b) = ga(c) = 0 and move
that total probability mass to that gain function ga. Thus, ga is the most likely gain function
under q′. Let g put high probability on some value x ∈ (1/16, 2/16). Then for sufficiently small
ε, rule Rb is strictly better than Ra, even though Ra is the unique optimal rule for gain function
ga. Thus, even if one gain function is more likely than all others, the strictly consistent rule
associated with this gain function may not be optimal.

6. EXTENSIONS

We point out general robustness properties of our results. We first discuss Bayesian learning
at the outside option stage. Then, we show that Theorems 1 and 2 are robust to several variations
of the model.

6.1. Bayesian Updating. Within our model an individual could, in principle, use Bayesian
updating given her prior belief about the distribution over all environments and her average
material payoff, in order to form a new and more informative belief about the environment she
is facing. The main model of the article rules out this possibility, and we show how the analysis
extends to a model that permits such updating.
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Assume the material payoff a gain function produces is the sum of two components. The
first component is as modeled in Section 2. The second is a constant additive term, added to all
payoffs in all decision problems irrespective of the chosen choice rule. This second term is highly
uncertain (at least in the mind of the DM) and follows a uniform distribution in the interval
[−x, x] for x > 0. As x tends to infinity, Bayesian updating from the observed average material
payoff provides no information about the realized gain function. Therefore, the extended model
with Bayesian updating yields the same analysis and results as our original model.

6.2. Costly Experimentation and Impatience. The model studied so far considers that if the
outside option is chosen, then the resulting utility is the one corresponding to the outside
option’s gain. This means that experimentation of a rule R is costless in the sense that when the
outside option is chosen, the payoff generated by R is irrelevant. We can instead consider that
experimentation is costly in the following sense: The payoff from R materializes in a first stage,
and the agent obtains this payoff. Then, in a second stage, the agent may decide to switch to the
outside option or not. The agent has a discount factor of 0 < δ < 1, meaning that the objective
is to maximize (1 − δ) times the expected payoff in the first period plus δ times the expected
payoff in the second period. The agent’s problem then becomes to maximize over all rules R
the total expected payoff:

IEq [IEg [max{g(R), (1 − δ)g(R) + δg} | g]] .

Note that max{g(R), (1 − δ)g(R) + δg} = (1 − δ)g(R) + δ max{g(R),g}. Thus, the DM’s ob-
jective is to maximize

(1 − δ)IEq[g(R)] + δIEq[IEg[max{g(R), g} | g]].

This new objective function differs from the one before only by the additional first term.
By Lemma 1 all rules yield the same expected gain. The first term in the objective function

is thus irrelevant. Optimality is decided solely by the second term. This second term, however,
coincides with the original objective function. Therefore, all conclusions of Theorem 1 remain
valid.

6.3. Finite Sampling. In our main model, we consider that the agent observes the expected
payoff gp (R) = IEp g(R(L)) before deciding whether to use the rule R or take the outside option.
The payoff gp (R) can be understood as the average of g(R(L)) over an infinite sequence of
realizations of the choice set L according to p . Now consider a variation of the model in which
the agent gets to observe the average payoff 1

n

∑
t g(R(Lt)) over a finite and independent and

identically distributed sequence with law p of choice sets L1, . . . , Ln before deciding to take the
outside option or not.

In the modified model, the choice as to whether to switch to an outside option or not
depends on a subtle Bayesian updating after observing 1

n

∑
t g(R(Lt)). Still, the DM can use the

following rule: Switch to g if and only if g > 1
n

∑
t g(R(Lt)). Since by the law of large numbers,

1
n

∑
t g(R(Lt)) converges almost surely to IEp g(R(L)) when n becomes large, this switching rule

yields an expected payoff going to max{gq(R), g} when n becomes large. This implies that the
choice of a rule in the modified problem gives an expected payoff that becomes arbitrarily
close to the payoff in the original problem. Therefore, whenever all optimal rules are strictly
consistent in the original model, the same remains true with finite sampling, for n large enough.

Note finally that the result of this section extends to any model in which gp (R) is observed
with noise as long as the noise is small enough.

6.4. Finite Number of Decision Problems. Another interpretation of our model is that the
DM faces a finite series of choice sets L ∈ L, where p ∈ �(L) is simply the empirical frequency



PREFERENCES UNDER IGNORANCE 13

distribution of choice sets, and this empirical frequency distribution is ex ante known to the
DM. For instance, the DM could know that she is facing only two choice sets, simultaneously (as
in the farming example of Subsection 1.1) or one after the other without (sufficient) feedback
as in the dieting example. Then, p is simply the empirical frequency that attaches a probability
of one half to each of these two choice sets with the understanding that there is actually no
randomness. That is, we do not need to appeal to a law of large numbers as in the previous
subsection and the DM receives exactly the p -weighted sum of payoffs that accrue from her
choices from the two choice sets. If the DM then has an outside option, all our results apply.

6.5. Risk Aversion. Theorem 2 states that for every nonstrictly consistent rule there is a
distribution over strictly consistent rules that is more risky than the given rule. Does this imply
that a risk-averse DM, in the absence of an outside option and under p neutral such that
Lemma 1 holds, would prefer the nonstrictly consistent rule? The answer to this question is:
It depends. It depends on how risk aversion enters the DM’s objective function. Suppose now
that the DM does not care about material gains directly, but the utility that material gains give
her. Then, one way of modeling this would be to simply transform all gain levels g ∈ G to utility
levels u(g), where u is an increasing and strictly concave map from IR to IR. This, however,
is simply a rescaling of gain levels and does not change the results in any way. In the dieting
example, this may well be the appropriate way to capture risk aversion.

But this would not be a good model of how risk enters the problem for the farming example,
where payoffs from different fields accrue more or less at the same time. Suppose, in fact, we
perform the following lab experiment (inspired by the farming example). Suppose we ask the
DM to make many choices, but all within an hour or so, and we pay her only a total amount at
the end. The DM, if she is risk averse, would probably evaluate that total final payment with an
increasing concave utility function and not each of the individual payments. In this case, such
a risk-averse DM would indeed prefer, under p neutral and no outside option, a nonstrictly
consistent rule. For instance, in the example of Figure 1 any cyclical rule that chooses A out
of {A, B}, C out of {A, C}, and B out of {B, C} then provides a higher ex ante expected utility
than any strictly consistent rule. Note, however, that if risk aversion is small enough, all strict
inequalities in the comparison of rules remain strict, so that the results of Theorem 1 still hold.
In other words, if risk aversion is sufficiently small the DM prefers a strictly consistent rule. But
if risk aversion is sufficiently high strictly consistent rules cease to be optimal.

6.6. Heterogeneous Preferences. Recent empirical evidence shows that although individual
agents’ decisions are at large consistent with a theory of preferences, these preferences vary
wildly across agents. For instance, using scanner data of household purchases, Echenique et al.
(2011) find that individual households make consistent choices. To quote Echenique et al. (2011,
p. 1205), “[i]t is fair to say that most of the empirical literature, using both field and experimental
data, finds relatively few violations of Generalized Axiom of Revealed Preference (GARP).”8

On the other hand, Dean and Martin (2011) and Crawford and Pendakur (2013) show that
households exhibit significant heterogeneity in preferences over consumption bundles.9

These findings are consistent with our main results. In fact, our model is able to account for
heterogenous preferences for the two following reasons: First, we show there are conditions on
the distribution over choice sets for the agents under which, even if all agents face the same
such distribution over choice sets, all strictly consistent rules are equally good and all other
rules suboptimal. Different agents may thus adopt different strictly consistent rules with each of

8 Dean and Martin (2016) show that this may in part be an issue of power as randomly generated consumption
sequences are also relatively close to satisfying GARP.

9 Both findings of consistent and heterogenous behavior are confirmed by Choi et al. (2007) in the context of risk
preferences; see also Dean and Martin (2010, section 5.2.3).
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them being optimal.10 Second, we show that although all agents have the same utility function,
different distribution over choice sets or different distributions over outside options lead to
different optimal strictly consistent rules. Hence, a strictly consistent rule that is optimal for one
agent may be suboptimal for another even though they both share the same utility function and
face the same uncertainty as to which alternatives are good for them.

This interpretation of the apparent heterogeneity of preferences, thus, leaves room for edu-
cating people about what preferences they “should” have if scientists identify which preferences
would be “objectively better” and leaves room for paternalistic “nudging” of people into the
right direction.

APPENDIX: PROOFS

PROOF OF LEMMA 1. Recall that, for a given rule R ∈ R, the ex ante expected payoff is given
by

IEqgp (R) = IEqIEp g(R(L))

=
∑
g∈g

q(g)
∑

L∈L
p(L)g(R(L))

=
∑
g∈g

q(g)
∑

L∈L
p(L)

1
|R(L)|

∑
k∈R(L)

g(k)

=
∑

L∈L

p(L)
|R(L)|

∑
k∈R(L)

∑
g∈g

q(g)g(k),

where the last equality follows from a simple change in the order of summation.
We complete the proof of Lemma 1 by showing that

∑
g∈g q(g)g(k) does not depend on k.

Since q is symmetric, for every permutation π of K we have

∑
g∈g

q(g)g(k) =
∑
g∈g

q(g)g(π(k)).

By averaging over all permutations π we obtain

∑
g∈g

q(g)g(k) = 1
|K|!

∑
π

∑
g∈g

q(g)g(π(k))

= 1
|K|!

∑
g∈g

q(g)
∑

π

g(π(k))

= 1
|K|!

∑
g∈g

q(g)
∑

k′

|K|!
|K| g(k′)

= 1
|K|

∑
k′

g(k′).

�
10 Although each individual chooses one strictly consistent choice rule, the aggregate behavior will look like that of

a random utility model as in Luce (1959) with implications as in Block and Marschak (1960); see also Falmagne (1978)
and Barberá and Pattanaik (1986).
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PROOF OF LEMMA 2. We prove that �s
p contains the extreme points of the convex hull of

�p in IR|K|. By the supporting hyperplane theorem, it suffices to prove that, for any vector
v = (v(k))k ∈ IR|K|, maxλp ∈�p

∑
k λp (k)v(k) is attained at some λp ∈ �s

p . Interpret v(k) as a
“fictitious utility” for the choice k. For L ⊆ K, let v(L) = 1

|L|
∑

k∈L v(k). Let π be a permutation
of K that orders the coordinates of v such that v(π(1)) ≥ v(π(2)) ≥ . . . ≥ v(π(k)). Maximiz-
ing

∑
k λp (k)v(k) over λp ∈ �p is equivalent to maximizing the expected “fictitious utility”∑

L∈L p(L)v(R(L)) over all rules.
The rule Rπ that selects the least element according to π in every choice set, Rπ(L) =

min{k, π(k) ∈ L}, maximizes each term of the sum

∑

L∈L
p(L)v(Rπ(L)),

so it maximizes the sum. Also, Rπ is strictly consistent, since it is the rule that corresponds to
the preference relation π(1) � π(2) � . . . � π(k). Hence, λp (Rπ) belongs to �s

p and achieves
maxλp ∈�p

∑
k λp (k)vk. �

PROOF OF THEOREM 2. To prove Theorem 2, the following two Lemmas are useful.

LEMMA A1. Let R ∈ Rs and R′ ∈ R. If λp (R′) = λp (R), then R′ = R.

PROOF. Consider w.l.o.g. the strictly consistent rule R corresponding to the preference re-
lation 1 � 2 � 3 � . . . � |K|, and let R′ be a rule such that λp (R′) = λp (R). Since R(L) = {1}
whenever 1 ∈ L,

λp (R)(1) =
∑
1∈L

p(L) ≥
∑

1∈L,1∈R′(L)

p(L)
|R′(L)| = λp (R′)(1).

Since p has full support, the inequality above is an equality if and only if R′(L) = {1} whenever
1 ∈ L. Now we have

λp (R)(2) =
∑

2∈L,1�∈L

p(L) ≥
∑

2∈L,1�∈L,2∈R′(L)

p(L)
|R′(L)| = λp (R′)(2).

Here again, equality holds only if R′(L) = {2} whenever 2 ∈ L and 1 �∈ L.
By induction on k, we obtain that R′(L) = {k} whenever k ∈ L and 1, . . . , k − 1 �∈ L, i.e.,

R′ = R. �

LEMMA A2. For every nonconstant vector (ak)k∈K ∈ IR|K| and every nonconstant gain function
g, there exists a permutation gπ of g such that

∑
k

akgπ(k) �= 0.

PROOF. Consider a vector (ak)k∈K ∈ IR|K| such that for all permutations gπ of a nonconstant
gain function g we have

∑
k akgπ(k) = 0. Consider the permutation π that only exchanges two

indices, i, j ∈ K. Then, we have both

∑
k �=i,j

akg(k) + aig(i) + aj g(j) = 0
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and
∑
k �=i,j

akg(k) + aig(j) + aj g(i) = 0.

The difference of these two expressions gives

aig(i) + aj g(j) = aig(j) + aj g(i)

or, equivalently,

(ai − aj )(g(i) − g(j)) = 0.

Thus, for every i, j ∈ K we have ai = aj or g(i) = g(j). By assumption there exist i, j ∈ K such
that g(i) �= g(j), and thus for these we have ai = aj . Let a = ai = aj .

For every k �= i, j , since we cannot have both g(k) = g(i) and g(k) = g(j) we have either
ak = ai = a or ak = aj = a. Therefore, the vector (ak)k∈K is constant. �

We can now proceed with the proof of the theorem. Let R ∈ R \ Rs. By Lemma 2, λp (R) is
a convex combination of choice distributions in �s

p . That is, there exists a distribution μ over
Rs such that

λp (R) =
∑

R′∈Rs

μ(R′)λp (R′).

We now have for every g:

gp (R) =
∑

R′∈Rs

μ(R′)gp (R′) = IEμgp (R′).

Therefore, for every g, the distribution of gp (R′) under μ is a mean-preserving spread of the
constant gp (R). This remains true when g is taken at random according to q: The distribution
of gp (R′) under q and μ is a mean-preserving spread of the distribution of gp (R) under q.

We now show that this mean-preserving spread is strict. To show that, it suffices to show that
the mean-preserving spread is strict for one g in the support of q. That is, we need to prove that
there exists g in the support of q and R′ in the support of μ such that gp (R′) �= gp (R).

By Lemma A1 there exists a rule R′ ∈ Rs such that μ(R′) > 0 and λp (R′) �= λp (R). Let
ak = λp (R′)(k) − λp (R)(k). Since λp (R′) �= λp (R), there exists k s.t. ak �= 0. But then since∑

k ak = 0, a is nonconstant. Then, by q symmetric and Lemma A2, there exist g in the support
of q s.t.

∑
k∈K akg(k) �= 0. The results follows since gp (R) − gp (R′) = ∑

k akg(k).
To prove the final statement of Theorem 2 we note that under p neutral for any two strictly

consistent rules R′, R′′ ∈ Rs their choice distributions λp (R′) and λp (R′′) are permutations of
each other. But then under q symmetric the induced distribution over material gains g is the
same for both rules. �

PROOF OF THEOREM 1. We need to prove that, for any p and for any R′ ∈ R \ Rs, there is a
R∗ ∈ Rs such that the DM strictly prefers R∗ over R′, i.e., such that

IEq
[
IEg

[
max

{
gp (R′),g

} | g
]]

< IEq
[
IEg

[
max

{
gp (R∗),g

} | g
]]

.

By Theorem 2, for any R′ ∈ R \ Rs, there is a distribution μ over strictly consistent rule that is
strictly riskier than rule R′. Note that this distribution μ does not depend on the realized gain
function.
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As the maximum is a convex function and as g, conditional on any gain function, has positive
density in the whole range of possible gain levels (in particular it has support where the gains
distributions induced by rule R′ and distribution μ differ), we have

IEq
[
IEg [max{gp (R′),g} | g]

]
< IEq

⎡
⎣IEg

⎡
⎣ ∑

R∈Rs

μ(R) max{gp (R),g} | g

⎤
⎦

⎤
⎦ .

Interchanging the order of summation, we have

IEq
[
IEg [max{gp (R′),g} | g]

]
<

∑

R∈Rs

μ(R)IEq
[
IEg [max{gp (R),g} | g]

]
.

Thus, there must be at least one R∗ ∈ Rs such that

IEq
[
IEg [max{gp (R′),g} | g]

]
< IEq

[
IEg [max{gp (R∗),g} | g]

]
.

To finish the proof note that under p neutral all strictly consistent rules induce the same
distribution over gains. If the outside option is independent of the gain function, we then have
the desired result. �
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