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Sellers with Misspeci�ed Models�

Krist�of Madar�asz (LSE)yand Andrea Prat (Columbia)z

Abstract

Principals often operate on misspeci�ed models of their agents' preferences. When

preferences are such that non-local incentive constraints may bind in the optimum, even

slight misspeci�cation of the preferences can lead to large and non-vanishing losses. Instead,

we propose a two-step scheme whereby the principal: (i) identi�es the model-optimal menu;

and (ii) modi�es prices by o�ering to share with the agent a �xed proportion of the pro�t

she would receive if an item were sold at the model-optimal price. We show that her loss

is bounded and vanishes smoothly as the model converges to the truth. Finally, two-step

mechanisms without a sharing rule like (ii) will not yield a valid approximation.

1 Introduction

As George Box famously put it, \Remember that all models are wrong; the practical question

is how wrong do they have to be to not be useful." In agency theory, a principal is assumed to

operate on the basis of the agent's preferences. Her model will, however, be an approximation of

the truth at best. Hence, she may not be able to design the truly optimal contract. How should

a principal who knows that her model is potentially misspeci�ed act in such a circumstance?

In such a context { following March and Simon's (1958) classic approach to organizational

decision making { one can ask two related questions. Can the principal �nd a solution that

achieves an acceptable payo� even if her model turns out to be wrong? How would such a

contract di�er from the contract she would o�er if her model was exactly true?

Our paper attempts to answer these questions in the context of one of the classic problems

in all of microeconomics: single-agent mechanism design with quasi-linear preferences. This

model { commonly referred to as the `screening problem' { has found various key economic

applications, from regulation and taxation to labor markets, insurance and incentive design.

In its classic interpretation of nonlinear pricing, a multi-product monopolist o�ers a menu of

product-price speci�cations to a buyer or a continuum of buyers (e.g., Wilson, 1993).

In the standard formulation, the principal knows the true distribution of the agent's pref-

erences. In this paper, we revisit the general screening problem but assume that the principal
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Space." We thank the anonymous referees and the Editor, as well as Ken Arrow, Mark Armstrong, Sylvain
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Berkeley, Brown, Cambridge, Caltech, Chicago, Columbia, Gerzensee, Harvard-MIT, Hebrew, Helsinki, LSE,
NYU, Stanford, UCL, for useful suggestions.
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(seller) does not know the true distribution of the agent's (buyer's) preferences. Instead, the

principal faces model uncertainty and has access only to a misspeci�ed model. Crucially, this

uncertainty is such, that her model may misspecify not only probabilities, but also preferences,

in that, her model may not enlist exact preference speci�cations (types) that can occur in real-

ity. The seller knows that her model is potentially wrong { for example, because it is typically

simpler than reality { and has a sense { to be formalized shortly { of how much her model

could deviate from the true description of the buyer's behavior. Can such a seller guarantee

herself an outcome that is not much worse than what she could expect if she had access to the

true description of the buyer's preferences?

For instance, consider a situation in which the agent's willingness to pay for an object

depends on a list of attributes: income, age, family background, profession, etc. This list may

be long, though, and the principal may operate on the basis of a coarser model that explicitly

includes the e�ect of the most important factors, leaving some characteristics unmodeled or

modeled only in an approximate way. Nevertheless, she wishes to design a mechanism using

her model, which is robust to all possible misspeci�cations of the impact of minor attributes

on the shape of these preferences.

As another example, the agent's preferences may depend on his physical location. While

geography may a�ect preferences continuously, data often come in a discretized form: the

seller may know roughly how many people live in a certain zip code and how geography

approximately a�ects preferences within an area, but not the exact location of types or the

exact way that location a�ects preferences there. Of course, she could assume a speci�c utility

function and a continuous distribution speci�c to each zip code. However, the seller might be

interested in �nding a contract that achieves robust performance given any possible within-area

variation.

Finally, outside of the problem of model uncertainty, even if the principal had access to

the correct model of the agent's behavior, when taking all factors into account, identifying the

optimal solution of the screening problem might be prohibitively di�cult. Indeed, Conitzer

and Sandholm (Theorem 1, 2004) show that �nding an exact solution to the single-agent

mechanism design problem that we consider here is NP-complete. Hence, the principal might

want to operate on the basis of a simpler model that listed fewer contingencies than what can

occur in reality. Our method allows to describe a trade-o� between adopting such a coarser

representation of the type space and facing a tolerable loss relative to operating on the full

type space, even in the large class of domains where naively relying on a slightly coarser

representation will lead to a much greater loss.

Our paper proceeds in three steps. First, we demonstrate that designing a contract as

if the principal's misspeci�ed model was correct leads to potentially large losses, and these

losses need not vanish even as the distribution of preferences described in the model gets

arbitrarily close to the true distribution of preferences. Second, we identify a simple two-step

procedure that departs from the above naive solution in a systematic way and produces a valid

approximation for a very large class of situations. Lastly, we show that any contract that is

based on the solution of the principal's model and, given our general class of problems, will

always be robust to small preference misspeci�cations must be similar to the contract identi�ed
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by this procedure. The rest of this section summarizes these results in informal terms.

To introduce our results, we �rst discuss model misspeci�cation and a way of measuring the

quality of the principal's model. In our setup, the principal's model is a �nite approximation

of the agent's true preferences, and each model type can represent a potentially uncountable

set of nearby preference pro�les. To express the distance between any two types' preferences

we consider the maximal di�erence between their respective willingnesses to pay for any given

product. We then de�ne an approximation index of a model to be a valid upper bound on the

distance between the preferences of any model type and any of the true types it represents. An

approximation index provides an informationally minimal restriction on what the true problem

might be, but ensures that the probability that the agent's true type is no further away from

a given model type than this index is at least as high as the probability that the principal's

model assigns to this model type.

For any model and any value of the approximation index, there is a very large class of

true preference pro�les, and distributions over them, whose distance from the model is weakly

less than this index - where we can also allow for a probabilistic and local interpretation of

this statement. Correspondingly, any such index also allows for the presence of unforeseen

contingencies, that is, the presence of true types whose exact preferences may not be listed in

the model's support.

In the spirit of March and Simon (1958), the near-optimal contract we are seeking can rely

only on information that is available to the principal. The menu o�ered to the agent will,

thus, depend only on the principal's misspeci�ed model and the approximation index, and on

no other information about the true types. For any true type space, the approximation loss is

given by the di�erence between the pro�t that the principal would get if she optimized over

the true type space and the pro�t she gets in this type space from the menu computed by

her model-based algorithm. A near-optimal solution ensures that, given any true environment

satisfying the approximation index, the payo� that this solution generates in that environment

is not much worse than what the principal could achieve if she knew the truth. It puts a

bound on the approximation loss and guarantees that this loss always vanishes smoothly as

the approximation index goes to zero.

Finding a near-optimal solution given model uncertainty in our strategic setting poses a

challenge that is absent in non-strategic environments. Even when all primitives are well-

behaved, the fact that the agent best-responds to the menu that the principal o�ers him

creates room for discontinuity: a small change in the menu might lead to a large change in

the principal's expected payo�. The discontinuity is heightened by the following fact. Given

the exact solution of the screening problem, the principal's payo� function is discontinuous

exactly at the equilibrium allocation: this is true because pro�t maximization implies a system

of binding incentive-compatibility constraints. Importantly, outside of the case in which pref-

erence heterogeneity is such that the single-crossing property holds and only local incentive

constraints bind, binding incentive constraints may well be non-local (Wilson, 1993; Arm-

strong, 1996; Rochet and Chon�e, 1998; Armstrong and Rochet, 1999). In the presence of such

non-local incentive constraint, a type is indi�erent between his allocation and the allocation

of another type with distinctly di�erent preferences. This fact makes dealing with preference
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misspeci�cation challenging: here, even a slight perturbation of a payo� type might lead to a

large change in equilibrium choice behavior and a�ect the principal's payo� discontinuously.

Given our setup and measure of misspeci�cation, we �rst illustrate, in the context of a

simple but economically relevant example, the pro�t loss for a principal who naively behaves

as if her misspeci�ed model was correct, (Section 3). She simply computes the model-optimal

menu and o�ers it to the agent. Here, if it is guaranteed that only local incentive constraints

bind, the principal's payo� from naively operating on the model converges to the payo� she

would realize if she optimized based on the correct description of the problem. In contrast,

if non-local incentive constraints can bind in the solution, the pro�t loss may remain strictly

positive, even as such misspeci�cation goes to zero. A naive principal, now, experiences a

potentially discontinuous loss when moving from the case where her model is exactly correct

to the case where it is only almost correct. In the presence of binding non-local constraints,

a small perturbation of preferences, relative to those described in the model, can create large

changes in equilibrium behavior and might then cause large losses for the principal.

One might try to address such non-robustness due to small preference perturbations by

�nding su�ciently restrictive conditions that guarantee that only local incentive constraints

bind. Importantly, this works well, for example, in the classic setting of Mussa and Rosen

(1978), where the single-crossing property is satis�ed and the problem of non-vanishing losses

does not arise. In contrast, when binding constraints are non-local, misspeci�cation of prefer-

ences causes the naive approach to fail. Such non-local constraints are present in a great variety

of intuitive and potentially key economic settings, and are characteristic of `multi-dimensional'

problems, e.g., Rochet and Stole, 2003.1 In fact, Section 3 illustrates that an environment in

which only local constraints bind can be very close to one in which binding constraints are

non-local, and still yield very di�erent results in terms of robustness to misspeci�cations.

Thus, our goal is not to identify a contract or a mechanism that works very well in speci�c

environments in which certain preference restrictions hold exactly, but, rather, to �nd one that

produces an acceptable outcome for a large class of screening problems even in the presence of

preference misspeci�cations { one that uses general preferences, cost functions, and type spaces.

This will ensure that the contract will be robust to violations of exact preference restrictions.

Indeed, our second result (Theorem 1) identi�es an approximation scheme that works in any

smooth type space. We call our solution concept a pro�t-participation mechanism. Given a

model type space and its corresponding approximation index, we de�ne the pro�t-participation

mechanism in two steps:

(i) The principal solves for the optimal menu, a vector of product-price pairs, based on the

set of all feasible products as if her model was true.

(ii) The principal then takes the menu obtained in the �rst step, keeps the product vector

unchanged, and modi�es the price vector. In particular, our principal willingly o�ers a

discount on each product, proportional to the pro�t she would get if that product was

1Relatedly, work by Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006) and Gershkov, Goeree, Kushnir,
Moldovanu, and Shi (2013) spot key e�ects of multi-dimensionality on the properties of optimal mechanisms.
Battaglini and Lamba (2012) consider a dynamic version of the one-dimensional screening model with imperfect
type persistence and show that non-local incentive constraints also bind there.
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sold at the model-optimal price. The size of the absolute discount, which is determined

by the mechanism, depends only on the approximation index { i.e., our measure of model

uncertainty.

Theorem 1 studies the di�erence between the expected pro�t (over the true type space)

generated by the menu obtained by our pro�t-participation mechanism and the expected pro�t

(over the true type space) generated by the menu that would be optimal given the true type

space. As the agent's preferences are potentially misspeci�ed, both of these are unknown to

the principal. We are, nevertheless, able to prove the existence of an upper bound to this

di�erence and show that it is a smooth decreasing function of the approximation index. For

any screening problem, the upper bound on the performance loss vanishes smoothly with the

square-root of the approximation index, and, hence, the loss goes to zero as the model tends

to the truth.

Pro�t participation yields a near-optimal solution in the presence of model uncertainty

because it addresses the violation of optimally binding non-local incentive constraints. By

willingly o�ering a pro�t-related discount, the principal makes the agent a shared residual

claimant of her model pro�t. This guarantees that allocations that yield more pro�t in the

model-optimal menu become relatively more attractive to the agent. A true type close to

a model type, may still not choose the product that is meant for this model type. At the

same time, even if he chooses a di�erent product from the modi�ed menu, this must now be

less damaging than before { the pro�t di�erence is bounded by an amount that is strictly

decreasing in the discount.

While a pro�t-related discount is bene�cial because it puts an upper bound on the pro�t

loss due to the discrepancy between the choice of a true type and a model type, it also has a cost

in terms of lower sale prices. The discount rate used in the pro�t-participation mechanism

strikes an optimal balance between the loss from lower prices and the gain from increased

robustness. We show that as the approximation index decreases a given upper bound on the

pro�t loss can be achieved with a lower discount, and, as the model tends to the truth, the

optimal discount goes to zero, as well.

Finally, one may wonder whether there are other ways of achieving a generally valid approx-

imation besides the one we propose. Our �nal result shows that pro�t-sharing is a necessary

feature of any valid approximation scheme within a large class of mechanisms given the gen-

eral model uncertainty, allowing for small unforeseen contingencies, we consider. This result

does not cover only the naive mechanism mentioned earlier. It applies to any model-based

pricing mechanism { namely, any scheme that begins with step (i) of the pro�t-participation

mechanism. In other words, it applies to all algorithms that start with the solution to the

principal's model and then change the model-optimal prices according to some �xed rule that

depends only on the approximation index. Theorem 2 shows that if this rule does not satisfy

pro�t participation, then it cannot be a generally robust approximation: the pro�t loss need

not vanish as the approximation index goes to zero. This means that if there are model-based

pricing mechanisms that generally do at least as well as the pro�t-participation mechanism,

they must be similar in spirit to the one we propose, in that they contain an element of

pro�t-based discounting.
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The economic insight from our result is that approximate models can play a useful role in

general contracting environments, as long as the risk of misspeci�cation is dealt with appropri-

ately. A principal who has only an imperfect model of the agent's behavior can start by taking

her simpler model at face value and �nding its solution. However, the resulting allocation is

not robust to small preference misspeci�cations. To make sure that such small errors in the

model do not lead to serious pro�t losses, the principal must act `magnanimously.' She needs

to make the agent the joint residual claimant to part of the pro�t she would make if her model

was true. Such apparent generosity takes the form of a discount that should be greater for

more-lucrative products.

The paper is structured as follows. Section 2 introduces the screening problem and de�nes

the notion of an approximation index. Section 3 describes a simple setting with heterogeneous

tastes for di�erent speci�cations of a durable good, such as a car, and demonstrates the presence

of non-vanishing losses. Section 4 discusses the positive result: we develop pro�t-participation

pricing; establish an approximation bound (Lemma 1); and show that the pro�t-participation

mechanism is a valid approximation scheme (Theorem 1) under model uncertainty. Section 5

shows that model-based mechanisms are valid approximation schemes only if they contain an

element of pro�t participation (Theorem 2). Section 6 concludes.

1.1 Literature

To the best of our knowledge, this is the �rst paper to discuss near-optimal screening when

the principal faces model uncertainty and uses a misspeci�ed type space.

There is, of course, a large body of work on approximation in single-agent problems in many

disciplines, including economics. However, as mentioned earlier, our setup presents a form of

discontinuity that is due to the strategic interaction between the principal and the agent. The

principal's optimal payo� may be discontinuous when the agent's behavior is misspeci�ed. As

our example in Section 3 illustrates, this discontinuity exists even when the agent's utility is

continuous in allocation and type.2

Near-optimal nonlinear pricing was �rst analyzed by Wilson (1993, section 8.3), who dis-

cusses the approximate optimality of multi-part tari�s (with a one-dimensional type). The

closest work in terms of approximation in mechanism design is Armstrong (1999), who studies

near-optimal nonlinear tari�s for a monopolist as the number of products goes to in�nity, un-

der the assumption that the agent's utility is additively separable across products. He shows

that the optimal mechanism can be approximated by a simple menu of two-part tari�s, in each

of which prices are proportional to marginal costs (if the agent's preferences are uncorrelated

across products, the mechanism is even simpler: a single cost-based two-part tari�). There

are a number of key di�erences between our approach and Armstrong's. Perhaps the most

important one is that his approximation moves from a simpli�cation of the contract space,

while we operate on the type space.3

2For an analysis of strategic approximation in games with symmetric information, see Reny (2012).
3See also Chu, Leslie, and Sorensen (2010) for a theoretical and empirical analysis of this problem. A

growing literature at the intersection of computer science and economics studies near-optimal mechanisms
under computational complexity (e.g., Conitzer and Sandholm, 2004) or communication complexity (e.g., Nisan
and Segal, 2006). However, the focus is on designers who face restrictions on the space of mechanisms rather
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Our work is related to Chassang (2013) and Carroll (2013). Chassang studies approximately

optimal contracts in a dynamic delegated investment problem with moral hazard, adverse

selection, and a limited liability constraint on both principal and agent. The paper identi�es

a class of calibrated contracts that perform approximately as well as a linear benchmark

contract with a number of attractive properties. The performance bound is independent of

the underlying process for returns. Carroll (2013) considers a moral hazard problem in which

the principal knows some, but not all, of the actions that are available to the agent and shows

that, under general circumstances, the only contract that is robust to all possible actions is

linear. While the present paper studies a di�erent class of problems, we also �nd that the

robust mechanism requires the principal to share a �xed proportion of her pro�t with the

agent. This share goes to zero as the principal's model becomes more and more accurate.

Also related is Bergemann and Schlag (2011), who study monopoly pricing of a single

product when the seller faces uncertainty about the distribution of buyer valuations; they show

that given a minimax regret criterion, the optimal pricing policy is stochastic. More broadly,

our paper is related to Gabaix (2014), who considers a single decision maker who faces an

explicit attention cost for each dimension to which she pays attention; thus, she decides to

pay only a form of partial attention to each given dimension based on its importance given a

quadratic utility approximation.

2 Setup

We begin by introducing the standard single-agent quasilinear mechanism design problem. Let

Y be a compact set of available alternatives. The principal selects a compact subset of the

set Y and assigns transfer prices p 2 R to each element of this subset. The resulting menu is,
thus, a set of options, i.e., a set of alternative-price pairs. We denote such a feasible menu by

M and assume that it always contains the outside option y0, whose price p0 and cost, c(y0),

are assumed to be zero. Once a menu is o�ered, the agent is asked to choose exactly one item

from it.

The principal's pro�t is the transfer price net of the cost of producing the object:

� (t; y; p) = p� c (y) ,

where the above speci�cation follows Rochet and Chon�e (1998), and much of the literature on

non-linear pricing, in that the principal's payo� does not directly depend on the agent's type.

For any set of alternatives Y; the agent's preferences are described by two independently

de�ned objects: the truth (reality) and themodel. These two will be linked by an approximation

index and will give rise to the approximation problem that we analyze.

Truth (Reality). The agent's true preferences depend on his private type t from a compact

set T � R, drawn according to an absolutely continuous density f(t).4 In particular, the

agent's real payo� is his type-dependent valuation of the object y net of the transfer price to

than on model uncertainty.
4To simplify some of the exposition, we assume a continuum of true types. Our analysis, however, would

remain valid in the case where T was a purely abstract set with only a �nite number of elements.
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the principal:

v (t; y)� p

We refer to T and v (Tv henceforth) as the true type space. Thus, the principal faces a single-

agent mechanism design problem which - given a �xed technology (Y; c) - can be summarized

by (Tv; f).
5

We assume that there is a �nite upper bound on the principal's pro�t D = �max with

D = sup
y2Y;t2T

v (t; y)� c (y) ,

and denote the supremum of the principal's expected pro�t over all feasible menus - menus

containing the outside option - by �� (Tv; f) : The principal's expected pro�t is then bounded

from below by zero and from above by �max. We scale v and c such that �max is normalized to

be 1. Let � denote the set of all true screening problems that satisfy the above assumptions.

Seller's Model. Our key point of departure is that the principal facing the above screening

problem does not have access to the true type space. Instead, she is constrained to operate on

the basis of a model that might systematically di�er from the truth. The principal's model is

a possibly incorrect representation of the agent's preferences. The model uses a discrete type

set S, where the preferences of a model type s 2 S of the agent are given by

u (s; y)� p

with associated probability distribution function g 2 �S. We refer to S and u (Su henceforth)
as the set of model types or, equivalently, as the approximate type space.6 The principal's

model is then denoted by (Su; g).

Approximation Index. We now introduce our measure of the model's quality, which

expresses the degree of misspeci�cation between the model and the truth. This measure sat-

is�es two important conditions. First, it is a simple scalar that re
ects a `distance' between

the model and the truth that will go to zero as the model tends to the truth. This will corre-

sponds to a minimal form of information that the principal can have about how misspeci�ed

her model of the agent's preferences potentially is. Second, it has a maximal-distance element,

which allows us to �nd upper bounds on the pro�t loss. This worst-case aspect of the measure

guarantees that as our measure goes to zero, any other non-maximal-distance measure would

go to zero, too.

Given any truth (Tv; f) and model (Su; g), the true approximation index "true is de�ned as

follows:

1. An approximation partition P is a �nite measurable partition of T with #S (possibly

non-connected) cells Js. Each cell is associated with a separate model type, such that

the probability mass of true types belonging to cell Js (computed according to density

f) equals the probability (according to g) of model type s. Let � be the (non-empty) set

5All our results hold if we also assume that v(t; y) is continuous in t and y.
6To simplify notation, we also assume that the same upper-bound D continues to apply here; that is,

supy2Y;s2S u(s; y)� c(y) � D = 1.
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of all approximation partitions.7

2. For each cell Js of a given P in �, de�ne the maximal utility distance between any type
and its associated model type as ds (P) = supy supt2Js ju(s; y)� v(t; y)j and de�ne the
upper bound for the whole partition as d (P) = maxs2S ds (P).

3. The true approximation index is "true = infP2� d (P). Note that "true exists and, given
that S is �nite, assuming that v is not locally constant, it is also strictly positive.

4. Let a valid approximation index " be any number strictly greater than "true. De�ne

an "-approximation partition of the truth to be any approximation partition P with

d (P) � ".

Our measure of misspeci�cation is based on the distance between preferences induced by

the sup-norm. This corresponds to the maximal di�erence between two types' respective

willingnesses to pay for any given product. Given this distance, for each type we can consider

the set of preference speci�cations that are within "-distance of this type's preferences. If there

is an assignment of true types to model types, such that, for each model type s, the (true)

probability that the agent's preferences are within "-distance of this model type's preferences is

at least g(s), the probability that the principal's model attaches to s, then an "-approximation

partition exists. Here, all true types are within "-distance of model types with the appropriate

probabilities. If such an "-approximation partition exists, we say that the model is an "-

approximation of the truth, or, alternatively, that the truth is within "-distance of the model.8

Our approximation index links probability distributions over preferences with non-common

supports. It captures the intuitive idea of wanting robustness with respect to small vanishing

misspeci�cations of the underlying preferences. Under this measure, even if the model fails to

describe the true preferences exactly, it can still be close to the truth as long as the model

preferences are close to the true preferences with the appropriate probabilities. In the next

section, we then explore the robustness of the naive mechanism with respect to this measure.

There are, of course, other metrics over probability distributions that penalize non-common

supports more. Under those, any small perturbation of the underlying preferences may corre-

spond to a larger deviation in the corresponding distribution, making robustness under such

considerations potentially easier to satisfy. Naturally, since our solution will guarantee a lim-

ited payo� loss to the principal when using any model distribution whose deviation from the

true distribution remains limited under our measure, the same limited loss applies even when

such a distribution has a di�erent distance from the truth under a di�erent metric.

In our setting, there are a �nite number of model types and a continuum of true types. This

is not essential, the logic of our results would continue to hold if T was �nite (even if it had

7Since f is absolutely continuous and T is Lebesgue measurable, it follows from Lyapunov's convexity theorem
that such a partition exists. To sketch a proof, index the elements of S by i where i 2 f1; :::;#Sg. Take i = 1,
since f is absolutely continuous, and for all measurable J(s1) � T , it follows that f(J(s1)) � f(T ), and that
we can always �nd a set J(s1) � T such f(J(s1)) = fS(s1). See Theorem 2 of Ross (2005) for a proof. Since S
is �nite, we can repeat this procedure and �nd J(s2) in the domain TnJ(s1) and, thus, proceed inductively.

8There is a connection between our measure of a true approximation index expressing the distance between
the `model' and `reality' and the L�evy-Prokhorov metric on probability distributions, Prokhorov (1956), when
considering the `model' and `reality' as probability distributions over the space of utility functions over the set
of products Y where this space is endowed with the sup norm as above.
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the same cardinality as S). Instead, what is key for our approach is that, given any positive

approximation index, the principal's model may still misspecify preferences and not contain in

its support the exact description of all preference speci�cations that can occur in reality. For

any positive " the agent's true types may lie outside of the model's support. Importantly, while

any positive approximation index allows for such preference misspeci�cation, it also bounds

its maximal possible extent. It also implies that any true type is within "-distance of a model

type. Furthermore, as " goes to zero, any di�erence between the preferences of a model type

and that of the corresponding true types vanishes.

The possibility of such small unforeseen contingencies plays a key role in our paper. Our

approach, thus, di�ers from considering a principal who knows the true state space and is

uncertain only about the prior over this state space, e.g., Gilboa and Schmeidler (1989).

Holding the set of types constant, and slightly misspecifying only probabilities per type, will not

lead to the kind of non-robustness problem we describe in the next section. Instead, it arises if

the principal cannot be certain to describe exactly all preference speci�cations (contingencies)

that can occur in reality, and, thus, her model may misspecify not only probabilities, but

preferences as well. Correspondingly, the solution that we are looking for, is then such, that

it will be robust to slight preference misspeci�cations as well.

Approximation Problem. The principal knows a misspeci�ed model along with an

approximation index ". The goal, then, is to obtain a solution that is robust to any possible

misspeci�cation satisfying this approximation index. Such a solution guarantees that for any

problem that is within "-distance of the principal's model, the principal faces a limited loss. In

particular, that given any such (Tv; f), the di�erence between the principal's maximal expected

payo� given (Tv; f) and the expected payo� she receives using her model-based algorithm when

the true environment is (Tv; f) is bounded from above by some function of ", with the property

that the bound smoothly goes to zero as "! 0.9

2.1 Discussion

Our principal is constrained to operate on a misspeci�ed model. Nevertheless, she is willing

to take a stand on how far her model could be from the truth. The principal does not know

(Tv; f), but knows that her representation (Su; g) thereof is such that "true � ". She knows

that her model may fail to list contingencies that can occur in reality, but cannot specify which

ones. The approximation index imposes an informationally minimal restriction on what the

true type space could be. For any given model, there is a potentially very large class of true

preference speci�cations and distributions over these that satisfy the approximation index.10

Why does the principal use an approximate model? In many situations, her understanding

of the agent's behavior might not match the agent's true behavior exactly. The principal might

9The analysis can be extended to situations in which the principal is not fully certain that "true � ". If the
principal thinks that there is a probability � that "true > ", one can modify the upper bound to the loss by
adding a worst-case scenario (a pro�t of zero) that occurs with probability �. In the same spirit, one can extend
the analysis to cases in which the principal faces more local model uncertainty, and, hence, her con�dence varies
locally, allowing for di�erent indices to apply to di�erent regions of the preference space.
10Related uncertainty is considered by Bergemann and Morris (2005) in a multi-agent setting, but there,

uncertainty concerns the agents' beliefs and higher-order beliefs of each other.
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not be able to surely and correctly describe all contingencies that could occur in reality. In

other words, she may face unforeseen contingencies. She may operate under weaker epistemic

conditions where she cannot be certain to describe the environment exactly. Instead, her

representation of the environment may misspecify types or lump di�erent types together. At

the same time, she knows an upper bound on how misspeci�ed her model might be, that is,

she knows an approximation index ".

The complexity of the problem provides an important reason for operating on a coarser,

and, hence, misspeci�ed model. Even if the principal could correctly enlist all the possible

contingencies that can occur in reality this may be prohibitively costly. Speci�cally, as Conitzer

and Sandholm (2004) show, the screening problem that we study here is NP-complete. In the

absence of an algorithm that can identify a solution for the screening problem that is polynomial

in the size of the input, operating on richer and richer type spaces increases the computational

(and communicational) burden associated with the mechanism very fast.

To illustrate the complexity of the problem, consider a �nite T and Y , and suppose that

#Y = �#T , where � > 1 and # refers to the cardinality of the set. Note, that if the

principal had access to the truth under the Revelation Principle, she could always solve the

mechanism design problem in two stages: (i) for each possible allocation of alternatives to

types, see if it is implementable, and, if it is, compute the pro�t-maximizing price vector; (ii)

given the maximized pro�t values in (i), choose the allocation with the highest pro�t. While

each step in (i) is a linear program, the number of allocations that we must consider in (i)

is as high as #Y #T . Instead, the reduction in complexity when moving from a larger set of

types #T to a smaller set of types #S, as in our geographic example, #Y #T �#Y #S , can
be very substantial. Hence, a principal who operates on a coarser model which lists a smaller

number of distinct preference speci�cations (types) can greatly reduce the burden associated

with �nding an acceptable solution. For a more detailed formal discussion of the motivation

in terms of computational complexity, see Madar�asz and Prat (2010).

In a variety of settings, the principal may be able to improve the quality of her model at

some cost. For instance, in the geographical example, she could obtain the exact location of

agents. She could also decide to expand the set of preference speci�cations considered in a way

that reduced the extent of potential misspeci�cation. Our result can help the principal decide

whether to incur the additional cost: the bound on the pro�t loss that our paper identi�es

provides a measure of the potential bene�t of improving the model. We return to these points

in Section 4.

3 Example

We now present an example to illustrate the problem that can arise when the principal utilizes

a (slightly) misspeci�ed model. This example also allows us to provide intuition about the

source of this problem and why our solution concept of a pro�t-participation mechanism,

formally introduced in Section 4, will address it, thus, motivating Theorems 1 and 2.

Consider a monopolist selling di�erent speci�cations of a durable product - e.g., a variety

of cars - to consumers with unobserved preference heterogeneity. The agent's true type t is

11



drawn uniformly from T = [0; 1].11 The agent's true valuation of a product y 2 [0; 1], each
produced by the monopolist at cost 0, is given by v (t; y) = maxfw (t; y) ; �w (t)g:

To motivate these preferences, note that a consumer may need a car, any kind of car, for a

practical reason such as commuting to work. This is captured by the `pragmatic' type-speci�c

value �w (t). At the same time, he may also have a taste for a particular model y, maybe

a sportscar or a 4x4, so he is willing to pay more for a subset of cars that have additional

`aesthetic' value, w (t; y) > �w (t). Speci�cally, assume that

w(t; y) = (b+ 1)t+minf0; a (y � t)g and �w (t) = bt+ k,

where k > 0, a > 0 and b 2 (0; 1). The pragmatic value of a car is bt+k. The aesthetic value is
increasing in quality y, for y < t, and stays constant thereafter. Both the pragmatic value and

the best aesthetic value are increasing in the agent's type, though the latter increases faster.
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Figure 1

Figure 1 above depicts the valuation of three possible types t and two possible values of a.

Lower types value the product only for pragmatic reasons. Higher types are willing to pay

more for su�ciently higher qualities, but very low quality products give them only pragmatic

value. (For all �gures in this section, we picked k = 1=3 and b = 1=2.)

A key feature of this example is that the single-crossing condition on preferences

v
�
t00; y00

�
� v

�
t00; y0

�
� v

�
t0; y00

�
� v

�
t0; y0

�
for all t00 > t0 and y00 > y0

11The fact that the set of true types is a continuum is not necessary. The same points discussed here can
hold even if the cardinality of the model set and the true set are the same.
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holds if a < 1; and is violated if a > 1.12 To see this, note that for any y, the derivative vy (t; y)

(where it exists) is given by

a if y 2
�
(a� 1) t+ k

a
; t

�
and 0 otherwise.

If a < 1, the interval
�
(a�1)t+k

a ; t
�
expands in both directions as t increases, which implies

supermodularity.13 If a > 1, it shifts to the right. The consequences of slight misspeci�cation

in this section hinge on whether the above single crossing is violated or satis�ed.

We begin by showing that if the single-crossing condition is violated, operating on a mis-

speci�ed model leads to large and non-vanishing losses. Consider the following model: let

Sm be a discrete set of types f0; 1=m; 2=m; ::; 1g, each with equal probability, and preferences
v(s; y).14 Here, as m increases, the true approximation index decreases, and goes to zero as

m goes to in�nity. The next claim describes the optimal contract for the model for a set of

speci�cations.

Claim 1 Suppose that a > 1 and 2b
1+2b < k < b. The optimal contract for S

m involves choosing

thresholds 0 � s1 � s2 < 1. Types below s1 are excluded. Types s 2 [s1; s2) receive �y = 0 at
price k + bs1. Types s � s2 receive y(s) = s at price p (s) = s+ bs1.

In the solution to Sm, low types are excluded; intermediate types receive the `pragmatic'

value of the car; high types receive products best tailored to their preferences.15 Furthermore,

(almost) all served types receive positive rent (increasing in type). In particular, each type s

belonging to [s2; 1] faces a binding non-local incentive-compatibility constraint: he is indi�erent

between y = s at price s+bs1, and receiving only the pragmatic-value (�y = 0 ) at price k+bs1.

Here, local constraints are not binding. This is a crucial observation because it means that a

slight misspeci�cation of preferences may lead to large deviations.

What happens now when this menu, which is optimal for the model type space Sm is

actually o�ered to the true type space T? To see this, consider two contiguous high (model)

types, s00 > s0 > s2. Take an unmodeled type in-between, t 2 (s0; s00). This type t receives a
net payo� of b (t� s1) if he buys �y providing only the pragmatic value. Hence, he will never
choose y (s0), since

(1 + b) t+minf0; a
�
s0 � t

�
g � p

�
s0
�
= b (t� s1)� (a� 1)

�
t� s0

�
< b (t� s1) .

12Note that the single-crossing condition also covers the outside option y0. However, as the set of product y
is [0; 1], we must assign a conventional negative value to the outside option { for instance, y0 = �1. We then
assume that the set of possible products is f�1g [ [0; 1], and we set v (t;�1) = 0 for all t. The condition holds
as stated in the text.
13The single-crossing condition is assumed when solving standard non-linear pricing problems (Wilson, 1993,

p. 71) in order to guarantee that only local downward incentive-compatibility constraints are binding.
14One might be tempted to say that the principal who knows Sm will correctly \guess" the exact shape of

v (y; t) correctly. Of course, given model uncertainty, that is generally not possible for an unknown v (y; �), and
there are a vast number of di�erent preferences speci�cations close to those described in the model.
15For m not too small, 0 < s1 holds.
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Similarly, he will never choose y (s00) since

(1 + b) t+minf0; a
�
s00 � t

�
g � p

�
s00
�
= b (t� s1)�

�
s00 � t

�
< b (t� s1) .

As a consequence, all true types not equal to model types choose the pragmatic product �y and

pay a price of k+ bs1 instead of s+ bs1. Formally, let �T (S
m) be the principal's true expected

pro�t when she uses { on the true type space (Tv; f) { the menu that is optimal for S
m.

Claim 2 If a > 1 and 2b
1+2b < k < b, then �

� (Tv; f)� limm!1�T (Sm) = (1�k)2
2 > 0.

Figure 2 below illustrates the above claim for a = 2. Dots represents the principal's

expected pro�t if she uses a model with m + 1 types, the solid line the truly optimal pro�t.

(As m!1, the pro�t loss remains roughly 40%:)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

m

profit

Figure 2

The above fact derives from the joint presence of preference misspeci�cation and binding

non-local constraints. To see this even more clearly, consider the case in which a < 1. Here,

the single-crossing condition holds and local incentive-compatibility constraints bind. Despite

preference misspeci�cation, the naive mechanism is now a valid approximation.

Claim 3 If a < 1, then �� (Tv; f)� limm!1�T (Sm) = 0.

To see the logic, consider a true type t between two adjacent model types s0 and s00, which

are o�ered di�erent allocations (y0; p0) and (y00; p00) in the solution. Given the single-crossing

property, this type t will choose one of these two allocations over any other allocation. Because

local downward constraints bind, this then guarantees that type s00 will become indi�erent

between (y00; p00) and (y0; p0), and types between s00 and s00 would choose (y0; p0) over any other

allocation. The principal does experience a loss due to misspeci�cation, but this loss is now

bounded from above by the preference distance between model types and true types and,

therefore, vanishes as that distance between the model and the truth goes to zero.

4 Pro�t-Participation Mechanism

We now turn to the second result of our paper: we can always obtain a valid approximation by

employing a pro�t-participation mechanism (PPM). The section begins with an intermediate
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result (Lemma 1) on pro�t-participation discounting. We then prove the main result (Theorem

1) and conclude with some further observations.

4.1 Pro�t-Participation Pricing

We now introduce the key component of our solution concept, Pro�t-Participation Pricing,

and present an intermediate result that bounds the pro�t loss for the principal.

First, we de�ne a notion of expected pro�t that can be applied to both the truth and the

model. Let us de�ne it for the model �rst. It is the expected pro�t that the principal would

receive if her model was true. Hold the set of products Y and the cost function c constant,

and, for any menu M = fyk; pkgk and model (Su; g), de�ne

� (Su; g;M) =
X
s2Su

g (s) (p (y (s))� c (y (s)));

where (y (s) ; p(y (s))) is the allocation selected by type s from M , which, for any s 2 S, is
given by

u (s; y (s))� p (y (s)) � u (s; y)� p(y) for all (y; p (y)) 2M

with the proviso that, whenever the agent is indi�erent between two or more allocations, he

chooses one that yields the highest pro�t to the principal.

An identical de�nition holds for the truth, (allowing for the fact that f is a density) and

replacing (Su; g) with (Tv; f). Equivalently, � (Tv; f;M) denotes the expected pro�t that menu

M will generate given the true type distribution.16

Let us now de�ne Pro�t-Participation Pricing.

De�nition 1 For any menu M = fyk; pkgk, let the menu derived by Pro�t-Participation
Pricing be ~M = fyk; ~pkgk, where the products are unchanged and the new price vector ~p(yk) is
given by

~p(yk) = p(yk)� � (p(yk)� c (y)) :

for some � > 0.

In words, using pro�t-participation pricing, the principal leaves the product component of

a menu �xed, but she gives a speci�c pro�t-based discount on all products using a constant

fraction. To highlight this, note that the above transformation can be equivalently expressed

as:
new pro�tz }| {
~p (y)� c (y) = (1� �)

old pro�tz }| {
(p (y)� c (y)) .

In the rest of the analysis below, we �x the principal's model: Su with associated probability

distribution g, the cost function c, and an approximation index ".

16At this stage, there are a number of equivalent ways to express the menu, the agent's choice, and the
principal's expected pro�t. Perhaps the most standard one is based on the use of a direct mechanism. For
reasons that will become clear later, we prefer to use an indirect mechanism formulation in which allocations
are indexed by the product.
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We now turn to an approximation lemma. For any truth and any model with an associated

approximation index, pick any mechanism that contains the outside option. Using pro�t-

participation pricing the principal can bound the di�erence between the principal's expected

payo� generated by this mechanism under her model and the expected pro�t generated by the

pro�t-participation discounted version of her menu given the agent's true behavior:

Lemma 1 Consider a model (Su; g) with an approximation index ", and let M be any menu.

Let ~M be the menu derived from M through Pro�t Participation Pricing with � =
p
2". Then,

for any truth (Tv; f) satisfying the approximation index:

�(Su; g;M)��(Tv; f; ~M) � 2
p
2":

Proof. See Appendix

The lemma contains the main intuition for why this approximation scheme works. Pro�t

participation puts a bound on the loss that the principal su�ers if the type space is not what she

thought it was. By o�ering pro�t-based price discounts, the principal ensures that allocations

that generate higher pro�t for her become relatively more attractive to the agent. Pro�t-

Participation Pricing is, in e�ect, a system of local incentives. The agent becomes a sharing

residual claimant to the principal's pro�t, and now types near model types are encouraged to

choose similarly high-margin allocations as the model types.

A key feature of pro�t-participation pricing is that there is no guarantee that true types

close to a model type will choose in the same way as their respective model types. Moreover,

the principal still does not know how often di�erent allocations will be chosen by the agent.

In fact, she cannot even guarantee that, when o�ered the discounted menu, model types will

choose the allocation they were choosing previously. Crucially, however, the principal knows

that whichever allocation a true type chooses from the discounted menu, the deviation from

the allocation chosen by the corresponding model type in the undiscounted menu cannot be

very damaging to her pro�t.

The existence of this bound is based on a trade-o� introduced by Pro�t-Participation Pric-

ing. First, o�ering a price discount leads to a loss to the principal proportional to � . Second,

the greater is the pro�t-based discount, the smaller is the potential loss that the principal

might need to su�er due to a deviation. The maximal loss from deviation is bounded by 2"
� .

To see this, note that, given a revealed preference argument, twice the approximation index

puts a bound on the maximal price di�erence between the allocation chosen by a model type

and the one chosen by a nearby true type. A pro�t-based discount links this price di�erence

to the di�erence between the pro�ts these di�erent allocations deliver to the principal, and,

at the same time, lowers a true agent type's maximal incentive to deviate to the allocation

that provides the lower pro�t. Given the properties of an approximation index, the greater is

this percentage pro�t-based discount, the lower is the loss in expected pro�ts which can result

from the di�erence between the choices of the true types and the choices of the model types.

Setting � =
p
2" then optimizes this trade-o� between the loss from lower prices and the loss

from deviations and establishes the above upper bound.17

17There is an interesting connection between the proof of Lemma 1 and Theorem 21 of Balcan et al (2008).
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4.2 Pro�t-Participation Mechanism

So far, we have not mentioned optimality. We have not chosen the set of alternatives and

prices with expected pro�t in mind; rather, we have considered any menu. We now introduce

our solution concept: we combine �nding the optimal menu given the principal's model with

modifying such a menu via pro�t-participation pricing.

De�nition 2 The pro�t-participation mechanism (PPM) consists of the following steps:

(i) Find an optimal menu M̂ for the screening problem de�ned by Su; g; Y ,c;

(ii) apply pro�t-participation pricing to M̂ to obtain a discounted menu ~M .

PPM takes the pricing problem described in Section 2 as its input and outputs a menu

~M . Our focus now is on the pro�t di�erence comparing two scenarios: the principal's (un-

known) maximal expected pro�t given the true problem, and the principal's true, but also

unknown, expected pro�t if she o�ers ~M to the true type space. This comparison captures

the approximation loss.

Formally, take any M� containing the outside option, including, if it exists, the menu that

is optimal for the true type space.

De�nition 3 For any M�, let the PPM loss be �(Tv; f;M
�)��(Tv; f; ~M).

If there exists an optimal menu for the true type space { namely, if (Y; c; Tv; f) is such that

there exists a mechanism that maximizes the principal's expected payo� { then the de�nition

above includes the optimal menu, and the PPM loss for any menu is bounded above by the

PPM loss for the truly optimal menu.

We can now state the main result of the paper in terms of the known parameters of our

setup. Note that the theorem does not require the principal to know M�, the true expected

pro�t that she could achieve given this mechanism, or the true expected pro�t given menu ~M:

Theorem 1 The PPM loss for any M� is always bounded from above by 4
p
2".

Proof. See Appendix

The proof of the theorem constructs the bound to the PPM loss by applying Lemma 1

twice. In the �rst application, it bounds the di�erence between the principal's true expected

pro�t from any menu M and the maximal model-pro�t, given any model that satis�es the

approximation index ". The second application bounds the di�erence between the maximal

model-pro�t and the pro�t in the true environment from the menu identi�ed by PPM. Taken

together, they bound the di�erence between the truly maximal pro�t and the pro�t obtained

with the discounted version of the model-optimal menu.

The above bound is valid without requiring the principal to know anything beyond her

model and the upper bound to the inaccuracy of the model: a valid approximation index

In their setup the principal searches for the optimal mechanism on a discretized set of prices. One of the steps
in the proof consists in analyzing the e�ect of o�ering to the agent a discretized price vector and putting a
bound on the price loss that the principal may experience because the agent chooses a di�erent product.
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". Intuitively, a small known change in the model would have a small e�ect on the value of

the maximal pro�t. Lemma 1 ensures that PPM yields a mechanism that guarantees a good

approximation, even if this change in the model is unknown.

In sum, clearly the most robust mechanism the principal could o�er is the \sell-out" mech-

anism, in which the agent is charged the principal's cost for any bundle he might choose.

However, in this mechanism the principal can extract pro�t only by using a lump-sum par-

ticipation fee, but this fee cannot exceed the surplus available on any type in order to ensure

that all surplus-generating types participate. On the other hand, if the mechanism is designed

to maximize the expected pro�t for some model, but the model misspeci�es utility functions

of the agents' types even slightly, the resulting pro�t could be much lower due to those types

choosing very di�erent bundles from the menu. PPM establishes a happy medium between

these extremes: adding a small \pro�t-sharing" discount to the model-optimal mechanism

ensures the robustness to small misspeci�cations of the model.

4.3 Discussion

Theorem 1 o�ers two novel lessons. First, even if the principal faces model uncertainty pro�t

participation o�ers a simple and economically intuitive way of arriving at a menu that guaran-

tees a payo� that is demonstrably close to the truly maximal payo�. Second, the quality of this

approximation depends only on the quality of the model. The more con�dent the principal is

about the quality of her model, the more she can behave as if her model was correct.

The fact that Theorem 1 imposes an upper bound on the loss due to misspeci�cation

has a worst-case feel, akin to maxmin expected utility, e.g., Gilboa and Schmeidler (1989).

Note, however, that we are not o�ering an optimal mechanism for such an ambiguity-averse

principal. Such a principal knows the set of true states of the world and faces uncertainty only

over the right distribution over them. In contrast, as mentioned, our principal faces unforeseen

contingencies and cannot be sure to enlist all states of the world correctly. We, thus, o�er a

near-optimal mechanism for an expected payo�-maximizing principal with the property that

it is robust to all small misspeci�cations of the states of the world. For any true environment

that is su�ciently close to the principal's model, but may contain slightly di�erence preference

speci�cations than those listed in the model, the pro�t guaranteed by PPM in that environment

is close to what the maximal expected pro�t would be in that environment.

Finally, by imposing some minimal structure on the true type space - Lipschitz continuity of

the agent's utility in his Euclidean type - PPM can also reduce the computational complexity of

contracting. As mentioned, Conitzer and Sandholm (2004) show that �nding an exact solution

to the single-agent mechanism design problem we consider here is NP-complete. Our result

suggests a simple way of �nding an approximate solution. Partition the agent's type space: the

approximation index is then given by the maximal cell size and the Lipschitz constant. Select

the preferences of any single type from the cell to be its representative type. Using this sparse

and misspeci�ed model, the principal can obtain a bound to the approximation loss by using

Theorem 1. This way, PPM allows the principal to use a much simpler, albeit misspeci�ed,

model that operates on the basis of a potentially much smaller set of preference speci�cations
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and, thus, reduce the cost associated with computational (or communicational) complexity.18

If the principal were to use this model naively, it might generate discontinuous losses. Under

pro�t-participation, there is a simple smooth trade-o� between the size of the approximation

loss and how complex the model needs to be to generate robust revenue.

5 Alternative Mechanisms

As we have shown, PPM is a valid approximation scheme, that is, it guarantees that the

losses go to zero as model uncertainty vanishes, but are there other approximation schemes

that exhibit perform equally well or better? To address this question, we �rst must note that

the performance of any approximation scheme depends on the class of problems to which it

is applied. According to the No Free Lunch Theorem of Optimization, elevated performance

over one class of problems tends to be o�set by performance over another class (Wolpert

and Macready, 1997). The more prior information the principal has, the more tailored the

mechanism can be. For more restrictive classes of problems (e.g., one-dimensional problems

with the standard regularity conditions), it is easy to think of mechanisms that may perform

better than PPM. In the presence of the model uncertainty we consider, however, a more

pertinent question is whether there are other mechanisms that are robust, given the general

class of problems we consider.

Since our results apply to a large class of screening problems, we now ask whether other

mechanisms besides PPM work for this whole class of problems. We begin by de�ning the

class of mechanisms that are based on the principal's model and then modify prices based on

some rule, given the solution to this model:

De�nition 4 A mechanism is model-based if it can be represented as a two-step process that

(i) �rst �nds an optimal menu M̂ for the screening problem de�ned by Su; g; Y ,c; and (ii) then

modi�es the price vector p(y) according to some function

	(p(y); c(y); ") � ~p(y).

The function 	 obviously does not operate on the price of the outside option y0, which is

a primitive of the problem. We focus our attention on mechanisms that return minimal exact

solutions to the principal's model, that is, solutions where all alternatives o�ered are bought

with positive probability given the principal's model. Such a 	 can encompass a number of

mechanisms. In the naive one, the principal takes the model seriously tout court, without

modifying prices.

Example 1 In the naive mechanism,

	(p(y); c(y); ") = p(y):

18For a treatment on the corresponding computational and communicational complexity and details on the
interpretation of PPM as a polynomial time approximation scheme (PTAS), see Proposition 1 of Section 5 in
Madar�asz and Prat (2010).
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In the 
at discount mechanism, the principal acts magnanimously by discounting prices,

but her generosity is not related to model pro�ts.

Example 2 In the 
at discount mechanism,

	(p(y); c(y); ") = p(y)� �;

for some � > 0, which may depend on ".

In the proportional discount mechanism, the principal acts magnanimously by discounting

prices proportionally.

Example 3 In the proportional discount mechanism,

	(p(y); c(y); ") = (1� �)p(y),

for some � > 0, which may depend on ".

Finally, we can also represent the PPM in this notation:

Example 4 In PPM,

	(p(y); c(y); ") = (1� �) p(y) + �c(y);

for some � > 0, which may depend on ".

The following de�nition is aimed at distinguishing between model-based mechanisms de-

pending on whether or not they satisfy a condition of pro�t participation. This condition,

stated below, is more permissive than our speci�c PPM, that is, it can be satis�ed by mecha-

nisms that do not exactly match PPM. Nevertheless, it is su�ciently restrictive to rule out a

large class of mechanisms that systematically di�er from PPM.

A perturbation satis�es our condition of pro�t participation when the price discount it o�ers

on a product-price pair is always strictly increasing in the associated pro�t. In particular, a

function 	 satis�es our condition of pro�t participation as long as there do not exist distinct

cost levels at which a higher-priced but lower-pro�t allocation is always discounted weakly

more than a lower-priced but higher-pro�t allocation.

De�nition 5 A function 	 satis�es pro�t participation for a given ", if there are no c00 > c0

such that for all p00and p0,

if 0 < p00 � p0 < c00 � c0, then p00 �	(p00; c00; ") � p0 �	(p0; c0; "). (1)

The above de�nition points to the existence of only two distinct cost levels where, for

a positive range of prices, the discount is weakly decreasing, instead of strictly increasing,

in pro�t. Speci�cally, at these cost levels, a higher-priced allocation associated with a lower

pro�t is always discounted weakly more than a lower-priced allocation associated with a higher

20



pro�t.19 Hence, the logic of pro�t participation is systematically violated; for a positive range

of prices, given by the set of all prices that satisfy the condition 0 < p00 � p0 < c00 � c0, the
discount is weakly decreasing in pro�t. If such cost levels exist for a given 	 and ", we say

that 	 does not satisfy pro�t participation at this ".

Note that none of the above mechanisms, except for PPM, satisfy pro�t-participation for

any given ". Consider, for example, the naive mechanism. Here,

p00 �	
�
p00; c00; "

�
= 0 � 0 = p0 �	(p0; c0; ")

always holds, since the discount on any price is zero. Thus, a higher-pro�t allocation is

always discounted weakly less than a lower-pro�t allocation. More generally, in the �rst three

examples, the discount is always non-decreasing in price and is independent of the cost. Thus,

given any c00 > c0, a higher-pro�t allocation associated with a lower price is always discounted

(at least weakly) less than a lower-pro�t allocation associated with a higher price. In contrast,

this is never true under PPM. Here, the discount is always strictly increasing in pro�t, and,

hence, PPM satis�es pro�t participation for any approximation index ".20

We now show that a model-based mechanism that does not satisfy pro�t participation

cannot guarantee that losses vanish as the model tends to the truth. To state this formally,

we need to introduce some additional notation.

Fix a truth (Tv; f) and an approximation index ". First, consider the collection of all models

that are "-approximations of this truth. We denote this collection of models by �(Tv; f; ").

Now, �x a modi�er 	, and consider all model-based mechanisms for which it is true that,

each mechanism is (i) based on an optimal menu for a model in �(Tv; f; ") which is (ii)

modi�ed by 	. We denote the set of all resulting menus by �(Tv; f; ";	). We can then

express the supremum of the di�erence between the principal's truly maximal pro�t and the

pro�t generated by such a menu. Formally, we can express this maximal loss as

L(Tv; f; ";	) = sup
M2�(Tv ;f;";	):

��(Tv; f)��(Tv; f;M).

We already showed in Section 3 that this maximal loss can be very signi�cant, for any

given ", when 	 is the naive mechanism. With this new notation, Theorem 1 stated that if

	 is the one used in PPM, then this maximal loss always decreases in ", and goes to zero as

" ! 0, for any true problem (Tv;f). In other words, if 	 is PPM, the principal is guaranteed

that this maximal loss vanishes as her model becomes more and more precise, for any possible

true problem. We now show that if 	 does not satisfy pro�t participation, this can no longer

hold.

Theorem 2 Fix any 	 and " > 0. If 	 does not satisfy pro�t participation for this ", then

there exists (Tv; f) 2 � such that L(Tv; f; ";	) � 1=8.
19Note that given y0 and y00, the condition 0 < p(y00)� p(y0) < c(y00)� c(y0) implies both that p(y00) > p(y0)

and that �(y00) < �(y0).
20Formally, if 0 < p00 � p0 < c00 � c0, then p00 �	(p00; c00; ") = �(p00 � c00) < �(p0 � c0) = p0 �	(p0; c0; ") for any

� > 0.
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Proof. See Appendix

The theorem implies that given any 	 that does not satisfy pro�t participation, one can

�nd a problem (in fact, a class of problems) for which the share of pro�t lost because of 	

stays strictly bounded away from zero, even if the principal uses a model that is arbitrarily

close to the truth.

The above statement is a natural counterpart to Theorem 1. While Theorem 1 shows that

PPM works for any type space, the above result claims that model-based mechanisms that do

not satisfy pro�t participation do not share this property. Given a discounting rule, if this rule

violates pro�t participation, there is always a true environment where there can be signi�cant

losses, even if the principal's model is arbitrarily close to this truth. Theorem 2 implies that

if a mechanism over the set of all admissible problems performs as well as PPM, it must be

either very similar to PPM, in that it satis�es pro�t participation, or very di�erent in that it

is not even model-based.

The proof proceeds by constructing a straightforward class of problems with binding non-

local constraints. We �x a true environment where the product space includes a generic product

produced at a higher cost and a continuum of speci�c personalized products produced at a

lower cost. In the solution to the truth, a non-zero measure of types face a binding non-local

incentive-compatibility constraint. This IC constraint is between a lower-priced personalized

alternative and the higher-priced generic alternative, with the pro�t margin on the former

being higher than on the latter. The fact that a model-based mechanism does not satisfy the

pro�t participation condition implies, here, that the price of the generic good is discounted

more. Hence, when perturbing preferences even slightly, a perturbed type strictly prefers the

generic alternative to the model type's allocation. As in Section 3, this creates a discrete pro�t

loss for the principal for any degree of preference misspeci�cation as long as the discounting

rule violates pro�t participation.

The proof of Theorem 2 is based on constructing a setting where the violation of the pro�t

participation condition, in the joint presence of preference misspeci�cations and binding non-

local constraints, leads to non-vanishing losses. Clearly, many other settings with the same

feature can be identi�ed. Such cases could be associated with an even higher absolute pro�t

loss than identi�ed in the speci�c counter-example for the proof. The result, however, does not

establish how endemic non-local incentive constraints are in screening problems. We believe

that such non-local constraints are present in a wide range of serious economic settings, e.g., the

`multi-dimensional' screening problems in Rochet and Chon�e (1998). Establishing more precise

claims about prevalence, however, requires future research, both theoretical and empirical.

The theorem uses the fact that in many settings the solution to a screening problem involves

binding non-local incentive constraints. As mentioned, such a feature is not present in the

classic setup of Mussa and Rosen (1978) where the single-crossing property holds and binding

constraints are local. However, as we argued in Section 3, there are many economically relevant

screening problems that involve binding non-local constraints. Here, Theorem 2 provides useful

general guidance in the presence of model uncertainty.

The above result also points to three interesting questions. Are there other pro�t-participation

mechanisms that perform better than PPM? Are there non-model-based mechanisms that per-
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form better than PPM? Are there not-overly-restrictive classes of screening problems where

the Naive Mechanism is guaranteed to be a valid approximation? We also leave these questions

to future research.

6 Conclusion

We consider a principal who faces model uncertainty and unforeseen contingencies and is

constrained to operate on a potentially misspeci�ed model of the agent's preferences. We

characterize the upper bound on the expected loss that such a principal incurs as long as she

uses a pro�t-participation mechanism. We show that this loss vanishes smoothly as the model

type space tends to the true one, and also prove that this is not true for similar model-based

mechanisms that do not contain an element of pro�t participation.

The economic insight of this paper is that a principal who operates on the basis of only

an approximate type space cannot just ignore the misspeci�cation error, but she can �nd a

simple and economically intuitive way to limit the damage from using an incorrect model.

One strength of our approach is that it does not make speci�c functional or distributional

assumptions, and it applies to settings in which the potential allocation space is very large.

It would be interesting to know whether the same economic insight holds beyond our setup.

As mentioned, future research can investigate whether there are non-model-based mechanisms

that perform better than PPM, or specify conditions under which the Naive Mechanism is

robust to model uncertainty.

Our analysis also has a number of important limitations that future research could address.

First, the principal's cost depended only on the product characteristics, but not on the type

of the agent - as in insurance problems. The current approach cannot directly be extended to

type-dependent costs because the pro�t-participation scheme assumes that pro�t depends only

on the product and the price. It would be interesting to extend it by allowing pro�t to depend

on a conjecture over what types buy the product. Second, we assumed that there is only one

agent (or a continuum thereof). It would be interesting to extend the analysis and explore

the role of pro�t participation in implementing near-optimal social choice correspondences

in environments with multiple agents, perhaps linking it to notions of robustness to small

perturbations in such contexts (Meyer-ter-Vehn and Morris, 2011). Third, one could explore

environments in which payo�s are not quasilinear. Finally, it may be interesting to see use

the local misspeci�cation approach in other agency problems besides nonlinear pricing. In this

vein, Carroll and Meng (forthcoming) extend this pro�t participation approach to a moral

hazard problem where the principal's model may be slightly misspeci�ed.

7 Appendix

Proof of Claim 1. Suppose that a > 1. Consider �rst the set of possible menus where all

types are served. The lowest type can be charged, at most, k: Since for all s < k the pragmatic

value is greater than the best aesthetic value, these will buy the same car as the lowest type

and pay k.
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For any type s � k, the upper bound to the price the principal can charge a type s equals s:
the best aesthetic value for this type, (1 + b) s, minus the net utility he would get if he bought

the cheapest car o�ered to the lowest type, bs+ k� k. The upper bound is therefore simply s.
If a menu achieves that upper bound, we know it is optimal among the class of menus where

all types are served. Suppose that every s � k is o�ered his ideal product y = s at price

p = s. This would achieve the bound and guarantee that type s preferred his allocation to

the outside option, as well as, to a car with only pragmatic value. We then need to check that

it is also incentive-compatible with respect to all other allocations assigned to types above k.

Type s � k prefers his allocation to the allocation assigned to a di�erent type s0 � k if

(1 + b) s� s � max
�
(1 + b) s+min

�
0; a

�
s0 � s

��
; bs+ k

�
� s0.

Note, we already know that s prefers his own allocation to a pragmatic car, hence, we can

exclude that he would prefer the allocation meant for s0 for its pragmatic value bs + k. This

fact, together with other rearrangements, leads to:

s0 � s � min
�
0; a

�
s0 � s

��
If s0 � s, the inequality is satis�ed. If s0 < s, the inequality becomes (a� 1) (s� s0) � 0,

which is satis�ed if a > 1, which is what we have assumed.

Hence, we found the optimal menu in case all types are served. Its expected pro�t (in the

model world Sm) is:

1

m+ 1

mX
j=0

max

�
k;
j

m

�
=

1

m+ 1

0@k(int (km) + 1) + mX
j=int(km)+1

j

m

1A .
If the principal excludes types below m0

m , she can raise the price of the pragmatic product from

k to k + bs �m and the price of all speci�c goods from s to s+ bs �m, where s �m =
m0
m . The pro�t

then, assuming that s �m � k, becomes

1

m+ 1

0@�k + bm0

m

�
(int (km) + 1�m0) +

mX
j=int(km)+1

�
j

m
+ b

m0

m

�1A .
Disregarding integer constraints, the optimal m0 maximizes:�

k + b
m0

m

�
(km+ 1�m0) + (m� km) b

m0

m
,

with �rst-order condition:

m0

m
=
b� k
2b

+
1

2m
.

The optimal m0
m is positive, but lower than k if 2b

1+2b < k < b, which is what we assumed. Once

integer constraints are considered, the optimal m0 is then either the integer (weakly) above or

below b�k
2b m+

1
2 .

24



To sum up, under these parameter values, the optimal menu for the model Sm can be

described as follows. Types are divided into three disjoint sets: low types S1, medium types

S2 and high types S3. The low types are excluded. The medium types all buy the same

product �y (without loss of generality assume this is the lowest product �y = 0) at price k+ bs1,

where s1 is the lowest element of S2. Every type in S3 is o�ered his ideal product y (s) = s at

price p (s) = s+ bs1

Proof of Claim 2. Given the argument above, for any Sm, the expected pro�t that the

principal obtains if she o�ers the menu that is optimal for Sm to the true type T is simply

the price of the pragmatic good times the share of types served. Recall, that the optimal m0

is given by the integer (weakly) above or the integer below b�k
2b m + 1

2 . Therefore, the �rst

non-excluded type is:

s1 =
m0

m
2
(
int
�
b�k
2b m+

1
2

�
m

;
int
�
b�k
2b m+

1
2

�
+ 1

m

)
,

and the price of the pragmatic product is:

p1 = k + bs1 2
(
k + b

int
�
b�k
2b m+

1
2

�
m

; k + b
int
�
b�k
2b m+

1
2

�
+ 1

m

)
.

The principal's expected pro�t from the solution to the model (on the truth) is:

�
1� m0

m

�
p1 2

8>><>>:
�
1� int( b�k2b m+

1
2)

m

��
k + b

int( b�k2b m+
1
2)

m

�
;�

1� int( b�k2b m+
1
2)+1

m

��
k + b

int( b�k2b m+
1
2)+1

m

�
9>>=>>; .

As m increases, the two possible values of the expected pro�t both converge to:

lim
m!1

m�m0

m
p1 =

�
1� b� k

2b

��
k +

b� k
2

�
=
(b+ k)2

4b
.

If, instead, we use the menu that is optimal for T , we set:

t1 =
b� k
2b

;

t2 = k;

p1 =
b+ k

2
;

p (t) = t+ bt1 = t+
b� k
2

= t� k + b+ k
2
,

and the expected pro�t is:

�� = (t2 � t1) p1 +
Z 1

t2

p (t) dt = (1� t1) p1 +
Z 1

k
(t� k) dt = (b+ k)2

4b
+
(1� k)2

2
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Proof of Claim 3. Consider a true type t 2 (s0; s00) not included in the principal's model,
where s0 < s00 are two neighboring model types. Let the allocations chosen in equilibrium by s0

and s00 be (y0; p0) and (y00; p00) respectively. Hence, for any other allocation (y; p) that is o�ered

in the menu (including the outside option (y0; 0)), it must be that:

v
�
s0; y0

�
� p0 � v

�
s0; y

�
� p, (2)

v(s00; y00)� p00 � v(s00; y)� p. (3)

However, single crossing implies that for every y < y0:

v
�
s0; y0

�
� v

�
s0; y

�
� v

�
t; y0

�
� v (t; y) ;

which, combined with the IC constraints in (2), guarantees that type t prefers (y0; p0) to any

other allocation (y; p) with y < y0. A similar line of reasoning (using the IC constraints in (3),

and the single-crossing property) guarantees that t prefers (y00; p00) to any other allocation (y; p)

with y > y00. This means that t always chooses either (y0; p0) or (y00; p00). Hence, the principal's

payo� is always at least p0 (price is monotonic). As #S ! 1, the di�erence between p0 and
p00 vanishes, and the principal's expected pro�t tends to the optimal pro�t under the truth T

Proof of Lemma 1. First note that the loss due to the price discount is (recalling that pro�t

is bounded above by �max, which was normalized to 1),

~p (y)� c (y)� (p (y)� c (y)) = �� (p (y)� c (y)) � ��: (4)

By the de�nition of the approximation index ", we know that there exists a partition P of

the true type space T with approximation index no greater than ". Take any menu M , and

compute the discounted menu ~M . Consider any model type s and any true type that belongs

to the cell associated with s { namely, t 2 J(s). Suppose that a model type s is o�ered menu
M and a true type t is o�ered menu ~M . There are two possibilities: (i) t and s choose the

same product; (ii) t and s choose di�erent products.

Case (i) is straightforward. Denote the allocation chosen by both types by (by; p(by)). The
only loss for the principal is due to the price discount determined by � :

~p (by)� c (by) = (1� �) (p(by)� c (by)) :
Focus, now, on case (ii). Suppose that when ~M is o�ered, t chooses an allocation y0 di�erent

from by chosen by s. Because t 2 J(s), we know that
jv (t; by)� u (s; by)j � ";��v �t; y0�� u �s; y0��� � ";

implying that the payo� di�erence between the two products cannot be much smaller for the
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true type than for the model type:

u (s; by)� u �s; y0�+ 2" � v (t; by)� v �t; y0� � u (s; by)� u �s; y0�� 2": (5)

This does not preclude, however, that the choices of the two types are di�erent, as assumed in

(ii).

Next, consider a revealed preference argument. With the original price vector p, the model

type s prefers by to y0:
u (s; ŷ)� p (ŷ) � u

�
s; y0

�
� p

�
y0
�
: (6)

With the discounted price vector, true type t prefers y0 to by:
v (t; ŷ)� ~p (ŷ) � v

�
t; y0

�
� ~p

�
y0
�
: (7)

By subtracting (7) from (6), we get that:

p
�
y0
�
� ~p

�
y0
�
� (p (ŷ)� ~p (ŷ)) (8)

� v (t; ŷ)� v
�
t; y0

�
�
�
u (s; ŷ)� u

�
s; y0

��
:

By (5), the right-hand side of (8) is bounded below by �2". Given the de�nition of ~p, the
left-hand side of (8) can also be written as:

discount for y0z }| {
�
�
p
�
y0
�
� c

�
y0
��
�

discount for ŷz }| {
� (p (ŷ)� c (ŷ)):

Summing up,

�
�
p
�
y0
�
� c

�
y0
�
� p (ŷ) + c (ŷ)

�
� �2": (9)

There are two potential sources of loss, one due to the deviation from ŷ to y0, the other

due to the price discount. The loss caused by the deviation given the above inequality is:

p
�
y0
�
� c

�
y0
�
� p (ŷ) + c (ŷ) � �2"

�
: (10)

Adding this inequality and the inequality in (4), we get that:

~p
�
y0
�
� c

�
y0
�
� (p (ŷ)� c (ŷ)) � �� � 2"

�
: (11)

We can now see the explicit trade-o� between the two sources of loss: the direct loss from

discounting and the deviation loss. By optimizing on this, we can bound their sum. In

particular, if we set � equal to:

argmin
�
� +

2"

�
=
p
2";

we get that:

~p
�
y0
�
� c

�
y0
�
� (p (ŷ)� c (ŷ)) � �2

p
2":
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Taking expectations appropriately, we get the statement of the lemma

Proof of Theorem 1. Take a given menu M� containing the outside option. The true

expected pro�t from it is:

� (Tv; f;M
�) =

Z
t2T

f (t) [p (y (t))� c(y (t))] dt;

where y (t) ; p (y (t)) is such that v (t; y (t)) � p (y (t)) � v (t; y) � p(y) for all t 2 T and all

(y; p (y)) 2 M�. Consider now (Su; g) with elements i 2 f1; :::;#Sg. There exists an "-

approximation partition P of (Tv; f), such that for each cell J(si) of P , there exist t
�
i 2 J(si)

such that:

[p (y (t�i ))� c (y (t�i ))] g(si) �
Z
t2J(si)

[p (y (t))� c(y (t))] f(t)dt: (12)

Step 1. Construct a model ( �Sv; �g) with �S � (t�i )i=1;::#S and preferences v (t�i ; y), and g(t�i )
= g(si) for all i 2 f1; :::::;#Sg. Since all types in �Sv are contained in Tv, it follows that they
all choose the same options from M� as they did before. It must then be that:

�
�
�Sv; �g;M

�� � �(Tv; f;M�) .

Step 2. We now apply Lemma 1 for the �rst time. The partition P used above is still

an "-approximation partition between
�
�Sv; �g

�
and (Su; g).

21 Let M 0 be the menu derived by

pro�t-participation pricing from M�. By Lemma 1,

�
�
Su; g;M

0� � � � �Sv; �g;M��� 2p2":
Step 3. Consider, now, the menu M̂ that is optimal for (Su; g):

M̂ 2 argmax
M

�(Su; g;M) :

By de�nition,

�(Su; g; M̂) � �
�
Su; g;M

0� :
Step 4. We employ Lemma 1 for the second time. When we discount M̂ through pro�t-

participation pricing to obtain ~M; we get that:

�
�
Tv; f; ~M

�
� �

�
Su; g; M̂

�
� 2
p
2":

21Note that while Su is discrete, since there is a bijection between the elements of Su and the elements of Sv,
leaving probabilities una�ected, Lemma 1 applies.
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Summing up the above steps:

� (Tv; f;M
�) = [expected pro�t for any M�];

�
�
�Sv; �g;M

�� � �(Tv; f;M�) (Step 1)

�
�
Su; g;M

0� � � � �Sv; �g;M��� 2p2"; (Step 2)

�
�
Su; g; M̂

�
� �

�
Su; g;M

0� ; (Step 3)

�
�
Tv; f; ~M

�
� �

�
Su; g; M̂

�
� 2
p
2" (Step 4)

and, hence, the pro�t-loss due to using ~M instead of any given menu M� is bounded by:

�
�
Tv; f; ~M

�
� �(Tv; f;M

�)� 4
p
2"

Proof of Theorem 2. Suppose that 	 does not satisfy pro�t participation for a given ".

By de�nition, there exists c00 > c0 such that if 0 < p00 � p0 < c00 � c0, then p00 � 	(p00; c00; ") �
p0 �	(p0; c0; "). Consider the following problem:

T = [0; 1] with uniform density;

Y = [0; 1] [ f�yg [ y0;

u (t; y) =

8><>:
l + q(t� 2 jt� yj) if y 2 [0; 1]
h if y = �y

0 if y = y0

c (�y) = c00 and c(y) = c0 for all y 2 [0; 1] and c(y0) = 0.

De�ne h = 2c00� c0, l = c0 and q = 2c00� 2c0. Consider type t� such that h� c00 = u(t�; t�)� c0.
We can rewrite this as c00 � c00 = 2(c00 � c0)t�, which implies that t� = 0:5. It is easy to see,

that in the optimal solution to this screening problem, types below t� buy �y at price h, and

each type above t� is o�ered a personalized alternative ŷ (t) = t at price l+ qt. The principal's

expected pro�t is

0:5(c00 � c0) +
Z 1

0:5
(l + qt� c0)dt = 1: 25(c00 � c0).

Consider now a model (Snun ; g
n) in which Sn � T and un(s; y) = u(s; y). Furthermore, given

n 2 N, let: (
Snun =

�
0; 1
2n+1

; 2
2n+1

: : : ; 1
	
;

gn (0) = gn (1) = 1
2n+2

; gn (s) = 1
2n+1

for all other s.

Given the prior f , a valid approximation index for model set Snun is "n = 3q(
1

2n+1
): Hence, for

any given " > 0, if n is su�ciently large, then "n < ", and for any such n, (S
n
un ; g

n) is such an

"-approximation of the truth.

The optimal solution to (Snun ; g
n) involves o�ering �y at price p (�y) = h, as well as a vector
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of personalized alternatives ŷ (s) = s for types s > t� at prices l + qs. The model-based

mechanism modi�ed by 	 then returns prices:

~p (�y) = 	
�
p (�y) ; c00; "n

�
= 	

�
h; c00; "n

�
,

~p (ŷ (s)) = 	
�
p (ŷ (s)) ; c0; "n

�
= 	

�
l + qs; c0; "n

�
.

Now recall that 	 (p; c; ") violates pro�t participation given " at c00 � c0 > p00 � p0, and,
indeed, for all s > t�,

0 < p (�y)� p (ŷ (s)) = (2c00 � 2c0)(1� s) < c00 � c0

since t� = 0:5. It then follows that for any s > t�,

h�	(h; c00; ") � l + qs�	(l + qs; c0; "). (13)

Now take any t 2 T that is not a model type (a set of positive measure given f for any
"n > 0 ), and consider such a t's choice between the allocation ŷ (s), given some s > t

�, now

at price 	 (l + qs; c0; "n), and the allocation �y, now at price 	 (h; c00; "n). If such a t buys ŷ (s),

he gets a payo� of:

l + q(t� 2 js� tj)�	
�
l + qs; c0; "n

�
.

If he buys �y, he gets a payo� of:

h�	
�
h; c00; "n

�
.

Hence, such a t chooses ŷ (s) only if:

l + q(t� 2 js� tj)�	
�
l + qs; c0; "n

�
� h�	

�
h; c00; "n

�
,

which, if one subtracts (13) from it, implies that:

q (t� s� 2 js� tj) � 0;

which can be re-written as

t� s � 2 js� tj ;

which is always false. Hence, all types that are not model types choose �y rather than any of the

personalized alternatives. Hence, the expected pro�t is h� c00 = c00� c0. Since the above holds
for any n, as "n ! 0, the loss is still 0:25(c00� c0). Given that 2(c00� c0) � 1, by normalization,
the bound follows
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