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DIFFUSION TRANSFORMATIONS, BLACK–SCHOLES EQUATION
AND OPTIMAL STOPPING

BY UMUT ÇETIN

London School of Economics and Political Science

We develop a new class of path transformations for one-dimensional dif-
fusions that are tailored to alter their long-run behaviour from transient to
recurrent or vice versa. This immediately leads to a formula for the distribu-
tion of the first exit times of diffusions, which is recently characterised by
Karatzas and Ruf [Probab. Theory Related Fields 164 (2016) 1027–1069] as
the minimal solution of an appropriate Cauchy problem under more strin-
gent conditions. A particular limit of these transformations also turn out to be
instrumental in characterising the stochastic solutions of Cauchy problems
defined by the generators of strict local martingales, which are well known
for not having unique solutions even when one restricts solutions to have lin-
ear growth. Using an appropriate diffusion transformation, we show that the
aforementioned stochastic solution can be written in terms of the unique clas-
sical solution of an alternative Cauchy problem with suitable boundary con-
ditions. This in particular resolves the long-standing issue of non-uniqueness
with the Black–Scholes equations in derivative pricing in the presence of bub-
bles. Finally, we use these path transformations to propose a unified frame-
work for solving explicitly the optimal stopping problem for one-dimensional
diffusions with discounting, which in particular is relevant for the pricing and
the computation of optimal exercise boundaries of perpetual American op-
tions.
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1. Introduction. Conditioning the paths of a given Markov process X to stay
in a certain subset of the path space is a well-studied subject which has become
synonymous with the term h-transform. If one wants to condition the paths of X to
stay in a certain set, the classical recipe consists of finding an appropriate excessive
function h, defining the transition probabilities of the conditioned process via h,
and constructing on the canonical space a Markov process Xh with these new
transition probabilities. This procedure is called an h-transform. In particular if h

is a minimal excessive function with a pole at y [see Section 11.4 of Chung and
Walsh (2005) for definitions], then Xh is the process X conditioned to converge to
y and killed at its last exit from y. We refer the reader to Chapter 11 of Chung and
Walsh (2005) for an in-depth analysis of h-transforms.

This paper proposes a new class of path transformations for one-dimensional
regular diffusions with stochastic differential equation (SDE) representation. The
new transformations are aimed at switching the behaviour of the diffusion from
transient to recurrent or vice versa. We introduce the concept of recurrent trans-
formation in Section 3 and characterise these transforms via weak solutions of
SDEs. Roughly speaking, a recurrent transformation adds a drift term to the orig-
inal SDE of X so that the resulting process is a recurrent regular diffusion with
the same state space whose law is locally absolutely continuous with respect to
the original law. Although the recurrent transformation is at first sight meaningful
only for transient diffusions, we note a special class of recurrent transformations in
Theorem 3.3 that is applicable not only to transient diffusions but also to recurrent
ones. This transform, by adding again a certain drift, results in a positively recur-
rent diffusion. For example, this transformation turns a standard Brownian motion
to a Brownian motion with alternating drift, which appears in the studies of the
bang-bang control problem (see Example 3.2).

As a first application of the recurrent transformation, we compute in Corol-
lary 3.1 the distribution of the first exit time from an interval for a given diffusion.
Although the formula does not provide an expression in closed form in general,
a simple Monte Carlo algorithm will provide a sufficiently close estimate.

The distribution of first exit times has attracted the attention of researchers
working on problems arising in the Monte Carlo simulation of stochastic processes
[see, e.g., Baldi (1995), Baldi, Caramellino and Iovino (1999), Gobet (2000),
Gobet and Menozzi (2004) and the references therein]. Yet precise formulas for
the distribution of exit times of diffusions have rarely been the subject of a thor-
ough investigation. The recent paper of Karatzas and Ruf (2016) seems to be the
only work in the literature that addresses this problem in the general framework
of one-dimensional diffusions. With an additional assumption on the local Hölder
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continuity of the coefficients of the SDE satisfied by X, they have shown that the
distribution function of the first exit time was the minimal nonnegative solution of
a particular Cauchy problem. Although this is a useful characterisation from a the-
oretical perspective, finding the smallest solution of a Cauchy problem is in general
not a feasible numerical task. Our formula in Corollary 3.1 thus provides a way of
computing the minimal solutions of the class of Cauchy problems considered by
Karatzas and Ruf.

As described briefly in Remark 3.4, recurrent transformations can also be used
to improve the accuracy of discrete Euler approximations of a diffusion killed
when exiting a bounded interval. As shown by Gobet (2000), the discretisation

error for such Euler schemes is of order N− 1
2 , where N is the number of discreti-

sations, as opposed to N−1, which is the rate of convergence for discrete Euler
schemes for diffusions without killing. As the recurrent transformation removes
the killing by passing to a locally absolutely continuous probability measure, it
can be used to bring the convergence rate back to N−1 using the recipe in Re-
mark 3.4. This important application of recurrent transformations will be studied
rigorously in a subsequent paper.

Section 4 is devoted to the convergence of certain recurrent transforms when
X is nonnegative and on natural scale. Under a mild condition on the diffusion
coefficient of X, we show that a particular sequence of recurrent transformations
converges monotonically to the h-transform of X, where h(x) = x. We observe
that the nature of this convergence depends crucially on whether X is a strict local
martingale or not. In particular, we construct on a single probability space a se-
quence of recurrent transforms that increases a.s. to a diffusion that has the same
law as the aforementioned h-transform. The limiting diffusion is nonexploding on
[0,∞) if and only if X is a true martingale.

Our interest in local martingales in fact stems from the financial models with
bubbles. If a financial model admits no arbitrage opportunities, the discounted
stock price X must follow a nonnegative local martingale under a so-called
risk-neutral measure by the fundamental theorem of asset pricing [Delbaen and
Schachermayer (1994)]. When X is not a martingale but a strict local martingale,
the stock price exhibits a bubble and many results in the arbitrage pricing theory
become invalid [see Cox and Hobson (2005) and Pal and Protter (2010) for some
examples]. One particular issue concerns the Black–Scholes pricing equation for
a European option that pays the amount of g(XT ) to its holder at time T for some
g ≥ 0. The arbitrage pricing theory suggests that the fair price of this option at
time t is v(T − t,Xt ), where v(t, x) := Ex[g(Xt)]. Under mild conditions on X

and a continuity and linear growth assumption on g, Ekström and Tysk (2009)
have shown that v satisfies the Cauchy problem

(1.1) ut = Au, u(0, ·) = g,

where A is the infinitesimal generator of X. As a consequence, Ekström and Tysk
(2009) observed that (1.1) admits multiple nonnegative solutions when X is a
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strict local martingale and g(x) = x. Namely, they have identified u(t, x) := x

and v(t, x) = Ex[Xt ] as such two distinct solutions. Note that X being a strict
local martingale implies v(t, x) = Ex[Xt ] < x = u(t, x). Thus, x − Ex[Xt ] is a
solution of (1.1) when g ≡ 0. However, this immediately leads to the conclusion
that there are infinitely many solutions of at most linear growth to (1.1) when-
ever g is of at most linear growth. Indeed, by the above discussion for any α > 0,
ũ(t, x) := Ex[g(Xt)] + α(x − Ex[Xt ]) is a nonnegative solution of (1.1) when
g is of at most linear growth. Moreover, Ekström and Tysk have also shown that
Ex[g(Xt)] is of at most linear growth when g is continuous function of at most
linear growth. This in turn renders ũ of linear growth. Hence, restricting solutions
to have at most linear growth does not yield uniqueness for the above Cauchy
problem.

Bayraktar and Xing (2010) have followed up this question by showing that the
uniqueness of the Cauchy problem is determined by the martingale property of X.
Later, Bayraktar, Kardaras and Xing (2012a) have extended the scope of these
conclusions to Markovian stochastic volatility models.

The absence of uniqueness for solutions of (1.1) is especially problematic if one
wants to compute the option prices by solving (1.1) numerically. Also note that one
will also fail to compute Ex[g(Xt)] using a Monte-Carlo simulation when g is of
linear growth and X is a strict local martingale. Indeed, if, for example, g(x) = x,
the Monte-Carlo algorithm will yield x for Ex[Xt ] since the discretisation of X

via the Monte-Carlo scheme will result in a true martingale for the approximating
process. To resolve this issue, we establish in Section 6 a new characterisation of
Ex[g(Xt)] in terms of the unique solution of an alternative Cauchy problem. We
show that the function (t, x) �→ Ex[g(Xt)], after an appropriate scaling, becomes
the unique solution of

wt = Ãw

with certain initial and boundary conditions, when Ã is the generator of a suit-
able h-transform of X. More precisely, this h-transform coincides with the one
that is obtained as the limit of recurrent transforms in Section 4. One interest-
ing corollary of the main result of this section is that for any t > 0 the valuation
function Ex[g(Xt) is of strictly sublinear growth at ∞ when g is of at most lin-
ear growth and the stock price is given by a strict local martingale. In particular,
limx→∞ Ex [Xt ]

x
= 0 for any t > 0 if X is a strict local martingale.

While Section 6 is on the valuation of European options, Section 7 considers
the pricing of perpetual American options. In order to price such an option with
payoff g, one needs to solve the optimal stopping problem

sup
τ≤ζ

Ex[
e−λτ g(Xτ )

]
,

where ζ is the (possibly finite) lifetime of the diffusion X and the discount rate
λ > 0 corresponds to the constant interest rate.
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Peskir and Shiryaev (2006) give an excellent survey of available methods to
tackle this problem. One approach to the above consists of solving a free boundary
problem associated to the infinitesimal generator of X. Another approach is via the
characterisation of λ-excessive functions of X as the value function for the optimal
stopping problem is the least λ-excessive majorant of g. This is the path taken by
Dayanik and Karatzas (2003). Beibel and Lerche (2000) have also proposed a new
methodology based on simple martingale arguments, which can also be interpreted
as change of measure arguments as observed by Lerche and Urusov (2007). While
the approach based on the solution of a free boundary problem rarely provides
explicit solutions, the other two have the potential to offer explicit or semi-explicit
solutions. However, these solutions crucially depends on the assumption that one
has the solutions of a family of Sturm–Liouville equations at hand. Moreover, the
solution techniques offered in Dayanik and Karatzas (2003) and Beibel and Lerche
(2000) differ for different boundary behaviour exhibited by X, that is, whether the
boundaries of the state space of X are absorbing or natural, etc. Furthermore, how
the function g behaves near the boundaries also matters. For instance, Beibel and
Lerche (2000) have to check five conditions on the behaviour of g to determine the
solution. It is also worth to note the recent work of Lamberton and Zervos (2013)
who analyse a large class of optimal stopping problems via variational equalities
defined by the generator of X and g without the assumption that g is continuous.

Section 7 presents a unified solution to the above optimal stopping problem
that does not vary depending on the behaviour of g or X near the boundaries.
We use the specific recurrent transform of Proposition 3.2, which is applicable to
transient as well as recurrent diffusions, to determine whether the value function
is finite. We show that the value function is finite if and only if g satisfies the
single condition (7.6), which depends only on the knowledge of uλ(·, y), the λ-
potential density, for some y. This recurrent transform also changes the optimal
stopping problem to one without discounting. However, the new problem becomes
two dimensional. In order to reduce the dimension of the problem to one, we apply
the transformation that is defined in Section 5, which is aimed at conditioning the
recurrent transformation to have a certain behaviour at the boundary points and
become transient. After this transformation all that remains to do is to solve

sup
τ

Ẽx[
ḡ(Xτ )

]
,

where ḡ is a function that depends only on g and uλ(·, y), and Ẽ corresponds
to the expectation operator with respect to the law of the diffusion after the final
transformation. The solution to the above is easy and well known since Dynkin
(1963): After a change of scale, the value function of the above optimal stopping
problem is the smallest concave majorant of ḡ.

It has to be noted that Cissé, Patie and Tanré (2012) have attacked this problem
using h-transforms. However, as we explain in detail in Remark 7.1 the authors
make some implicit assumptions regarding the boundary behaviour of X as well
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as the function g in the proof of their key arguments. These assumptions in partic-
ular exclude the diffusion processes with infinite lifetime. As we mentioned above,
our approach is general and do not impose any conditions on X other than the reg-
ularity and the Engelbert–Schmidt conditions that ensure an SDE representation
for X.

In essence our framework is fundamentally different in spirit from Cissé, Patie
and Tanré (2012) and Beibel and Lerche (2000) in the sense that it gives a proba-
bilistic interpretation of the value function and the optimal stopping boundaries un-
der a locally absolutely continuous measure in the classical framework of Dynkin
(1963) with no discounting. The works of Cissé, Patie and Tanré (2012) and Beibel
and Lerche (2000), on the other hand, obtain the solution by a clever algorithm of
maximisation provided one has the solutions of a family of Sturm–Liouville equa-
tions.

Differently from our treatment in Section 6, we do not investigate the impact
of martingale property of X on the valuation of perpetual American options as the
methodology is the same for the martingales as well as the local martingales. We
refer the reader to Bayraktar, Kardaras and Xing (2012b) for a thorough analysis
of the influence of the martingale property in a general framework.

An outline of this paper is as follows. Section 2 gives a brief overview of several
concepts related to one-dimensional diffusions that will be used throughout the pa-
per. Section 3 introduces the concept of recurrent transformations while Section 4
considers their limit in relation to the local martingale property of X. Section 5
defines a transform designed specifically for recurrent diffusions that is different
than the typical h-transform but will still render them transient, which will be use-
ful in Section 7. Section 6 provides a resolution to the nonuniqueness issue of
the Black–Scholes pricing equation and Section 7 addresses the optimal stopping
problem. Section 8 concludes. Proofs of certain results that are not contained in
the main body are included in the Appendix.

2. Preliminaries. Let X be a regular diffusion on (l, r), where −∞ ≤ l < r ≤
∞. We assume that if any of the boundaries are reached in finite time, the process
is absorbed at that boundary. This is the only instance when the process can be
“killed”, we do not allow killing inside (l, r). Such a diffusion is uniquely charac-
terised by its scale function s and speed measure m, defined on the Borel subsets of
the open interval (l, r). The set of points that can be reached in finite time starting
from the interior of (l, r) and the entrance boundaries will be denoted by I . That
is, I is the union of (l, r) with the regular, exit or entrance boundaries. The law
induced on C(R+, I ), the space of I -valued continuous functions on [0,∞), by X

with X0 = x will be denoted by P x as usual, while ζ will correspond to its lifetime,
that is, ζ := inf{t > 0 : Xt ∈ {l, r}}. For concreteness, we assume that X is the co-
ordinate process on the canonical space � := C(R+, I ), that is, Xt(ω) = ω(t) for
all t ≥ 0. However, this assumption is only for convenience and one can work with
other measurable spaces as long as the measures (P x)x∈I are properly defined.
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The filtration (Ft )t≥0 will correspond to the universal completion of the natural
filtration of X and, therefore, is right continuous since X is strong Markov by defi-
nition [see Theorem 4 in Section 2.3 in Chung and Walsh (2005)]. We will also set
F := ∨

t≥0 Ft . If μ is a measure on some open interval (a, b) and f is a nonneg-
ative or μ-integrable measurable function, the integral of f with respect to μ will
be denoted by

∫
(a,b) f (x)μ(dx) unless μ is absolutely continuous with respect to

the Lebesgue measure dx, in which case we shall write
∫ b
a f (x)μ(dx).

In what follows, we will often replace ζ with ∞ when dealing with the limit
values of the processes as long as no confusion arises. Recall that in terms of the
first hitting times, Ty := inf{t > 0 : Xt = y} for y ∈ (l, r), the regularity amounts
to P x(Ty < ∞) > 0 whenever x and y belongs to the open interval (l, r). This
assumption entails in particular that s is strictly increasing and continuous [see
Proposition VII.3.2 in Revuz and Yor (1999)] and 0 < m((a, z)) < ∞ for all l <

a < z < r [see Theorem VII.3.6 and the preceding discussion in Revuz and Yor
(1999)].

Recurrence or transience of X depends on the behaviour of s near the boundary
points. More precisely, X is transient if and only if at least one of s(l) and s(r)

is finite. Since s is unique only up to an affine transformation, we will use the
following convention throughout the text:

• s(l) = 0 whenever finite,
• s(r) = 1 whenever finite.

Note that in view of our foregoing assumptions one can easily deduce that Xζ− ∈
{l, r} when X is transient. We refer the reader to Borodin and Salminen (2002) for
a summary of results and references on one-dimensional diffusions. The definitive
treatment of such diffusions is, of course, contained in Itô and McKean (1974).
The recent manuscript of Evans and Hening (2016) contains a detailed discussion
with proofs of some aspects of the potential theory of one-dimensional diffusions.

REMARK 2.1. It has to be noted that notion of recurrence that we con-
sider here excludes some recurrent solutions of one-dimensional SDEs with time-
homogeneous coefficients since we kill our diffusion as soon as it reaches a regu-
lar boundary point. A notable example is a squared Bessel process with dimension
δ < 2, which solves the following SDE:

Xt = x + 2
∫ t

0

√
Xs dBs + δt.

The above SDE has a global strong solution, that is, solution for all t ≥ 0, which
is recurrent [see Section XI.1 of Revuz and Yor (1999)]. However, the point 0
is reached a.s. and is instantaneously reflecting by Proposition XI.1.5 in Revuz
and Yor (1999). As such, it violates our assumption of a diffusion being killed
at a regular boundary. According to our assumption, a squared Bessel process of
dimension 0 < δ < 2 has to be killed as soon as it reaches 0, and thus, is a transient
diffusion.
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As our focus is on diffusions that are also solutions of SDEs, we further impose
the so-called Engelbert–Schmidt conditions. That is, we shall assume the existence
of measurable functions σ : (l, r) →R and b : (l, r) →R such that

(2.1)
σ(x) > 0 and ∃ε > 0 s.t.

∫ x+ε

x−ε

1 + |b(y)|
σ 2(y)

dy < ∞

for any x ∈ (l, r).

Under this assumption [see Engelbert and Schmidt (1991) or Theorem 5.5.15 in
Karatzas and Shreve (1991)] there exists a unique weak solution [up to the exit
time from the interval (l, r)] to the SDE

(2.2) Xt = x +
∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds, t < ζ,

where ζ = inf{t > 0 : Xt ∈ {l, r}} and l < x < r . Moreover, condition (2.1) further
implies one can take

(2.3)

s(x) =
∫ x

C
exp

(
−2

∫ z

c

b(u)

σ 2(u)
du

)
dz and

m(dx) = 2

s′(x)σ 2(x)
dx for some (c,C) ∈ (l, r)2.

We collect the assumptions on X in the following.

ASSUMPTION 2.1. X is a regular one-dimensional diffusion on (l, r) such
that

Xt = X0 +
∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds, t < ζ,

where σ : (l, r) →R and b : (l, r) →R satisfy (2.1), ζ = inf{t > 0 : Xt ∈ {l, r}}.
In the sequel, the extended generator of X will be denoted by A. Following

Definition VII.1.8 of Revuz and Yor (1999), we will write g = Af for a given
Borel measurable function f , if there exists Borel function g such that, for each
x ∈ I , (i) P x -a.s.

∫ t
0 |g(Xs)|ds < ∞ for every t > 0, and (ii)

f (Xt) − f (X0) −
∫ t

0
g(Xs) ds

is P x -local martingale. In this case, f is said to be in the domain of A. If f is C2

on I , then A becomes a second order differential operator, that is,

Af (x) = 1

2
σ 2(x)f ′′(x) + b(x)f ′(x).

Any regular transient diffusion on (l, r) has a finite potential density, u :
(l, r)2 → R+, with respect to its speed measure [see Paragraph 11 in Section II.1
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of Borodin and Salminen (2002)]. That is, for any nonnegative and measurable f

vanishing at accessible boundaries

Uf (x) :=
∫ ∞

0
Ex[

f (Xt)
]
dt =

∫ r

l
f (y)u(x, y)m(dy).

The above implies that the potential density can be written in terms of the transition
density,1 (p(t, ·, ·))t≥0, of X with respect to its speed measure:

u(x, y) =
∫ ∞

0
p(t, x, y) dt.

The above in particular implies that u(x, y) = u(y, x) since p(t, ·, ·) is symmetric
for each t > 0 [see page 520 of McKean (1956)]. If X is recurrent, either Uf ≡ ∞
or Uf ≡ 0 [see Theorem 1 in Section 3.7 of Chung and Walsh (2005)]. Therefore,
potential density only makes sense for transient diffusions.

We will denote by (Lx
t )x∈(l,r) the family of semimartingale local times2 asso-

ciated to X. Recall that the occupation times formula for the semimartingale local
time is given by ∫ t

0
f (Xs)σ

2(Xs) ds =
∫ r

l
f (x)Lx

t dx.

In the case of one-dimensional transient diffusions the distribution of L
y∞ is

known explicitly in terms of the potential density [see page 21 of Borodin and
Salminen (2002)]. In particular,

(2.4) P y(
Ly∞ > t

) = exp
(
− s′(y)t

2u(y, y)

)
.

Note that if s(l) = 0 = 1 − s(r), then P x(X∞ = r) = s(x) = 1 − P x(X∞ = l)

and
(2.5)

P x(Ty < ∞) =

⎧⎪⎪⎨
⎪⎪⎩

s(x)

s(y)
, y ≥ x;

1 − s(x)

1 − s(y)
, y < x.

u(x, y) = s(x)
(
1−s(y)

)
, x ≤ y.

On the other hand, if s(l) = 0 and s(r) = ∞, then Xt → l, P x-a.s. for any x ∈
(l, r), which in turn implies

(2.6) P x(Ty < ∞)) =
⎧⎪⎨
⎪⎩

s(x)

s(y)
, y ≥ x;

1, y < x.

u(x, y) = s(x), x ≤ y.

1For the existence of this transition density and its boundary behaviour, see McKean (1956).
2Observe that the diffusion local time, L̃, in Paragraph 13 in Section II.2 of Borodin and Salminen

(2002) is defined via
∫ t
0 f (Xs) ds = ∫ r

l f (x)L̃x
t m(dx). Comparing this with the occupation times

formula for the semimartingale local time reveals the relationship 2
s′(x)

L̃x = Lx .
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Similarly, if s(l) = −∞ and s(r) = 1, then Xt → r , P x-a.s. for any x ∈ (l, r), and
(2.7)

P x(Ty < ∞) =
⎧⎪⎨
⎪⎩

1, y ≥ x;
1 − s(x)

1 − s(y)
, y < x.

u(x, y) = 1 − s(y), x ≤ y.

While the potential density is finite only for transient diffusions, one can define
a so-called α-potential density that exists and is finite for all diffusions for all
α > 0. For any nonnegative and measurable function f vanishing at accessible
boundaries, one defines

Uαf (x) :=
∫ ∞

0
e−αtEx[

f (Xt)
]
dt.

Thus, if we let

uα(x, y) :=
∫ ∞

0
e−αtp(t, x, y) dt,

we obtain

Uαf (x) =
∫ r

l
f (y)uα(x, y)m(dy).

uα(·, ·) is called the α-potential density and is symmetric in (l, r)2 for all α > 0. An
alternative and very useful expression for uα is given in terms of the fundamental
solutions of the equation Af = αf . That is,

(2.8) uα(x, y) = ψα(x)φα(y)

wα

, x ≤ y,

where ψα and φα are, respectively, the increasing and decreasing nonnegative so-
lutions of Af = αf subject to certain boundary conditions [see page 19 of Borodin
and Salminen (2002)], and wα is the Wronskian given by

wα = ψ ′
α(x)φα(x) − ψα(x)φ′

α(x)

s′(x)
,

which is independent of x. Consequently, using the relationship between the fun-
damental solutions of Af = αf and the Laplace transforms of hitting times [see
page 18 of Borodin and Salminen (2002)], we have

(2.9) Ex[
exp(−αTy)

] = uα(x, y)

uα(y, y)
.

We refer the reader to Chapter II of Borodin and Salminen (2002) for a summary of
results concerning one-dimensional diffusions including the ones sketched above.
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3. Recurrent transformations of diffusions. This section introduces a new
kind of path transformation for regular diffusions that produces a recurrent diffu-
sion whose law is locally absolutely continuous with respect to that of the origi-
nal diffusion. To wit, suppose h is a nonnegative C2-function and M an adapted
continuous process of finite variation so that h(X)M is a nonnegative local mar-
tingale. If (τn) is a localising sequence for this local martingale, using Girsanov’s
theorem we arrive at a weak solution on [0, τn] to the following SDE for any given
x ∈ (l, r):

(3.1) Xt = x +
∫ t

0
σ(Xs) dBs +

∫ t

0

{
b(Xs) + σ 2(Xs)

h′(Xs)

h(Xs)

}
ds.

We can associate to the above SDE the scale function

(3.2) sh(x) :=
∫ x

c

s′(y)

h2(y)
dy, x ∈ (l, r),

provided that the integral is finite for all x ∈ (l, r), which in particular requires
h > 0 on (l, r). What we would like to achieve is to extend this procedure by
taking n → ∞ and obtain a recurrent diffusion. The latter will require −sh(l+) =
sh(r−) = ∞. We shall see in this section that this property alone is sufficient to
obtain a recurrent weak solution of (3.1) on [0,∞) under some mild conditions
on h.

Using h and M to get a recurrent process imposes some boundary conditions
on h. Indeed, if s(l) = 0 [resp., s(r) = 1], in order to have sh(l+) = −∞ [resp.,
sh(r−) = ∞], we must have limx→l h(x) = 0 [resp., limx→r h(x) = 0].

Moreover, since h(X)M is a local martingale, dMt = −Mt
Ah(Xt )
h(Xt )

dt . Thus, M

is given by

Mt = exp
(
−

∫ t

0

Ah(Xs)

h(Xs)
ds

)
.

In the light of the above discussion, we now introduce the concept of a recurrent
transformation of a diffusion.

DEFINITION 3.1. Let X be a regular diffusion satisfying Assumption 2.1 and
h : I → [0,∞) be an absolutely continuous function. Then (h,M) is said to be a
recurrent transform (of X) if the following are satisfied:

1. M is an adapted process of finite variation.
2. h(X)M is a nonnegative local martingale.
3. The function sh from (3.2) is finite for all x ∈ (l, r) with −sh(l+) =

sh(r−) = ∞.
4. There exists a unique weak solution to (3.1) for t ≥ 0 for any x ∈ (l, r).



DIFFUSION TRANSFORMATIONS 3113

In the above definition, the defining condition for a recurrent transformation is
the function sh and its explosive nature near the boundaries. The function h and
the functional M come into play when one wants to construct a weak solution of
the SDE (3.1) and show that the law of its solution is locally absolutely continu-
ous with respect to that of the original process X, which satisfies (2.2). The next
theorem, whose proof is delegated to the Appendix, suggests a general machinery
for constructing recurrent transformations.

THEOREM 3.1. Let X be a regular diffusion satisfying Assumption 2.1. Con-
sider an absolutely continuous function h : I → [0,∞) such that its left derivative
h′ is of finite variation. Suppose further that the mapping sh given by (3.2) is finite
for all x ∈ (l, r) and that −sh(l+) = sh(r−) = ∞. Then the following statements
are valid:

1. h′ can be chosen to be left-continuous. Moreover, the signed measure defined
by h′ on (l, r) admits the Lebesgue decomposition dh′(x) = h′′(x) dx + n(dx),
where h′′ denote its Borel measurable Radon–Nikodym derivative with respect to
the Lebesgue measure on (l, r), and n is a locally finite signed measure on (l, r)

that is singular with respect to the Lebesgue measure.
2. The integral

(3.3) 1[t<ζ ]
(∫ t

0

∣∣Ãh(Xs)
∣∣ds +

∫ r

l

Lx
t

2

∣∣n(dx)
∣∣) < ∞, P y-a.s.,

for every y ∈ (l, r), where Ãh(x) = σ 2(x)
2 h′′(x) + b(x)h′(x).

3. (h,M) is a recurrent transform, where, on [t < ζ ],

Mt := exp
(
−

∫ t

0

Ãh(Xs)

h(Xs)
ds −

∫ t

0

1

h(Xs)
ds(h)

)
and

t(h) :=
∫
(l,r)

Lx
t

2
n(dx).

4. inf{t > 0 : h(Xt)Mt = 0} = ζ, P x -a.s.
5. Let Rh,x be the law of the solution of (3.1) and F ∈ FT for some (Ft )-

stopping time T . Then

(3.4) Rh,x(F,T < ∞) = 1

h(x)
Ex[

1F h(XT )MT

]
.

In particular, h(X)M is a P x -martingale.
6. If T is an (Ft )-stopping time such that Rh,x(T < ∞) = 1, then for any F ∈

FT the following identity holds:

(3.5) P x(ζ > T,F ) = h(x)Eh,x

[
1F

1

h(XT )MT

]
,

where Eh,x is the expectation operator with respect to the probability measure
Rh,x .



3114 U. ÇETIN

EXAMPLE 3.1. Suppose δ > 2 and consider a δ-dimensional Bessel process
on (0,∞), that is, a one-dimensional diffusion with the dynamics

dXt = 2
√

Xt dBt + δ dt.

The scale function is given by s(x) = 1−x
2−δ

2 . Thus, X is transient and approaches
to ∞ as t → ∞, while 0 is an inaccessible boundary.

Let h(x) := x
2−δ

4 and define

Mt := exp
(

(δ − 2)2

8

∫ t

0

1

Xs

ds

)
, t ≥ 0.

Then, it follows from Theorem 3.1 that M is of finite variation. Moreover,

sh(x) = δ − 2

2

∫ x

1

1

u
du = logx, x > 0.

Thus, −sh(0) = sh(∞) = ∞, and we conclude that (h,M) is a recurrent transform
by invoking Theorem 3.1 again. The transformation yields the following SDE for
the resulting process

dXt = 2
√

Xt dBt + 2dt,

which is the SDE for a 2-dimensional squared Bessel process. Recall [or see
page 442 of Revuz and Yor (1999)] that 0 is polar for a 2-dimensional squared
Bessel process.

The following proposition gives an important example of a recurrent transfor-
mation for transient diffusions, which will be useful in the sequel.

PROPOSITION 3.1. Suppose X is a regular transient diffusion satisfying As-
sumption 2.1. Let y ∈ (l, r) be fixed and consider the pair (h,M) defined by

h(x) := u(x, y), x ∈ (l, r) and Mt = exp
(

s′(y)L
y
t

2u(y, y)

)
.

Then, the following hold:

1. (h,M) is a recurrent transform for X.
2. There exists a unique weak solution to

(3.6)
Xt = x +

∫ t

0
σ(Xs) dBs +

∫ t

0

{
b(Xs) + σ 2(Xs)

ux(Xs, y)

u(Xs, y)

}
ds,

t ≥ 0,

for any x ∈ (l, r), where ux denotes the first partial left derivative of u(x, y) with
respect to x.
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3. Moreover, if Rh,x denotes the law of the solution and T is a stopping time
such that Rh,x(T < ∞) = 1, then for any F ∈FT the following identity holds:

(3.7) P x(ζ > T,F ) = u(x, y)Eh,x

[
1F

1

u(XT , y)
exp

(
− s′(y)

2u(y, y)
L

y
T

)]
,

where Eh,x is the expectation operator with respect to the probability measure
Rh,x .

The above is a direct corollary of Theorem 3.1 since n(dx) = −s ′(y)εy(dx) in
the Lebesgue decomposition of dux(x, t) as in Part (1) of Theorem 3.1 and u(·, y)

is twice differentiable with 1
2σ 2(x)uxx(x, y) + b(x)ux(x, y) = 0 for all x �= y.

Proposition 3.1 is in fact a special case of a more general result that will allow
us to construct a large family of recurrent transformations. In order to motivate
this more general result note that u(·, y) is the potential3 of the Dirac measure at
point y. Moreover, it is uniformly integrable being bounded. Conversely, since X

in Assumption 2.1 is a symmetric diffusion, it is well known [see, e.g., Theorem
VI.2.11 in Blumenthal and Getoor (1968)] any uniformly integrable potential h is
the potential of some measure μ on (l, r), that is, h(x) = ∫

(l,r) u(x, y)μ(dy). Also
note that if h �≡ 0 is a uniformly integrable potential, for example, h = u(·, y),
then h(X) is a supermartingale, which is not a martingale. As a matter of fact, in
view of the Riesz representation of excessive functions [see Theorem VI.2.11 in
conjunction with Proposition IV.5.4 in Blumenthal and Getoor (1968)] the great-
est uniformly integrable harmonic function dominated by h is 0. The next result,
whose proof is in the Appendix, shows that the potential of a probability measure
on (l, r) gives rise to a recurrent transform under an integrability condition.

THEOREM 3.2. Let μ be a Borel probability measure on (l, r) such that∫
(l,r) |s(y)|μ(dy) < ∞. Suppose X is a regular transient diffusion satisfying As-

sumption 2.1 and define

h(x) :=
∫
(l,r)

u(x, y)μ(dy).

1. The left derivative h′ of h exists and (h,M) is a recurrent transform of X,
where

Mt := exp
(∫ t

0

1

h(Xs)
dAs

)
and At :=

∫
(l,r)

s′(x)Lx
t

2
μ(dx).

2. If Rh,x denotes the law of the solution of (3.1) and T is a stopping time such
that Rh,x(T < ∞) = 1, then for any F ∈FT the following identity holds:

P x(ζ > T,F ) = h(x)Eh,x

[
1F

1

h(XT )
exp

(
−

∫ t

0

1

h(Xs)
dAs

)]
,

3If μ is a measure on (l, r), the potential of μ is the function x �→ ∫
(l,r) u(x, y)μ(dy) and is

denoted by Uμ. See Section VI.2 of Blumenthal and Getoor (1968) for details.
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where Eh,x is the expectation operator with respect to the probability measure
Rh,x .

REMARK 3.1. Note that u(·, y) satisfies the assumptions of the above theo-
rem since μ = εy and

∫
(l,r) u(x, z)μ(dz) = u(x, y) < ∞ for all x ∈ (l, r). Thus,

Proposition 3.1 is a direct consequence of Theorem 3.2 as well.

The next example of a recurrent transform that we shall consider in this pa-
per is obtained via the α-potential density, uα of X. In contrast with the previous
transform, which only exists for transient diffusions, the next transform can be ap-
plied to all regular diffusions. Moreover, the resulting diffusion will be positive
recurrent.

PROPOSITION 3.2. Suppose X is a regular diffusion satisfying Assump-
tion 2.1. Let y ∈ (l, r) and α > 0 be fixed and consider the pair (h,M) defined
by

h(x) := uα(x, y), x ∈ (l, r) and Mt = exp
(
−αt + s′(y)L

y
t

2uα(y, y)

)
.

Then the following hold:

1. (h,M) is a recurrent transform for X.
2. There exists a unique weak solution to

(3.8)
Xt = x +

∫ t

0
σ(Xs) dBs +

∫ t

0

{
b(Xs) + σ 2(Xs)

uα
x (Xs, y)

uα(Xs, y)

}
ds,

t ≥ 0,

for any x ∈ (l, r), where uα
x denotes the first partial left derivative of uα(x, y) with

respect to x.
3. Moreover, the diffusion defined by the solutions of (3.8) is positive recurrent

and its stationary distribution on (l, r) is given by

(3.9) π(dx) = (uα(x, y))2∫ ∞
0 se−αsp(s, y, y) ds

m(dx),

where (p(t, ·, ·))t>0 is the transition density of the original diffusion with respect
to its speed measure m.

As in the case of Proposition 3.1, parts (1) and (2) of the above result is a direct
corollary of Theorem 3.1 but will also be a special case of a more general theo-
rem in terms of α-potentials. Analogously, uα(·, y) of X is the α-potential of the
Dirac measure at y and (e−αtuα(Xt , y)) is a uniformly integrable supermartingale
converging a.s. to 0 as t → ζ . Moreover, any uniformly integrable α-potential is
of the form

∫ r
l uα(x, y)μ(dy) for some measure on (l, r).
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THEOREM 3.3. Suppose X is a regular diffusion satisfying Assumption 2.1
and α > 0. Let μ be a Borel probability measure on (l, r) such that

∫
(l,r) u

α(y,

y)dμ(y) < ∞. Define

h(x) :=
∫
(l,r)

uα(x, y)μ(dy).

1. The left derivative h′ of h exists and (h,M) is a recurrent transform of X,
where

Mt := exp
(
−αt +

∫ t

0

1

h(Xs)
dAs

)
and At :=

∫
(l,r)

s′(x)Lx
t

2
μ(dx).

2. Moreover, if there exists ε > 0 such that
∫
(l,r) u

α−ε(y, y)μ(dy) < ∞, then
the diffusion defined by the solutions of (3.1) is positive recurrent and its stationary
distribution on (l, r) is given by

π(dx) = h2(x)∫ r
l h2(y)m(dy)

m(dx).

REMARK 3.2. Note that uα(·, y) satisfies the assumptions of the above theo-
rem since μ = εy and

∫
(l,r) u

α−ε(x, z)μ(dz) = uα−ε(x, y) < ∞ for all ε ∈ [0, α).
Thus, Proposition 3.2 follows directly from Theorem 3.3.

Moreover, if X is transient, the potential density u exists and is finite. In this
case the condition

∫
(l,r) u(y, y)μ(dy) < ∞ is equivalent to

∫
(l,r) |s(y)|μ(dy) <

∞ under the assumption that μ is a probability measure. Thus, the condition∫
(l,r) u

α(y, y)μ(dy) < ∞ in Theorem 3.3 is the exact analogue of the condition∫
(l,r) |s(y)|μ(dy) < ∞ of Theorem 3.2.

If f is nonnegative,
∫ r
l f (x)m(dx) = 1, and

∫ r
l f (x)uα(x, x)m(dx) < ∞, The-

orems 3.2 and 3.3 show that h(x) := Uαf (x) will define a recurrent transform for
α ≥ 0. In this case, the finite variation process A will be given by

At =
∫ t

0
f (Xs) ds.

For instance, in Example 3.1 it can be verified using the scale function and the

speed measure of squared Bessel processes that h(x) = (δ−2)2

8

∫ ∞
0 u(x, y)y− δ+2

4 ×
m(dy) leading to dAt = X

− δ+2
4

t dt in the notation of Theorem 3.2.

EXAMPLE 3.2. Suppose X is a standard Brownian motion. It is well known
that

uα(x, y) = 1√
2α

exp
(−√

2α|x − y|).



3118 U. ÇETIN

Thus, if we use the transform in Proposition 3.2 with y = 0, the recurrent transform
is the solution to the following SDE:

dXt = dBt − √
2α sgn(Xt) dt,

where sgn(x) = −1[x<0] + 1[x≥0]. This is a Brownian motion with alternating
state-dependent drift, which plays a key role in the so-called bang-bang con-
trol problem [see Section 6.6.5 in Karatzas and Shreve (1991) and the references
therein].

We shall consider in subsequent sections the applications of the above recurrent
transforms to optimal stopping as well as some pricing issues arising in Black–
Scholes models when the stock price follows a strict local martingale. However,
one can find an immediate application of the recurrent transform to the computa-
tion of the distribution of the first exit time for a one-dimensional diffusion from
an interval. Indeed, such a first exit time can always be viewed as the life time of a
transient diffusion by killing the original one as soon as it exits the given interval.
Thus, the problem reduces to finding P x(ζ > t) for all t > 0, where P x is the law
of the transient diffusion starting at x and ζ is its lifetime, that is, the first time it
exits the given interval. The following is a direct consequence of Proposition 3.1.

COROLLARY 3.1. Let X be a regular transient diffusion satisfying Assump-
tion 2.1. Then

P x(ζ > t) = u(x, y)Eh,x

[
1

u(Xt , y)
exp

(
− s′(y)

2u(y, y)
L

y
t

)]
,

where Eh,x is the expectation operator with respect to the law of the recurrent
transform given by (3.6).

Although the above formula does not in general give P x(ζ > t) in closed-form,
it is nevertheless practical. Indeed, by running a Monte-Carlo simulation of the
solution of (3.6), one can get a close estimate of

Eh,x

[
1

u(Xt , y)
exp

(
− s′(y)

2u(y, y)
L

y
t

)]

by approximating the local time using the occupation times formula.
Karatzas and Ruf (2016) have shown that the function v(t, x) := P x(ζ > t) is

the smallest nonnegative classical supersolution of

(3.10) vt = Av, v(0, ·) = 1

under the assumption that σ and b are locally uniformly Hölder continuous on
(l, r). Thus, combining their Proposition 5.4 and Corollary 3.1 we deduce the fol-
lowing.
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COROLLARY 3.2. Let X be a regular transient diffusion satisfying Assump-
tion 2.1. Assume further that σ and b that appears in (2.2) are locally uniformly
Hölder continuous on (l, r). Define

v(t, x) := u(x, y)Eh,x

[
1

u(Xt , y)
exp

(
− s′(y)

2u(y, y)
L

y
t

)]
,

where Eh,x is the expectation operator with respect to the law of the recurrent
transform given by (3.6). Then v is the smallest nonnegative classical supersolution
of (3.10).

REMARK 3.3. In fact, there is not a unique way of representing the minimal
nonnegative classical supersolutions of (3.10). Indeed, if h is the potential of a
probability measure μ on (l, r) satisfying the hypothesis of Theorem 3.2, then

P x(ζ > t) = h(x)Eh,x

[
1

h(Xt)
exp

(
−

∫
(l,r)

s′(y)L
y
t

2h(y)
μ(dy)

)]
.

In particular if μ(dy) = f (y)m(dy) for some f ,
∫
(l,r)

s′(y)L
y
t

2h(y)
μ(dy) = ∫ t

0
f (Xs)
h(Xs)

ds.

REMARK 3.4. The recurrent transformation of a transient diffusion can be
used to improve the accuracy of discrete Euler approximations of diffusions that
are killed when leaving a bounded interval [a, b]. Suppose ζ represents the first
exit time from this interval and one is interested in the Monte Carlo simulation of
Ex[F(XT )1[T <ζ ]] for some suitable F via a discrete Euler scheme applied to the
SDE (2.2) for X. Gobet (2000) has shown that the discretisation error is of order
N− 1

2 , where N is the number of discretisations. This order of convergence is exact
and intrinsic to the killing. However, this corresponds to a loss of accuracy com-
pared to the standard Euler scheme applied to a diffusion without killing, where
the error is of order N−1. On the other hand, the recurrent transformation from
Theorem 3.2 can be used to improve the convergence rate back to N−1 since

Ex[
F(XT )1[T <ζ ]

] = h(x)Eh,x

[
F(XT )

1

h(XT )
exp

(
−

∫ T

0

f (Xs)

h(Xs)
ds

)]
,

where h(x) = ∫ r
l u(x, y)f (x)m(dx) for a nonnegative f with

∫ r
l f (x)m(dx) = 1.

This is due to the fact that there is no killing under Rh,x , that is, Rh,x(ζ = ∞) = 1.
We will study in more detail the improvement of the discrete Euler scheme for
killed diffusions in a subsequent paper.

3.1. Connection with Doob’s h-transform. It is trivial to check that (h,M)-
recurrent transform of X has h2 dm as its speed measure. In the specific case con-
sidered in Proposition 3.1, the recurrent transform is a one-dimensional diffusion
with scale

sh(x) =
∫ x

c

s′(z)
(u(z, y))2 dz,
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and the speed measure (u(z, y))2m(dz). Note that this is not the only diffusion with
this scale function and the speed measure. Indeed, if one considers the h-transform
of X via h(x) = u(x,y)

u(y,y)
, one obtains a diffusion which amounts to conditioning the

paths of X to converge to y and killed at its last exit from y. The resulting diffu-
sion is obviously a transient diffusion but has the same scale and the speed [see,
e.g., Theorem 6.2 in Evans and Hening (2016) or Paragraph 31 in Section II.5 of
Borodin and Salminen (2002)]. The crucial difference between the two transfor-
mations is that the h-transform involves killing while the recurrent transform does
not.

Killing of the trajectories in the h-transform is also apparent from the following
representation. Denoting the law of the h-transform by P̃ u,x we deduce

Ẽu,x[F1[ζ>t]] = Ex[Fu(Xt , y)]
u(x, y)

= Ex[F1[Gy>t]]
h(x)

.

In the above F is an Ft -measurable random variable and Gy := sup{t : Xt = y}
[see Section 3.9—in particular the expression (3.211)—in Marcus and Rosen
(2006) for the details]. The above identity in particular implies

P̃ u,x(ζ > t) = P x(Gy > t)

h(x)
∀t ≥ 0,

that is, P̃ u,x -distribution of ζ coincides with the law of Gy under P x after a nor-
malisation. Observe that P x(Gy < ζ) = 1 since X is transient under P x .

Given this close relationship between the recurrent transform and the h-
transform one may wonder whether it is possible to obtain the latter from the for-
mer via a killing. This is in fact possible. Indeed, for any Ft -measurable bounded
random variable F , one has

(3.11) Eh,x

[
F exp

(
− s′(y)

2u(y, y)
L

y
t

)]
= Ex

[
F

u(Xt , y)

u(x, y)

]
= Ẽu,x[F1[ζ>t]].

Thus, if one kills the trajectories of the recurrent transform at rate s′(y)
2u(y,y)

L
y
t , then

one obtains the h-transform. As such, h-transform is subordinate [see Section III.2
of Blumenthal and Getoor (1968) for a description of subordinate semigroups]
to the recurrent transform, that is, Ẽu,x[F ] ≤ Eh,x[F ] for all nonnegative Ft -
measurable F that vanishes on [ζ,∞).

We shall next describe how one can implement this killing in practice. To this
end define Sa := inf{t ≥ 0 : Ly

t >
2u(y,y)a

s′(y)
} for a > 0 and consider a unit exponen-

tial random variable α that is independent from the recurrent process. Then, for
any Ft -measurable bounded random variable F ,

Eh,x[F1[t<Sα]] =
∫ ∞

0
e−aEh,x[F1[Ly

t ≤ 2u(y,y)a

s′(y)
]]da = Eh,x

[∫ ∞
s′(y)L

y
t

2u(y,y)

F e−a da

]

= Eh,x

[
F exp

(
− s′(y)

2u(y, y)
L

y
t

)]
,
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yielding the relationship in (3.11).
Note that if the h-transform is given by a bounded potential h as in Theo-

rem 3.2, similar considerations also show that the h-transform can be obtained
from the recurrent transform by killing the recurrent transform at the first time
that

∫ ·
0

1
h(Xs)

dAs , where A is the finite variation process associated to the recurrent
transform via Theorem 3.2, exceeds a unit exponential time. We leave the easy
details to the reader. This in turn gives a very useful recipe for the simulation of
h-transforms, whose lifetimes often correspond to some last passage times that are
not stopping times [see Remark 11.27 in Chung and Walsh (2005)].

4. Limits of recurrent transforms and strict local martingales. Motivation
of this section comes from the financial models that we shall treat in more detail in
Section 6. Consistent with the setting therein X will assumed to be a nonnegative
diffusion in natural scale in this section. As our focus is on strict local martingales
this necessitates the choice of r = ∞. We also translate X so that l = 0. Conse-
quently, u(x, y) = x ∧ y and the recurrent transform in (3.6) reads

(4.1) Xt = x +
∫ t

0
σ(Xs) dBs +

∫ t

0

σ 2(Xs)

Xs

1[Xs≤y] ds, x > 0.

We have established in Proposition 3.1 that the above SDE has a non-explosive
weak solution that is unique in law. Moreover, the solution never hits 0. If (Xy)y>0
denotes the solutions of (4.1) indexed by y, we notice immediately that the drift
term associated to Xy is increasing in y. Thus, if the solutions are strong, we may
hope that the solutions are increasing in y under a mild hypothesis on σ . Then, if
we let Yt := limy→∞ X

y
t , the resulting limit is expected to satisfy

(4.2) Yt = x +
∫ t

0
σ(Ys) dBs +

∫ t

0

σ 2(Ys)

Ys

ds, x > 0.

Since Y is obtained as an increasing limit of Xy , it will never hit 0. However, its
behaviour near the infinite boundary, and in particular whether it may explode in
finite time, requires a further look. We shall in fact see that Y is the SDE satisfied
by the h-transform of X, where h(x) = x, and its explosive behaviour depends
exclusively on the strict local martingale property of X.

The next assumption will be sufficient to ensure that the solutions of (4.1) are
strong and increase in y. Note that one could get the existence and uniqueness of
strong solutions under weaker hypothesis. However, the following stronger condi-
tion is imposed since we are also interested in a comparison result for the strong
solutions.

ASSUMPTION 4.1. There exists a strictly increasing function ρ : [0,∞) →
[0,∞) with ∫ ∞

0+
1

ρ(a)
da = ∞
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such that
(
σ(x) − σ(y)

)2 ≤ ρ
(|x − y|), x �= y.

As we will be working with strong solutions in this section let us fix a Brownian
motion, β , on a fixed probability space (�,F, (Ft ),P), where (Ft )t≥0 is as in
Section 2, so that

(4.3) Xt = x +
∫ t

0
σ(Xs) dβs, x > 0.

It follows from Theorem IX.3.5 in Revuz and Yor (1999) and Corollary 5.3.23 in
Karatzas and Shreve (1991) that X is the unique strong solution of (4.3) under
Assumptions 2.1 and 4.1.

What we would like to achieve next is to pass to a locally absolutely continuous
measure, which will support all the solutions of (4.1). The next result does not
need Assumption 4.1.

PROPOSITION 4.1. Suppose that Assumption 2.1 is in force and X satisfies
(4.3) on (�,F, (Ft ),P) supporting the Brownian motion, β . There exists a Q on
(�,F) and a sequence of stopping times (τn)n≥1 such that (i) limn→∞Q(τn ≤
t) = 0, (ii) Q|Fτn

� P|Fτn
and (iii)

Xt = x +
∫ t

0
σ(Xs) dBs +

∫ t

0

σ 2(Xs)

Xs

1[Xs≤1] ds,

where B is a (�,F, (Ft ),Q)-Brownian motion.

PROOF. Consider the (h,M) transform in Proposition 3.1, where y = 1, and
set τn := inf{t ≥ 0 : L

y
t ≥ n}. Then h(Xt∧τn)Mt∧τn is a bounded martingale that

defines a Qn on Fτn . Note that Qn(τn ≤ t) = Rh,x(L
y
t ≥ n) using the nota-

tion of Proposition 3.1. Thus, limn→∞ Qn(τn ≤ t) = limn→∞ Rh,x(L
y
t ≥ n) =

Rh,x(L
y
t = ∞) = 0, and (i) and (ii) follow from Theorem 1.3.5 in Stroock and

Varadhan (2006).
Moreover, since Q agrees with Qn on Fτn , we have

Xt = x +
∫ t

0
σ(Xs) dBs +

∫ t

0

σ 2(Xs)

Xs

1[Xs≤1] ds, t < τn,

where

Bt = βt −
∫ t

0

σ(Xs)

Xs

1[Xs≤1] ds, t < τn.

As such, B is a Brownian motion stopped at τn. Invoking the fact that
limn→∞Q(τn ≤ t) = 0 yields (iii). �
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The above proposition constructs a locally absolutely continuous probability
measure, Q, and a Q-Brownian motion, B . Thus, once we impose Assumption 4.1,
(4.1) will possess the pathwise uniqueness property by virtue of Proposition IX.3.1
and Lemma IX.3.1 in Revuz and Yor (1999). Combining this with Corollary 5.3.23
in Karatzas and Shreve (1991), we arrive at the following.

PROPOSITION 4.2. Suppose that Assumptions 2.1 and 4.1 hold. Let B and
(�,F, (Ft ),Q) be as in Proposition 4.1. Then, for each y > 0, there exists a
unique strong solution to (4.1).

As mentioned earlier Assumption 4.1 will also imply that the solutions of (4.1)
are increasing in y.

PROPOSITION 4.3. Suppose that Assumptions 2.1 and 4.1 hold. Let B and
(�,F, (Ft ),Q) be as in Proposition 4.1 and denote by Xy the unique strong so-
lution of (4.1). Then Q(X

y0
t ≤ X

y1
t , ∀t ≥ 0) = 1 whenever y0 ≤ y1.

PROOF. Let bi(x) = σ 2(x)
x

1[x≤yi ] for i = 0,1, and define bε(x) = b1(x) + ε.
Observe that for any sufficiently small δ > 0 there exists a Lipschitz function,
g, such that b0(x) ≤ g(x) ≤ bε(x) for x > δ due to the continuity of σ . Thus,
it follows from Theorem 1.1 in Chapter VI of Ikeda and Watanabe (2014) that
X

y0
t ≤ Zε

t for all t < Tδ , where Tδ = inf{t ≥ 0 : Xy0
t ≤ δ} and

Zε
t = x +

∫ t

0
σ

(
Zε

s

)
dBs +

∫ t

0
bε(Zε

s

)
ds.

Note that since σ satisfies (2.1) and Assumption 4.1 the above SDE has a unique
strong solution. Since δ is arbitrary and limδ→0 Tδ = ∞,Q-a.s., we immediately
deduce that X

y0
t ≤ Zε

t for all t ≥ 0. Next, we claim that Zε
t → X

y1
t as ε → 0 for

t < Tδ .
Indeed, we can again find a Lipschitz continuous function between bε0 and bε1

whenever ε0 < ε1 on (δ,∞) for any δ > 0. Therefore, the same theorem in Ikeda
and Watanabe (2014) yields that Zε

t is increasing in ε for each t > 0. Set Zt =
limε→0 Zε

t . It follows from the continuity of σ and the dominated convergence
theorem for stochastic integrals that

lim
ε→0

∫ t

0
σ

(
Zε

s

)
dBs =

∫ t

0
σ(Zs) dBs.

Also observe that Zt < y1 if and only if Zε
t < y1 for all but finitely many ε (number

possibly depending on ω) since Zε is decreasing to Z as ε → 0. Thus, bε(Zε
t ) →

b1(Zt ) as ε → 0 for each t > 0. Since bεn is uniformly bounded on (δ,∞) given
any (εn)n≥1 converging to 0, we deduce from Lebesgue’s dominated convergence
theorem that

lim
ε→0

∫ t∧Sδ

0
bε(Zε

s

)
ds =

∫ t∧Sδ

0
b1(Zs) ds,
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where Sδ = inf{t > 0 : Zt < δ}. Thus, we have shown that Z solves (4.1) with y =
y1 up to Sδ . Since Xy1 is the unique solution of this equation, we therefore establish
that X

y1
t = limε→0 Zε

t for t ≤ Sδ = inf{t > 0 : Xy1
t < δ}. Therefore, X

y0
t ≤ X

y1
t for

t < Tδ . As before, we can pass to the limit as δ → 0 and conclude for every t ≥ 0
that X

y0
t ≤ X

y1
t . Moreover, due to the continuity of Xyi s, we may choose a null set

independent of t to deduce Q(X
y0
t ≤ X

y1
t , ∀t ≥ 0) = 1. �

Thanks to the above result Xy is increasing in y and we can define Yt =
limy→∞ X

y
t . Moreover, the arguments used in the proof of the above proposition

yields the following corollary.

COROLLARY 4.1. Suppose that Assumptions 2.1 and 4.1 hold and let Xy be
the unique strong solution of (4.1), where B and (�,F, (Ft ),Q) are as in Propo-
sition 4.1. Then Y is the unique strong solution of (4.2), where Yt = limy→∞ X

y
t .

It can be checked easily that the scale function of the diffusion in (4.2) is 1 − 1
x

.
Thus, the solution never hits 0 and diverges to ∞ as t → ∞. Whether the explosion
happens in finite time depends on the martingale property of X. Note that if one
is content with weak solutions, (4.2) has a unique weak solution when σ satisfies
(2.1).

PROPOSITION 4.4. Suppose that σ satisfies (2.1) and consider a weak solu-
tion, Y , of (4.2). Let Qx be the law of the solution of (4.2). Then Qx(limt→∞ Yt =
∞) = Qx(Yt > 0,∀t > 0) = 1. In particular, ζ = inf{t : Yt = ∞}, Qx-a.s. for each
x > 0. Moreover, Qx(ζ = ∞) = 1 if and only if X is a martingale, where X is given
by (4.3).

PROOF. Note that the scale function of Y after our normalisation is given by
s(x) = 1− 1

x
. Thus, (2.7) applies and we deduce Qx(limt→∞ Yt = ∞) = Qx(Yt >

0,∀t > 0) = 1. Since ζ is the lifetime of the diffusion, this also implies that ζ =
inf{t : Yt = ∞}, Qx-a.s.

Next, it follows from Theorem 5.5.29 and Problem 5.5.27 in Karatzas and
Shreve (1991) that Qx(ζ = ∞) = 1 if and only if

lim
x→∞

∫ x

1

x − z

x

z

σ 2(z)
dz = ∞.

However, ∫ x

1

x − z

x

z

σ 2(z)
dz = 1

x

∫ x

c

∫ y

c

z

σ 2(z)
dz dy.

Thus, the above limit is valid if and only if∫ ∞
1

z

σ 2(z)
dz = ∞,
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which is well known to be equivalent to the martingale property of X [see, e.g.,
Theorem 1.4 in Delbaen and Shirakawa (2002) under a mild assumption on σ or
Theorem 1 in Kotani (2006) for a general result]. �

REMARK 4.1. Using the methods employed in the proof of Theorem 3.1 one
can show that the law of (4.2) is equal to that of the h-transform of X, where
h(x) = x. The relationship between the martingale property of X and the finiteness
of the explosion time of its h-transform, that is, Proposition 4.4, has already been
observed in the literature [see, e.g., Föllmer (1972) or, more recently, Kardaras,
Kreher and Nikeghbali (2015)].

As observed earlier 1 − 1/x is a scale function of Y . Consequently, 1/Y is a
nonnegative local martingale. It turns out that the martingale property of 1/Y is
determined by whether X hits 0 or not.

PROPOSITION 4.5. Suppose that σ satisfies (2.1) and let Y be a weak solution
of (4.2), whose law is denoted by Qx . Then, 1

Y
is a Qx martingale if and only if

P(Xt > 0, ∀t > 0) = 1, where X is given by (4.3).

PROOF. Denote 1
Y

by ξ . Then dξt = σ( 1
ξt

)ξ2
t dBt for some Brownian motion

B . It follows from Theorem 1 in Kotani (2006) that ξ is a martingale if and only if
∫ ∞

1

1

σ 2(1
z
)z3

dz = ∞.

However, after a change of variable the above condition is equivalent to
∫ 1

0

x

σ 2(x)
dx = ∞,

which is equivalent to the strict positivity of X by Theorem 5.5.29 in Karatzas and
Shreve (1991). �

5. Yet another transform for recurrent diffusions. We have noted in Sec-
tion 3 a remarkable transform that turned any regular diffusion into a positively
recurrent one. This section will present a particular type of transformation for
recurrent diffusions that will render them transient. This transformation will be
especially useful when we consider the optimal stopping problems in Section 7.

When X is a transient diffusion with s(l) = 0, it converges to l with positive
probability. If one wants to condition this process to converge to r with probabil-
ity 1, it suffices to use the h-transform with h = s [see, e.g., Section 6 in Evans and
Hening (2016)]. If X is recurrent, on the other hand, the range of s is the whole
real line so one needs to consider taking absolute values to obtain a positive local
martingale using s. The next proposition introduces a particular conditioning for
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recurrent diffusions that conditions X∞ to exist and take values in the set {l, r}.
Similar to the martingale characterisation of a positive diffusion in natural scale in
terms of the explosion time of its h-transform that we have seen in Proposition 4.4,
the resulting diffusion will turn out to have a finite explosion time if and only if
s(X) is a strict local martingale.

PROPOSITION 5.1. Suppose X is a recurrent diffusion satisfying Assump-
tion 2.1. Let c > 0 be fixed and y∗ be the unique point in (l, r) such that s(y∗) = 0.
Then the following statements are valid:

1. N is a local martingale, where

Nt := (
1 + c

∣∣s(Xt)
∣∣) exp

(−cs′(y∗)
L

y∗
t

)
.

2. For any x ∈ (l, r) there exists a unique weak solution to

(5.1)

Xt = x +
∫ t

0
σ(Xs) dBs

+
∫ t

0

{
b(Xs) − c

s ′(Xs)

1 − cs(Xs)
1[Xs≤y∗]

+ c
s′(Xs)

1 + cs(Xs)
1[Xs>y∗]

}
ds, t < ζ,

where ζ := inf{t : Xt− ∈ {l, r}}.
3. The regular diffusion defined by (5.1) has scale function

(5.2) s̃(x) := 1 + c(s(x) + |s(x)|)
2(1 + c|s(x)|) ,

and speed measure

m̃(dx) = 4(1 + c|s(x)|)2

cσ 2(x)s′(x)
dx = 2(1 + c|s(x)|)2

c
m(dx).

P̃ x(Xζ = r) = s̃(x) = 1 − P̃ x(Xζ = l), where P̃ x denotes the law of (5.1). More-
over, P̃ x(ζ = ∞) = 1 if and only if s(X) is a P x -martingale.

4. For any F ∈ Ft , the following absolute continuity relationship holds:

(5.3) P̃ x(F, ζ > t) = Ex[1F Nt ]
1 + c|s(x)| .

Consequently, N is a martingale if and only if s(X) is.

PROOF. Note that 1 + c|s(x)| is absolutely continuous with a jump in its left
derivative at x = y∗ with size 2cs′(y∗). Thus, N is a local martingale due Itô–
Tanaka formula as in Proposition 3.1. Moreover, the arguments used in the proof
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of Theorem 3.1 also yields the existence of a weak solution to (5.1), which is
unique in law.

By direct manipulation, one can also verify that s̃ and m̃ are a scale function
and a speed measure for the solutions of (5.1). That P̃ x(Xζ = r) = s̃(x) follows
directly from the statement preceding (2.5).

According to Theorem 5.5.29 in Karatzas and Shreve (1991) P̃ x(ζ = ∞) = 1 if
and only if

lim
x→r

∫ x

y∗
s̃(x) − s̃(z)m̃(dz) = lim

x→l

∫ y∗

x
s̃(z) − s̃(x)m̃(dz) = ∞.

However, the above hold if and only if
∫ r

y∗
s(z)

σ 2(z)s′(z)
dz = −

∫ y∗

l

s(z)

σ 2(z)s′(z)
dz = ∞,

which is equivalent to the martingale property of s(X) by Theorem 1 of Kotani
(2006).

In order to prove the remaining assertions, let l < a < b < r and Ta,b := inf{t :
Xt /∈ (a, b)}. Then NTa,b is a bounded positive martingale. Therefore,

P̃ x(t < Ta,b,F ) = Ex[1[t<Ta,b]Nt ]
1 + c|s(x)| .

Note that T a,b → ζ under P x and P̃ x . However, ζ = ∞, P x -a.s. and (5.3) follows
from the dominated convergence theorem.

(5.3) in particular implies

P̃ x(ζ > t) = Ex[Nt ]
1 + c|s(x)| .

Thus, P̃ x(ζ = ∞) = 1 iff

lim
t→∞

Ex[Nt ]
1 + c|s(x)| = 1.

However, since N is a supermartingale, the above limit holds if and only if N is
a martingale. Hence, we conclude by the previous part, which has established the
equivalence of the martingale property of s(X) and P̃ x(ζ = ∞) = 1. �

EXAMPLE 5.1. Suppose that X is a Brownian motion so that y∗ = 0. Then,
taking c = 1 in Proposition 5.1 implies that the transformed process is a weak
solution of

Xt = x + Bt +
∫ t

0

sgn(Xs)

1 + |Xs | ds, t > 0,

where sgn(x) = −1[x<0] + 1[x≥0]. Roughly speaking, 1 + |X| behaves like a
3-dimensional Bessel process when X is away from 0. Observe that the above



3128 U. ÇETIN

SDE has a nonexploding solution since Brownian motion is a martingale. More-
over, X∞ exists and equals ∞ or −∞ with probabilities s̃(x) and 1 − s̃(x), re-
spectively.

6. Nonuniqueness of the Black–Scholes equation. As promised earlier, we
will now apply the results of Sections 3 and 4 to financial models, where the stock
price movements are governed by a regular one-dimensional diffusion. To sim-
plify the exposition, we shall assume that the interest rate is 0. Our interest is in
the pricing equation for a derivative contract written on this stock. The fundamen-
tal theorem of asset pricing [see Delbaen and Schachermayer (1994)] stipulates
that the stock price must follow a local martingale under an equivalent probabil-
ity measure, that is, risk-neutral measure, and the price of the derivative contract
equals the expectation of its terminal payoff under this measure if it is replicable.

Throughout this section, we will assume that the stock price under the unique
risk-neutral measure is given by

(6.1) Xt = X0 +
∫ t

0
σ(Xs) dBs, X0 > 0,

on (�,F, (Ft )t≥0,P), where X0 is deterministic and σ satisfies (2.1) on (0,∞) as
well as Assumption 4.1. In particular, X is the unique strong solution of the above
equation. We also impose the condition that X is a strict local martingale, that is,

(6.2)
∫ ∞

1

z

σ 2(z)
dz < ∞.

REMARK 6.1. Note that we do not assume X is always strictly positive, that
is, X can hit 0 in finite time with positive probability.

The strict local martingale assumption places a bubble on the stock price in the
sense that it is valued higher in the market than its expected future cash flows.
Appearance of bubbles causes many standard results in derivative pricing theory
become invalid [see Cox and Hobson (2005) and Pal and Protter (2010)]. In par-
ticular, the Cauchy problem associated to the prices of European options do not
admit a unique solution.

DEFINITION 6.1. Let a > 0 and b be measurable functions on (0,∞) and D

be an interval in [0,∞). Consider a continuous function g : D �→R. A continuous
function u : [0,∞) × D →R is said to be a classical solution on [0,∞) × D of

ut (t, x) = 1

2
a(x)uxx(t, x) + b(x)ux(t, x),(6.3)

u(0, x) = g(x),(6.4)

if u ∈ C1,2((0,∞)× int(D)), (6.3) is satisfied for all (t, x) ∈ (0,∞)× int(D) while
(6.4) is valid for all x ∈ D.
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Given the above definition, the following is an easy consequence of Theorem
3.2 in Ekström and Tysk (2009). For the rest of this section, D∗ will denote [0,∞)

if P x(inf{t : Xt = 0} < ∞) > 0 for some x > 0. On the other hand, if 0 is not
accessible in finite time, D∗ := (0,∞).

THEOREM 6.1. Suppose that σ satisfies (2.1) on (0,∞), (6.2) and Assump-
tion 4.1. Consider a continuous function g : [0,∞) → [0,∞) of at most linear
growth and define on [0,∞) × D∗ the function v(t, x) := Ex[g(Xt)], where X is
the unique solution of (6.1). Assume further that g(0) = 0 if 0 ∈ D∗. Then v is a
classical solution on [0,∞) × D∗ of the Cauchy problem

(6.5) vt = 1

2
σ 2vxx, v(0, ·) = g.

Nonuniqueness of the Cauchy problem is implicit in the above theorem. In-
deed, if we let g(x) = x and w(x) = x, both w and v are solutions of (6.5). Yet,
Ex[Xt ] �= x since X is a strict local martingale.

The equation (6.5) is called the Black–Scholes pricing equation in the literature.
If g is the time-T payoff of a European derivative written on the stock, v(T − t,Xt )

gives the time-t price of this derivative, where v is the solution of (6.5). On the
other hand, the arbitrage pricing theory states that the price of the derivative at time
t equals EXt [g(XT −t )] for a sufficiently well behaved payoff since the risk-neutral
measure is unique. Although Theorem 6.1 shows that the function defined by this
alternative pricing formula still satisfies the Black–Scholes equation, nonunique-
ness of the Cauchy problem is problematic especially when one has to rely on
numerical methods to find the price of the derivative.

The goal of this section is to identify the stochastic solution, Ex[g(Xt)] in terms
of the unique solution of some Cauchy problem. The discussion following The-
orem 6.1 shows that there is no hope if we work with the differential operator
associated to the generator of X. However, the solutions of (4.2), which can be
interpreted as the limit of recurrent transforms of X, or in view of Remark 4.1 as
an h-transform of X, come to our rescue.

THEOREM 6.2. Suppose that σ satisfies (2.1) on (0,∞), (6.2) and Assump-
tion 4.1. Consider a continuous function g : [0,∞) → [0,∞) of at most linear
growth at infinity and g(0) = 0 whenever 0 ∈ D∗. Let v(t, x) := Ex[g(Xt)], where
X is the unique solution of (6.1), for (t, x) ∈ [0,∞) × D∗. Then the following
statements are valid:

1. If 0 ∈ D∗, v(t,0) = 0 for all t ≥ 0.
2. For x > 0, v(t, x) = xw(t, x), where w is the unique classical nonnegative

solution on [0,∞) × (0,∞) of

wt(t, x) = 1

2
σ 2(x)wxx(t, x) + σ 2(x)

x
wx(t, x),(6.6)
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w(0, x) = g(x)

x
(6.7)

among the class of functions satisfying the following conditions:

(a) w is of O(x−1) as x → 0:

(6.8) lim
x→0

sup
s≤t

xw(s, x) < ∞ ∀t > 0.

Moreover, if X reaches 0 in finite time

(6.9) lim
x→0

sup
s≤t

xw(s, x) = 0 ∀t > 0.

(b) w approaches to 0 near infinity:

(6.10) ∀t > 0, lim
n→∞w(tn, xn) = 0 if xn ↑ ∞ and tn → t.

3. If Y is a weak solution of (4.2) and Qx is its law,

(6.11) w(t, x) = Qx

[
g(Yt )

Yt

1[ζ>t]
]
,

where ζ corresponds to the lifetime of Y .

Note that we do not require g(x)
x

to be bounded near 0 in the above theorem. In
particular, if D∗ = (0,∞) and g ≡ 1, w will be the solution of a Cauchy problem
with the unbounded initial condition 1

x
. In this case, the unique solution is given

by 1
x

= Qx[ 1
Yt

] since 1
Y

is a martingale when X is strictly positive as observed in
Proposition 4.5.

REMARK 6.2. In Theorem 6.2, the conditions (6.8) and (6.9) are natural
growth conditions near 0 for the problem at hand given that we want w sat-
isfy xw(t, x) = v(t, x) = Ex[g(Xt)]. Indeed, g(x) ≤ K(1 + x) implies v(t, x) ≤
K(1 + x) since X is a nonnegative local martingale, which in turn implies (6.8).
Moreover, when D∗ = [0,∞), v will be uniformly continuous on [0, t]×[0, x] for
all x > 0 in view of the definition of a classical solution, which will lead to (6.9).

On the other hand, (6.10) must be imposed to achieve the intended uniqueness.
Indeed, suppose that X is a strictly positive strict local martingale and g(x) = x.
Then both 1 and v(t,x)

x
are classical solutions of (6.6) with the initial condition

(6.7) and satisfy the growth condition (6.8). However, only v(t,x)
x

satisfies (6.10)

as v(t,x)
x

= Qx(ζ > t).

We end this section with the following immediate corollary to Theorem 6.2,
which implies that the function x �→ Ex[Xt ] is of strictly sublinear growth at in-
finity for t > 0.
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COROLLARY 6.1. Suppose that σ satisfies (2.1) on (0,∞), (6.2) and Assump-
tion 4.1. Let g be as in Theorem 6.2. Then for every t > 0

lim
x→∞

Ex[g(Xt)]
x

= 0,

that is, the function x �→ Ex[g(Xt)] is of strictly sublinear growth at infinity.

7. Optimal stopping. In this section, we will consider the following optimal
stopping problem for a regular diffusion on (l, r) satisfying Assumption 2.1:

(7.1) V (x) := sup
τ≤ζ

Ex[
e−λτ g(Xτ )

]
,

where λ > 0 and τ is any stopping time with the usual convention that e−λτ ×
g(Xτ (ω)) = lim supt→∞ e−λtg(Xt(ω)) if τ(ω) = ζ(ω) = ∞. Here, g is taken to
be a nonnegative function that is continuous on I . From a financial perspective V

can be interpreted as the price of a perpetual American option with payoff g on
a stock whose dynamics are governed by X and is currently priced at x while λ

equals the constant interest rate.

REMARK 7.1. This problem has been considered by Cissé, Patie and Tanré
(2012) where the authors also use change of measure techniques with certain im-
plicit assumptions on their way towards a solution. For instance, the proof of the
key Lemma 3.5 is based on a result of Shiryaev, which requires the continuity
of the function f (of their Lemma 3.5) in the one-point compactifaction of the
state space by adding the cemetery state. This in particular requires the bound-
edness of g in (7.1) with a certain behaviour at the boundary points. Moreover,
the Sturm–Liuoville equation on page 1251 that defines the family of excessive
functions φB(x) = Ex[e−qTB ], where TB = inf{t > 0 : Xt /∈ (a, b)}, stipulates that
φB(a+) = φB(b−) = 1, for all a and b satisfying l ≤ a < b ≤ r . However, this
immediately rules out the case when X has infinite lifetime or an entrance bound-
ary. Indeed, if a = l and b = r , TB = ζ . Thus, if the diffusion has infinite lifetime,
φB(x) = 0 for all x ∈ (l, r), which leads to φB(l+) = φB(r−) = 0 by continuity.
Similarly, if l is an entrance boundary, a = l, and b < r , then φB(l+) = 1 implies
El[e−qTB ] = 1, that is, P l(TB = 0) = 1. This is a contradiction to the assumption
that l is an entrance boundary which entails that the diffusion immediately en-
ters the open interval (l, r) right after time 0 and never returns to l. Consequently,
P l(TB = Tb) = 1, where Tb := inf{t > 0 : Xt = b}. Clearly, P l(Tb > 0) = 1.

The method that is described below is applicable to all regular one-dimensional
diffusions satisfying Assumption 2.1. Aside from the above restrictions the method
of Cissé, Patie and Tanré (2012) requires the knowledge of all φB for all open
sets B . As we shall see later, our solution only requires the knowledge of uλ(·, y)

for some y ∈ (l, r).
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To ease the exposition and simplify the proofs, we shall assume from now on
that X is on natural scale. We will solve the above problem using mainly the λ-
potential kernel, uλ, and the recurrent transform introduced in Proposition 3.2. We
start with the following lemma, which is a direct consequence of Proposition 3.1.

LEMMA 7.1. Let X be a regular diffusion satisfying Assumption 2.1 on (l, r),
y ∈ (l, r) be fixed and g be a nonnegative measurable function on I . Then, for any
stopping time τ and λ > 0, we have

(7.2)

Ex[
e−λτ g(Xτ )1[τ<ζ ]

]

= uλ(x, y)Eh,x

[
g(Xτ )

uλ(Xτ , y)
exp

(
− L

y
τ

2uλ(y, y)

)
1[τ<∞]

]
,

where Eh,x is the expectation with respect to Rh,x , which is the law of the recurrent
transform in Proposition 3.2.

Thus, the recurrent transform associated to uλ removes the discounting in the
optimal stopping problem making it more tractable. We shall apply one more trans-
formation to get rid of the local time factor in order to make the problem one-
dimensional again. However, this recurrent transform will already give us the nec-
essary condition for the finiteness of the optimal stopping problem in (7.1) once
we have the result from the next lemma. Throughout this section, Eh,x and Rh,x

will correspond to the expectation operator and the law associated to the solutions
of (3.8), whose scale function can be chosen as follows for a given y ∈ (l, r):

(7.3) sh(x) =
∫ x

y

1

(uλ(z, y))2 dz.

LEMMA 7.2. For any l < a < b < r and x, y ∈ (a, b), we have

Eh,x

[
1[Ta<Tb] exp

(
− L

y
Ta

2uλ(y, y)

)]
= Rh,x(Ta < Tb))

1 + sa(b;y)sh(b)2uλ(y, y)
for y ≤ x;

Eh,x

[
1[Tb<Ta] exp

(
− L

y
Tb

2uλ(y, y)

)]
= Rh,x(Tb < Ta)

1 + sb(a;y)sh(a)2uλ(y, y)
for y ≥ x,

where

Rh,x(Ta < Tb) = sh(b) − sh(x)

sh(b) − sh(a)
and

sa(b;x) :=
∫ x

a

s′
h(z)

(sh(b) − sh(z))2 dz,

sb(a;x) := 1 −
∫ b

x

s′
h(z)

(sh(z) − sh(a))2 dz.
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PROOF. Suppose y ≤ x. Let us kill the recurrent transform as soon as it hits a

or b and then apply an h-transform via

Rh,x(Ta < Tb) = sh(b) − sh(x)

sh(b) − sh(a)
.

This h-transform conditions the diffusion to converge to a. Thus, if we denote
the law of this h-transform by Rh,a,x and its potential kernel by ua (by dropping
the dependence on b to ease the notation), then

Eh,x[
1[Ta<Tb] exp

(−cL
y
Ta

)] = Rh,x(Ta < Tb)E
h,a,x[

exp
(−cLy∞

)]

= Rh,x(Ta < Tb)E
h,a,y[

exp
(−cLy∞

)]

= Rh,x(Ta < Tb)

s′
a(b;y)

2ua(y,y)

c + s′
a(b;y)

2ua(y,y)

since Rh,a,x(Ty < ∞) = 1 for y ≤ x, L
y∞ is exponentially distributed under Rh,a,y

with parameter s′
a(b;y)

2ua(y,y)
, and sa is a scale function of the above h-transform. Sub-

stituting c with (2uλ(y, y))−1 and noticing sh(y) = 0, we arrive at

Eh,x

[
1[Ta<Tb] exp

(
− L

y
Ta

2uλ(y, y)

)]
= sh(b) − sh(x)

sh(b) − sh(a)

1

1 + sa(b;y)sh(b)2uλ(y, y)
.

Similarly, for y ≥ x,

Eh,x

[
1[Tb<Ta] exp

(
− L

y
Tb

2uλ(y, y)

)]
= sh(x) − sh(a)

sh(b) − sh(a)

1

1 + sb(a;y)sh(a)2uλ(y, y)
.

�

PROPOSITION 7.1. Let x ∈ (l, r) be fixed and consider the value function, V ,
defined in (7.1). If V (x) is finite, then

(7.4) lim inf
a→l

g(a)

uλ(a, x)sh(a)
> −∞ and lim sup

b→r

g(b)

uλ(b, x)sh(b)
< ∞.

PROOF. Suppose that (7.4) is violated. Then either lim infa→l
g(a)

uλ(a,x)sh(a)
=

−∞ or lim supb→r
g(b)

uλ(b,x)sh(b)
= ∞ or both. Suppose it is the former statement

and, thus, there exists a sequence (an) with an → l and

(7.5) lim
n→∞

g(an)

uλ(an, x)sh(an)
= −∞.

Then we claim that

lim
n→∞Ex[

e−λTng(XTn)
] = ∞,
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where Tn := Tan ∧ ζ , which is in contradiction with the hypothesis that V (x) < ∞.
Indeed, by Lemma 7.1 and taking y = x, we have

Ex[
e−λTng(XTn)1[Tn<ζ ]

]

= uλ(x, x)Eh,x

[
g(XTn)

uλ(XTn, x)
exp

(
− Lx

Tn

2uλ(x, x)

)
1[Tn<∞]

]

= uλ(x, x)
g(an)

uλ(an, x)
Eh,x

[
exp

(
− Lx

Tn

2uλ(x, x)

)]
,

where the last line is due to the recurrence of X under Rh,x . However, Lemma 7.2
together with the nonnegativity of g now yield

Ex[
e−λTng(XTn)

] ≥ uλ(x, x)
g(an)

uλ(an, x)
lim
b→r

1

1 + san(b;x)s2
h(b)uλ(x, x)

.

On the other hand,

lim
b→r

san(b;x)s2
h(b) = lim

b→r

∫ x

an

s′
h(z)s

2
h(b)

(sh(b) − sh(z))2 dz

=
∫ x

an

lim
b→r

s′
h(z)s

2
h(b)

(sh(b) − sh(z))2 dz = −sh(an)

by the dominated convergence theorem. Recall that, since x = y, sh(x) = 0 by
(7.3). Thus, the claim follows from (7.5).

If, instead, lim supb→r
g(b)

uλ(b,x)sh(b)
= ∞, a similar construction shows that

V (x) = ∞ in that case, too. �

The above result shows that the boundedness of

(7.6) z �→ g(z)

uλ(z, x)(1 + |sh(z)|)
is necessary in order for V (x) to be finite. In fact, the condition (7.6) is independent
of x and ensures V (x) < ∞ for all x, as one can also guess from the strong Markov
property of X.

LEMMA 7.3. The mapping in (7.6) is bounded if and only if for some y ∈ (l, r)

(7.7) z �→ g(z)

uλ(z, y)(1 + |sh(z)|)
is bounded, where sh is defined by (7.3).

PROOF. It suffices to show that

sup
a

uλ(a, x)

uλ(a, y)
< ∞.
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Indeed, by the symmetry property of the potential kernels and (2.9)

lim
a→l

uλ(a, x)

uλ(a, y)
= lim

a→l

uλ(x, a)

uλ(y, a)
= lim

a→l

Ex[e−λTa ]
Ey[e−λTa ] .

Moreover, if x > y, Ex[e−λTa ] = Ey[e−λTa ]Ex[e−λTy ] by the strong Markov prop-

erty. Thus, for a < y < x, lima→l
uλ(a,x)

uλ(a,y)
= Ex[e−λTy ]. Similarly, for a < x < y,

lima→l
uλ(a,x)

uλ(a,y)
= 1

Ey [e−λTx ] . The strong Markov property can be used also to show

lima→r
uλ(a,x)

uλ(a,y)
< ∞, concluding the proof. �

REMARK 7.2. A similar condition for the finiteness of the value function can
be found in Part (I) of Theorem 6.3 in Lamberton and Zervos (2013). Namely, the
value function is finite if and only if

lim sup
x→l

g(x)

φα(x)
< ∞ and lim sup

x→r

g(x)

ψα(x)
< ∞,

where φα and ψα are the fundamental solutions appearing in (2.8). On the other
hand, (7.7) is equivalent to

lim sup
x→l

g(x)

ψα(x)|sh(x)| < ∞ and lim sup
x→r

g(x)

φα(x)sh(x)
< ∞.

Combining the two conditions allows us to conclude that φα(x)
ψα(x)|sh(x)| [resp.,

ψα(x)
φα(x)sh(x)

] remain bounded as x → l (resp., x → r) when the above limits are
nonzero.

The above discussion justifies the following.

ASSUMPTION 7.1. For some (thus, for all) y ∈ (l, r) the mapping in (7.7) is
bounded.

The denominator in (7.7) should remind us of the transformation discussed in
Section 5. Indeed, let us fix a y ∈ (l, r) and remind ourselves that (Rh,x)x∈(l,r)

corresponds to the recurrent transform in Proposition 3.2 for α = λ. Note that we
can choose its scale function to be sh that is defined in (7.3) and satisfies sh(y) = 0.
The following follows immediately from Proposition 5.1 and Lemma 7.1.

PROPOSITION 7.2. Suppose X is a regular diffusion on natural scale satisfy-

ing Assumption 2.1 and let c = uλ(y,y)
2 . Then:
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1. For any x ∈ (l, r) there exists a unique weak solution to

(7.8)

Xt = x +
∫ t

0
σ(Xs) dBs

+
∫ t

0

{
σ 2(Xs)

uλ
x(Xs, y)

uλ(Xs, y)
− c

s ′
h(Xs)

1 − cs(Xs)
1[Xs≤y]

+ c
s′
h(Xs)

1 + cs(Xs)
1[Xs>y]

}
, t < ζ,

where ζ := inf{t : Xt− ∈ {l, r}}.
2. The regular diffusion defined by (7.8) has scale function

(7.9) s̃(x) := 1 + c(sh(x) + |sh(x)|)
2(1 + c|sh(x)|) ,

and speed measure

m̃(dx) = 4(1 + c|sh(x)|)2

cσ 2(x)s′
r (x)

dx.

P̃ x(Xζ = r) = s̃(x) = 1 − P̃ x(Xζ = l), where P̃ x denotes the law of (5.1).
3. For any F ∈Ft , the following absolute continuity relationship holds:

(7.10) P̃ x(F, ζ > t) =
Eh,x[1F (1 + uλ(y,y)

2 |sh(Xt)|) exp(− L
y
t

2uλ(y,y)
)]

1 + c|sh(x)| .

In particular, for any nonnegative continuous function g on I and stopping time τ ,

(7.11)

Ex[
e−λτ g(Xτ )1[τ<ζ ]

]

= uλ(x, y)
(
1 + c

∣∣sh(x)
∣∣)Ẽx

[
g(Xτ )

uλ(Xτ , y)(1 + c|sh(Xτ )|)1[τ<ζ ]
]
.

The identity (7.11) together with Assumption 7.1 allows us to solve (7.1), which
is the content of the next theorem whose proof is delegated to the Appendix.

THEOREM 7.1. Let X be a regular diffusion on natural scale satisfying As-
sumption 2.1. Consider a nonnegative continuous function g on I satisfying As-
sumption 7.1. Let s̃ be as in (7.9) and G be the smallest concave majorant on
(s̃(l), s̃(r)) of the function

ĝ(x) := g(s̃−1(x))

uλ(s̃−1(x), y)(1 + uλ(y,y)
2 |sh(s̃−1(x))|)

,

and define

� := {
x ∈ (

s̃(l), s̃(r)
) : ĝ(x) ≥ G(x)

}
.



DIFFUSION TRANSFORMATIONS 3137

Then

V (x) = uλ(x, y)

(
1 + uλ(y, y)

2

∣∣sh(x)
∣∣)G

(
s̃(x)

)
< ∞.

Moreover, the optimal stopping time for (7.1) is

τ ∗ := inf
{
t ≥ 0 : s̃(Xt ) ∈ �

}
.

An immediate corollary to the above theorem is the following converse to the
statement in Proposition 7.1.

COROLLARY 7.1. Let x ∈ (l, r) be fixed and consider the value function, V ,
defined in (7.1). V (x) is finite if and only if the mapping in (7.7) is bounded.

PROOF. The necessity has already been proved in Proposition 7.1 in view of
Lemma 7.3. Sufficiency follows from Theorem 7.1. �

REMARK 7.3. Note that the sole purpose of the assumption that X is on nat-
ural scale in the above theorem is to simplify the exposition. If X is not on natural
scale, then one can define Y = s(X), which will be on natural scale, and consider
instead the problem supτ Ex[e−λτ g(s−1(Yτ ))].

8. Conclusion. We have introduced a new class of path transformations for
one-dimensional regular diffusions aimed at modifying their behaviour towards
recurrence. As a first application, these transformations are used to compute the
distribution of the first exit time from an interval for any diffusion. These trans-
forms turned out to be instrumental in understanding strict local martingales better
as well. In Theorem 6.2, we give a novel characterisation of the Black–Scholes
valuation formula in terms of the unique solution of an alternative Cauchy prob-
lem when the stock price is a local martingale, and thus resolve the longstanding
issue with the numerical computation of the option price when the option payoff is
unbounded with linear growth. Finally, using the path transformations developed
in this paper, we propose a unified framework for solving explicitly the optimal
stopping problem for one-dimensional diffusions with discounting in Section 7.
Following Remark 3.4 application of recurrent transformations to study the dis-
crete Euler schemes for killed diffusion is left for future research.

APPENDIX A: PROOF OF THEOREM 3.1

1. To show the first assertion it suffices to show that h′ equals a left-continuous
function Lebesgue a.e. since the left derivative is defined uniquely only outside
a Lebesgue null set. However, since h′ is assumed to be of finite variation, there
exist nondecreasing functions g+ and g− such that h′ = g+ − g−. It follows from
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Exercise 12 in Chapter 7 of Rudin (1987) that g+ and g− are left-continuous a.e.
Thus, h′ is equal to a left continuous function a.e.

Since h′ is of finite variation and can be taken to be left continuous, Exercise 13
in Chapter 7 of Rudin (1987) shows that h′ can be viewed as a signed Borel mea-
sure on (l, r). Then it follows from the Lebesgue decomposition theorem [Theo-
rem C in Section 32 of Halmos (2014)] and the Radon–Nikodym theorem [Theo-
rem B in Halmos (2014)] that the measure dh′(x) admits the stated decomposition.
That h′′ can be taken Borel measure follows from the fact that every Lebesgue
measurable function is equal to a Borel measurable function a.e.

2. Observe that, in view of occupation times formula, the integral in (3.3) equals
on [t < ζ ]

∫ r

l

∣∣∣∣σ
2(x)

2
h′′(x) + b(x)h′(x)

∣∣∣∣ Lx
t

σ 2(x)
dx +

∫ r

l

Lx
t

2

∣∣n(dx)
∣∣

=
∫ r

l

∣∣∣∣1

2
h′′(x) + b(x)

σ 2(x)
h′(x)

∣∣∣∣Lx
t dx +

∫ r

l

Lx
t

2

∣∣n(dx)
∣∣.

Due to the continuity of X, on [t < ζ ] and on almost every path Lx
t would be

equal to 0 for all x outside a compact interval in (l, r), which is determined by the
maximum and the minimum of X on [0, t]. Thus, due to the continuity of x �→ Lx

t ,
it suffices to check

(A.1)
∫
K

∣∣∣∣1

2
h′′(x) + b(x)

σ 2(x)
h′(x)

∣∣∣∣dx +
∫
K

∣∣n(dx)
∣∣ < ∞

for an arbitrary compact K contained in (l, r). First, note that
∫
K

∣∣h′′(x)
∣∣dx +

∫
K

∣∣n(dx)
∣∣ < ∞

since h′ is of finite variation.
Moreover,

∫
K

∣∣∣∣ b(x)

σ 2(x)
h′(x)

∣∣∣∣dx = C +
∫
K

(∫ y

c

∣∣∣∣ 2b(x)

σ 2(x)

∣∣∣∣dx

)∣∣dh′(y)
∣∣,

for some C < ∞ and c ∈ K due to the finiteness of h′ and
∫ y
c | 2b(x)

σ 2(x)
|dx at the

boundary of K . However, the integral in the above representation is finite since
dh′ is of finite variation and

∫ y
c | 2b(x)

σ 2(x)
|dx is bounded in K . This completes the

proof that (A.1) holds for an arbitrary compact set K , which in turn yields the
claim.

3. It follows from the previous part that (h) is of finite variation. Since
(h(Xs)s≤t is away from 0, path by path for t < ζ , it immediately follows that
M is of finite variation, too.
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Since h can be considered as a difference of convex functions, it follows from
Itô–Tanaka formula that on [t < ζ ]:

h(Xt) = h(x) +
∫ t

0
h′(Xs) dXs + 1

2

∫
(l,r)

Lx
t

{
h′′(x) dx + n(dx)

}

=
∫ t

0
h′(Xs) dXs + 1

2

∫ t

0
σ 2(Xs)h

′′(Xs) ds + 1

2

∫ r

l
Lx

t n(dx).

Thus, a simple application of integration by parts formula yields

h(Xt)Mt = h(x) +
∫ t

0
h′(Xs)Msσ(Xs) dBs, t < ζ,

proving the local martingale property for h(X)M . In particular, h(X)M is a con-
tinuous nonnegative supermartingale with an integrable limit as t → ζ .

Finally, due to the hypotheses on sh it follows from Theorem 5.5.15 in Karatzas
and Shreve (1991) that there exists a unique weak solution to (3.1). Moreover,
the solution is recurrent by Part (a) of Proposition 5.5.22 in Karatzas and Shreve
(1991).

4. Since −sh(l+) = sh(r−) = ∞, it follows that h(l) = 0 [resp., h(r) = 0] if
s(l) = 0 [resp., s(r) = 0]. That is, h vanishes at the accessible boundaries, and thus,
h(Xζ ) = 0 on [ζ < ∞]. Consequently, h(Xt)Mt = h(Xt)Mt1[t<ζ ] since Mt > 0
on [t < ζ ] except on a P x-null set by (3.3). Moreover, h must be strictly positive
on (l, r) in order for sh to be finite on (l, r). These in turn yield the desired identity
that inf{t > 0 : h(Xt)Mt = 0} = ζ , P x -a.s.

5. In view of the previous part h(Xt )
h(x)

Mt is a supermartingale multiplicative func-
tional satisfying Hypothesis 62.9 in Sharpe (1988), that is, a supermartingale van-
ishing on [ζ,∞). Then (3.4) follows directly from Theorem 62.19 in Sharpe (1988)
since Rh,x(ζ = ∞) = 1. Note that the space � is projective in the terminology of
Section 62 of Sharpe (1988) since it is the path space.

To show the martingale property observe that in view of (3.4) and Rh,x(ζ =
∞) = 1,

1 = Rh,x(t < ζ) = Rh,x(t < ∞) = 1

h(x)
Ex[

h(Xt)Mt

]
,

yielding the martingale property of h(X)M under P x .
6. By the virtue of the monotone convergence theorem,

Eh,x

[
1F

h(XT )MT

]
= lim

n→∞Eh,x

[
1F

(
1

h(XT )MT

∧ n

)]
.

Thus, employing (3.4) we arrive at

Eh,x

[
1F

h(XT )MT

]
= lim

n→∞Ex[
1F

(
1[h(XT )MT > 1

n
] + nh(XT )MT 1[h(XT )MT ≤ 1

n
]
)]

= P x(
F,h(XT )MT > 0

)
+ lim

n→∞Ex[
1F nh(XT )MT 1[T <ζ ]1[h(XT )MT ≤ 1

n
]
]
,
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where the second line follows from the dominated convergence theorem and that
h(XT )MT = h(XT )MT 1[T <ζ ], P x-a.s. Moreover,

Ex[
1F nh(XT )MT 1[T <ζ ]1[h(XT )MT ≤ 1

n
]
] ≤ P x

(
T < ζ,h(XT )MT ≤ 1

n

)
,

which converges to 0 as n → ∞ since h(XT )MT > 0 on [T < ζ ] except on a
P x -null set by the previous part. Thus,

Eh,x

[
1F

h(XT )MT

]
= P x(

F,h(XT )MT > 0
) = P x(F,T < ζ).

This completes the proof.

APPENDIX B: PROOF OF THEOREM 3.2

1. It follows from a simple differentiation of the potential functions in (2.5)–
(2.7) that the left-derivative of u(·, y), that is, ux(·, y), at x ∈ (l, r) is bounded
by s′(x) uniformly in y. Thus, since μ is a probability measure on (l, r) and s′
is continuous under Assumption 2.1, the dominated convergence theorem implies
the left derivative of h is given by

(B.1) h′(x) =
∫
(l,r)

ux(x, y)μ(dy), x ∈ (l, r).

Next, consider a finite subinterval [a, b] of (l, r) and note that s ′ is of finite vari-
ation on [a, b]. Straightforward computation reveals that the total variation of
ux(·, y) on [a, b], denoted by ‖ux(·, y)‖TV(a,b), admits

∥∥ux(·, y)
∥∥

TV(a,b) ≤ ∥∥s′∥∥
TV(a,b) ≤ K(a, b) < ∞,

for some constant K(a, b). Consequently,

∥∥h′∥∥
TV(a,b) ≤

∫
(l,r)

∥∥ux(·, y)
∥∥

TV(a,b)μ(dy) ≤ K(a, b),

since μ((l, r)) = 1. Thus, h′ is of finite variation.
Next, let v(x, y) := u(s−1(x), s−1(y)) and observe that v(x, ·) is concave for

each x ∈ (l, r). Thus,

h
(
s−1(x)

) =
∫
(l,r)

v
(
x, s(y)

)
μ(dy) ≤ v

(
x,

∫
(l,r)

s(y)μ(dy)

)
,

by Jensen’s inequality. Next, observe that s(l) <
∫
(l,r) s(y)μ(dy) < s(r). In-

deed, if s(l) = −∞, s(l) <
∫
(l,r) s(y)μ(dy) directly follows from the hypothe-

sis that
∫
(l,r) |s(y)|μ(dy) < ∞. If s(l) = 0, since s(x) ≥ 0 for all x ≥ l, we have∫

(l,r) s(y)μ(dy) ≥ 0. In fact,
∫
(l,r) s(y)μ(dy) > 0 since, otherwise, s = 0, μ-a.s.

However, {x : s(x) = 0} = {l} as s is strictly increasing under Assumption 2.1.
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Thus,
∫
(l,r) s(y)μ(dy) > 0 due to the hypothesis that μ does not charge {l}. Simi-

larly, we can show
∫
(l,r) s(y)μ(dy) < s(r). Moreover, by the continuity of s, there

exists some y∗ ∈ I such that
∫
(l,r) s(y)μ(dy) = s(y∗).

Therefore, h(x) ≤ v(s(x), s(y∗)) = u(x, y∗). This in turn implies

(B.2)
∫ y∗

l

s′(y)

h2(y)
dy ≥ ∣∣su(l+)

∣∣,
where

su(x) =
∫ x

y∗
s′(z)

(u(z, y∗))2 dz, x ∈ (l, r).

Suppose, first, that s(l) = 1 − s(r) = 0. Then, for x < y∗,

su(x) = 1

(1 − s(y∗))2

∫ x

y∗
s′(z)
s2(z)

dz = 1

(1 − s(y∗))2

(
1

s(y∗)
− 1

s(x)

)
,

which in particular shows that limx→l su(x) = −∞. Similarly, for x > y∗,

su(x) = 1

s2(y∗))

∫ x

y∗
s′(z)

(1 − s(z))2 dz = 1

s2(y∗)

(
1

1 − s(x)
− 1

1 − s(y∗)

)
,

and thus, su(r−) = ∞. The other cases are handled the same way to show
−su(l+) = su(r−) = ∞. This in turn yields in view of (B.2) that sh(l+) =
− ∫ y∗

l
s′(y)

h2(y)
dy = −∞. Similarly, sh(r−) ≥ su(r−) = ∞.

Thus, h satisfies the conditions of Theorem 3.1. In particular, h′ can be taken left
continuous with the Lebesgue decomposition dh′(x) = h′′(x) dx + n(dx), where
n is a locally finite signed measure that is singular with respect to the Lebesgue
measure. Moreover, (h,M) is a recurrent transform where

Mt = exp
(
−

∫ t

0

Ãh(Xs)

h(Xs)
ds −

∫ t

0

1

h(Xs)
ds(h)

)
,

where t(h) = ∫
(l,r)

Lx
t

2 n(dx).

On the other hand, the occupation times formula applied to
∫ t

0
Ãh(Xs)
h(Xs)

ds yields

Mt = exp
(
−

∫
(l,r)

Lx
t

h(x)

(
1

2
dh′(x) + b(x)h′(x)

σ 2(x)
dx

))
.

Thus, we will be done if 1
2 dh′(x) + b(x)h′(x)

σ 2(x)
dx = −1

2s′(x)μ(dx) on (l, r). Note
that this will follow if for any continuous f with a compact support in (l, r), we
establish

(B.3)

1

2

∫
(l,r)

f (x) dh′(x) +
∫ r

l
f (x)

b(x)h′(x)

σ 2(x)
dx

= −1

2

∫
(l,r)

f (x)s ′(x)μ(dx).
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First, note that ux(·, y) is differentiable everywhere except at y under Assump-
tion 2.1. Using this observation and the fact that the jump in the (left continuous)
left derivative ux(x, y) at x = y equals ux(y+, y)−ux(y, y) = −s′(y), we deduce

dux(x, y) = uxx(x, y) dx − s′(y)εy(dx),

for some function uxx(·, y) that is a.e. uniquely determined by the second deriva-
tive of u(·, y), which exists at each x �= y. Moreover,

(B.4)
1

2
σ 2(x)uxx(x, y) + b(x)ux(x, y) = 0 ∀x �= y.

Next, the second integral on the left-hand side of (B.3) equals∫ r

l
f (x)

b(x)

σ 2(x)

(∫
(l,r)

ux(x, y)μ(dy)

)
dx

=
∫
(l,r)

μ(dy)

∫ r

l
f (x)

b(x)

σ 2(x)
ux(x, y) dx

= −1

2

∫
(l,r)

μ(dy)

(∫ y

l
f (x)uxx(x, y) dx +

∫ r

y
f (x)uxx(x, y)

)

= −1

2

∫
(l,r)

μ(dy)

(
f (y)

(
ux(y, y) − ux(y+, y)

) −
∫ r

l
f ′(x)ux(x, y) dx

)

= −1

2

(∫
(l,r)

s′(y)f (y)μ(dy) −
∫ r

l
f ′(x)

∫
(l,r)

ux(x, y)μ(dy) dx

)
,

where the first equality follows from Fubini’s theorem since |ux(x, y)| ≤ s′(x)

as observed before and f has compact support. The second line above is a con-
sequence of (B.4) and the third line is a straightforward integration by parts.
The last line is a consequence of ux(y+, y) − ux(y, y) = −s′(y) and another
application of Fubini’s theorem due to the aforementioned bound on ux . Since∫ r
l f ′(x)

∫
(l,r) ux(x, y)μ(dy) dx = ∫ r

l f ′(x)h′(x) dx, (B.3) follows from a simple
integration by parts.

2. This is a restatement of the final part of Theorem 3.1 in this special case.

APPENDIX C: PROOF OF THEOREM 3.3

1. As in the proof of Theorem 3.2, one can differentiate from the left under the
integral sign since

∫
(l,r) u

α(y, y)μ(dy) < ∞ and

uα
x (x, y) ≤

(
ψ ′

α(x)

ψα(x)
+ φ′

α(x)

φα(x)

)
uα(y, y),

where ψα and φα are the fundamental solutions as in (2.8). The fact that h′ is of
finite variation can be shown similarly using the representation of (2.8) and the
continuity properties of the fundamental solutions.
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If X is transient, the potential kernel u exists and we have

h(x) ≤
∫
(l,r)

u(x, y)μ(dy).

Thus, −sh(l+) = sh(r−) = ∞ by Theorem 3.2.
Also note that uα

x (x, y) is differentiable from left at all x �= y with the
left derivative uα

xx(x, y) satisfying 1
2σ 2uα

xx(x, y) + b(x)uα
x (x, y) = αuα(x, y) for

x �= y [see Paragraphs 10 and 11 in Section II.1 of Borodin and Salminen

(2002)]. Moreover, uα
x (y+, y)−uα

x (y, y) = φ′
α(y)ψα(y)−ψ ′

α(y)φα(y)

wα
= −s′(y). Thus,

duα
x (x, y) = uα

xx(x, y) dx − s′(y)εy(dx), and the same arguments of the proof of
Theorem 3.2 can be used to show that (h,M) is a recurrent transform.

Now, suppose X is recurrent. By applying a scale transformation, we may as-
sume without loss of generality that X is on natural scale. This in turn implies
−l = r = ∞. Using the fact that uα(x, y) ≤ uα(y, y),

h(x) ≤
∫
(−∞,∞)

uα(y, y)μ(dy) < ∞,

we deduce
∫ ∞
c

1
h2(x)

dx ≥ ∫ ∞
c

1
(
∫ ∞
−∞ uα(y,y)μ(dy))2 dx = ∞. That is, sh(r−) = ∞.

Similarly, sh(l+) = −∞ and that (h,M) is a recurrent transform follows again
from the same lines of the proof of Theorem 3.2 in view of the aforementioned
properties of uα .

2. Note that the speed measure of the recurrent transform is given by h2(x) ×
m(dx). Thus, we need to show that the speed measure is finite since the stationary
distribution of a one-dimensional diffusion is given by its speed measure when it
is finite [see page 37 of Borodin and Salminen (2002)].

Using Jensen’s inequality and Fubini’s theorem, we get∫ r

l
h2(x)m(dx) ≤

∫ r

l

∫
(l,r)

(
uα(x, y)

)2
μ(dy)m(dx)

=
∫
(l,r)

∫ r

l

(
uα(x, y)

)2
m(dx)μ(dy).

Moreover,∫ r

l

(
uα(x, y)

)2
m(dx) =

∫ r

l

∫ ∞
0

∫ ∞
0

e−α(t+s)p(t, x, y)p(s, x, y) ds dt m(dx)

=
∫ ∞

0

∫ ∞
0

e−α(t+s)
∫ r

l
p(t, y, x)p(s, x, y)m(dx)ds dt

=
∫ ∞

0

∫ ∞
0

e−α(t+s)p(t + s, y, y) ds dt

=
∫ ∞

0
ue−αup(u, y, y) du ≤ 1

ε

∫ ∞
0

e−(α−ε)up(u, y, y) du

= uα−ε(y, y)

ε
.
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In above, the first equality follows from (2.8), the second is due to the symmetry
of the transition density and the Fubini’s theorem, while the third is a consequence
of Chapman–Kolmogorov identity.

Therefore,
∫ r
l h2(x)m(dx) ≤ ∫

(l,r)
uα−ε(y,y)

ε
μ(dy) < ∞.

APPENDIX D: PROOF OF THEOREM 6.2

If 0 ∈ D∗, and X0 = 0, Xt = 0 for all t > 0 P 0-a.s. since 0 is an absorbing
boundary. Thus, v(t,0) = E0[g(Xt)] = E0[g(0)] = 0 since g(0) = 0 when 0 ∈
D∗.

As mentioned in Remark 4.1, the process Y can be considered as an h-transform
of X with h(x) = x. Indeed, if τn := inf{t : Xt /∈ ( 1

n
, n)}, Xτn is a bounded mar-

tingale and a straightforward application of Girsanov’s theorem yields that X is a
weak solution of (4.2) up to τn. Therefore,

Ex[
g(Xt)1[t<τn]

] = Ex

[
1[t<τn]

g(Xt)

Xt

Xt

]
= xQx

[
1[t<τn]

g(Xt)

Xt

]
,

where Qx is the unique law of solutions of (4.2). Observe that τn converges to
the lifetime, ζ , of X under P x and Qx . Moreover, since X is a positive super-
martingale, P x(ζ = inf{t : Xt = 0}) = 1 while Qx(ζ = inf{t : Xt = ∞}) = 1 by
Proposition 4.4 since the scale function of (4.2) is 1 − 1/x. Thus, the monotone
convergence theorem together with the assumption that g(0) = 0 when 0 is an
accessible boundary under P x yields

(D.1) xQx

[
1[t<ζ ]

g(Xt)

Xt

]
= Ex[

g(Xt)1[t<ζ ]
] = Ex[

g(Xt)
] = v(t, x).

Thus, v(t, x) = xw(t, x), where w is as defined in (6.11), since the law of Y is the
same as that of X under Qx .

Recall from Theorem 6.1 that v satisfies (6.5). This automatically implies w

satisfy (6.6) and (6.7). To prove the other properties for w fix an m > 0 and note
that

w(t, x) = Qx

[
1[t<ζ ]1[Yt>m]

g(Yt )

Yt

]
+ Qx

[
1[t<ζ ]1[Yt<m]

g(Yt )

Yt

]

≤ K1(m)Qx(ζ > t) + K2(m)Qx

[
1

Yt

]
(D.2)

≤ K1(m)Qx(ζ > t) + K2(m)

x
,

where the second line follows since g(y)
y

is bounded on (m,∞) by the linear

growth assumption and g is continuous on [0,m], and the third line is due to 1
Y

being supermartingale since 1 − 1/x is a scale function for Y . Note that the above
immediately yields (6.8).
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Let us next show that w satisfies (6.9) when 0 is an accessible boundary un-
der P x . Indeed, xw(s, x) = Ex[g(Xs)] implies that (s, x) �→ xw(s, x) is jointly
continuous due to the Feller property of X and the continuity of paths.4 More-
over, g(0) = 0 if 0 is an accessible (and, therefore, absorbing) boundary by our
hypothesis. Thus, limx→0 Ex[g(Xs)] = g(0) = 0 and the convergence is uniform
on compact intervals, yielding (6.9).

To show that w also satisfies (6.10), it suffices to show in view of (D.2) that

lim
n→∞Qxn(ζ > tn) = 0,

which will hold if Qx(ζ > t) tends to 0 as x → ∞ for an arbitrary but fixed t > 0.
Indeed, since Qx(ζ > t) is decreasing in t , we have, for any monotone sequence
(tn)n≥1 with limit s,

lim
n→∞Qxn(ζ > tn) ≤ lim

n→∞Qxn(ζ > s ∧ t1) = 0.

Motivated by the above define w0(t, x) := Qx(ζ > t) and pick y > x. Then

Qx(ζ > t) = Qx(ζ > t, Ty < t) + Qx(ζ > t, Ty > t)

= Ex[
1[Ty<t]w0(t − Ty, y)

] + Qx(Ty > t),

by the strong Markov property of Y . Taking limits as y → ∞, we obtain

Qx(ζ > t) = Ex
[
1[ζ<t] lim

y→∞w0(t − Ty, y)
]
+ Qx(ζ > t)

since Ty → ζ , Qx-a.s. as y → ∞. Observe that the interchange of expectation
and limit is justified by bounded convergence. However, the above readily im-
plies that limy→∞ w0(t − Ty, y) = 0 on [ζ < t]. Note that Ty < ζ and w0(s, y)

is decreasing in s for fixed y. Thus, w0(t, y) ≤ w0(t − Ty, y) and we deduce that
limy→∞ w0(t, y) = 0 since Qx(ζ < t) > 0 for all x > 0.

Now, conversely assume that w is a classical solution of (6.6)–(6.7) satisfying
(6.8)–(6.10). We shall show that w satisfies (6.11). First, note that (6.10) implies
w is bounded near infinity:

(D.3) sup
y>x,s∈[r,t]

w(r, y) < ∞ ∀x > 0 and 0 ≤ r < t < ∞.

Next, define τn,m := inf{t : Yt /∈ ( 1
m

,n)} = Tn ∧ T 1
m

, where Y is a weak solution

of (4.2), and observe that limn→∞ limm→∞ τn,m = ζ , Qx -a.s. for every x > 0. Fix
a T > 0 and let f (t, x) := w(T − t, x). Employing Itô’s formula and using the
continuity of σ and wx , we get

w(T ,x) = Qx[
f (T ∧ τn,m,YT ∧τn,m)

]

= Qx

[
g(YT )

YT

1[T <τn,m]
]

+ Qx[
w(T − τn,m,Yτn,m)1[T >τn,m]

]

4Feller property implies in particular that (P x)x≥0 is a continuous family of laws.
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since Qx(T = τn,m) = 0.
Note that the first term of the summation converges to

Qx

[
g(YT )

YT

1[T <ζ ]
]

by monotone convergence.
Let us first suppose that 0 is an accessible boundary for X. Then

Qx[
w(T − τn,m,Yτn,m)1[T ≥τn,m]

]

= Qx

[
w

(
T − T 1

m
,

1

m

)
1[T ≥τn,m]1[Tn>T 1

m
]
]

+ Qx[
w(T − Tn,n)1[T ≥τn,m]1[Tn<T1/m]

]
≤ K(m)mQx(Tn > T 1

m
) + Qx[

w(T − Tn,n)1[T ≥τn,m]1[Tn<T 1
m

]
]
,

where K(m) is a constant satisfying limm→∞ K(m) = 0 due to (6.9). On the other
hand,

lim
m→∞mQx(Tn > T 1

m
) = m

1
x

− 1
n

m − 1
n

= 1.

Thus,

lim
m→∞Qx[

w(T − τn,m,Yτn,m)1[T ≥τn,m]
] ≤ Qx[

w(T − Tn,n)1[T ≥τn,∞]1[Tn<T0]
]

by the dominated convergence theorem. Recall that T0 = ∞ as Y does not hit 0.
Thus,

lim
n→∞ lim

m→∞Qx[
w(T − τn,m,Yτn,m)1[T ≥τn,m]

]

≤ Qx
[

lim
n→∞w(T − Tn,n)1[T ≥ζ ]

]

by the dominated convergence theorem in view of (D.3) and the fact that Tn → ζ ,
Qx-a.s. Moreover, T − τn is decreasing to T − ζ on the set T ≥ ζ . Thus, it follows
from (6.10) that the above limit is 0 since Qx(ζ = T ) = 0. Hence,

w(t, x) = Qx

[
g(YT )

YT

1[T <ζ ]
]
.

This completes the proof of uniqueness when 0 is an accessible boundary for X

under P x .
To complete the proof, let us now assume that 0 is inaccessible, that is, X is

strictly positive. This means that 1
Y

is a true martingale under Qx in view of Propo-
sition 4.5. The proof will be complete once we show again that

lim
n→∞ lim

m→∞Qx[
w(T − τn,m,Yτn,m)1[T ≥τn,m]

] = 0.
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Indeed,

Qx[
w(T − τn,m,Yτn,m)1[T ≥τn,m]

] = Qx

[
w

(
T − T 1

m
,

1

m

)
1[T ≥τn,m]1[Tn>T 1

m
]
]

+ Qx[
w(T − Tn,n)1[T ≥τn,m]1[Tn<T1/m]

]

≤ KQx

[
1

YT 1
m

1[T ≥τn,m]1[Tn>T 1
m

]
]

+ Qx[
w(T − Tn,n)1[T ≥τn,m]1[Tn<T1/m]

]

= KQx

[
1

YT

1[T ≥τn,m]1[Tn>T 1
m

]
]

(D.4)

+ Qx[
w(T − Tn,n)1[T ≥τn,m]1[Tn<T1/m]

]
,(D.5)

where the first inequality is due to (6.8) and the second equality is a consequence
of the martingale property of 1

Y
.

Convergence of (D.5) to 0 as m and n diverge to ∞ can be shown as before.
Thus, it remains to show that (D.4) converges to 0 as well.

Indeed, by the dominated convergence theorem

lim
m→∞Qx

[
1

YT

1[T ≥τn,m]1[Tn>T 1
m

]
]

= Qx

[
1

YT

lim
m→∞ 1[T ≥τn,m]1[Tn>T 1

m
]
]

= 0

for sufficiently large n since limm→∞ 1[Tn>T 1
m

] = 1[Tn=∞] and T n < ∞, Qx -a.s.

for any n > x due to the fact that Y is strictly positive and explodes in finite time,
Qx -a.s. by Proposition 4.4.

APPENDIX E: PROOF OF THEOREM 7.1

Step 1: Let’s first see that if a is an accessible boundary under P x for some
x ∈ (l, r), then limz→a

g(z)

uλ(z,y)(1+|sh(z)|) < ∞. Indeed, since g is continuous on I

and a ∈ I , g(a) < ∞. On the other hand, limz→a uλ(z, y) = 0 (see Table 1 in
McKean, 1956). Thus, a straightforward application of L’Hospital’s rule yields
limz→a uλ(z, y)(1 + |sh(z)|) = limz→a

1
uλ

x(z,y)
> 0 since a is a regular absorb-

ing boundary (see, again, Table 1 in McKean, 1956). This in particular implies
ĝ(s̃(a)) = G(s̃(a)).

Step 2: Note that G is well defined and bounded due to Assumption 7.1. Let
Y = s̃(X) and observe that Y is a local martingale under P̃ x and G is the least
excessive majorant of ĝ on D := (s̃(l), s̃(r)) for Y . Note that by the continuity of
G we can extend it continuously to s̃(Ĩ ), where Ĩ is the state space of X under P̃x

for any x ∈ (l, r). Moreover G will be the smallest concave majorant on s̃(Ĩ ) of
ĝ(x)1x∈D(x), which is lower semicontinuous on s̃(Ĩ ). Therefore, for x ∈ (l, r)

sup
τ

Ẽx[
ĝ
(
s̃(Xτ )

)
1[τ<ζ ]

] = G
(
s̃(x)

)
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by Theorem 1 on p. 124 of Shiryaev, 2008 or Proposition 3.3 in Dayanik and
Karatzas, 2003. Moreover, Lemma 8 and Theorem 2 in Chapter 3 of Shiryaev,
2008 establish for any ε > 0 that P̃ x(τ ∗

ε < ζ) = 1 and Ẽx[G(s̃(Xτ∗
ε
))] = G(s̃(x)),

where

τ ∗
ε := inf

{
t ≥ 0 : ĝ(

s̃(Xt )
) + ε ≥ G

(
s̃(Xt )

)}
.

Step 3: Let v(x) := uλ(x, y)(1+ uλ(y,y)
2 |sh(x)|)G(s̃(x)) for x ∈ I . Observe that

v(a) is well defined by the continuity whenever a is an accessible boundary in
view of Step 1 and that v(x) ≥ g(x) for all x ∈ I by construction. Moreover,
(e−λtv(Xt )) is a P x -supermartingale. Also observe that v(a) = g(a) whenever
a is an accessible boundary due to the construction of G and Step 1. Thus, if
P x(ζ < ∞) = 1, ĝ(s̃(Xζ )) = G(s̃(Xζ ) implying P x(τ ∗

ε < ζ) = 1 by the continu-
ity of ĝ and G. On the other hand, if P x(ζ < ∞) = 0,

P x(
τ ∗
ε > t

) = v(x)

G(s̃(x))
Ẽx

[
1

uλ(Xτ∗
ε
, y)(1 + c|sh(Xτ∗

ε
)|)1[τ∗

ε >t]
]
,

which converges to 0 as t → ∞ by dominated convergence since P̃ x(τ ∗
ε < ζ) = 1.

Thus, in view of Step 2, we obtain

(E.1) Ex[
e−λτ∗

ε v(Xτ∗
ε
)
] = v(x)

G(s̃(x))
Ẽx[

G(s̃(Xτ∗
ε
)
] = v(x).

Step 4: The above in fact implies Ex[e−λτ∗
v(Xτ∗)] = v(x). Indeed, letting

ρn := inf{t ≥ 0 : e−λtv(Xt) ≥ n}, we have in view of (E.1) that

v(x) = Ex[
e−λτ∗

ε v(Xτ∗
ε
)
] ≤ Ex[

e−λρn∧τ∗
ε v(Xρn∧τ∗

ε
)
]

since (e−λtv(Xt )) is a P x -supermartingale.
Thus, by virtue of the dominated convergence theorem as ε → 0, we deduce

v(x) ≤ Ex[e−λρn∧τ∗
v(Xρn∧τ∗)]. However,

Ex[
e−λρn∧τ∗

v(Xρn∧τ∗)
]

= Ex[
e−λρnv(Xρn)1[τ∗=ζ ]

] + Ex[
e−λρn∧τ∗

v(Xρn∧τ∗)1[τ∗<ζ ]
]

= Ex[
e−λρnv(Xρn)1[τ∗=ζ ]

] + v(x)

G(s̃(x))
Ẽx[

G(s̃(Xρn∧τ∗)1[τ∗<ζ ]
]

converges as n → ∞ to Ex[e−λτ∗
v(Xτ∗)] by supermartingale convergence in con-

junction with the monotone convergence theorem for the first term and the domi-
nated convergence for the second. This shows v(x) ≤ Ex[e−λτ∗

v(Xτ∗)], which in
turn yields the claim as v(x) ≥ Ex[e−λτ∗

v(Xτ∗)] by the supermartingale property
of (e−λtv(Xt )) and Fatou’s lemma.
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Step 5: We will now see that V = v. To this end let τ be an arbitrary stop-
ping time and τn := inf{t ≥ 0 : Xt /∈ (an, bn)}, where l < an < bn < r are
such that an → l and bn → r as n → ∞. Then, by Fatou’s lemma we ob-
tain Ex[e−λτ g(Xτ )] ≤ Ex[e−λτ∧τng(Xτ∧τn)] = v(x)

G(s̃(x))
Ẽx[g̃(s̃(Xτ∧τn))] ≤ v(x)

in view of Step 2.
On the other hand,

(E.2)

Ex[
e−λτ∗

ε g(Xτ∗
ε
)
] = v(x)Ẽx[g̃(s̃(Xτ∗

ε
))]

G(s̃(x))

≥ v(x)Ẽx[G(s̃(Xτ∗
ε
)) − ε]

G(s̃(x))

= v(x)(G(s̃(x) − ε)

G(s̃(x))
.

By letting ε → 0, we arrive at V (x) ≥ v(x), which in turn implies V = v. The
fact that V is finite is a consequence of Assumption 7.1.

Step 6: It remains to show that τ ∗ is optimal. Indeed, since e−λτ∗
ε v(Xτ∗

ε
) con-

verges to e−λτ∗
v(Xτ∗) in L1(P x) as observed in Step 4, and v ≥ g, (e−λτ∗

ε ×
g(Xτ∗

ε
))ε>0 is a uniformly integrable family. Therefore, with the help of (E.2), we

arrive at

Ex[
e−λτ∗

g(Xτ∗)
] = lim

ε→0
Ex[

e−λτ∗
ε g(Xτ∗

ε
)
] ≥ lim

ε→0

v(x)(G(s̃(x) − ε)

G(s̃(x))
= v(x).
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