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Abstract

Recent work (Seaman et al., 2013; Mealli & Rubin, 2015) attempts to
clarify the not always well-understood difference between realised and ev-
erywhere definitions of missing at random (MAR) and missing completely
at random (MCAR). Another branch of the literature (Mohan et al., 2013;
Pearl & Mohan, 2013) exploits always-observed covariates to give variable-
based definitions of MAR and MCAR. In this paper, we develop a unified
taxonomy encompassing all approaches. In this taxonomy, the new con-
cept of “complementary missing at random” (CMAR) is introduced, and
its relationship with the concept of data observed at random (OAR) is
discussed. All relationships amongst these definitions are analysed and
represented graphically. Our paper covers both the univariate and the
multivariate case, where attention is paid to monotone missingness and
to the concept of sequential MAR (S-MAR). Specifically, for monotone
missingness we propose an S-MAR definition which might be more appro-
priate than both everywhere and variable-based MAR to model dropout
in certain contexts.

Key words: conditional independence; dropout; missing data; taxonomy.

1 Introduction

Almost every study involving human subjects suffers from some level of miss-
ingness, i.e. the data are not complete and there are individuals for whom some
parts of the data are available but others are not. This has led to the develop-
ment of a large number of statistical methods to adjust for missing data (Little
& Rubin, 2002). These methods are often based on the assumptions of data
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missing at random (MAR) and missing completely at random (MCAR). How-
ever, three different groups of such definitions have been proposed over the
years. The first two groups, also labelled realised and everywhere definitions
in the literature (Seaman et al., 2013), are referred to as the classical defini-
tions here. They were introduced to deal with the concept of ignorability of
the missingness process, i.e. to state the conditions under which inference can
be based on the observed data only. The third group of definitions, known as
variable-based definitions, was introduced by a relatively novel branch of the
literature to derive some results on recoverability of parameters (i.e. possibility
of getting consistent estimates of such parameters from incomplete data) and
testability of missingness processes (Mohan et al., 2013; Pearl & Mohan, 2013).

Differences and relationships amongst classical definitions were not fully un-
derstood for several years. The recent papers by Seaman et al. (2013) and Mealli
& Rubin (2015) throw light on this topic. However, the distinction between clas-
sical and variable-based definitions has not yet been formally discussed. Clarify-
ing this distinction is important as the aforementioned results about recoverabil-
ity and testability rely on variable-based definitions and there is no guarantee
that they hold when classical definitions are adopted. With this in mind, in
this paper we build a unique taxonomy including classical and variable-based
definitions as special cases.

For every group of definitions, the concept of complementary missing at
random (CMAR) is introduced in a way such that the combination of MAR and
CMAR is logically equivalent to MCAR. This scheme recalls the definition of
data observed at random (OAR). Indeed, although the OAR definition has been
rarely formalised in the literature, it is customary to affirm that data are MCAR
when they are both MAR and OAR (Little & Rubin, 1987, p. 14; Heitjan, 1994;
Heitjan & Basu, 1996). However, CMAR and OAR are generally different. Our
approach relies on the formal language of conditional independence and makes
explicit links between all definitions.

The paper is structured as follows. Section 2 sets up the necessary back-
ground including the literature review, notation and the basics of conditional
independence. Section 3 defines the whole taxonomy for the univariate setting,
with a particular focus on the special case of independence amongst sample
units. Section 4 considers the multivariate setting, with a discussion on the
case of monotone missingness and on the concept of sequential missing at ran-
dom (S-MAR). In this section, we also define a novel missingness mechanism
for the monotone missigness case, providing examples of applications where this
might be more suitable than existing ones. In Section 5, some final remarks and
conclusions are drawn.

2 Background

The missing data field was initiated by Rubin (1976), who first assigned also
to missing data indicators the formal status of random variables. Thereafter,
various definitions of MAR and MCAR have been proposed. Specifically, two
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groups of MAR/MCAR definitions were used for many years. Seaman et al.
(2013) label these two groups realised and everywhere definitions respectively.
The former are statements involving only one realisation of the missingness indi-
cators’ random vector, namely the sample realisation. Conversely, the latter are
statements about every possible realisation of such random vector. In particu-
lar, Seaman et al. (2013) show that many authors have used everywhere MAR
referring to realised MAR, which is the original definition proposed by Rubin
(1976). Mealli & Rubin (2015) report the same definitions but adopt a different
terminology. However, in this paper we adopt the terminology of Seaman et al.
(2013) and denote realised and everywhere definitions by the prefixes R- and E-
respectively.

These classical definitions are needed, together with additional conditions
on parameters, to state sufficient conditions for ignorability of the missingness
process across different inferential paradigms. Intuitively, if the missingness
process is ignorable then valid inferential conclusions can be based only on a
model for the observed data. Specifically, ignorability for Bayesian and direct
likelihood inference requires the R-MAR definition, while for general frequentist
inference the R-MCAR definition is needed. Further for frequentist likelihood
inference ignorability can also be achieved by means of the E-MAR definition
provided E-MCAR is assumed when the expected rather than the observed
information matrix is used to calculate standard errors. For a detailed overview
see Seaman et al. (2013).

Another recently developed branch of the literature considers a third group
of definitions relying on the existence of always-observed auxiliary informa-
tion (Pearl & Mohan, 2013; Mohan et al., 2013). These definitions are termed
variable-based or graph-based as they enable the use of graphical tools like
missingness-graphs, that are directed acyclic graphs including missingness indi-
cators in their set of nodes (Mohan & Pearl, 2014a; Mohan et al., 2013). In this
paper, we denote these definitions by adding the prefix VB-, which stands for
“variable-based”.

While realised and everywhere definitions fully address the concept of ignor-
ability, variable-based definitions are concerned with recoverability and testa-
bility. Mohan et al. (2013) use missingness-graphs to explore recoverability of
probabilistic queries. Mohan & Pearl (2014a) and Daniel et al. (2012) focus also
on recoverability of causal relations. Potthoff et al. (2006) show that whether
data are missing according to their variable-based definition of missing at ran-
dom, which they term MAR+, can be tested when at least two variables have
missing values. Finally, Mohan & Pearl (2014b) provide sufficient conditions for
testability of different missingness models using missingness-graphs.

2.1 Notation

Although we use different symbols, we recover the notational scheme of Seaman
et al. (2013) and extend it to include auxiliary information, which is essential to
deal with variable-based definitions. Suppose that Y is the variable of interest
and we plan to collect data on n sample units: then Y can be thought of as a (n×
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1) random column vector of potentially observable values, i.e. Y = (Y1, . . . ,Yn)′

(notice that non-italic font is used to denote the components of Y so that Yi

is the random variable associated to the i-th sample unit). Realisations of
random variables are always denoted by lower case letters. For instance, y and
y∗ represent two distinct realisations of Y while yi represents a realisation of
Yi. We assign the symbol ∼ to sample realisations. Thus ỹ = (ỹ1, . . . , ỹn)′ is
the vector the analyst would concretely observe if there were no missing data.

We denote by R an (n× 1) binary random vector with the i-th component
taking value 1 if Yi is observed and 0 otherwise. We also indicate by X an
always-observed auxiliary covariate. Conventions for R and X are the same as
those for Y . Furthermore, we introduce the function o(Y,R) which returns the
sub-vector of observed units, namely those Yi such that Ri = 1. Similarly, the
function m(Y,R) returns the sub-vector of missing units, that is those Yi such
that Ri = 0. Thus, (x̃, r̃, ỹ) are the realised sample data while (x̃, r̃, o(ỹ, r̃)) are
the observed sample data as Y is subject to missingness. In line with Seaman
et al. (2013), we warn the reader not to confuse realised and observed values.

For the multivariate setting we use the bold symbol Y to denote the row
vector (Y1, . . . , YT ) or likewise the (n × T ) matrix with elements Yit, with i =
1, . . . , n and t = 1, . . . , T . The notation Ȳt = (Y1, . . . , Yt) is used to represent
partial collections up to the t-th variable. Again, R and X follow the same
conventions, although X can have a general number of columns P . To be
consistent with standard notation in this area, the rows of Y are partitioned into
their observed (Y o

i ) and missing (Y m
i ) components, i.e. Yi = (Yi1, . . . ,YiT ) =

(Y o
i ,Y

m
i ). This notation is also adopted in the univariate case, where it will be{

Yo
i = Yi and Ym

i = ∅ if Ri = 1

Ym
i = Yi and Yo

i = ∅ if Ri = 0.

It is important to bear in mind that o(Y ,R) will be a sequence of column
vectors, possibly of different lengths, while o(Yi,Ri) reduces to Y o

i .
Density functions will be denoted simply by f , with their lower case argu-

ments clarifying without any ambiguity which variables they refer to as well as
which variables they are conditioned on. Parameters of these densities are not
explicitly reported and every statement is intended to hold for each value they
can assume.

2.2 Conditional independence

Two random variables X and Y are independent conditional on another variable
U when f(x|u, y) = f(x|u) for every possible realisation x, y and u. In this case
we write X ⊥⊥ Y |U (Dawid, 1979). Another useful way of expressing this
conditional independence (CI) is given by

f(x|u, y) = f(x|u, y∗) ∀ x, u, y, y∗.
The equation above says that the conditional density of X given U and Y

is not a function of Y . Therefore, its equivalence with the original definition
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can be easily proved using the factorization criterion for conditional indepen-
dence (Whittaker, 1990, p. 31; Dawid, 1979). When we are not conditioning on
any variable U we talk about marginal independence of X and Y . By combining
some properties of CI together (Dawid, 1979; Pearl, 2009, p. 11), it is possible
to show that

X ⊥⊥ Y |U and X ⊥⊥W |(Y,U) ⇐⇒ X ⊥⊥W,Y |U. (2.1)

This property holds even marginally, i.e. when U is empty.

3 Univariate setting

3.1 General definitions of MAR/CMAR/MCAR

Armed with these preliminaries, we are able to provide a formal account of the
aforementioned definitions. To this end, we define a generic 5-ple of realisations
z = (x, x∗, r, y, y∗) and denote by Z the set of all possible 5-ples. Then, we
consider the following list of conditions that could be posed on Z:

r = r̃; (3.1)

x = x∗; (3.2)

o(y, r) = o(y∗, r); (3.3)

o(y, r) = o(y∗, r) = o(ỹ, r). (3.4)

In words, Condition (3.1) forces to limit attention to the sample missing-
ness pattern r̃ only. This condition will be used to state realised definitions.
Condition (3.2) is satisfied only by those 5-ples such that x and x∗ are equal.
Finally, notice that Condition (3.3) is weaker than Condition (3.4) as it does
require only that the observed parts of y and y∗ be equal to each other, while
Condition (3.4) also specifies that they must be equal to the observed part of
the sample realisation ỹ. Figure 1 represents the Venn diagram induced on Z by
Conditions (3.1)-(3.4). Each condition holds in the part of Z where its respec-
tive number is depicted. For instance, (3.1) holds in the inner part of the small
thick oval, while (3.2) holds on the left hand side of the double line. As not
every 5-ple satisfying (3.3) will satisfy (3.4) as well, the subset of Z generated
by (3.4) is contained into the one generated by (3.3).

Conditions (3.1)-(3.4) could be logically combined in many different ways.
However, only a few among these combinations are of interest as they charac-
terize the missing data definitions. More precisely, each definition requires the
general equation

f(r|x, y) = f(r|x∗, y∗) (3.5)

to be satisfied for a particular portion of Z, and each portion represents a specific
combination. The combinations associated to each definition are reported below.
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Z
(3.1)
(3.2)
(3.3)
(3.4)(3.1)

(3.2)

(3.3)

(3.4)

Figure 1: Venn diagram induced on Z by Conditions (3.1)-(3.4).

Specifically, (3.5) must hold ∀ z :

R-MAR: r = r̃ ∧ x = x∗ ∧ o(y, r) = o(ỹ, r) ∧ o(y∗, r) = o(ỹ, r);
R-CMAR: r = r̃ ∧

(
x 6= x∗ ∨ o(y, r) 6= o(ỹ, r) ∨ o(y∗, r) 6= o(ỹ, r)

)
;

R-MCAR: r = r̃;
E-MAR: x = x∗ ∧ o(y, r) = o(y∗, r);
VB-MAR: x = x∗;
E-CMAR: x 6= x∗ ∨ o(y, r) 6= o(y∗, r);
VB-CMAR: x 6= x∗;
E-MCAR: -

As mentioned above, realised definitions are, like the first definitions in Rubin
(1976), always limited to the sample missingness pattern r̃. Conversely, E-MAR
involves all possible patterns of R and therefore is stronger than R-MAR. Notice
that a definition of VB-MCAR is not necessary; the reason will become clear in
Subsection 3.2.1.

To illustrate what realised definitions mean in practice, we recall the numer-
ical example of Seaman et al. (2013) and adapt it to our context. It considers
a vector of four sample realisations ỹ = (10, 3, 4, 2)′, the second of which is
missing. Thus, we have r̃ = (1, 0, 1, 1)′ and o(ỹ, r̃) = (10, 4, 2)′. In this case
R-MAR states that f((1, 0, 1, 1)′|x, (10, a, 4, 2)′) = f((1, 0, 1, 1)′|x, (10, b, 4, 2)′)
for every possible value of x, a and b. On the other hand, R-CMAR states that
f((1, 0, 1, 1)′|x, y) = f((1, 0, 1, 1)′|x∗, y∗) whenever x differs from x∗ in at least
one element or y and y∗ are such that for at least one of them the first element is
different from 10 or the third is different from 4 or the fourth is different from 2.
To satisfy both R-MAR and R-CMAR, f((1, 0, 1, 1)′|x, y) = f((1, 0, 1, 1)′|x∗, y∗)
has to hold for every x, x∗, y and y∗. This corresponds to R-MCAR. Notice that
the realised sample value x̃ is not explicitly involved. This representation with
realised sample data does not shed light on other definitions as these involve
generic realisations of X, R and Y .
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In Figure 2, the region of Z for which (3.5) has to hold is highlighted in grey
for each definition. From Figure 2 it is clear that, for every group of definitions,
combining MAR and CMAR results in MCAR. The grey portion of a definition
contains all the definitions that are implied by it: the larger the grey area, the
stronger the assumption defining a missingness model. In particular, notice that
E-CMAR does not imply R-CMAR, while R-MCAR does not imply E-MAR as
remarked by Seaman et al. (2013). The implication diagram of Figure 3 provides
a complete summary.

3.2 Alternative definitions

Definitions in Subsection 3.1 can be rewritten in several ways. Table 1 shows two
possible alternatives, which are useful to highlight different noteworthy aspects.
These alternative formulations are equivalent if, as we assume throughout the
rest of the paper, sample units (Xi,Ri,Yi) are independent, that is

f(r|x, y) =

n∏
i=1

f(ri|xi, yi).

3.2.1 Comments on definitions (a)

In Table 1a Conditions (3.1) and (3.2) are embedded, when possible, directly
into Equation (3.5). Definitions for which (3.5) modifies in the same way are
grouped together. For example, for both E-MAR and VB-MAR (3.5) becomes

f(r|x, y) = f(r|x, y∗),

which has to hold for all 4-ples (x, r, y, y∗) (VB-MAR), or only for those 4-
ples such that o(y, r) = o(y∗, r) (E-MAR). This formulation clarifies that, like
E-MCAR, VB-MAR requires the related condition to hold for every possible re-
alisation of every random variable involved in its expression. As a consequence,
VB-MAR and E-MCAR can be encoded respectively by the two CI statements
R ⊥⊥ Y |X and R ⊥⊥ (Y,X). Consequently, there is no need for a specific VB-
MCAR definition as anticipated in Subsection 3.1. VB-MAR and E-MCAR
both collapse into

f(r|y) = f(r|y∗) ∀ r, y, y∗

(i.e. R ⊥⊥ Y ) when no auxiliary information X is considered. The other classi-
cal definitions, including E-MAR, are statements “about functions being free of
dependence on some of their arguments” (Mealli & Rubin, 2015) but not about
conditional independence on random variables. Nevertheless, they could be in-
terpreted as CI statements on events. For instance, R-MCAR is general with
respect to the realisations of X and Y but is confined to the sample pattern
r̃ so it can be associated to a CI statement on the event {R = r̃} but not on
the random variable R. Overall, it seems clear that questioning the plausibility
of classical definitions in real data analysis is not straightforward. Conversely,
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(a) R-MAR (b) R-CMAR

(c) E-MAR (d) E-CMAR

(e) VB-MAR (f) VB-CMAR

(g) R-MCAR (h) E-MCAR

Figure 2: Subsets of Z associated to every definition.
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E-MCAR

VB-MAR E-MAR R-MAR

R-MCAR

E-CMAR R-CMAR

VB-CMAR

∥∥∥

∥∥∥

∥∥∥

Figure 3: The implication diagram: if definition a implies definition b, then
there is a path of implication arrows going from a to b. The most relevant
implications not holding are also shown.

variable-based definitions lend themselves to be more easily interpreted in ap-
plications: for example, analysts implicitly use them every time they wonder “is
outcome actually independent of whether I observe it?”.

Definitions (a) are also convenient as they show that “when all the data are
observed, R-MAR cannot fail” (Seaman et al., 2013; Schafer & Graham, 2002).
In this borderline situation r̃ = 1n, that is a (n × 1) vector of ones, and the
o(·, r̃) operator keeps y, y∗ and ỹ unchanged. Therefore, R-MAR reduces to the
trivially satisfied condition

f(1n|x, y) = f(1n|x, y∗) ∀x, y, y∗ : y = ỹ = y∗.

Finally, this formulation helps appreciate the difference between the concepts
of CMAR and OAR. Ignoring auxiliary information X, Rubin (1976) indeed
defined the R-OAR condition as

f(r̃|y) = f(r̃|y∗) ∀ y, y∗ : m(y, r̃) = m(y∗, r̃)

while Table 1a states that R-CMAR is (excluding X)

f(r̃|y) = f(r̃|y∗) ∀ y, y∗ : o(y, r̃) 6= o(ỹ, r̃) ∨ o(y∗, r̃) 6= o(ỹ, r̃).

To the best of our knowledge, formal definitions of OAR in the everywhere and
in the variable-based framework have not been given, so a comparison with
E-CMAR and VB-CMAR is not possible. However, we note that VB-CMAR
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does not correspond to the CI statement R ⊥⊥ X, which is what is needed,
according to property (2.1), to obtain E-MCAR (R ⊥⊥ (Y,X)) from the weaker
VB-MAR (R ⊥⊥ Y |X). We claim that a variable-based definition of OAR should
correspond to such a CI statement.

3.2.2 Comments on definitions (b)

It is also useful to understand how these definitions relate to the generating
process of each unit’s missingness indicator Ri. In this spirit, we propose the
unit-level definitions of Table 1b. Here some aspects concerning everywhere
and variable-based definitions are noteworthy. To illustrate them, we recall
from Subsection 2.1 that if Yi is observed then Ri = 1 and Yo

i = Yi, while when
Yi is missing we have Ri = 0 and Yo

i = ∅. Thus, as Ri is a binary variable,
looking at Table 1b it is clear that E-MAR can be rewritten as{

P (Ri = 0|xi, yi) = P (Ri = 0|xi) ∀ xi, yi

P (Ri = 1|xi, yi) = P (Ri = 1|xi, yi) ∀ xi, yi

(3.6)

or simply as
P (Ri = 0|xi, yi) = P (Ri = 0|xi) ∀ xi, yi

because the second equality in (3.6) is a trivial identity. However, this also
means that P (Ri = 1|xi, yi) does not depend on yi as we have

P (Ri = 1|xi, yi) = 1− P (Ri = 0|xi, yi) = 1− P (Ri = 0|xi) ∀ xi, yi.

Therefore, we can conclude that in this case E-MAR is equivalent to

P (ri|xi, yi) = P (ri|xi) ∀ xi, ri, yi,

that is VB-MAR. The paper by Mealli & Rubin (2015) and its amendment show,
with a different terminology, a related result for the multivariate setting stating
that the everywhere and variable-based definitions of MAR are equivalent if
sample units are independent and the components of the random vector R are
mutually independent of each other conditionally on the random vector Y . As
the latter condition is trivial in the case of a singleton variable Y , our claim
above is in line with their findings. Note that the requirement of independence
across sample units is needed to achieve the equivalence of E-MAR and VB-
MAR: Potthoff et al. (2006) state that E-MAR and VB-MAR are the same
definition in the case of a singleton variable subject to missingness, but they do
not explicitly mention the independence assumption.

4 Multivariate setting

We now turn our attention to the multivariate setting. In principle, definitions
of Section 3 could apply to the (nT×1) vectors obtained by stacking the columns
of Y and R and to the (nT ×P ) matrix obtained by piling T identical copies of
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X. In any case, definitions of Section 3 remain valid for the multivariate case
by simply replacing (Y,R,X) with (Y ,R,X).

Instead of reporting the entire list, we focus on those definitions which have
a link with conditional independence. Though not explicitly mentioned, all
definitions henceforth reported are intended to hold for every possible realisation
of the random variables involved. Trivially, VB-MAR and E-MCAR translate
into

(R1, . . . , RT ) ⊥⊥ (Y1, . . . , YT )|X

and
(R1, . . . , RT ) ⊥⊥ (Y1, . . . , YT ,X)

respectively, and they both reduce to

(R1, . . . , RT ) ⊥⊥ (Y1, . . . , YT ) (4.1)

in the absence of auxiliary information X. These statements involve every
component of the vectors R and Y . However, other conditions are also useful:
Pearl & Mohan (2013) state that the joint distribution f(y) is recoverable in
the presence of missing values if the data are sequentially missing at random (S-
MAR), namely if an ordering (Y1, . . . , YT ) can be found that allows the existence
of subsets Vt−1 ⊆ Ȳt−1 such that

Yt ⊥⊥ (Rt,Rvt−1
)|Vt−1 t = 1, . . . , T,

where Rvt−1 denotes the set of missingness indicators of variables in Vt−1. Even
in the most severe case, i.e. when Vt−1 corresponds to Ȳt−1 itself, S-MAR is
weaker than VB-MAR as it assumes the form

Yt ⊥⊥ R̄t|Ȳt−1 t = 1, . . . , T. (4.2)

Indeed, by iteratively applying property (2.1) it is easy to verify that (4.1) is
equivalent to the combination of (4.2) and the sequence of conditional indepen-
dences

Rt ⊥⊥ Ȳt−1 t = 2, . . . , T.

Notice that this definition of S-MAR is different from the one proposed by Hogan
et al. (2004) and can obviously be extended in order to include auxiliary variables
X in the conditioning set.

Unit-level definitions rely on the notation Yi = (Y o
i ,Y

m
i ). In particular, we

have:

E-MAR: f(ri|xi,yi) = f(ri|xi,y
o
i ); (4.3)

VB-MAR: f(ri|xi,yi) = f(ri|xi); (4.4)

E-MCAR: f(ri|xi,yi) = f(ri). (4.5)

Condition (4.3) is often referred to simply as MAR (Little & Rubin, 2002, p. 18;
Molenberghs et al., 2008). It means that for unit i the missing variables Y m

i

cannot probabilistically influence the missingness pattern Ri conditional on Xi.
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On the contrary, Condition (4.4) states that none of the variables which are
missing for at least one unit (i.e. none of the variables in Y ) can influence
Ri given auxiliary information (Mohan et al., 2013). (4.4) is MAR+ of Potthoff
et al. (2006) and has also been named covariate dependent MCAR to distinguish
it from (4.5) (Little, 1995; Hogan et al., 2004). When covariates are not involved,
this distinction disappears and the term MCAR is used. It is worth remarking
that in the multivariate setting we do not deal with the single binary indicator
Ri anymore but we deal with the T -dimensional vector Ri. Therefore, the
same algebraic developments as in Subsection 3.2.2 are not possible and (4.3)
cannot be further generalised as in principle Y m

i (and consequently Ri) differs
for every unit. However, as we highlighted in Subsection 3.2.2, Mealli & Rubin
(2015) provide conditions for the equivalence of (4.3) and (4.4) given additional
assumptions.

4.1 Monotone missingness

In a multivariate cross-sectional analysis there is no temporal ordering of the
components of Y . In longitudinal studies missingness is termed intermittent
when missing values can occur at any occasion and monotone when units can
no longer be observed once they exited the study, i.e. Rt = 0 implies Rs =
0 for s > t. In the latter situation, also referred to as dropout here, it is
customary to assume R1 = 1, that is no units are missing at the baseline
occasion. As a consequence, dropout allows us to work with a single random
variable D =

∑T
t=1 Rt taking values in 1, . . . , T and indicating the time of last

measurement (Little & Rubin, 2002, p. 17; Molenberghs et al., 1998). In this
case definitions (4.3)-(4.5) change as follows:

E-MAR: f(d|x,y) = f(d|x, y1, . . . , yd); (4.6)

VB-MAR: f(d|x,y) = f(d|x); (4.7)

E-MCAR: f(d|x,y) = f(d); (4.8)

for d = 1, . . . , T . Again, it is straightforward to see that E-MCAR and VB-MAR
can be encoded respectively by D ⊥⊥ (Y ,X) and D ⊥⊥ Y |X. Conversely, E-
MAR (which is obviously implied by E-MCAR and VB-MAR) is not a complete
conditional independence statement on the random variable D. However, it can
be expressed as the collection of CI statements

Zd ⊥⊥ (Yd+1, . . . , YT )|Ȳd, d = 1, . . . , T,

with Zd = I{D=d} denoting the indicator variable of the event {D = d}. Notice
that for d = T both the CI statement above and E-MAR (4.6) become trivial.

In the context of monotone missingness, some authors showed that many
missingness mechanisms usually expressed within the selection model framework
have an equivalent pattern mixture model formulation (Molenberghs et al., 1998;
Kenward et al., 2003). Specifically, Molenberghs et al. (1998) define MAR for
selection models as our (4.6) (which, again, is E-MAR), proving its equivalence
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to the pattern mixture model condition

∀ t ≥ 2,∀ j < t f(yt|x, ȳt−1, D = j) = f(yt|x, ȳt−1, D ≥ t). (4.9)

They term (4.9) available case missing value (ACMV).
We now introduce a novel mechanism for the particular case of monotone

missingness. This mechanism is encoded by the sequences of CI statements

D ⊥⊥ (Yt+1, . . . , YT )|(X, Ȳt) t = 1, . . . , T − 1 (4.10)

and
D ⊥⊥ Yt|(X, Ȳt−1) t = 2, . . . , T, (4.11)

which are equivalent. To prove this statement we consider, without loss of
generality, the special case reported in Table 2 (T = 4). Looking at this table
it is immediate to evince that (4.10) implies (4.11) as trivially (a) implies (b),
(c) implies (d) while (e) and (f) are the same statement. Proving the converse
requires property (2.1), which ensures that (c) holds if (d) and (f) do. Similarly,
(a) is guaranteed by the combination of (f) and

D ⊥⊥ (Y2, Y3)|(X, Y1),

which in turn is implied by (b) and (d). Once again, (e) is trivially satisfied by
(f) as they are identical. Notice that statement (a) of Table 2 implies (c) and
(e) (and thus the entire sequence (4.10)) because of property (2.1).

An iterative application of property (2.1) also highlights that the statement

D ⊥⊥ Y1|X (4.12)

is what (4.10) and (4.11) lack in order to be equivalent to VB-MAR (4.7). There-
fore, this novel mechanism can be interpreted as the monotone missingness ver-
sion of sequential MAR (4.2). However, it is also possible to show that (4.10)
(and consequently (4.11)) are stronger than E-MAR. Therefore, such mecha-
nism is “intermediate” with respect to the everywhere and the variable-based
definition of MAR.

To demonstrate that (4.10) implies E-MAR (4.6), we can rely, without loss
of generality, on the particular case T = 4 of Table 2. Here equation (4.6)
becomes:

P (D = 1|x, ȳ4) = P (D = 1|x, y1);

P (D = 2|x, ȳ4) = P (D = 2|x, ȳ2);

P (D = 3|x, ȳ4) = P (D = 3|x, ȳ3);

P (D = 4|x, ȳ4) = P (D = 4|x, ȳ4).

The first three equalities are implied respectively by statements (a), (c) and (e)
of Table 2 while the fourth is trivially verified as already mentioned above. The
same example immediately shows that the converse is not true: many instances

13



E-MCAR (4.8)

VB-MAR (4.7)

S-MAR (4.10) S-MAR (4.11)

E-MAR (4.6) ACMV (4.9)

Figure 4: The implication diagram for monotone missingness.

can be found which are required for (4.10) to hold but are not met by (4.6). For
example, condition (a) of Table 2 also requires that

P (D = j|x, ȳ4) = P (D = j|x, y1)

hold for j = 2, 3, 4. As a confirmation, it is also easy to show that (4.11) is
stronger than ACMV (4.9). It is sufficient to notice that (4.11) can be written
like

∀ t ≥ 2, ∀ j f(yt|x, ȳt−1, D = j) = f(yt|x, ȳt−1)

while Lemma 1 of Molenberghs et al. (1998) states that ACMV (4.9) is equiva-
lent to the clearly weaker condition

∀ t ≥ 2, ∀ j < t f(yt|x, ȳt−1, D = j) = f(yt|x, ȳt−1).

In the implication diagram in Figure 4, the relationships existing among all the
mechanisms for monotone missingness considered in this section are represented.

From a practical standpoint, the model described by (4.10) or (4.11) can
be helpful in a number of contexts, especially in the medical field. Specifically,
if one thinks of Y = (Y1, . . . , YT ) as a vector of repeated measurements of a
certain feature (for instance, body mass index of individuals), then there might
be studies or clinical protocols where decision makers (i.e. doctors/nutritionists)
at the first occasion schedule the total number of visits for each individual (and
thus determine their value of D) based on some covariates X and on the value
of the first measurement Y1. In this case, the CI statement (4.12) does not
hold by design so VB-MAR (4.7) is not suitable. However, also E-MAR is
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inappropriate since successive measurements are independent of the number of
visits conditional on covariates and on the first measurement, that is

D ⊥⊥ (Y2, . . . , YT )|(X, Y1).

The conditional independence above indeed holds assuming (4.10) or (4.11)
but not E-MAR (4.6). This example, like the one in Subsection 3.2.1, shows
once again that in applications definitions involving CI statements on random
variables are more tailored to interpretation than everywhere definitions.

5 Summary

Three types of definitions of missing at random (MAR) and missing completely
at random (MCAR) can be found in the literature: realised, everywhere and
variable-based definitions. Everywhere and realised definitions address ignora-
bility of the missingness process, which is a concept that varies with the inferen-
tial framework adopted. Variable-based definitions, typically easier to interpret
in applications, are often adopted when testability of missingness mechanisms
or recoverability of probabilistic/causal queries in the presence of missing data
are investigated. The differences existing among these groups of definitions do
not seem to be entirely understood yet.

In this paper, we developed a unified taxonomy including all these defini-
tions as special cases. As a by-product, the new concept of complementary
missing at random (CMAR) was introduced. For every group of definitions,
MCAR always corresponds to the combination of MAR and CMAR. We dis-
cussed the relationship between CMAR and observed at random (OAR). Links
with the language of conditional independence were also explored. Moreover,
the relationships and implications among all these definitions were discussed
and represented in a number of graphical forms. As pointed out by other au-
thors (Seaman et al., 2013), we remarked that everywhere MCAR is itself a
conditional independence statement involving random variables, so a variable-
based definition of MCAR is pointless. Our approach covers the univariate as
well as the multivariate case, where a definition of sequential MAR (S-MAR)
in line with Pearl & Mohan (2013) was provided. The special case of monotone
missingness (dropout) was also discussed. Within this discussion, we presented a
new mechanism which is “intermediate” between everywhere and variable-based
MAR. We argue that such a mechanism can be interpreted as a monotone miss-
ingness specific version of sequential MAR. This novel mechanism demonstrates
not only that everywhere and variable-based MAR differ, but also that, at least
for monotone missingness, “something in between”, potentially more suitable in
certain applications, exists.
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Condition (4.10) Condition (4.11)

D ⊥⊥ (Y2, Y3, Y4)|(X, Y1) (a) (b) D ⊥⊥ Y2|(X, Y1)
D ⊥⊥ (Y3, Y4)|(X, Y1, Y2) (c) (d) D ⊥⊥ Y3|(X, Y1, Y2)
D ⊥⊥ Y4|(X, Y1, Y2, Y3) (e) (f) D ⊥⊥ Y4|(X, Y1, Y2, Y3)

Table 2: Conditions (4.10) and (4.11) for T = 4.
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