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Optimum design and sequential treatment
allocation in an experiment in deep brain
stimulation with sets of treatment combinations
Anthony C. Atkinsona∗and David J. Pedrosab

In an experiment including patients who underwent surgery for Deep Brain Stimulation electrode placement, each
patient responds to a set of nine treatment combinations. There are sixteen such sets and the design problem is to
choose which sets should be administered and in what proportions. Extensions to the methods of non-sequential
optimum experimental design lead to identification of an unequally weighted optimum design involving four sets of
treatment combinations. In the actual experiment patients arrive sequentially and present with sets of prognostic
factors. The idea of loss due to Burman is extended and used to assess designs with varying randomization
structures. It is found that a simple sequential design using only two sets of treatments has surprisingly good
properties for trials with the proposed number of patients.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. Introduction

The number of readings taken on individual patients may be limited by safety concerns. Our specific example is patients
receiving Deep Brain Stimulation (DBS). This relatively novel approach is currently applied on a series of different
neurological symptoms such as Parkinson’s Disease (PD), pain syndromes or depression [1], [2], [3], especially when
conventional treatments are ineffective or cause side effects. For this purpose, electrodes implanted in specific brain areas
deliver current pulses either constantly [4] or on demand [5], [6], resulting in dramatic symptom relief. A striking example
of successful DBS treatment is tremor. This rhythmic oscillation of one or more extremities is best known as a cardinal
symptom of PD. It may, however, also emerge without any other symptoms, being then termed Essential Tremor (ET).
As only a minority of patients suffering from ET receives DBS surgery, studies analyzing working mechanisms of this
resource-intensive treatment usually contain only moderate sample sizes.

Mechanisms responsible for tremor generation remain a question of debate. Whereas initial investigations presumed a
single node responsible for tremor generation, recent findings rather indicate a network of different brain areas interacting
and hence producing aberrant signals which are transmitted to the extremities (for review see [7]). Therefore, techniques
investigating the entire brain are preferable to promote insight into tremor pathomechanisms while, at the same time, they
may also shed light on working mechanisms of DBS. Radioactive imaging and specifically Positron-emission tomography
(PET) is an example of such a technique that has already fostered our understanding of many aspects of tremor [8], [9],
[10]. PET reproduces the metabolic activity of the brain, that is prominent brain activation during tremor and activation
changes due to DBS. Nevertheless, application of radioactive agents is problematic as ET-patients, many of whom are in
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middle age, are often reluctant to undergo a potentially harmful investigation. Additionally, dosage limitations per patient
leave only a reduced number of conditions which may be ascertained.

In the proposed experiment there are twelve experimental conditions at which measurements can be taken. Although
three observations are made on each patient at each stimulation level, it is not possible to observe the response under
all twelve conditions and patients are limited to being measured at nine of the conditions. Further restrictions lead to an
experimental region consisting of sixteen sets of nine conditions under which patients can be observed. It seems clear that
not all sixteen conditions will provide nine observations that are equally informative. The optimum experimental design
problem is to determine how many and which of the sixteen sets should be used and in what proportions.

The second design problem is that patients present sequentially with a set of prognostic factors; allocation of treatment
combination is then ideally by a form of restricted randomization which aims at some balance over the prognostic factors.
An important practical problem is to find a simple sequential design suitable for clinical practice and to measure its
efficiency and balancing properties relative to those of the optimum design.

These problems are solved using the theory of optimum experimental design for multivariate observations. In the
standard theory for such observations different responses are measured under the same conditions. The technical novelty
here is that each multivariate response consists of measurements of the same quantity but under sets of different
experimental conditions.

Section 2 introduces the complicated structure of the experiment. Optimum experimental design is introduced in §3
and extended to include experiments with sets of treatment combinations. These more general results are used in §4 to
calculate the D-optimum design for the stimulation experiment. It is found that there are 16 distinct D-optimum designs,
all with the same value of the design criterion. Sequential treatment allocation is introduced in §5.1 with the sequential
construction of designs with prognostic factors in §5.2. The designs are compared using the extension of an idea of loss
introduced by [11], which is developed in §5.3. Numerical properties of three sequential designs using this development
are in §6. The paper concludes with a brief discussion. The appendix describes the construction of the design matrix.

The paper illustrates the usefulness of the extensions to optimum design theory and to the assessment of sequential
designs. An interesting conclusion, in this example, is that a very simple sequential design is virtually as efficient as an
appreciably more complicated optimum one.

2. The Structure of the Experiment

Recent literature indicates that while stimulation at high frequencies (HFS) abolishes tremor, it may inversely affect a
patient’s verbal fluency abilities [12], [13]; ET-patients stimulated at 130Hz may be less shaky while at the same time the
ability to name words starting at a specific letter (phonemic verbal fluency) will decay. Otherwise, with pulses delivered at
10Hz, tremor severity increases as does phonemic verbal fluency. Hence, three levels of stimulation were interesting: high
frequency stimulation (HFS, 130Hz), low frequency stimulation (LFS, 10Hz) and Off. In the rest of the paper, the three
stimulation settings are denoted St1, St2 and St3. The PET recordings are made when the patient is performing one of
four activities: resting, lifting the right arm (in order to produce postural tremor), pointing at an object to induce intentional
tremor or, in one minute, naming as many words as possible starting with a given letter. These activities will be referred to
as a, b, c and d. There are therefore twelve potential treatment combinations. Each patient is measured at each of the three
stimulation levels St1 − St3. However, due to restrictions on the maximum amount of radiation, each patient can only be
measured for three of the four activities. There are thus nine observations per patient under distinct treatment combinations.
A further constraint on these observations is that in the on or off stimulation levels (St1, St3), activities a and d must be
included (but not necessarily for St2). The reason for this constraint is that PET images require normalization because
of interindividual differences which may be considerable due to e.g., gender, age or blood flow differences. According to
the primary objectives of this study, that is to ascertain differences in activation due to stimulation during either tremor or
verbal fluency, the rest condition a with and without stimulation and verbal fluency performance d at both conditions may
serve as this reference. Group analyses imply these normalised images in a second step.

Table 1 lists the resulting eight combinations of stimulation level and activity for a single observation. Each patient will
receive treatment St1 and be measured either under the activities in combination A or B, giving rise to three observations.
The same patient will receive treatment St2 and be measured under one of the combinations C, D , E or F . This patient
will also receive treatment St3 and be measured either under the combination G or H . In all, each patient provides nine
measurements. To find the design points, that is the allowable values of treatment and activity, we need to select rows from
Table 1, one for each treatment. For treatment St1 there are two combinations, for treatment St2 there are four and for
treatment St3 two. The resulting 16 = 2× 4× 2 sets of experimental conditions are listed in Table 2. In the nomenclature
of optimal experimental design, these 16 design points define the design region X . Any experimental design consists of
allocating a defined proportion of patients to receive the treatment combinations specified by the members of X . In our
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Table 1. The eight allowable combinations of stimulation level and activity for three observations at a single stimulation
setting

Combination Treatment Activities

A St1 a b d
B St1 a c d

C St2 a b c
D St2 a b d
E St2 a c d
F St2 b c d

G St3 a b d
H St3 a c d

Table 2. The 16 points of the design region X for nine observations per patient, using the combinations given in Table 1

Point Combination Point Combination

1 ACG 9 ACH
2 BCG 10 BCH
3 ADG 11 ADH
4 BDG 12 BDH
5 AEG 13 AEH
6 BEG 14 BEH
7 AFG 15 AFH
8 BFG 16 BFH

problem not all members of X are included in the optimum experiment.

3. Optimum Experimental Design

The result of a PET scan is a three-dimensional array of voxels which are analysed by qualitative comparisons to assess
the effect of the treatments. Interest is in these effects which translates into good estimation of the parameters of the
linear model of §3.1. If there were well-defined numerical responses with known statistical properties, D-optimality,
incorporating the statistical model of the errors, would be the appropriate design criterion. Here we do not have numerical
responses, but the problem does require the methods of optimum design to provide an efficient and compact design. In
order to proceed we make the simplest possible assumption which is D-optimality for homoskedastic errors. We also
make the simplest assumption about the nine readings on each patient, namely that they are independent. D-optimum
designs for homoskedastic errors are optimum, for example, for responses that are transformed to approximate normality
before analysis. They are also close to optimum for generalized linear models with small effects [14], such as would
be appropriate if the response were binary, recording whether or not a particular change was observed. Comments on
appropriate design criteria when there are numerical responses are in §7. Standard experimental designs, such as the
factorial underlying the stimulation experiment, are D-optimum. Our choice is supported by the balanced properties of the
designs we found, which are briefly noted in §4.

3.1. Models and Information Matrices

Single readings are taken on each patient under the nine sets of conditions specified in Tables 1 and 2. The model for a
single observation is first order in stimulation (three levels) and activity (four levels), so that there are 12 possibilities.
If the single observation ` comes from a patient receiving stimulation level j and is measured under activity k the linear
model for the expected response is

E(y`) = µ+ Stj +Ak, (1)

where µ is the overall mean. The model includes indicator variables for the mean and the levels of the two factors. The
matrix of indicator variables for the twelve single observations is given in Table 6. For this full factorial experiment the
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model is over parameterized. As we show in the Appendix, the full rank model has p = 6 parameters rather than eight and
is conveniently written as

E(y`) = βT f`, (` = 1, ..., 12). (2)

Row ` of the 12 × 6 design matrix F for the full factorial experiment is fT` .
With independent errors of observation with constant variance σ2, estimation of the parameters β is by least squares.

The information matrix for an individual observation at conditions `, standardized by taking σ2 = 1, is M` = f`f
T
` .

In the stimulation experiment each patient contributes nine observations. Tables 1 and 2 specify the nine distinct values
of ` (out of 12) at which observations can be taken on each patient. The last paragraph of the Appendix illustrates
calculation of the nine values of ` for the first point of X in Table 2. For patient i let this set be S(i). Then the information
matrix for subject i is

Mi =
∑
`∈S(i)

M` =
∑
`∈S(i)

f`f
T
` . (3)

We now consider experimental design. As is standard in the theory of optimum experimental design (for example[15]
or [16]), an experimental design ξ allocates a fraction wi of the patients to condition xi. A design with m points of support
is written as

ξ =

{
x1 x2 . . . xm
w1 w2 . . . wm

}
, (4)

where wi > 0 and
∑m

i=1 wi = 1. In our example m ≤ 16. Any realisable experimental design for a total of N patients
will require that the weights are ratios of integers, that is wi = ri/N , where ri is the number of patients at condition xi.
The mathematics of finding optimal experimental designs and demonstrating their properties is greatly simplified by the
consideration of continuous designs in which the integer restriction is ignored. Applicable designs may have to be found
by rounding the wi.

In our experiment the design region X consists of the 16 design points xi which each specify one set of the nine values
of ` at which measurements are taken on a patient. For a patient who is measured at the design point xi let this set be
S(xi). From (3) the information matrix for the design ξ with m support points can then be written

M(ξ) =

m∑
i=1

wiMi =

m∑
i=1

wi
∑

`∈S(xi)

M` =

m∑
i=1

wi
∑

`∈S(xi)

f`f
T
` . (5)

The 16 points xi ∈ X specify the sets of 9 rows of F which are allowed in the experiment.
D-optimum designs, minimizing the generalized variance of the estimates of β, maximize the determinant |M(ξ)| over

the design region X through choice of the optimum weights w∗i of the optimum design ξ∗.

3.2. Numerical

The optimum designs in the deep-brain stimulation experiment have to be found numerically. Much of the discussion
in the experimental design literature, for example [16, Chapter 3], stresses the desirability of using algorithms that take
account of the specific structure of optimum designs. However, the designs for this paper were found using a general
purpose numerical algorithm.

The design maximizing |M(ξ)| requires finding the optimum design weights w∗i . These must be non-negative and sum
to one. [15, §9.5] suggest search over an unconstrained space Ψ, using transformation to polar co-ordinates to calculate
weights wi that satisfy the required constraints. Here use was made of a simpler approach taking advantage of the upper
and lower constraints on variables in the R function optim.

The search variables are ψi. Taking

wi = ψi/

m∑
j=1

ψj (6)

with 0 ≤ ψj ≤ 1 provides weights that satisfy the required constraints and are used in (5) to calculate M(ξ). Of course,
the wi are in m− 1 dimensions, so that (6) is not unique; the same weights are obtained when all ψi are replaced
by aψi, (a 6= 0). However the Quasi-Newton BGFS algorithm in the function optim did not show any difficulty in
converging.

R code for these calculations is available from the first author.
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3.3. An Extended General Equivalence Theorem

For experiments with a single observation at each point of X , whether a particular design is D-optimum can be determined
from the “general equivalence theorem” for D-optimality due to [17]. In §4 we use an extension of the theorem to
elucidate the structure of the optimum design. In §5 this provides a method for sequential treatment allocation with some
randomization.

The model for a single response is given in (1). For an experiment with only one reading per patient, it follows from (3)
and (5) that the information matrix for a design ξ is

M(ξ) =

m∑
i=1

wifif
T
i .

The equivalence theorem is concerned with the value of sensitivity function

d(i, ξ) = fTi M
−1(ξ)fi, (7)

which, in this case, is the variance of the predicted response at each design point.
For the stimulation experiment the theorem applies, at each design point xi, to average values over the nine readings

per patient. For generality, let there be h such readings. We require the average information matrix for the design ξ;
MAVE(ξ) = M(ξ)/h. The average sensitivity function, from (7) is then

dAVE(x, ξ) =
∑

`∈S(xi)

d(`, ξ)/h, (8)

where M(ξ) is now given by (5). If d̄AVE(ξ) is the maximum over X of dAVE(x, ξ) and ξ∗ is the D-optimum design, the
general equivalence theorem for sets of treatment combinations states the equivalence of the following three conditions
on ξ∗:

1. The design ξ∗ maximizes |M(ξ)|;
2. The design ξ∗ minimizes d̄AVE(ξ);
3. The value of d̄AVE(ξ

∗) = p, this maximum occurring at the points of support of the design.

As a consequence of 3, we obtain the further condition:

4. For any non-optimum design the value of d̄AVE(ξ) > p.

For h = 1 the theorem reduces to that of [17]. The D-optimum design maximizes the determinant |M(ξ)| or equivalently
|MAVE(ξ)|. The efficiency of any other design ξ is {|M(ξ)|/|M(ξ∗)|1/p.

The proof of this theorem follows from the additive nature of the information matrix, which itself is a consequence of
the independence assumed for the nine measurements on each patient. Standard proofs of the equivalence theorem for
univariate observations, such as those in [16, §2.4.2] and [18, §5.2], depend on the directional derivative at a point in X .
Here, with the extension to a set of observations, the directional derivative is the sum of the derivatives for the individual
observations.

This result is distinct from the equivalence theorem for multivariate observations([15] or [19]) in which several different
responses are measured on each unit under the same experimental conditions. Here, the h conditions are specified by S(i)
at all of which the same response is measured.

Applications of this extended theorem to response surface designs with sets of treatment combinations are given by [20].
[21] finds designs with treatment combinations for logistic models. Results in [22] for multivariate observations indicate
how the results given here might be extended to handle correlation between observations in the same set.

4. D-Optimum Design

The design region X contains 16 points, but it is unlikely that all will be included in an optimum experiment. Each patient
is allocated to one design point and generates h = 9 responses from the specified combinations of stimulation level and
activity. The first-order model in these two factors contains 6 parameters. For some designs with univariate responses m∗,
the number of support points in the optimum design, equals p, but designs with multivariate responses can have fewer than
p support points.
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Table 3. “Stronger” and “weaker” pairs of design points

Stronger pairs Weaker pairs
Point Point Point Point

1 16 3 14
2 15 4 13
7 10 5 12
8 9 6 11

Optimum Weights
0.36972 0.36972 0.13028 0.13208

To start the numerical exploration of designs, we used weights calculated from (6) to calculate the information matrix
M(ξ) in (5). Numerical optimization of the weights over all 16 design points gave several 16-point designs with the same
maximized value |M(ξ∗)| = 12.89389× 10−5. The designs all satisfied the equivalence theorem with dAVE(xi) = 6 at each
design point although the weights depended on the starting point of the numerical search. Such behaviour is evidence of
the non-uniqueness of the optimum design. In general, if there are several distinct optimum designs, then any convex
linear combination of these component designs will also be optimum.
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Figure 1. Equivalence theorem. Average sensitivities dAVE(x, ξ
∗
(2)) for design at a pair of “stronger” design points. The values of 6.1167 at the “weaker” design points show that

this design is not D-optimum

To find the component designs searches were made over pairs, triples and so on of design points from X . For each
selection of design points, the optimum weights had also to be found numerically. Looking at pairs of design points gives
16× 15/2 = 60 distinct designs. Let these designs be called ξ(2). Searching over these pairs gave four optimum designs
for which |M(ξ∗(2))| = 12.70132× 10−5. For these optimum designs the weights on the two design points were equal. The
designs have a very high D-efficiency of (12.70132/12.89389)1/6 = 99.75%.

The support points of these four designs were the pairs of points (1,16), (2,15), (7,10) and (8,9), which are called the
“stronger pairs” in Table 3. Figure 1 plots the values of the sensitivity function dAVE(x, ξ

∗
(2)) for the design using the pair

(8,9). The sensitivity function is 6 for this pair, as it is for the other stronger pairs. The implication is that designs consisting
of convex linear combinations of the four two-point designs will have the same value of |M(ξ)|. However, for the other
eight support points the value of the sensitivity function is, as Figure 1 shows, 6.1167 at the support points of the weaker
pairs. Clearly some of these need to be included in the optimum design.

Numerical search, confirmed by the equivalence theorem, shows that the optimum designs contain 4 support points (so
that m∗ < p). These designs are listed in Table 3. Two of the support points form one of the stronger pairs (left-hand half
of table), each with weight 0.36972, and the other two come from one of the “weaker” pairs, each with weight 0.1328.
Since any stronger pair can be combined with any weaker pair of points, there are 16 choices of D-optimum design. In
addition convex linear combinations of these 16 designs are also D-optimum.

An interesting feature of the designs in Table 3 is that each stronger pair consists of combinations A, B, C, F, G and H.
From Table 1 it follows that three activities are measured at each of the two occurrences of the three treatments St1, St2
and St3. The total number of activities in the design are 5a, 4b, 4c and 5d, which is the highest balance possible. The
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weaker pairs all consist of combinations A, B, D, E, G and H. Now the total numbers of activities in the design are
6a, 3b, 3c and 6d. These design are less balanced.

Although there is a large class of D-optimum designs, in which all points in X appear, there are some designs with a
low efficiency. The two-point design based on a stronger pair has a D-efficiency of 99.75% whereas that using a weaker
pair has an efficiency of 98.01%. Despite these high values, the choice of design points is important; the poorest two-point
designs have a determinantal ratio |M(ξ(2))|/|M(ξ∗)| = 0.554, so that the D-efficiency is only 90.6%.

5. Sequential Treatment Allocation

5.1. Randomization and Prognostic Factors

In the proposed experiment, patients arrive sequentially and are to be allocated to one of the sixteen treatment combinations
in X . There may be several prognostic factors, such as initial severity of the disease, gender, age and body weight, known
before allocation. For efficient estimation, some balance is required over such prognostic factors. The purpose is to avoid
a disproportionate number of patients with a particular pattern of prognostic factors receiving the same combination. This
goal can be met by using the sequential construction of optimum designs to determine the allocation for the next patient.

However, there should also be some randomization to avoid selection bias coming from the doctor’s belief that some
set of treatment combinations is best for one type of patient and to avoid confounding with unknown factors. See, for
example, [23]. Randomization generally leads to a lack of balance in treatment allocation and so to some loss of efficiency
if the trial can be stopped after treatment of an arbitrary number of patients. Different allocation rules give rise to different
losses of efficiency.

5.2. Sequential Design Construction

The model for the full twelve-trial-factorial was written E(y) = Fβ, where y is 12× 1 and F is 12× 6. An experimental
design for n patients chooses n sets of 9 rows from F . If, in addition to these combinations of factors, there are also
prognostic factors, the model for n subjects becomes

E(Yn) = Fnβ + Gnγ = Hnω. (9)

In our example the response vector Yn is 9n× 1 and Fn, which defines the set of treatment combinations, is 9n× 6. There
are q prognostic factors for each patient contained in the 9n× q matrix Gn. All rows of this matrix for each patient are
the same. Treatment allocation depends on the prognostic factors, but estimation of γ is not of interest - γ is a nuisance
parameter.

In all there are p+ q parameters in the linear model (9). With the model terms divided into two groups, the information
matrix is partitioned as

M(ξn) =

[
FTnFn/n FTnGn/n
GT
nFn/n GT

nGn/n

]
=

[
M11(ξn) M12(ξn)
MT

12(ξn) M22(ξn)

]
. (10)

The covariance matrix for the least squares estimate of β is M11(ξn), the p× p upper left submatrix of M−1(ξn), that is

M11(ξn) = {M11(ξn)−M12(ξn)M−122 (ξn)MT
12(ξn)}−1. (11)

The DS-optimum design for the subset of parameters β, with γ treated as a nuisance parameter, maximizes the determinant

|M11(ξ)−M12(ξ)M−122 (ξ)MT
12(ξ)| = |M(ξ)|/|M22(ξ)|. (12)

In sequential construction of the design the information matrix incorporates the knowledge about previous allocations
and the values of the prognostic factors for all n patients. At the time of treatment allocation the vector of prognostic
factors zn+1 is known for the new subject, so that the last h rows of Gn+1 are known and can be written as copies of the
vector gT (zn+1). The last rows of Fn+1 are determined by the design point x which, as in (3) determines the values of
`. The last rows of Hn+1 are thus of the form hT (`, zn+1) = {fT` , gT (zn+1)}. The optimum allocation to patient n+ 1
then, from (12) maximizes the sensitivity function

ds(x, zn+1, ξn) =
∑
`∈S(x)

{hT (`, zn+1)M−1AVE (ξn)h(`, zn+1)− gT (zn+1)M−1AVE,22(ξn)g(zn+1)}. (13)

In the next section designs which allow for prognostic factors are compared with those in which there are no such factors.
Then M(ξn) = FTnFn/n and, from (13), these designs are found by allocating to maximize the sensitivity function

d(x, ξn) =
∑
`∈S(x)

fT` M
−1
AVE (ξn)f`.
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5.3. Designs and their Assessment

Sequential construction of the D-optimum designs provides designs with highest efficiency, but they lack randomization;
given all the relevant information, the treatment to be allocated to patient n+ 1 can be calculated with certainty. These
designs are compared in the next section with two randomized designs. The D-optimum design of §4 has unequal weights
at four treatment combinations. In one design treatments are randomized to these conditions with probabilities proportional
to the design weights, the “correctly randomized” design. In the other, the “completely randomized” design, there is equal
probability of allocating a patient to one of the four treatment combinations.

To compare designs we use an extension of the loss introduced by Burman [11] for two-treatment trials. The D-efficiency
of a design ξn relative to the optimum design ξ∗ is

En = {|M(ξn)|/|M(ξ∗)|}1/p.

If there are prognostic factors the efficiency is instead defined in terms of the information matrices M11(ξn) and M11(ξ∗)
from (11). For sequential design construction En rapidly tends to one. Randomized allocation is used to give reduced bias
at some cost in efficiency. For randomized designs, two conditions have to be satisfied for En to tend to one:

(i). The randomized allocation must target the optimum design;
(ii). The prognostic factors must be well-behaved. If Zn is the n× q matrix of prognostic factors, there must exist a

limit for ZTn Zn/n as n→∞.
For a design with homoskedastic univariate responses and two treatments α1 and α2 interest is often in the treatment

difference ∆α = α1 − α2. Then Var(∆α̂) is minimized with n/2 patients receiving each treatment when Var(∆α̂) =
4σ2/n. For any other design the variance will be greater and can be written as 4σ2/(n− Ln). Burman calls Ln the loss -
it measures on how many patients information is lost compared to the optimum design.

The efficiency of the design is the ratio of the variances of ∆α̂ under the two designs so that

En = 1− Ln/n Ln = n(1− En). (14)

BothEn and Ln are random variables, depending on the particular allocation, which may depend on the prognostic factors,
current and past and the allocation history. The least efficient reasonable rule is random allocation, for which En rapidly
converges to one. However (14) shows that the loss Ln does not therefore have to go to zero as n increases. Results on the
asymptotic behaviour of Ln are given by [24] for a number of randomization rules. For random allocationE(L∞) = q. For
deterministic allocation the asymptotic value is zero - all other reasonable rules have expectations between these two. See
[25] for extensive comparisons for univariate responses. For the complicated treatment structure and multivariate response
of the current design, calculation of the efficiency leads to the value of loss in (14). Apart from the behaviour under
deterministic allocation, little is known even about asymptotic values. Simulation is used to determine the expectation of
loss for finite sample sizes.

6. Numerical Comparison of Designs

Since the D-optimum design is known, the problem of sequential treatment allocation can be reduced from searching over
the 16 treatment combinations in X to four points of one of the optimum designs of Table 3. Table 4 contains average
values of Ln for three randomization rules for sequential treatment allocation:

(i). Sequential Design Construction
(ii). Correct Randomized Allocation (with the probabilities in Table 3).
(iii). Complete randomization over the four treatment combinations of the optimum design; each is then selected with

probability one quarter.
In the argument in §5.3 leading to the relationship between loss and efficiency (14) each patient yielded one observation,

so that the number of patients on whom information was conceptually lost due to imbalance was the same as the number
of lost observations. With sets of treatment combinations each patient in general gives rise to h observations. Now loss
can be defined in terms of lost observations, that is Ln = nh(1− En) with, in this experiment, h = 9.

Numerical results are in Table 4 for 1,000 simulations and for n up to 200, starting from a four-patient design with one
patient allocated to each treatment combination. The results in the left-hand half of the table are for loss in the absence of
prognostic factors. The first column show that sequential design construction does indeed produce designs with virtually
zero loss. Correct randomization of the treatments with the frequencies of the optimum design produces a loss of around
0.6, whereas complete randomization produces values of loss that have increased to 4.585 on average when n = 200. This
randomization is targeting a design with equal weights at the four support points for which |M(ξ)| = 12.73439× 10−5

giving a D-efficiency of 99.79276%. From (14) the expected loss due to targeting a non-optimum design increases linearly
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with n, here reaching 3.73 when n = 200. The values in the table are slightly higher than this due to the effect of
randomization.

The results in the right-hand half of the table are for simulations including five prognostic factors, independently
distributed with standard normal distributions. All losses increase due to the unbalancing effect of the covariates. Initially
all designs are unbalanced with average losses in the range 12-13. With increasing n the losses for the sequential design
are around 7.8. Those for the correctly randomized design are around one higher than those for the sequential design.
The losses for the completely randomized design first decrease as the design becomes more balanced and then increase
again due to the effect of targeting a non-optimum design. The increases in loss for the completely randomized designs
compared to those targeting the optimum design are comparable in the presence or absence of prognostic factors.

These results depend on the distributions assumed for the prognostic factors. For two treatment designs with univariate
responses, simulations in [26] compare the properties of designs when the factors have a lognormal distribution with those
when the prognostic factors are normally distributed. The effect on loss is surprisingly small. A poor starting design is
also rapidly discounted by the sequential procedures for the construction of designs. Here starting from the points of the
optimum design, even if they are equally weighted, has a negligible effect, given the high D-efficiency of this design.

Table 4. Average loss for randomized and non-randomized sequential optimum designs for the six model parameters.
Left-hand columns, no prognostic factors, right-hand columns, five prognostic factors

No prognostic factors Five prognostic factors

Sequential Correctly Completely Sequential Correctly Completely
n design randomized randomized design randomized randomized

10 6.34E-02 0.437 0.724 12.45 12.41 13.24
50 6.20E-03 0.618 1.726 8.16 9.41 11.10
100 4.92E-05 0.631 2.638 7.79 8.92 11.66
200 9.84E-05 0.604 4.585 7.71 8.60 13.28

The designs in Table 4 use four treatment combinations. In §4 designs on the stronger pair of design points were shown
to have a very high D-efficiency of 99.74952%. We therefore conclude by examining the average loss for this simpler
design.

Simulation results for average loss for the design with two treatment combinations are in Table 3. With only two
treatment combinations, the optimum design puts half the observations at each combination. Consequently the correct
randomization is complete randomization with probability one half. In both the presence and absence of prognostic factors,
the losses for the sequential designs are close to those for the randomized designs due to the slight effect of randomizing
over only two treatment combinations. Further, in both halves of the table, the losses for the randomized designs are
similar to those for the completely randomized designs with four treatment combinations. This is caused by the similar
efficiencies of the two designs: 99.79276% for equal replication of the four treatment combinations and 99.74952% for
the design with two combinations. For this design the expected loss when n = 200 is 4.51, agreeing closely with the result
for the sequential design in the absence of prognostic factors.

Table 5. Two treatment combinations. Average loss for randomized and non-randomized sequential designs for the six
model parameters. Left-hand columns, no prognostic factors, right-hand columns, five prognostic factors

No prognostic factors Five prognostic factors

Sequential Sequential
n design Randomized design Randomized

10 0.255 0.581 11.65 11.61
50 1.127 1.530 8.85 9.57
100 2.254 2.670 9.84 10.51
200 4.509 4.897 12.14 12.35
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7. Discussion

These result demonstrate the power of the extension of the general equivalence theorem in finding the structure of the
D-optimum design for the experiment in deep brain stimulation. Further, the results show that the loss for the simpler
sequential design randomizing over two treatment combinations is hardly less than that for the more complicated design
requiring unequal randomization over four treatment combinations. Since it was expected that about 35 patients would
be recruited overall, Tables 4 and 5 show there is virtually no loss in using the simpler design, which has appreciable
operational advantages.

For the data on deep brain stimulation, the assumption of independent errors might with advantage be replaced by a
linear mixed model, allowing for correlation between observations from individual patients. The generalized equivalence
theorem extends to such designs in which the responses within a set are correlated. An introduction and references are
given by [16, §2.11]. A further extension is that the design also has a split-plot component since stimulation levels are
relatively hard to change. Readings under all three conditions are taken before the stimulation level is altered [27, Chapters
10 and 11]. The ordering of the conditions could also be considered in case there are carry-over effects from one activity
to another.

Appendix: Models for the Full Factorial Experiment

The linear model for a single observation was written in (1) as

E(y`) = µ+ Stj +Ak.

For the underlying full factorial experiment there are 12 combinations of treatment and activity. A parametrization of the
design matrix in terms of indicator variables for the two factors is given in Table 6.

Table 6. Design matrix for the full 3× 4 factorial experiment. There are eight columns of indicator variables and the
model is overparameterized

Index Mean Treatment Activity
` µ St1 St2 St3 a b c d

1 1 1 0 0 1 0 0 0
2 1 0 1 0 1 0 0 0
3 1 0 0 1 1 0 0 0
4 1 1 0 0 0 1 0 0
5 1 0 1 0 0 1 0 0
6 1 0 0 1 0 1 0 0
7 1 1 0 0 0 0 1 0
8 1 0 1 0 0 0 1 0
9 1 0 0 1 0 0 1 0
10 1 1 0 0 0 0 0 1
11 1 0 1 0 0 0 0 1
12 1 0 0 1 0 0 0 1

This model is overparameterized. The sum of the columns for the three treatments is the same as the column for the
mean, as is the sum for the four columns of activity. A full-rank model, with p = 6, is conveniently obtained by deleting
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the columns in Table 6 for the first treatment and the first activity to give the design matrix

F =



1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 1 0 1 0 0
1 0 1 1 0 0
1 0 0 0 1 0
1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 0 0 1
1 1 0 0 0 1
1 0 1 0 0 1



. (15)

The 16 design points in X correspond to various selections of nine rows from F . In Table 1 Combination A picks rows
1, 4 and 10. For Combination C ` = 2, 5, 8 and for G, 3, 6 and 12. Thus, from Table 2 S(x1) = (1, 2, 3, 4, 5, 6, 8, 10, 12).
These values of ` of course depend on the order of the rows of F .
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