
Exact Simulation for a Class of Tempered Stable

Distributions∗

Angelos Dassios†

London School of Economics

Yan Qu‡

London School of Economics

Hongbiao Zhao§

Shanghai University of Finance and Economics

22nd January 2018

Abstract

In this paper, we develop a new scheme of exact simulation for a class of tempered sta-

ble (TS) and other related distributions with similar Laplace transforms. We discover some

interesting integral representations for the underlying density functions that imply a unique

simulation framework based on a backward recursive procedure. Therefore, the foundation of

this simulation design is very different from existing schemes in the literature. It works pretty

efficiently for some subclasses of TS distributions, where even the conventional acceptance-

rejection mechanism can be avoided. It can also generate some other distributions beyond the

TS family. For applications, this scheme could be easily adopted to generate a variety of TS-

constructed random variables and TS-driven stochastic processes for modelling observational

series in practice. Numerical experiments and tests are performed to demonstrate the accuracy

and effectiveness of our scheme.
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1 Introduction

From the empirical analysis, it is well known that asset returns in financial markets are not normally

distributed, and the observations often present skewness and heavy tails, especially during crises.

Stable distributions, first introduced by Lévy (1925), is a very important class that often provides an

alternative model for price changes observed in financial markets. More precisely, the distributions

form a four-parameter family of infinitely divisible distributions (Sato, 1999, p.31), which can be

defined by the logarithm of the characteristic function,

lnφ(v) =

8>><>>:
i`v − γα|v|α

�
1− iζ tan

�
α
2π
�

sign(v)

�
, α 6= 1,

i`v − γ|v|
�

1 + iζ 2
π ln |v|

�
, α = 1,

v ∈ R,

whereφ(v) is the characteristic function of stable distributions, i is the imaginary unit, i.e. i2 = −1,

α ∈ (0, 2] is the stability index, ζ ∈ [−1, 1] is the skewness parameter, γ ∈ R+ is the scale pa-

rameter and ` ∈ R is the location parameter. Their great flexibility attracted many scholars in

economics and finance at least since the 1960s, and the study was initialised by the seminal work of

Mandelbrot (1960, 1961, 1963a,b) and followed by Fama (1965) and Fama and Roll (1968, 1971).

Tremendous applications of stable distributions and their various extensions can be found in the lit-

erature (e.g. option pricing and portfolio management); see a detailed survey byMcCulloch (1996).

However, stable distributions could involve infinite moments, and this property limits its ap-

plications. For instance, this model may lead to an infinite price in the option pricing; see Carr

and Wu (2003). Therefore, the distribution, in particular its tail, needs to be adjusted. Tempered

stable (TS), or, exponentially tilted stable (ETS) distribution1 provides a very important class that

attempts to overcome this limitation of the original stable distribution. It was initially proposed by

Tweedie (1984); see also Hougaard (1986) and Jorgensen (1987). An additional parameter of tilt is

included so that their moments exist. The TS law is a natural generalisation, as it inherits desirable

features from the stable distribution, such as infinite divisibility, skewness and leptokurtosis. The

resulting tails are lighter than those of the stable but heavier than those of the Gaussian, so it is

more suitable for modelling financial returns. Moreover, for those distributions that are obtained

by tilting one-sided stable distributions2 with ζ = 1, namely the positive TS distributions, they can

be further adopted as the building blocks to construct various stochastic processes (such as Lévy

TS subordinators and processes) that facilitate numerous applications in finance and many other
1Here, we adopt the naming for the TS distribution similarly as Küchler and Tappe (2013) and Kim and Kim (2016).

In fact, the class of TS distributions has been recently enlarged by Rosiński (2007) and Grabchak et al. (2012) in a variety
of specifications, so we consider them as generalised TS distributions.

2The stable distributions are one-sided when α ∈ (0, 1) and ζ = ±1.
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fields, e.g. for modelling the dynamics of stock prices, stochastic volatilities or interest rates just

to name a few; see Barndorff-Nielsen and Shephard (2001a, 2002), Schoutens (2003), Cont and

Tankov (2004), Kyprianou (2006), and more recently Barndorff-Nielsen et al. (2012).

Still, the challenging issue is that, with only certain exceptions, density functions of stable

and TS distributions have no explicit expressions (Zolotarev, 1986, p.2). Hence, simulation-based

methods, in particular exact simulation schemes without bias, become extremely important in prac-

tice, especially for the purposes of statistical inference, numerical validation, risk analysis and pric-

ing exotic financial derivatives.

Let us first have a brief review of some important simulation schemes for stable, TS and their

related distributions in the literature. For a stable distribution in general, the standard algorithm for

exact simulation is the classical method of Chambers et al. (1976) (CMS)3 which is the extension

of the work by Kanter (1975). This state-of-the-art algorithm is remarkably elegant, accurate and

fast, since the procedure is direct which means that even the acceptance-rejection (A/R) procedure

is not required. However, for the TS distribution, it is usually hard to find such a direct scheme for

exact simulation. The very popular algorithm is the classical simple stable rejection (SSR) scheme

(with the algorithm provided in Appendix A). It is straightforward to be implemented, as it is de-

veloped by simply combining the classical CMSmethod with the A/R scheme; see Brix (1999) and

Baeumer and Meerschaert (2010) for more details. More recently, Devroye (2009) developed an

alternative algorithm of double rejection method such that the complexity is uniformly bounded.

Hofert (2011b,a) suggested a fast rejection algorithm to enhance the original SSR scheme. All of

the three algorithms are exact4 and based on the A/R scheme, which can be applied to the class of

positive TS distributions with stability index α ∈ (0, 1)5.

For the existing algorithms to simulate a TS random variable (r.v.), each of them has its own ad-

vantages but also have some limitations for some choices of parameters. It is therefore very useful

to develop some alternative simulation schemes to sample the TS family. In this paper, we discover

a multiple integral representation for the density functions of TS distributions with stability index

in a general dyadic form q
2n ∈ (0, 1) for q, n ∈ N+, the integral representation allows us to de-

velop an alternative simulation framework for the TS distributions with stability index q
2n ∈ (0, 1).

In particular, when q is a binary number, an extremely efficient direct scheme can be established,
3The detailed proof is given by Weron (1996).
4On the other hand, some approximation-based algorithms have also been proposed in the literature, see Bondesson

(1982), Rosiński (2001) and Ridout (2009), however, they obviously involve numerical errors.
5For the class ofα ∈ (1, 2), a non-exact simulation algorithm based on the A/R schemewith Gaussian approximation

is developed in Kawai and Masuda (2011).
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which means that the algorithm only involves the explicit inverse transformation without the A/R

mechanism. On one hand, this alternative algorithm could be very helpful for numerical validating

for TS-based stochastic models, because a variety of choices of q, n combined with the different

values of parameters β and θ would provide enough flexibility for the purpose of numerical test-

ing, and at the same time, the corresponding computational cost of implementing TS-based models

could be substantially reduced. On the other hand, since the foundation of our simulation design is

indeed very different from existing schemes in the literature, this representation therefore allows us

to design the simulation algorithms for a wider range of distributions with Lévy measures beyond

the general tempered stable family.

The paper is organised as follows: In Section 2, we first present the fundamental results on

the multiple integral representation for a special recursive type of Laplace transform functions and

provide an simulation framework for some distributions beyond the TS q
2n -family. In Section 3, we

derive a new simulation scheme, namely the backward recursive (BR) scheme, for exact simulation

based on the multiple integral representation for the density of q
2n -TS distributions. In addition,

we outline the improved algorithms tailored for two important subclasses, one is a direct scheme

for the 1
2n -family, and the other is an enhanced scheme for the 3

2n -family. In Section 4, numerical

experiments for our algorithms as well as the associated comparisons with other schemes have been

carried out and reported. Section 5 makes a conclusion of this paper, and proposes some issues for

possible further extensions and future research.

2 Fundamental Results

Before investigating the TS distributions, let us first introduce a general integral representation for

a special type of Laplace transform functions based on the explicit formula for the inverse Gaussian

(IG) density. This special type of Laplace transforms has an interesting recursive structure, which

characterises a variety of different distributions even beyond the TS family. The integral represen-

tation leads to an recursive simulation scheme if the initial distribution is given. The theoretical

foundation in general is illustrated in Theorem 2.1 below.

Theorem 2.1. If a series of non-negative functions f̂1(v), ..., f̂n(v) for any n ∈ N+ possess a

recursive structure of

f̂k(v) =

8><>:
f̂1(v), k = 1,

ak
È
bk + ckv + f̂k−1(v)− ak

√
bk, k = 2, ..., n,

(2.1)
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where ak > 0 and bk, ck ≥ 0, then, e−f̂n(v) can be represented by

e−f̂n(v) =

8>>>>>>><>>>>>>>:

∞Z
0

e−vs1f1(s1)ds1, n = 1,

∞Z
0

...

∞Z
0

e
−s1v−

nP
k=2

ckskv

f1(s1 | s2)
a2s3e

−

�√
2b2s2−

a2s3√
2

�2
2s2

2
È
πs32

× ...× ane
−

�√
2bnsn−

an√
2

�2
2sn

2
È
πs3n

dsn...ds1, n > 1,

(2.2)

where f1(s1) = L−1s1
n
e−f̂1(v)

o
and f1(s1 | s2) = L−1s1

n
e−s2f̂1(v)

o
.

Proof. We use IG
�
a
b , a

2
�
to denote an IG distribution6 with mean a

b and the shape parameter a2

where a > 0, b ≥ 0. It is well known that its Laplace transform is given by

E
h
e−vIG(ab ,a

2)
i

= e−a(
√
b2+2v−b).

Since (2.2) holds for n = 2. The proof for the general case can be conducted by the mathematical
induction: Assuming (2.2) also holds for an arbitrary integer n = j > 2, given sj+1 ∈ (0,∞), we
have

e−f̂j(v)sj+1 = exp
�
−ajsj+1

hÈ
bj + cjv + f̂j−1(v)−

È
bj

i�

=

∞Z
0

...

∞Z
0

e
−

�
s1+

jP
k=2

cksk

�
v

f1(s1 | s2)
a2s3e

−

�√
2b2s2−

a2s3√
2

�2
2s2

2
È
πs32

× ...× ajsj+1e
−

�√
2bjsj−

ajsj+1√
2

�2
2sj

2
È
πs3j

dsj ...ds1.

Then, for n = j + 1, we have

e−f̂j+1(v) =

∞Z
0

e−cj+1sj+1ve−f̂j(v)sj+1
aj+1

2
È
πs3j+1

e
−

�√
2bj+1sj+1−

aj+1√
2

�2
2sj+1 dsj+1

=

∞Z
0

...

∞Z
0

e
−

�
s1+

j+1P
k=2

cksk

�
v

f1(s1 | s2)
a2s3e

−

�√
2b2s2−

a2s3√
2

�2
2s2

2
È
πs32

× ...× aj+1e
−

�√
2bj+1sj+1−

aj+1√
2

�2
2sj+1

2
È
πs3j+1

dsj+1...ds1.

Hence, (2.2) also holds for n = j+ 1, which means that this statement holds for any n ∈ N+.

With the integral representation (2.2), we can develop an associate simulation scheme for a

variety class of random variables by setting different values for the parameters ak, bk, and ck. For

instance, if we set ck = 0 for all k, we can develop a general simulation scheme to sample a r.v. S,

where the Laplace transform is of the following form

E
�
e−vS

�
= an

Ê
...

É
...
q
b2 + f̂1(v)− a2

È
b2 − an−1

È
bn−1 − an

È
bn, (2.3)

6The distributional properties of IG distributions have been well documented in Chhikara and Folks (1989).
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when the initial simulation scheme for the r.v. with Laplace transform f̂1(v) is known. Let f1 be

the density of r.v. with Laplace transform f̂1(v), then, the full simulation structure in general is

summarised in Algorithm 2.1.

Algorithm 2.1 General Framework for Simulating S with Laplace Transform (2.3)

1. if(n == 1){

2. sample S1 with distribution f1(s1)

3. }

4. else {

5. for i ∈ {n− 1, ..., 2}{

6. sample Sn ∼ IG
�
an/2

√
bn, a

2
n/2

�
7. set ai = ak and bi = bk

8. sample Si ∼ IG
�
Si+1/2

√
bi, a

2
iS

2
i+1/2

�
and sample S1 with distribution

f1(s1|S2)

9. }

10. return S1

Alternatively, if we set bk = ck = 0 for all k, this integral representation then lead to an exact

simulation scheme for a class of random variables with Laplace transform

an

Ê
...

É
...a2

q
f̂1(v). (2.4)

More specifically, if we set ak = 1, for all k and let f̂1(v) = vq, then, the Laplace transform (2.1)

corresponds to a class of stable distributions with stability index q
2n . Indeed, this representation for

the stable distributions is of great interests, as it provides us an alternative simulation framework to

generate the associated TS class. In the rest of this paper, we concentrate on the exact simulation

for the TS class with stability index q
2n , which is mainly demonstrated in Section 3.

3 Tempered Stable distributions and Exact Simulation

Positive TS distribution is a one-sided tilted stable distribution with stability index α ∈ (0, 1). It is

an infinitely divisible distribution that combines both of the stable distribution and Gaussian trends

by tilting the Lévy measure with an exponential function. More precisely, it has a very flexible

structure with three parameters, and the Lévy measure ν is specified by

ν(ds) = e−βs
θ

sα+1
1{s>0}ds, α ∈ (0, 1), β, θ ∈ (0,∞), (3.1)
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where α is the stability index, θ is the intensity parameter and β is the tilting parameter. In partic-

ular, if α = 1
2 , it reduces to a very important distribution, the inverse Gaussian (IG) distribution.

In the sequel, for simplicity, this TS distribution uniquely determined by (3.1) is denoted by

TS(α, β, θ), and its probability density function (PDF) is denoted by f(s;α, β, θ). Obviously, if

β = 0, it then returns to a standard positive stable distribution S(α, θ) with Lévy measure

ν(ds) =
θ

sα+1
1{s>0}ds,

and density f(s;α, 0, θ). Proposition 3.1 below illustrates an important and well known connection

between these two distributions.

Proposition 3.1. The Laplace transform of TS(α, β, θ) is given by

E
�
e−vTS(α,β,θ)

�
= exp

�
−θΓ(1− α)

α

�
(β + v)α − βα

��
, v ∈ R+, (3.2)

with the density

f(s;α, β, θ) = exp

�
θΓ(1− α)

α
βα − βs

�
× f(s;α, 0, θ), (3.3)

where Γ(u) is the gamma function, i.e. Γ(u) :=

∞Z
0

su−1e−sds.

As the name stable implies in stable distribution, stability index α is the most crucial parame-

ter, since this fundamentally determines its distributional property of the so-called stable laws (or

α-stable): a sum of any two independent stable r.v.s with the same index α is still a stable r.v. with

index α, and this invariance property does not hold across different α’s (Borak et al., 2005, p.22).

It has been commonly recognised that, the density functions for general specifications on α are

hard to be obtained analytically, and this indeed poses the greatest challenge to the further study of

their distributional properties and statistical inference. Nevertheless, a different specification for α

leads to a different family of stable distributions, and some are particularly attractive in respect of

their distinctive distributional properties and potentials for applications. Many of these interesting

special families have been extensively investigated in the literature, see Brown and Tukey (1946),

Mitra (1981, 1982), Montroll and Bendler (1984) and Penson and Górska (2010), and also see

surveys in Holt and Crow (1973), Devroye (1986), Zolotarev (1986), Samoradnitsky and Taqqu

(1994) and Uchaikin and Zolotarev (1999). For example, the 1
2n -family of stable distributions

for n = −1, 0, 1, ... is particularly prestigious, and the first three members are all famous: they

are Gaussian, Cauchy and Lévy, respectively, and each one has an explicit density function with
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a tailored algorithm available for exact simulation (Uchaikin and Zolotarev, 1999, p.214–216).

However, explicit densities beyond these three members rely on heavy use of the hypergeometric

function, which are not ideally suited to our goal for exact simulation.

In the following parts of this section, we first set up our proposed framework of exact simulation

for the TS families with stability index that can be expressed in a general dyadic form of

α =
q

2n
∈ (0, 1), q ∈ N+, n ∈

¦
k ∈ N+ | 2k > q

©
. (3.4)

We mainly consider the case where q is an odd number, as obviously an even numerator will reduce

to an odd numerator by moving down the degree n. Meanwhile, we focus on some of its important

subclasses where further enhanced algorithms (such as direct simulation procedure) are available.

The associated numerical examples will be presented later in Section 4.

3.1 Tempered Stable Distributions with Stability Index α = q
2n

Based on Theorem 2.1, if ak = 1 and bk = ck = 0 for any k = 2, ..., n and f̂1(v) = vq, then, (2.1)

represents the Laplace transform of a stable distribution with stability index q
2n . Therefore, we can

represent the density of a TS distribution with stability index q
2n ∈ (0, 1) based on (3.3) and (2.2)

in Theorem 3.1 as follows.

Theorem 3.1. For q, n ∈ N+ specified by (3.4) and p := min
1≤i≤n

¦
i ∈ N+ : 2i ≥ q

©
, the density of

TS
�
q
2n , β, θ

�
has an integral representation of

f(s1) =

8>>>>>>><>>>>>>>:

exp
�
−βs1 +Apβ

q
2p

�
f(s1; q

2p , 0, θ), n = p,

∞Z
0

...

∞Z
0

s2√
2
e−

�√
2βs1−

s2√
2

�2
2s1

√
2πs13

× ...×
s√
2
e
−

�
√

2β

1
2n−p sn−p−

s√
2

�2

2sn−pÈ
2πs3n−p

fS(s)e−β
1

2n−p s+Anβ
q
2n ds...ds2, n > p,

(3.5)

where An := 2n

q θΓ
�
1− q

2n

�
, and fS(s) is the density of a stable distribution with stability index

q
2p such that its Laplace transform is exp

�
−Anv

q
2p
�
.

When n = p, i.e. n is the smallest integer for q
2n < 1, the density is equivalent to (3.3), and the

simulation scheme degenerates to the SSR scheme (with the algorithm in Appendix A). Whereas

when n > p, from the multiple integral representation (3.5) for the density function, we can ob-

serve that TS
�
q
2n , β, θ

�
is closely related to an IG distribution which can be directly simulated

by Michael et al. (1976)7. We therefore develop an alternative simulation framework based on the
7Note that, the exact simulation for IG distribution designed by Michael et al. (1976) is direct and very efficient, as

8



integral representation for TS
�
q
2n , β, θ

�
in Algorithm 3.1, namely the backward recursive (BR)

scheme. The recursion first needs to be initialised by generating a r.v. (named as "seed" throughout

this paper) S̃ via the A/R scheme, the general BR scheme in Algorithm 3.1 as below to sample

TS
�
q
2n , β, θ

�
.

Algorithm 3.1 Backward Recursive Scheme for Simulating TS
�
q
2n , β, θ

�
1. set θ̃ := 2n−pθΓ

�
1− q

2n

�
/Γ
�
1− q

2p

�
2. repeat {

3. sample S̃ ∼ S
�
q/2p, θ̃

�
and V ∼ U [0, 1]

4. if ( V ≤ exp
�
−β1/2n−pS̃

�
) break

5. }

6. set S̃n−p+1 = S̃

7. for i ∈ {n− p, ..., 2, 1}{

8. sample S̃i ∼ IG
�
S̃i+1/2β

1/2i , S̃2
i+1/2

�
9. }

10. return S̃1

This alternative scheme turns out to be useful for a large n, in the way that it avoids the low

acceptance rate of sampling a TS distribution with a lower stability index, by generating a TS

distribution with a relative higher stability index and using a recursive procedure to produce the

rest. To illustrate the key idea of recursion, we could adopt the SSR scheme to generate the seed,

therefore, the corresponding expected complexity of the algorithm based on this SSR scheme is

n − p + 2 exp
�
Apβ

q
2p
�
. Since the complexity is exponentially increasing with respect to the

parameter β, to accelerate the algorithms, one should replace the SSR algorithm by the double

rejection method (Devroye, 2009), or, the fast rejection algorithm (Hofert, 2011b), to speed up the

simulation of the associated seed.

3.2 Tempered Stable Distributions with Stability Index α = 1
2n

Mathematically elegant schemes of direct exact simulation without the A/R mechanism, like the

classical CMS method (Chambers et al., 1976), are indeed very rare in the families of TS distribu-

tions but extremely desirable. In this section, we present our first discovery of such unique family

that allows direct simulation, that is, the family of TS distributions with the stability index of binary

it is developed based on the explicit inverse transformation of multiple roots without the A/R scheme.
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fractions 1
2n , n = 1, 2, .... In fact, it inherits from the prestigious family of stable distributions with

the same style as we mentioned at the beginning of this section. The first member of this 1
2n -family

of TS distributions is familiar: TS
�
1
2 , β, θ

�
follows an IG distribution, since the associated stable

distribution S
�
1
2 , θ
�
follows a Lévy distribution. However, it is almost unknown for the remaining

members.

This family is very unique, which allows us to develop an extremely fast algorithm for exactly

sampling any member based on recursively calling the IG generator developed by Michael et al.

(1976). It is accurate and very straightforward to implement. Amazingly, it barely depends on

the choices of parameters, as the recursion is only driven by the efficient IG generator and no A/R

mechanism is involved. This direct procedure is summarised in Algorithm 3.2, and it is derived

immediately from a multiple integral representation of its density function in Corollary 3.1.

Corollary 3.1. The density of TS
�

1
2n , β, θ

�
has an integral representation of

f
�
s1;

1

2n
, β, θ

�
=

∞Z
0

...

∞Z
0

s2√
2√

2πs13
e
−

�√
2βs1−

s2√
2

�2
2s1 × ...×

An√
2È

2πs3n
e−

�
√
2β

1
2n sn−

An√
2

�2

2sn dsn...ds2,

(3.6)

where An = 2nθΓ
�
1− 1

2n

�
.

Proof for Corollary 3.1 immediately follows Theorem 2.1 by setting f̂1(v) =
√
v. Hence, based

on (3.6), we can directly generate a TS
�

1
2n , β, θ

�
r.v. for n > 1 via the following Algorithm 3.2.

Algorithm 3.2 Direct Scheme for Simulating TS
�

1
2n , β, θ

�
1. sample S̃n+1 ∼ IG

�
2nθΓ(1− 1

2n )/2β1/2
n
, [2nθΓ(1− 1/2n)]2/2

�
2. for i ∈ {n, ..., 2, 1}{

3. sample S̃i ∼ IG
�
S̃i+1/2β

1/2i−1
, S̃2

i+1/2
�

4. }

5. return S̃1

To illustrate how Algorithm 3.2 works, let us consider the simplest case when n = 2 as an

example: Since TS
�
1
4 , β, θ

�
is equal in distribution to S̃1, it can be simulated by first generating

an IG r.v. of

S̃2 ∼ IG

 
2θΓ

�
3
4

�
β

1
4

, 8θ2Γ2
�

3

4

�!
;

then, conditional on one realisation of S̃2, we can generate TS
�
1
4 , β, θ

�
i.e. S̃1 via another IG r.v.
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of

S̃1 | S̃2 ∼ IG

�
S̃2

2
√
β
,
S̃2
2

2

�
.

3.3 Tempered Stable Distributions with Stability Index α = 3
2n

To sample TS r.v.s beyond the 1
2n -family, we find that it is hard to obtain the associated direct algo-

rithms and eventually the A/R scheme is unavoidable. Similar to the stable distribution, there is no

explicit formula for the density of TS distribution in general. However, for some special choices of

q, we find an alternative way to generate the stable distribution S
�
q
2p , θ̃

�
of the seed without using

the Zolotarev’s integral representation. In this section, we take a further inside of the density of

stable distribution of S(34 , θ) based on some very interesting distributional results we discovered

in Lemma (3.1) for a special family of r.v.s with Laplace transform (3.7). Then, we design an en-

hanced algorithm to generate the 3
2n -TS family via Algorithm for n = 2 and Algorithm for n > 2,

respectively.

Let us first introduce a class of r.v.s with Laplace transform (3.7), which is a simplified version

of (2.1). This class of r.v.s has a closed-form distribution function which lead to a direct simulation

scheme. Simply setting γ = 0, (3.7) becomes the Laplace transform of a S
�
3
4 , θ
�
r.v.. Details of

the distribution property and simulation scheme for this special family are presented in Lemma 3.1

and Algorithm 3.3.

Lemma 3.1. If the random variable S has the Laplace transform

E
�
e−vS

�
= exp

�
−ζ
q
v

3
2 + γv

�
, ζ, γ ∈ R+, (3.7)

then, the corresponding CDF of S can be represented by

FS(s) =

∞Z
0

1

π(w + 1)
√
w

exp

�
−ζ

4(w + 1)3

64w

1

s3
− γζ2(w + 1)

4

1

s

�
dw. (3.8)

Proof. Let fS(s) and FS(s) denote the PDF and the cumulative distribution function (CDF) of S,

respectively. According to (3.7), the Laplace transform of FS(s) can be derived

∞Z
0

e−vsFS(s)ds =

∞Z
0

∞Z
u

e−vsfS(u)dsdu

=
1

v

∞Z
0

e−vufS(u)du

=
1

v
exp

�
−ζ
q
v

3
2 + γv

�
, v ∈ R+. (3.9)
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Note that, by change of variable u = vx, (3.9) can be rewritten as

1

v
exp

�
−ζ
q
v

3
2 + γv

�
=

1

v

∞Z
0

e−(
√
v−γ)vx ζ

2
√
πx3

exp

�
− ζ

2

2x

�
dx

=
1√
v

∞Z
0

e−
√
vu ζ

2
√
πu3

exp

�
−ζ

2v

4u
− γu

�
du.

From the tables of Laplace transforms listed in Bateman (1954, p.246), we recognise that

1√
v
e−
√
vu =

∞Z
0

e−vy
1
√
πy

exp

�
−u

2

4y

�
dy.

Finally, (3.9) has an integral representation of

1

v
exp

�
−ζ
q
v

3
2 + γv

�
=

∞Z
0

∞Z
0

e−vy
1
√
πy

exp

�
−u

2

4y

�
ζ

2
√
πu3

exp

�
−ζ

2v

4u
− γu

�
dudy

=

∞Z
0

∞Z
0

e−vyevz
1

π
√
yz

exp

�
− ζ4

64yz2
− γζ2

4z

�
dzdy. (3.10)

Applying transformations s = y + z and w = y
z to (3.10), we have z = s

w+1 , y = sw
w+1 with the

Jacobian of the transformation �������
1

w+1
w
w+1

− s
(w+1)2

s
(w+1)2

������� =
s

(w + 1)2
.

Hence, (3.9) can be finally rewritten as

1

v
exp

�
−ζ
q
v

3
2 + γv

�
=

∞Z
0

∞Z
0

e−vs
1

π(1 + w)
√
w

exp

�
−ζ

4(1 + w)3

64w

1

s3
− γζ2(1 + w)

4

1

s

�
ds,

which corresponds to the CDF of (3.8).

According to the closed-form CDF (3.8) for S with Laplace transform (3.7), we can directly

generate S using an explicit inverse transformation. The simulation scheme for sampling S is

provided in Algorithm 3.3 as follows.

Proof. We observe that, the CDF of S in (3.8) of Lemma 3.1 can be represented by

FS(s) =

∞Z
0

fW (w)FS|W (s|w)dw,

12



Algorithm 3.3 Exact Scheme for Simulating S with Laplace Transform (3.7)

1. sample U (1) ∼ U [0, 1], and U (2) ∼ U [0, 1]

2. setW = tan2
�
π
2U

(1)
�
, A = ζ4(1+W )3

64W , B = γζ2(1+W )
4 , C = − ln(U2), and

D = 3
√

3
È

27A2C4 + 4AB3C2 + 27AC2 + 2B3

3. return
1

3C

�
D

1
3 /2

1
3 + 2

1
3B2/D

1
3 +B

�
(3.11)

whereW is a well-defined r.v. with the density

fW (w) =
1

π
√
w(w + 1)

.

The corresponding CDF is

FW (w) =

wZ
0

1

π
√
x(1 + x)

dx =
2

π
tan−1

�√
w
�
,

which allowsW to be directly sampled via an explicit inverse transform by setting

W
D
= tan2

�
π

2
U (1)

�
, U (1) ∼ U [0, 1].

Conditional onW , the CDF of S is therefore given by

FS|W (s|w) = exp

�
−ζ

4(1 + w)3

64w

1

s3
− γζ2(1 + w)

4

1

s

�
.

To sample S givenW , we then need to solve the following cubic equation

− ln(U2)× S3 − γζ2(1 +W )

4
× S2 − ζ4(1 +W )3

64W
= 0, U (2) ∼ U [0, 1]. (3.12)

The solution for this cubic equation immediately follows (3.11) using the parameter setting in Al-

gorithm 3.3 for the coefficients in (3.12).

For a stable r.v. S
�
3
4 , θ
�
, its Laplace transform satisfies (3.7) with γ = 0. The corresponding

distribution function for S
�
3
4 , θ
�
satisfies (3.13).

Corollary 3.2. The CDF of stable distribution S
�
3
4 , θ
�
for any θ ∈ R+ can be represented by

FS( 3
4
,θ)(s) =

∞Z
0

1

π(w + 1)
√
w

exp

�
−κ

4(w + 1)3

64s3w

�
dw, (3.13)

13



and the simulation scheme for the stable r.v. S
�
3
4 , θ
�
directly follows Algorithm 3.3 by setting

B = 0.

Proof. The Laplace transform of S
�
3
4 , θ
�
is given by

E
h
e−vS( 3

4
,θ)
i

= e−κv
3
4 , κ =

4

3
θΓ
�

1

4

�
.

Based on Lemma 3.1, setting γ = 0 and ζ = κ in (3.8), the CDF of S
�
3
4 , θ
�
follows (3.13).

To generate the associated TS distribution TS
�
3
4 , β, θ

�
, instead of using the A/R based on the

Zolotarev’s integral representation, we redesign an alternative A/R scheme using a gamma dis-

tributed envelop based on the distribution function we obtained for the stable distribution S
�
3
4 , θ
�
.

The detail is given in Algorithm 3.4.

Algorithm 3.4 A/R Scheme for Simulating TS
�
3
4 , β, θ

�
1. set κ = 4θβ

3
4 Γ
�
1
4

�
/3

2. repeat {

3. sampleW = tan2
�
π
2U
�
with U ∼ U [0, 1]

4. sample E ∼ Γ(m, 1) and V ∼ U [0, 1]

5. if (V ≤ 3m+16
m
3 κ

4(m+3)
3 e

m+3
3 (1 +W )3e−

κ4(1+W )3

64WE3 /
�
23(m+2)(m+ 3)

m+3
3 WEm+3

�
)break

6. }

7. return E/β

Proof. Let X ∼ TS
�
3
4 , β, θ

�
and set S = βX . According to Proposition 3.1, the Laplace trans-

form of S is given by

E
�
e−vS

�
= E

�
e−vβX

�
= exp

 
−

4θΓ
�
1
4

�
3

h
(β + βv)

3
4 − β

3
4

i!

= exp

�
−

4θβ
3
4 Γ
�
1
4

�
3

h
(1 + v)

3
4 − 1

i�

= exp
�
−κ

h
(1 + v)

3
4 − 1

i�
,

where κ = 4
3θβ

3
4 Γ
�
1
4

�
. Using (3.3) and (3.13), the density of S can be written as

fS(s) =

∞Z
0

1

π(w + 1)
√
w

3κ4(1 + w)3

64ws4
exp

�
−κ

4(1 + w)3

64ws3

�
e−s+κdw. (3.14)
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The joint density of S andW is

f(s, w) =
1

π(w + 1)
√
w

3κ4(1 + w)3

64ws4
exp

�
−κ

4(1 + w)3

64ws3

�
e−s+κ, w, s > 0.

To generate S, we consider a Gamma distributed envelop with rate parameter m > 0 and scale

parameter 1 for S, and this envelop appears to be the most natural choice to be adopted according

to its density (3.14). The joint density we have is

g(s, w) =
1

π(w + 1)
√
w

1

Γ(m)
sm−1e−s, w, s > 0.

We have

f(s, w)

g(s, w)
=

3κ4(w + 1)3Γ(m)eκ

64w

1

s3+m
exp

�
−κ

4(1 + w)3

64ws3

�

≤
Γ(m)eκe−

m+3
3

�
64
3κ4

�m
3 (m+ 3)

m+3
3 w

m
3

(w + 1)m

≤ Γ(m)eκe−
m+3

3

�
8

3

�m � 1

6κ4

�m
3

(m+ 3)
m+3

3 = C(m,κ),

where C(m,κ) can be minimised overm. It is equivalent to find them that minimises

logC(m,κ) =
1

3

�
log Γ(m)+3κ−(m+3)+8m log(2)−4m log(3)−4m log(κ)+(m+3) log(m+3)

�
.

The optimal valuem∗ satisfies the following equation

1

4

�
log (m∗ + 3) + 3ψ(0) (m∗)

�
= log

�
3κ

4

�
, for ψ(0)(m) =

dΓ(m)

dm
,

and we have

m∗ =
3κ

4
− 3

8
+

143

128

1

m∗
− 1857

1024

1

m∗2
+O

�
1

m∗3

�
≈ 3κ

4
+ c.

When we numerically fit this linear setting, the optimal value c obtained is −0.14. Hence, given

κ, the optimal ratem∗ for the gamma distributed envelop is chosen by setting

m∗ = −0.14 +
3

4
κ.

To generate S, we first sampleW using the explicit inverse transformation, and then generate the
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Figure 1: Acceptance rates of Algorithm 3.4 and the SSR scheme for sampling TS
�
3
4
, β, θ

�
based on the

parameter setting θ = 0.7 and β ∈ (0, 10)

gamma distribution envelop E ∼ Γ(m∗, 1). The A/R decision follows

V ≤ f(E,W )

C(m∗, κ)g(E,W )
=

3m
∗+16

m∗
3 κ

4(m∗+3)
3 e

m∗+3
3

23(m∗+2)(m∗ + 3)
m∗+3

3

(1 +W )3

W

e−
κ4(1+W )3

64WE3

Em∗+3
,

and the corresponding acceptance rate is 1
C(m∗,κ) . Finally, we obtain TS

�
3
4 , β, θ

�
by settingX =

S
β .

Comparing with the acceptance rate exp
�
−4

3θΓ
�
1
4

�
β

3
4

�
using the SSR scheme to generate

TS
�
3
4 , β, θ

�
, Algorithm 3.4 leads to a higher acceptance rate, in particular for a large value of β.

The difference of the acceptance rates to generate one TS
�
3
4 , β, θ

�
r.v. for these two schemes with

respect to β is plotted in Figure 1. The SSR scheme is only desirable when the tilting parameter is

small, whereas our Algorithm 3.4 is more competitive when the tilting parameter is large. Hence,

instead of using the SSR scheme to generate the seeds for the TS
�

3
2n , β, θ

�
family, we adopt

Algorithm 3.4 to sample seeds. The enhanced algorithm forTS
�

3
2n , β, θ

�
is provided in Algorithm

3.5.

Proof. Letting X ∼ TS
�

3
2n , β, θ

�
and S = βX , we have

E
�
e−vS

�
= E

�
e−vβX

�
= exp

 
−

2nθΓ
�
1− 3

2n

�
3

h
(β + βv)

3
2n − β

3
2n

i!
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Algorithm 3.5 Backward Recursive Scheme for Simulating TS
�

3
2n , β, θ

�
1. set κ = 2nθβ

3
2n Γ (1− 3/2n) /3

2. repeat {

3. sampleW = tan2
�
π
2U
�
with U ∼ U [0, 1]

4. sample E ∼ Γ(m, 1) and V ∼ U [0, 1]

5. if (V ≤ 3m+16
m
3 κ

4(m+3)
3 e

m+3
3 (1 +W )3e−

κ4(1+W )3

64WE3 /
�
23(m+2)(m+ 3)

m+3
3 WEm+3

�
)break

6. }

7. set S̃n−1 = E

8. for i ∈ {n− 2, ..., 2, 1}{

9. sample S̃i ∼ IG
�
S̃i+1/2, S̃

2
i+1/2

�
10. }

11. return S̃1/β

= exp

�
−

2nθβ
3
2n Γ

�
1− 3

2n

�
3

h
(1 + v)

3
2n − 1

i�
.

Based on Theorem 3.1 and (3.14), the density of S ∼ TS
�

3
2n , 1, θβ

3
2n

�
has the integral represen-

tation

f
�
s1;

3

2n
, 1, θβ

3
2n

�
=

∞Z
0

...

∞Z
0

s2√
2√

2πs13
e
−

�√
2s1−

x2√
2

�2
2s1 × ...×

s√
2È

2πs3n−2
e
−

�√
2sn−2−

s√
2

�2
2sn−2

×3κ4(w + 1)2

64πw
3
2 s4

exp

�
−κ

4(w + 1)3

64s3w
− s+ κ

�
dw...ds2,

where

κ =
2n

3
θβ

3
2n Γ

�
1− 3

2n

�
. (3.15)

The seed, denoted S̃, follows a distribution of TS
�
3
4 , 1, θβ

3
2n

�
, and the density satisfies (3.14)

with the new κ defined in (3.15). We directly follow Algorithm 3.4 to generate seeds and follow

the general BR scheme to generate X .

The total number of random variables needed to generate one TS
�

3
2n , β, θ

�
for our BR scheme

would be n − 2 + 3C(m∗, κ), which is the sum of the expected number of iterations of the A/R

algorithm required to generate a seed and the number of r.v.s generated via the recursion. The total

number of r.v.s needed for the classical SSR scheme is 2 exp
�
2nθ
3 Γ

�
1− 3

2n

�
β

3
2n

�
, so our BR
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Figure 2: Logarithm of expected number of random variables needed for our backward recursive (BR) scheme
(via Algorithm 3.4) v.s. the simple stable rejection (SSR) via AlgorithmA.1 based on the parameter
setting θ = 0.7, n = 2, 3, 4, 5, respectively for the tilting parameter β ∈ (0, 10)

scheme shall have a better performance in general. In Figure 2, we compare the logarithm of the

expected number of iterations for these two algorithms. The computation cost for the BR scheme

is less than the SSR scheme, especially, when the tilting parameter β becomes larger. In general,

different from the SSR scheme, the expected complexity of the BR scheme does not increase ex-

ponentially with respect to the β.

4 Numerical Examples

In this section, we provide numerical examples for these three families of TS distributions with

stability index α = 1
2n ,

3
2n ,

q
2n , respectively. The simulation experiments are all conducted on

a normal laptop with the Intel Core i7-6500U CPU@2.50GHz processor, 8.00GB RAM, Win-

dows 10 Home and 64-bit Operating System. The algorithms are coded and performed in MatLab

(R2016b), and the computing time is measured by the elapsed CPU time in seconds. Numerical

validation and tests for our simulation algorithms are based on the PDF and CDF of TS(α, β, θ),

which can be calculated by inverting the Laplace transform (3.2) numerically8. In particular, we
8A variety of methods are available for numerically inverting Laplace transforms with high accuracy, such as Gaver

(1966), Stehfest (1970), Abate andWhitt (1992, 1995, 2006). Here, we use the Euler scheme in Abate andWhitt (2006).
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Figure 3: Comparison of the empirical CDF/PDF for our backward recursive (BR) scheme (via Algorithm
3.2) with the CDF/PDF obtained via numerical inverse under the parameter settingα = 1/22, 1/25,
θ = 0.5, β = 3.0, respectively

assess the goodness-of-fit by comparing the CDFs and PDFs obtained by our BR scheme and by

the numerical inverse of Laplace transform. The associated plots of CDFs, PDFs and histograms

under different parameter settings are illustrated in Figure 3, 4, and 5, respectively. Overall, we can

observe that each of these algorithms can achieve a very high level of accuracy, and the simulated

CDF and PDF are fitted well to the associated numerical inversion.

We carry out a comparison of CPU time for our backward recursive (BR) scheme against the

simple stable rejection (SSR) scheme and the double rejection (DR) scheme for three families of

TS distributions with stability index α = 1
2n ,

3
2n ,

q
2n . The associated numerical results in detail is

reported in Table 1. Comparing with the SSR scheme and DR scheme, our direct scheme of Algo-

rithm 3.2 for the first family of α = 1
2n performances extraordinarily fast, since no A/R procedure

is involved as clearly demonstrated in Section 3.2. For example, it is nearly 1, 000 times faster than

the SSR scheme and 10 times faster than the DR scheme for simulating 100, 000 replications based

on parameter setting α = 1/32, θ = 0.5, β = 1. The out-performance of our algorithm would

even become much more substantial when θ or β increases or n increases. More remarkably, the

speed of simulation is barely effected by the changes of parameters θ and β, and the CPU time
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Figure 4: Comparison of the empirical CDF/PDF for our backward recursive (BR) scheme (via Algorithm
3.4,3.5) with the CDF/PDF obtained via numerical inverse under the parameter setting α =
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Figure 5: Comparison of the empirical CDF/PDF for our backward recursive (BR) scheme (via Algo-
rithm 3.1) with the CDF/PDF obtained via numerical inverse under the parameter setting α =
13/25, 23/26, θ = 0.25, β = 0.5, respectively
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only slightly increases when n increases. The associated numerical results in detail for this sen-

sitivity analysis are reported in Table 2. Our Algorithm 3.5 is also very fast and can easily beat

the SSR scheme, as the generator for the stable law of seeds is enhanced by our own design of

Algorithm 3.4. For example, it is about 400 times faster than the SSR scheme for exactly simu-

lating 100, 000 replications with parameter setting of α = 3/32, θ = 0.7, β = 2.0. Moreover, it

is about four times faster than the DR scheme. However, if we generate the seed using the SSR

scheme for our Algorithm 3.1 in general for the third family of α = q
2n , then, the performance is

at a similar level as the SSR scheme. In general, increasing n would increase the computing time,

as more IG variables are needed but the computing time mainly depends on the time of generating

the seed. Hence, when the acceptance rate of SSR becomes smaller for a larger tilting parameter

β, we can replace the simulation scheme of the seed byDR scheme to improve the simulation speed.

Table 1: Comparison of CPU time for backward recursive (BR), simple stable rejection (SSR), double re-
jection (DR) for TS

�
q
2n
, θ, β

�
based on parameter setting q = 1, 3, 23, 27, 35, n = 2, 3, 5, 6, 7,

θ = 0.50, 0.70, β = 1.0, 2.0; each value in the tables is produced from 100, 000 replications

α 1/22 1/23 1/25 3/22 3/23 3/25 23/26 27/26 35/27

θ = 0.50 β = 1.0
BR 1.58 2.20 2.34 1.25 7.62 7.50 4.45 4.36 8.85
SSR 7.45 47.25 2152.53 7.53 6.52 178.39 4.97 4.47 6.15
DR 25.31 23.85 24.89 27.94 23.67 23.48 26.68 25.34 31.52

θ = 0.70 β = 2.0
BR 1.42 2.14 2.87 1.29 8.21 8.29 30.78 45.45 32.53
SSR 54.41 581.38 3272.53 257.76 32.28 3681.59 35.25 39.65 28.93
DR 41.23 37.72 32.89 34.24 30.78 31.45 31.12 32.65 35.12

5 Concluding Remarks

In this paper, we provide a new framework for the exact simulation of a class of TS and related

distributions based on the multiple integral representation. The principle of our approach, which

is based on the backward recursion, is clearly distinguishing from the existing algorithms in the

literature. It works pretty efficiently for some subclasses of TS distributions, and is also applicable

to some other classes beyond the TS family. This scheme could lead to many prospective appli-

cations in practice with improved numerical efficiency: It could be used as the basis to exactly

generate TS-constructed r.v.s. For instance, it is well known that, one two-sided TS r.v. on the real

line R can be decomposed as the difference of two independent one-sided TS r.v.s on the positive

half line R+(Küchler and Tappe, 2013, p.4262). Moreover, it can also be used to generate paths

of various TS-driven stochastic processes, such as Lévy TS subordinators; see an abundance of

their applications for modelling the stochastic volatility with the associated econometric methods
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Table 2: Sensitivity analysis of the CPU time against the varying parameters (θ, β) ∈ (0, 1]× (0, 1] for our
backward recursive (BR) scheme (via Algorithm 3.2) for α = 1/2n, n = 2, 3, 4, 5, respectively;
each value in the tables is produced from 100, 000 replications

β
θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α = 1/4
0.2 1.34 1.17 1.23 1.28 1.42 1.19 1.30 1.34 1.30 1.39
0.6 1.16 1.20 1.22 1.14 1.22 1.13 1.13 1.22 1.16 1.30
1.0 1.11 1.14 1.17 1.19 1.13 1.13 1.22 1.14 1.16 1.25

α = 1/8
0.2 2.52 2.19 2.17 2.59 2.33 2.19 2.22 2.30 2.14 2.20
0.6 2.45 2.20 2.19 2.42 2.16 2.13 2.16 2.19 2.25 2.22
1.0 2.50 2.19 2.17 2.41 2.23 2.16 2.25 2.11 2.09 2.11

α = 1/16
0.2 2.91 3.08 2.55 2.47 2.92 2.92 2.58 2.44 2.84 2.48
0.6 2.91 2.91 2.45 2.52 2.91 3.19 2.47 2.52 2.89 2.53
1.0 2.91 2.88 2.42 2.52 2.88 2.88 2.48 2.50 2.89 2.64

α = 1/32
0.2 2.88 2.81 2.88 3.33 2.94 2.80 2.81 2.81 3.38 2.91
0.6 2.88 3.05 2.92 3.45 2.94 2.81 2.84 2.80 3.27 2.89
1.0 2.88 2.80 2.81 3.28 2.84 2.73 2.80 2.73 3.31 2.84

in Barndorff-Nielsen and Shephard (2001b, 2002, 2003), Barndorff-Nielsen et al. (2002), Gander

and Stephens (2007a,b), Andrieu et al. (2010) and Todorov et al. (2015). These r.v.s and stochastic

processes could further lead to numerous applications in many other fields. In particular, it would

be extremely useful for numerical validating and testing the newly developed statistical inference

or econometric methods for the TS-based models, where the parameters are set up for Monte Carlo

studies. Our Algorithm 3.2 for the 1
2n -family is strongly recommended to be adopted for generat-

ing the required data, and a variety of choices for the parameters n, β and θ would provide enough

flexibility for the purpose of numerical testing and validation. Since it is a bit of an art to find

appropriate envelops in the development of A/R schemes, the further enhancement for these A/R

schemes adopted in this paper could be a meaningful topic for future research.
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Appendices

A Simple Stable Rejection (SSR) Scheme

The Simple Stable Rejection (SSR) scheme introduced by Brix (1999) is illustrated in Algorithm

A.1 as below.

Algorithm A.1 Simple Stable Rejection (SSR) Scheme for TS(α, β, θ)

1. repeat{

2. sample U ∼ U [0, π], Es ∼ Exp(1) and V ∼ U [0, 1]

3. set S = (−θΓ(−α))−
1
α sin (αU + πα/2) cos(U)−

1
α cos

�
(1 − α)U −

πα/2
� 1−α

α E
− 1−α

α
s

4. if (V ≤ exp (−βS)) break

5. }

6. return S
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