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In this paper, we generalize the stochastic frontier model to allow for heterogeneous technologies 25 

and inefficiencies in a structured way that allows for learning and adapting. We propose a 26 

general model and various special cases, organized around the idea that there is switching or 27 

transition from one technology to the other(s), and construct threshold stochastic frontier models. 28 

We suggest Bayesian inferences for the general model proposed here and its special cases using 29 

Gibbs sampling with data augmentation. The new techniques are applied, with very satisfactory 30 

results, to a panel of world production functions using, as switching or transition variables, 31 

human capital, age of capital stock (representing input quality), as well as a time trend to capture 32 

structural switching. 33 
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1. Introduction 39 

 40 

A common but ad hoc approach in analyzing the relationship between firm size and 41 

efficiency is to split the sample of firms into sub-group based on some measures that related to 42 

the size of the firms (see for example, Mbaga et al. 2003). However, some decision must be 43 

made concerning what is the appropriate threshold (i.e., how big must a firm be to be categorized 44 

as “large”) at which to split the sample. When this value is unknown, some method must be 45 

employed in its selection. This type of problem can be rectified by employing threshold 46 

stochastic frontier regression. 47 

The stochastic frontier regression can also be useful in examining the heterogeneity in 48 

production across sectors of a given industry or across countries. For instant, capital stock of 49 

different age / quality / productivity and / or human capital of different quality is often used (in 50 

an aggregate manner) in production functions (see, for example, Limam and Miller 2004; Koop, 51 

Osiewaski and Steel 1999). This, effectively, creates differences in the technological possibilities 52 

and gives, in that way, rise to heterogeneity in production. Moreover, in any given sector of an 53 

industry, or more so in different countries, different technologies are used because the costs of 54 

adopting new technology (or at least better technology) differ across countries or sectors and the 55 

rates of innovation also differ substantially.  56 

In this paper, we propose a general class of threshold stochastic frontier models that 57 

allow for sample splitting or transition, adoption and implementation of new technologies based 58 

on the class of threshold models. In particular, we model the transition to the different 59 

technology using another perspective. We allow the transition to depend on certain exogenous 60 

variables such as human capital and the age of capital stock that represent input quality, and the 61 

time trend that allows modeling structural change, i.e., the models proposed here allow for single 62 

or multiple covariates in the transition process. In other words, the paper considers a set of 63 

threshold SF models. These are essentially switching regression models in which the switching 64 

mechanism is a Probit model, and in which the regimes can differ in their coefficients, or in the 65 

variance of statistical noise, or in the variance of inefficiency. 66 

To estimate the parameters of the proposed models, we use Bayesian inference 67 

procedures that organized around Gibbs sampling with data augmentations. The new techniques 68 

are then applied to a panel of world production functions using as switching or transition 69 
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variables, human capital, the age of the capital stock (representing input quality), and a time 70 

trend to capture structural switching or structural transition. 71 

The paper is organized as follows. Section 2 briefly reviews the standard stochastic 72 

frontier model. Section 3 proposes a general threshold stochastic frontier models and discusses 73 

various special cases via parameter restrictions. Bayesian inferences for the proposed model and 74 

its special cases are detailed in Section 4. Section 5 discusses model comparisons. Section 6 75 

extends the models discussed in Section 3 to the multiple threshold case. An empirical 76 

application is presented in Section 7. Section 8 concludes the paper. Details on the numerical 77 

methods for Bayesian inference and marginal likelihood considerations are given in the 78 

Appendices. 79 

 80 

2. The standard stochastic frontier model 81 

The basic production stochastic frontier model that we use as a starting point and basis for 82 

comparison is
1
 83 

'

it it it it
y x v u , 1,...,i n , 1,...,t T , 84 

 85 

where ity  denotes logarithm of output, 
it
x  is a 1k  vector of explanatory variables (typically, 86 

logarithms of inputs like labor and capital),  is a 1k  vector of parameters, 
it
v  is a two-sided 87 

random error term representing factors that are beyond the firms control, and 0
it
u  represents 88 

technical inefficiency. Following the standard practice in stochastic frontier literature, we assume 89 

that itv  are ),0(... 2

vNdii   and itu  are 2. . . (0, )
u

i i d N , where
2(0, )
u

N  denotes the half-normal 90 

distribution with density 
2 1/2 2 2( ) ( ) exp( / (2 ))

it u it u
p u u . Furthermore, we assume that 91 

( , , )
it it it
x u v  are mutually independent. The probability distribution function of the dependent 92 

variable is given by 93 

2
( | , ) it it
it it

e e
p y x  94 

 95 

                                                           
1
 Cost frontiers can be accommodated by reverse the sign of 

it
u . 
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where   represents the parameter vector '( , , )
v u

, 2 2 2

v u
, /

u v
,  96 

'

it it it
e y x , (.)  and (.)  are probability density function and cumulative distribution 97 

function of a standard normal variate, respectively. Given this density, and the independence 98 

assumptions, it is easy to formulate the likelihood function and use the maximum likelihood 99 

method to estimate the parameters. For an excellent introduction to stochastic frontier analysis, 100 

see Greene (1993), and Kumbhakar and Lovell (2000). Bayesian analysis of the model proceeds 101 

using Markov Chain Monte Carlo methods, especially Gibbs sampling with data augmentation. 102 

More specifically, we augment the parameter vector   with the latent technical inefficiencies u . 103 

Given a prior ( )p  for the structural parameters, and the "prior" 104 

2 /2 ' 2( | ) ( ) exp[ / (2 )]nT
u u

p u u u , application of Bayes' theorem yields immediately the 105 

posterior distribution 106 

 107 

' ' ' 2

2 2

( )( )
( , | , ) exp ( )

2 2
nT nT
v u

v u

y u X y u X u
p u y X p . 108 

 109 

where y  and u  are 1nT  vectors and X  is an nT K  matrix. Gibbs sampling requires 110 

drawing random numbers from the conditional posterior distributions and it is well known that 111 

these distributions are in standard families, so implementation of Gibbs sampling with data 112 

augmentation is straightforward, provided the prior ( )p  results in conditionally conjugate 113 

posterior distributions - this usually requires conditional prior that are special cases of the 114 

normal-gamma family.  115 

It is well understood that for a large number of applications, assuming homogeneous 116 

technology is almost invariably an inappropriate assumption and several studies have proposed 117 

alternative models. The simplest way to introduce technological heterogeneity is to place "fixed 118 

effects" in the model by including the appropriate dummy variables in the regressor matrixX . 119 

Another way is to assume random coefficients (Tsionas (2002)), latent class frontier models 120 

(Greene (2001, 2004) and Orea and Kumbhakar, 2004), Markov switching model (Tsionas and 121 

Kumbhakar (2004)). In what follows, we propose a general model that extends and reinforces the 122 

heterogeneity issue, and can be implemented using Bayesian inference techniques and practical 123 

simulation methods. 124 
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3. General threshold stochastic frontier model 125 

To extend the standard stochastic frontier model that allows for technology heterogeneity, we 126 

consider the following general threshold stochastic frontier model. 127 

 128 

' ' '( 0)
it it it it it it it
y x x I q v u     (1) 129 

 130 

where (.)I  is the indicator function, 
it
q  is a 1m  vector  representing threshold variables and 131 

it
 are random errors assumed to be i.i.d. 2(0, )N . The ,

it it
x x  and 

it
q  may have common 132 

variables. A leading case is where 
it it
x x  but 

it
x  can be a strict proper subset of 

it
x . Let 

1it
q  133 

be the first element of 
it
q  and 

2it
q  the other elements of 

it
q . We assume that the first element of 134 

it
q   is the constant 1 and the first element of  is normalized to 1 while the others are denoted 135 

by , so that 
' '

1 2it it it
q q q . We assume that the one-sided error term 

0

2~ . . . (0, )
it u
u i i d N  136 

if 
'

1 2
0

it it it
q q , and 

1

2~ . . . (0, )
it u
u i i d N , otherwise; similarly, 

0

2~ . . . (0, )
it v
v i i d N  if 137 

'

1 2
0

it it it
q q , and 

1

2~ . . . (0, )
it v
v i i d N , otherwise. Furthermore, we assume that 138 

( , , , )
it it it it
x v u  are mutually independent

2
.  139 

In model (1) observations are divided into two regimes, and this model allows for the frontier 140 

parameters to differ depending on the threshold function 
'

it it
q , and hence introduce 141 

heterogeneity in the technology component of the model. It also allows for all the frontier 142 

parameters to switch between regimes, but this is not essential for the analysis that follows. 143 

Model (1) is different from the Markov switching stochastic frontier proposed by Tsionas and 144 

Kumbhakar (2005) in that the switching variable is observable. The Markov switching model 145 

posits that regime switches are exogenous. No attempt is made to explain the reason why regime 146 

changes occur and no attempt is made to explain the timing of such changes.  The threshold 147 

effect has found applications in macro and in cross-section growth regressions (see Hansen 148 

(2000) for discussion), and to the best of our knowledge, model (1) is the first application in the 149 

stochastic frontier literature. 150 

                                                           
2
 Other alternative distributions assumption for 

it
u  such as truncated normal, exponential and Gamma are available 

and can be adapted for this model. 
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Model (1) also differs from the latent class model proposed by Greene (2001, 2004) and Orea 151 

and Kumbhakar (2004) in the sense that, in the latent class models, the regime change may be 152 

permanent implying that there is some persistence in the movement from one regime to another. 153 

In fact, the latent class models do not model the transition at all and assume instead that once 154 

adopted, a technique remains in effect forever.  155 

 156 

4.  Bayesian Inference  157 

In principle, the parameters in model (1) or any of its special case can be estimated using a direct 158 

profiled maximum likelihood (ML). However, due to the high degree of nonlinearity, the 159 

computation of the profiled ML is numerically intensive and prohibitively expensive, especially 160 

when the sample size is large. Furthermore, if there are only a few observations in one regime, 161 

numerical problems will arise. In this paper we suggest alternative estimation algorithms based 162 

on Bayesian inference. 163 

First, note that model (1) generalizes the simple threshold framework to allow for the 164 

threshold variable to be combination of the regressors and/or other variables such as firm’s size 165 

validating the use of discontinuous variables as well as continuous variables for sample splitting. 166 

Second, various models can be deduced from model (1) via various parameters restrictions. For 167 

instant, when 
1

2 2

ou u
 model (1) reduces to the Latent Class (LC) model of Greene (2001, 168 

2004). For convenience and later analysis, we will denote this model as “Model 2.” When 169 

2 0  and itq2  is only a constant, model (1) reduces to a threshold stochastic frontier model 170 

with a single threshold. We call this model as “Model 3.” Finally, when 171 

2 0, ,22

10 vv   22

10 uu    and itq2  is only a constant, model (1) collapses to the simplest 172 

threshold stochastic frontier model which we label as “Model 4.” 173 

Finally, due to the similarity in the specifications of the priors for the slopes, variance 174 

parameters, and the kernel posteriors between the main model (model 1) and various special 175 

cases, we will present the Bayesian analysis of the simplest threshold model first (model 4) and 176 

gradually extend the analysis to other models that eventually lead to our main model. In this way, 177 

our analysis provides the readers with an intuitive and logical way to conduct Bayesian 178 

inference. Finally, for purpose of discussion, we present the case where 
it it
x x .  179 



6 

 

4.1. Model 4: Simple Threshold Stochastic Frontier ( 2 0,
0 1

2 2 ,
v v 0 1

2 2
u u

 and 
2it
q )  180 

Under these restrictions, our general model (1) can be conveniently rewritten as 181 

 182 

' ( )
it it it it
y w v u  183 

                                184 

where ( )
( )
it

it
it it

x
w

x I q
 and 2

2 1

. The density of the dependent variable 
it
y  is 185 

given by 186 

2
( | , , ) it it
it it it

e e
p y x q , 187 

 188 

where 
' ( )

it it it
e y w , 

2 2 2

v u
, /

u v
,  represents the model parameter 189 

vector 
'( , , )

v u
,  and  represent the standard normal density and distribution function, 190 

respectively. Based on the above density, implementation of ML is easy conditional on the 191 

parameter . Searching over the parameter value that maximizes the log-likelihood function 192 

provides estimates of all parameters
3
. To implement the Bayesian techniques, we make the 193 

following assumptions about the prior distribution. The priors of ,
v
 and 

u
 are assumed to be 194 

independent of each other, and given the nonnegative prior hyperparameters 0
v
Q  and 195 

0
u
Q ,  196 

1~ ( ,   )N V ,  
2

2
~ ( )v

v

v

Q
n , 

2

2
~ ( )u

u

u

Q
n . 197 

where , 0
v u
n n . The prior for  is normal while the priors for the scale coefficients are 198 

inverted gamma. Indeed, 
2

2
~ ( )

Q
 implies 2 1~ ( , )

2 2

Q
Gam , , 0Q . To be more 199 

specific, the prior for the scale parameters we adopt, imply that from a fictitious sample that is 200 

                                                           
3
  The parameter  is not different in principle from the other parameters. Asymptotic variances come from the 

information matrix, estimated using first or second derivatives, and these derivatives are well‐defined regardless of 

the mechanism by which the likelihood was maximized. Hence, the asymptotic variances for the other parameters, 

conditional on the value of , are not correct. Finally, it has to be noted that we maximized over .   
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related to N , we get a sum of squares which is Q  . The choices 1N  and 0.01Q  result in 201 

relatively “uninformative” priors. The choice 0N  results in a proper posterior, although the 202 

prior itself is no longer proper (however, one can set 0.1N ). Furthermore, we know that 203 

improper prior densities can, but do not necessarily, lead to proper posterior distributions (see, 204 

e.g. Gelman (2006, p. 517)). 205 

We leave the conditional prior of , ( | , , )
v u

p  unspecified for the moment, and we 206 

assume that ( , , )
v u

 are mutually independent. Given the prior ( )p , the kernel posterior, 207 

augmented with the latent inefficiency vectoru , is 208 

 209 

' ' ' '
( 1) ( 1) ' 11

22 2

( , , , , | , , )

( ( ) )( ( ) )
exp ( ) ( ) ( )

2 2
v u

v u

nT n nT n v u
v u

v u

p u y X q

Q y W u y W u Q uu
V p

 210 

where y  and u  are 1nT  vectors, ( )W  is an nT k  stack matrix whose elements are 
'

it
w .   211 

The posterior conditional distributions that required for implementation of Gibbs sampling with 212 

data augmentation are as follows. The conditional posterior of the regression coefficients is 213 

 214 

ˆ ˆ| , , , , , , ~ ( ,  )
v u

u yW q N V  215 

where 216 

' 2 1 1 ' 2 1ˆ [ ( ) ( ) ] [ ( ) ( ) ]
v v

W W V W y u V , 217 

2 ' 2 1 1ˆ [ ( ) ( ) ]
v v

V W W V . 218 

 219 

The conditional posterior of the two-sided error variance is 220 

 221 

    

' ' '
2

2

( ( ) )( ( ) )
| , , , , , ~ ( )v

u v

v

Q y W u y W u
u yW q nT n     222 

 223 

The conditional posterior distribution of the one-sided error variance is 224 

  225 

'
2

2
| , , , , , ~ ( )v

v u

u

Q uu
u yW q nT n  226 

      227 

The conditional posterior distribution of latent technical inefficiencies is 228 

 229 
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2 2 2 2 2 2 2| , , , , , , ~ ( / ( ),   / ( ))
it v u it u v u v u v u
u yW q N e  230 

 231 

These distributions are amenable to fast and efficient random number generation. The 232 

troublesome parameter in this context is . The conditional kernel posterior distribution is 233 

 234 

' ' '

2

( ( ) )( ( ) )
( | , , , , , , ) exp ( )

2v u

v

y W u y W u
p u yW q p    235 

 236 

Since the likelihood can be integrated analytically with respect to the latent variables u , an 237 

alternative marginalized conditional kernel posterior distribution is given by 238 

 239 

' '

1 1

( ) ( )
( | , , , , , ) ( )

n T
it it it it

v u
i t

y w y w
p yW q p  240 

             241 

Here we employ a simple random walk Metropolis-Hastings algorithm to draw the above 242 

conditional posterior distribution, instead of a griddy Gibbs sampling, due to its easily tuned by 243 

the acceptance rate and arguably is more exact. 244 

 245 

4.2. Model 3: 
2 0  and 

2it
q .  246 

Under these restrictions, this model is similar to model 4 discussed above with the exception that 247 

it relaxes the assumption that the composed errors have the same structures in both regimes. 248 

Thus, Bayesian inference for this model requires some modifications. First, the probability 249 

density of the dependent variable 
it
y  is given by 250 

 251 

( ) ( )

2 0 1
0 0 0 1 1 1

2 2
( | , , , )

it itI q I q

it it it it
it it it it

e e e e
p y x q u  252 

 253 

where  
2 2 2 and / , 0,1.
j vj uj j uj vj

j  Second, the modification for the prior 254 

distributions are as follows. 255 

 256 
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1~ ( , )N V , 2

2
~ ( )vj

vj

vj

Q
n ,  2

2
~ ( )uj

uj

uj

Q
n , 0,1j    (3) 257 

 258 

Third, let  259 

1
( ) [ : ( ) 1]

it it
X x I q , 

2
( ) [ : ( ) 0]

it it
X x I q , 260 

 261 

1
( ) [ : ( ) 1]

it it
y y I q , 

2
( ) [ : ( ) 0]

it it
y y I q , 262 

 263 

1
( ) [ : ( ) 1]

it it
u u I q , 

2
( ) [ : ( ) 0]

it it
u u I q . 264 

 265 

then kernel posterior distribution is given by 266 

 267 

0 1 1( 1) ( 1) ( 1) ( 1)

0 0 0 1 0 1

' ' ' '

0 0 0 0 0 0 0 0 0 0 0 0
2 2

0 0

' '
1 1 1 1 1

( , , 1, , 1, , | , , )

( ( ) ( ) ( )) ( ( ) ( ) ( ))
exp

2 2

( ( ) ( ) ( )) (
exp

v v u unT n nT n nT n nT n

v u v v u u

v u

v u

v

p u y X q

Q y X u y X u Q u u

Q y X u y ' '
' 11 1 1 1 1 1 1 1

22 2
1 1

( ) ( ) ( ))
( ) ( ) ( )

2 2
u

v u

X u Q u u
V p

       268 

(4)                       269 

 270 

Posterior conditional distributions for implementing Gibbs sampling with data augmentation are 271 

straightforward generalizations of those corresponding previous subsection 4.1. More 272 

specifically, we obtain the following results. For 0,1,j  the conditional posterior of the 273 

regression coefficients is,  274 

 275 

0 0 1 1
ˆ ˆ| , , , , , , , , ~ ( ,  )

j v u v u j j
u y X q N V                          (5) 276 

where 277 

' 2 1 1 ' 2 1ˆ [ ( ) ( ) ] [ ( )( ) ]
j j j vj j j j j vj j j
X X V X y u V              278 

2 ' 2 1 1ˆ [ ( ) ( ) ]
j vj j j vj j
V X X V                                                               279 

 280 

The conditional posterior of the two-sided error variances are 281 

 282 
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' ' '

2
0 12

( ( ) ( ))( ( ) ( ))
| , , , , , , ~ ( )vj j j j j j j

u u v

vj

Q y X u y X u
u y X q nT n      (6) 283 

The conditional posterior distribution of the one-sided error variance is  284 

 285 

'

2
0 12

| , , , , , , ~ ( )uj j j

v v uj

uj

Q u u
u y X q nT n                                                     (7) 286 

 287 

The conditional posterior distribution of latent technical inefficiencies is 288 

 289 

2 2 2 2 2 2 2| , , , , , , ~ ( / ( ),   / ( )
it v u it uj vj uj vj uj vj uj
u y X q N e )                    (8) 290 

 291 

where ' ( )
it it j it
e y x . Finally, the conditional kernel posterior distribution for  is 292 

 293 

( )
' '

0 0 1 1 0
1 1 0 0

' '

1 1
1

1 1

( ) ( )
( | , , , , , , , , )

( )

itI q
n T

it j it it j it

v u v u
i t

it it it it

y x y x
p u y X q

y x y x
( )

( )

itI q

p

 294 

 295 

A simple random walk Metropolis-Hastings algorithm is used with the same implementation as 296 

previous model to provide a draw from this conditional posterior distribution. 297 

 298 

4.3. Model 2:  Latent Class Model (
0 1

2 2
u u

) 299 

For identification of , we normalized 
2 1 . This is necessary because there is no 300 

information about the scaling of the regime split. Under these parameters restrictions, model (1) 301 

is the same as the Latent Class model of Greene (2001, 2004) and it can be estimated using the 302 

classical ML approach. Under the Bayesian framework, the probability density function of the 303 

dependent variable 
it
y  is given by: 304 

'

2 0 2
0 0 0

'
1 2

1 1 1

2
( | , , , ) ( )

2
1 ( )

it it
it it it it it

it it
it

e e
p y x q u q

e e
q

 305 

 306 



11 

 

where ' ' '

1 2
( 0)

it it it it it it it
e y x x I q q , 2 2 2 and / ,

j vj u j u vj
 307 

0,1j . The Bayesian treatment of this model is more complicated than the previous two 308 

simpler models due to more complex structure of the threshold index. To facilitate the 309 

computation, let 310 

'

1 2
'

1 2

1 0,

0 0
it it it

it
it it it

if q q
I

if q q
 311 

 312 

The prior distributions for the slope and variance parameters are the same as in (3) with a small 313 

modification of the last term where 2

2
~ ( )u

u

u

Q
n . The prior of  is ~ ( ,  )N V , 314 

independently of the latent indicator variables I . The "prior" of I  is already provided by the 315 

model specification as '
2

( 1) ( )
it it

P I q  and ' '
2 2

( 0) 1 ( ) ( )
it it it

P I q q . The 316 

same is true for 
it
q  whose prior is simply ~ ( , )

it nT
q N I . 317 

By augmenting the parameter vectors with latent variables u , 
1
q  and I , the kernel posterior is 318 

then given by 319 

 320 

1 2

1 2

1 2

' 2 2
2 1/2 2 1/2

2 2
1 1

( , , , , , , , | , , )

( )
(2 ) ( ) exp ( , , , , , )

2 2
it

it

it

v v u

n T
it it I it it

vI u v v u
i t vI u

p u I q y X q

y u x u
p I

 321 

 322 

Bayesian analysis using Gibbs sampling with data augmentation is conducted as in previous 323 

case. Given the vector of latent indicators, we redefine 324 

 325 

[ : ]
j it it
y y I j , [ : ]

j it it
X x I j  , [ : ]

j it it
u u I j , 0,1j  326 

 327 

which represents a partition of the data and the latent inefficiencies in terms of the regime. Then 328 

the conditional posterior distributions for the slope parameters, two-sided and one-sided 329 

conditional variances and the latent technical inefficiency are followed similarly (with 330 

0 1

2 2
u u

) to those given in (5)-(8), respectively.  331 

For the parameter vector , due to the probit structure of the latent indicator variables, we have 332 

 333 
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1 2 1 2

1' ' ' 1

2 2
1 1

( | , , , , , , , , , , )

1
( ) ( ) exp ( ) ( )

2
it it

v v u

n T
I I

it it
i t

p u I q q y X

q q V
 334 

We have used the random walk Metropolis algorithm to generate random numbers from this 335 

distribution. Given the current state 
(1)

, we generate a candidate draw 
(1)

~ ( , )N h C , where 336 

C  is the covariance matrix, and h  is a tuning parameter which is set to maintain a reasonable 337 

acceptance rate, which in our case we choose to be close to 25%. The candidate is accepted with 338 

probability 
(1)

min{1, ( ) / ( )}Q Q , where 
1 2 1 2

( ) ( | , , , , , , , , , , )
v v u

Q p u I q q y X  is the 339 

conditional posterior kernel. The overall algorithm performed quite well and convergence was 340 

fast. It should be noted here that any prior for the parameters  could have been accommodated 341 

since the random walk Metropolis algorithm is quite general. 342 

 343 

4.4. Main model (Model 1): 344 

Most of the Bayesian analysis of the main model follows similarly as in model 2 with the 345 

exception that now the assumption of 
0 1

2 2
u u

 is relaxed. To accommodate for this, Bayesian 346 

inference can be done similarly to those as in model 3 and no other modifications are needed for 347 

this model using Gibbs sampling.  348 

 349 

5. Model comparison  350 

 351 

It is important to determine whether the threshold effect is quantitatively important. 352 

Under the null hypothesis of no threshold effect, model (1) reduces to a standard stochastic 353 

frontier model (e.g. 
0 1 2
:H ) implying that the threshold parameters are not identified under 354 

the null hypothesis. Hence, the parameters of the switching equation are not identified when the 355 

two regimes are the same, and the parameters of one of the two regimes become unidentified 356 

when the parameters of the switching equation imply zero or close to zero probabilities of one of 357 

the regimes. Actually, this case arises, for instance, even in some regime switching model when 358 

the values of the corresponding intercepts are close to each other. Even though in such 359 

circumstances the standard tests might seem to be appropriate, their application for typically 360 

available samples could lead to dramatic size distortions. Hence, the usual asymptotic theory 361 
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breaks down and standard tests may exhibit significant size distortions. In the context of linear 362 

models with weak instruments see Staiger and Stock (1997), and for nonlinear models estimated 363 

by GMM, see Stock and Wright (2000).  364 

In brief, when there is a non-identified parameter under the null hypothesis, the classical 365 

tests yield misleading results, and the situation is sharply different. Hence, the properties of these 366 

tests are only asymptotic and difficult to derive. Furthermore, the finite sample performances of 367 

these tests are not well understood.  368 

In fact, one has to apply non-standard tests. Various tests of specification that involve 369 

nuisance parameters which are not identified under the null hypothesis are proposed in the 370 

literature (see, inter alia, Davies (1987), Andrews and Ploberger (1994), Hansen (1996), and 371 

Anatolyev (2004)). For instance, Davies (1987) tested a simple hypothesis against a family of 372 

alternatives indexed by a one-dimensional parameter, θ when the tests’ distribution is chi-373 

squared. The results were applied to the detection of a discrete frequency component of unknown 374 

frequency in a time series. Next, Andrews and Ploberger (1994), in a seminal paper, derived 375 

asymptotically optimal tests for testing problems in which a nuisance parameter exists under the 376 

alternative hypothesis but not under the null. The paper is particularly interesting, because the 377 

problem considered is non-standard and the classical asymptotic optimality results do not apply. 378 

A weighted average power criterion is used by the authors to generate optimal tests. In the non-379 

standard cases, which are of particular importance, new optimal tests are obtained. 380 

Furthermore, Hansen (1996) studied the asymptotic distribution theory for tests which 381 

involve nuisance parameters which are not identified under the null hypotheses. The asymptotic 382 

distributions of standard test statistics are described as functionals of chi-square processes. In 383 

general, the distributions depend upon a large number of unknown parameters. It is shown that a 384 

transformation based upon a conditional probability measure yields an asymptotic distribution 385 

free of nuisance parameters, and that this transformation can be easily approximated via 386 

simulation. The theory is applied to threshold model and Monte Carlo methods are used to assess 387 

the finite sample distributions. Moreover, threshold regression methods are constructed in 388 

Hansen (1999), and non-standard asymptotic theory of inference is developed which allows 389 

construction of confidence intervals and testing of hypotheses.  390 

Also, Anatolyev (2004) provided asymptotic approximations under a drifting parameter 391 

DGP for distributions of classical tests and of those designed for the case of complete non-392 

http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB5
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB6
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB2
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB1
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB3
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB2
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB1
http://www.sciencedirect.com/science/article/pii/S0165176504000898#BIB3
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identification. His simulations showed that the usual asymptotic theory does fail, although actual 393 

sizes of the classical LR test display surprising robustness to the degree of identification.  394 

From a Bayesian perspective, different models (including no threshold effect model) can 395 

be compared via the computation of marginal likelihood, posterior odds ratios and Bayes factor. 396 

However, the main complication for model comparison in Bayesian framework is the sensitivity 397 

of the choice of priors for the unidentified parameters. Consequently, sensitivity check need be 398 

done in conducting model comparison. In addition, the priors on model-specific parameter have 399 

to be proper. 400 

To construct the posterior odds ratios and Bayes factor, let 
0
M  and 

1
M  denote the model 401 

under the null and the alternative hypothesis, respectively. Also, let ( | )
i

p y M  be the marginal 402 

likelihood for model i  and ( )
i

p M  be the prior model i  probability for 0,1.i  Then the 403 

posterior odd ratio and Bayes factor are given by: 404 

 405 

( | ) ( )

( | ) ( )
i i

ij
j j

p y M p M
PO

p y M p M
 406 

and  407 

 408 

( | )

( | )
i

ij
j

p y M
BF

p y M
 409 

 410 

respectively, so that ( ) ( )
i j

p M p M , and the Bayes factor is simply the ratio of the two 411 

marginal likelihoods. Thus, in comparing different models, computation of the marginal 412 

likelihood for each model is needed. Appendix A provides detailed discussion on the marginal 413 

likelihood considerations for the model proposed. 414 

Also, it might be of interest to determine the appropriate model under the parameter restrictions 415 

discussed in Section 2. As in the case for threshold effect, posterior odds ratios or Bayes factors 416 

can be implemented directly here. 417 

 418 

6. Extension to multiple threshold case 419 

 420 

The proposed models in Section 3 have only a single threshold. In some applications, 421 

there may be multiple thresholds. To simplify the analysis and for exposition purposes, we will 422 
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confine the discussion to the simplest threshold model (model 4) with the double threshold only. 423 

For more than two thresholds, Bayesian analysis of this model are given in Appendix B.  424 

Extension of other cases, including model (1), to multiple threshold case follows similarly and 425 

are available from the authors upon request. 426 

The simplest double threshold stochastic frontier model takes the form: 427 

 428 

 ' ' '

1 1 2 1 2 3 2
( ) ( ) ( )

it it it it it it it it it
y x I q x I q x I q v u  429 

 430 

where the thresholds are ordered so that 
1 2

. We will focus on the double threshold case 431 

since the methods extend in a straightforward manner to higher-order threshold cases. 432 

Conditional on the threshold parameters 
1
 and 

2
, posterior simulation for the other 433 

parameters, and latent technical inefficiency proceeds using the principles set forth in Section 4. 434 

In particular, given the threshold parameters, the observations can be categorized to one of the 435 

three regimes and parameters can be obtained using simple Gibbs updates on a regime-specific 436 

basis. Therefore, we can write the model as 437 

 438 

( ) , ( ) , ( ) , ( )it it it itit S it S it S it S
y x v u ,    (6) 439 

 440 

where 
1 2

( , ) , ( ) 1
it
S  if 

1it
q , ( ) 2

it
S  if 

1 2it
q  and ( ) 3

it
S  if 441 

2it
q , 

,
{ : ( )}

it s it it
x x S s , for 1,2,3s , and similarly for the error terms. In vector 442 

notation (6) may be written as y W v u , where W  is the matrix consisting of all 443 

observations 
, ( )it S
x , and  is the vector of all regression coefficients.  444 

The posterior conditional distribution of the threshold parameters is 445 

 446 

'
' 1 '1

2
| , , , , , exp ( )

v u
p y X u y u W y u W p , 447 

 448 

where  is the nT nT  diagonal matrix whose diagonal elements are equal to 2

, itv S
, and 449 

p  represents the prior on the threshold parameters. Since the latent technical inefficiency 450 

variables can be explicitly integrated out of the posterior, a simpler form obtains: 451 

 452 
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( )

, ( ) ( ) ( )

2
| , , , , , ( )it

it it it

S itit
v u

i t S S S

p y X u p  453 

 454 

where '
( ) , ( )it itit it S it S

y x , 
( ) ( )( ) , ,

/
it S Sit it
S u v

, and 
( ) ( ) ( )

2 2 2
, ,S S Sit it it
v u

. To 455 

generate random drawings from this distribution we consider the distributions 456 

1 2
| , , , , , ,

v u
p y X u  and 

2 1
| , , , , , ,

v u
p y X u , and we use a Metropolis algorithm 457 

for each, with a uniform proposal distribution. The range of the proposal distribution is adjusted 458 

during the burn-in phase to produce acceptance rates close to 25%. In generating draws from 459 

these distributions we have to account for the constraints 
1 2

 and 
min 1 2 max

,q q , 460 

where 
min
q  and 

max
q represent the minimum and maximum value of the threshold variable in the 461 

sample. In practice we set them equal to the 1% and 99% percentiles of the threshold variable, 462 

and we enforce 
1 2

 using a rejection technique.  463 

Finally, to determine the number thresholds in a particular model, we propose to use marginal 464 

likelihood comparison and this approach is similar to that of the model selections in frequentist 465 

approach. Appendix A provides details discussion how to evaluate the marginal likelihood. Thus, 466 

the appropriate number of thresholds is chosen with the highest marginal likelihood. 467 

 468 

7. Empirical Application 469 

 7.1. Data 470 

Limam and Miller (2004) examined cross-country patterns of economic growth by 471 

estimating a stochastic frontier production function for several developed and developing 472 

countries. In addition, they incorporated the quality of inputs in analyzing output growth, where 473 

the productivity of capital depends on its average age, while the productivity of labor depends on 474 

its average level of education. The rationale is that the older the physical capital, the less new 475 

technology is embedded in the capital stocks, and the less productive the capital. Moreover, the 476 

productivity of labor increases with the level of education. In this model, output growth can be 477 

decomposed into efficiency change, technological change, and input change. 478 

They assumed a standard Cobb-Douglas production function, where aggregate output is 479 

produced using the aggregate physical capital stock and labor. Because older capital incorporates 480 
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less new technology, one expects that the higher the average age, the less productive the capital 481 

stock. Similarly, the more educated workers are, the higher the productivity of labor.  482 

The sample contains 80 countries over the period 1960-89. To introduce the effects of 483 

geographical location, we consider five subgroups: Africa (23 countries), Latin America (18 484 

countries), East Asia (9 countries), South Asia (7 countries) and the West (23 countries). The 485 

dependent variable used in this study is the GDP per capita; the inputs are capital and labor; and 486 

the variables that are used in the construction of threshold index are the average age of capital 487 

stock, the average education attainment and the time trend. Details about construction of the data 488 

and complete list of the countries used in the study are given in Limam and Miller (2004). 489 

Finally, all variables are in logarithm except for the trend. 490 

 491 

7.2. Results: 492 

Priors 493 

All regressions coefficients are assumed to follow multivariate normal distributions of the form 494 

dim( )
~ (0,100 )N I . All scale parameters 

v
 and 

u
 have relatively non-informative inverted 495 

gamma priors, 2 20.01/ ~ (1) . For the models 3 and 4 model the threshold parameter we 496 

assume a log normal prior of the type,  2log ~ (1, 0.3 )N , implying that   is roughly between 497 

1 and 7 with prior probability 5%. For model 1 and 2, the coefficients  are assumed to have
4
        498 

dim( )
~ (0.1, 1.0 )N I . Our benchmark prior is informative but quite diffuse. We use this prior to 499 

see whether meaningful results can be obtained despite the fact that we do not use “sample split” 500 

information which is precise enough. If this prior provides reasonable results, then we can 501 

address the issue of prior sensitivity and robustness. For the two thresholds models, the 502 

(truncated) prior for both threshold parameters is uniform in the interval 
min max

( , )q q . Another 503 

possibility is to use the lognormal prior.  504 

As mentioned above, model selection and testing could be sensitive to the choice of the 505 

priors of the threshold parameters. Thus, it is important to check for sensitivity of the results to 506 

reasonable changes in the priors for the threshold parameters. To do this, we have adopted three 507 

                                                           
4
 We also used the prior 

dim( )
~ (0.1, 0.01 )N I  to see if a strong prior dominates the data. This was not the case so 

the data is quite informative in this case. 
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other priors: (i) 2ln ~ (0,  0.5 )
j
N , (ii) 2ln ~ (0,  2 )

j
N ; and (iii)  ln ~ (2,  1)

j
N  for 1,2.j  508 

Finally, the following variables are used as thresholds for all models: age of capital, education 509 

and time trend. 510 

Bayesian analysis is implemented using Markov Chain Monte Carlo simulation organized 511 

around Gibbs sampling with data augmentation. For Gibbs sampling, see Geweke (1999) and the 512 

references therein. For Bayesian analysis applied to stochastic frontier models see van den 513 

Broeck, Koop, Osiewalski and Steel (1994), Koop, Osiewalski and Steel (2000a,b) and Koop and 514 

Steel (2001). Prior elicitation has been considered by these authors in detail and, therefore, we do 515 

not repeat it here
5
. Prior elicitation for  is non-trivial but we think the prior selected here 516 

should be adequate for most practical purposes. Finally, we have selected the scale parameter of 517 

the prior for 
u
 (with 1 degree of freedom) so that prior median efficiency is 0.5, 0.7 or 0.9. Our 518 

results were robust to this choice. 519 

Gibbs sampling has been implemented using 60,000 iterations, the first 20,000 of which are 520 

discarded to mitigate the impact of startup effects. Convergence is monitored using Geweke's 521 

(1992) convergence diagnostic and is reported in Table 1 for a single threshold only. 522 

Convergence results for zero and double thresholds are similar and hence omitted here. Note that 523 

all t-statistics from Geweke’s diagnostics were less than 1.7, and the smallest relative numerical 524 

efficiency was 0.4 (which is relatively low). Moreover, we take 110,000 draws after an initial 525 

500,000 from different initial conditions have been computed. The results were not sensitive to 526 

the initial conditions, which were drawn at random (10 sets in total). We have obtained 527 

convergence in all models, except Model 1-age.  528 

First, we determine the number of thresholds for each model. Each model is estimated with 529 

none, one and two thresholds, and then the marginal likelihoods are used to facilitate the 530 

inference on the number of thresholds. For conservation of space, we do not present all the 531 

estimation results here but they are available from the authors upon request. For each model, we 532 

found that irrespective of the choice of threshold variables, as well as the choice of priors, the 533 

marginal likelihood of a single threshold is always higher than that of zero and two thresholds. 534 

Thus, our findings suggest that there is strong evidence of a single threshold in each of the model 535 

considered. Consequently, for the remainder of the discussion, we will focus mainly on single 536 

                                                           
5
 We have tried to use non-informative priors for location and scale parameters as well. 
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threshold models. 537 

Posterior statistics for all single threshold models with different threshold variable are 538 

presented in Tables 2 through 4. Sensitivity of the results to the change in priors were conducted 539 

and our result indicated that our results are not excessively sensitive to change in the priors
6
. 540 

Thus, the reported results are based on the original prior. Examine the results from Tables 2-4 541 

reveal that all the parameter estimates and more importantly, the estimates of firm specific 542 

efficiencies (FSE) are particularly sensitive the model specification as well as the choice of 543 

variable that induce the threshold. In particular, the sensitivity of FSE estimates to the form of 544 

the model is not something new in applied studies, and such estimates are often sensitive to 545 

model specification and distributional assumptions about the two-sided or one-sided error terms. 546 

Moreover, in nonlinear models like the ones analyzed in this paper, FSE is expected to be 547 

different across alternative models that make radically different assumptions about the functional 548 

form, the nature of switching or the covariates. Clearly, the choice between different models is 549 

an empirical issue, and with our approach, marginal likelihood provides a natural way to do that.  550 

To this end, by comparing the values of the log marginal likelihood
7
 (reported as LML in last 551 

row of Tables 2-4), show that the most prefer model is Model 3 when the threshold variable is 552 

the logarithm of education. This suggests that a probabilistic mixture (Model 1 and 2) is highly 553 

unlikely in the light of the data, and heterogeneity is best captured by deterministic separation of 554 

the sample in terms of human capital
8
. Thus, for the remainder of this section, we will confine 555 

our attention on the results of Model 3 with log of education as a threshold variable. 556 

 Focusing on the results reported in the third column of Table 3, we see that the first regime-557 

which is characterized by education values below the threshold-has lower labor elasticity, lower 558 

capital elasticity, and technical progress averaging 0.6% per year relative to the second regime, 559 

where technical progress averages 0.1% per year with a very small posterior standard deviation. 560 

The posterior distributions of labor and capital elasticities, technical change and threshold 561 

parameter are displayed in Figure 1. The value at which regime switching is 1.723 with very 562 

small posterior standard deviation, suggesting regime switching at about exp (1.723+0.50.002
2
) 563 

= 5.6 years of education. Years of education in the sample average about 9.4. These results 564 

                                                           
6
 Sensitivity analyses in the form of figures are available from the authors upon request. 

7
  We have used the Bartlett adjustment to compute the Laplace approximation of LML. This practice is also favored 

by some Monte Carlo results reported in Appendix B of this paper. For the Laplace approximation and various other 

adjustments see also Geweke, McCausland and Stevens (2003). 
8
 Model 3 is also preferred to a simple half-normal stochastic frontier model where the value of LML is -512.46. 
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emphasize the importance of human capital for productivity-materialized here in the form of 565 

higher input elasticities in the second regime. Firm specific technical efficiency
9
 averages 0.925 566 

with standard error 0.033 and ranges from 0.688 to 0.984. To get a better understanding on the 567 

performance of FSE in each regime, its density plot is presented in Figure 2. From Figure 2, we 568 

observe that FSE for the low human capital regime (regime 1) are rather tightly concentrated at 569 

high values whereas for the high human capital regime (regime 2), the distribution of efficiencies 570 

is more spread and efficiency can be as low as about 0.70.  In the low human capital regime, 571 

technical efficiency ranges from 0.904 to 0.965, averaging 0.938 and its standard deviation is 572 

0.010. In the high human capital regime, it ranges from 0.688 to 0.984, averaging 0.917 and the 573 

standard deviation is 0.039. These results imply that technical efficiency is much more variable 574 

in the high human capital regime and although human capital may affect input productivity, it 575 

does not seem to be very relevant for improvements in technical efficiency of production. In that 576 

sense, it is productivity rather than efficiency that provides the natural playground for human 577 

capital and its effect on production. From another point of view, other institutional factors may 578 

be responsible for the larger variation of efficiency among countries with a high level of human 579 

capital stock, whereas the same factors can be thought of as approximately similar in countries 580 

with a lower level of human capital. Further analysis is needed to better understand and examine 581 

the differences in efficiency among countries with a higher level of human capital. Since this is 582 

not the subject matter of this paper and we do not pursue it here but we believe it is an interesting 583 

issue for further applied research.  584 

 585 

8. Concluding Remarks 586 

The purpose of this paper was to propose a class of threshold stochastic frontier models that 587 

allow for learning and adapting to the “best” technology. We introduced the main model and 588 

various special cases organized around the idea that there is a switching from one technology to 589 

the other and constructed threshold stochastic frontier models. Bayesian inferences using Gibbs 590 

sampling with data augmentation are provided for the analysis of the proposed models. We 591 

applied our new models and techniques to a panel of world production frontiers using the 592 

                                                           
9
  See Koop and Steel (2001) for details. The sampling-theory concept is the familiar Jondrow, Lovell, Materov and 

Schmidt (1982) measure of technical efficiency. The FSEs were separated into the two groups using the posterior 

mean of (1.723) as the threshold value. Since the posterior standard deviation of is quite small (0.002) the effect 

of uncertainty about this parameter is quite small. 
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switching variables based on the age of capital stock, human capital (representing the input 593 

quality), and a time trend to capture structural switching or structural transition.  594 

We did not consider in this paper, the case where the threshold variables and/or the inputs are 595 

endogenous. In practice, these cases may arise for various reasons; for example, the firm may 596 

choose (or switch to) a different production technology due to some self-selection reasons, of 597 

which the determinants are the variables used in the regime switching rule. Consequently, 
it

 598 

will be correlated with 
it
v  and 

it
u  leading to the endogeneity of the threshold variables. For this 599 

case, the presence of endogeneity of threshold variables does not pose any fundamental 600 

estimation problem under Bayesian framework as long as the afore mentioned correlation is 601 

modelled explicitly (see for example Lai (2013)), since it is only a matter of estimation of a few 602 

more correlation parameters. Lai (2013) considers a “within” transformation approach and least 603 

squares method to handle the endogeneity of the threshold variables in the stochastic frontier 604 

framework. Interested readers are referred to this paper for more details.  605 

Finally, given our analysis discussed in this paper, it would be interesting to extend our 606 

models to the smooth transition threshold models where the indicator function in (1) is replaced 607 

by a smooth distribution function. We will leave this extension for future research. 608 

609 
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APPENDIX A: Marginal Likelihood Considerations 744 

 745 

An important issue is whether the posterior distribution is sufficiently close to normality to 746 

justify approximation of the marginal likelihood using the Laplace approximation.
10

 We use 747 

quantile-quantile expressions of the quantity ' 1 2( ) ( )
D

k
F  (under normality of 748 

the joint posterior), where  is the posterior mean,  is the posterior covariance matrix and k  is 749 

the dimensionality of the parameter vector (which varies from model to model). Available upon 750 

request, are typical quantile-quantile plots of some of the models estimated in this paper. The 751 

empirical cdf of F  is computed using the MCMC draws taken every other tenth to mitigate the 752 

impact of autocorrelation in the estimation of posterior covariance matrix. Although the posterior 753 

distribution is non-normal the deviations do not seem significant enough and justify normality as 754 

a reasonable approximation. This means that Laplace's method should be a reasonable 755 

approximation to the marginal likelihood of the models analyzed in this paper. 756 

Next we take up the more general issue of how well the Laplace approximation behaves in 757 

estimating the marginal likelihood of stochastic frontier models. To this end we consider a 758 

stochastic frontier model of the form 
1 2 1 3 2it it it it it

y X X v u , with 1,...,i n , 759 

1,...,t T , 2~ . . . (0, )
it v
v i i d N , 2~ . . . (0, )

it u
u i i d N . The parameter choices are 

1
1 , 760 

2 3
0.5 , 0.1

v u
, the regressors are generated as . . . (0,1)i i d N  and they are not 761 

fixed in repeated samples. The prior is 2

2
~

v

v
N

v

Q
, where 0.01

v
Q  and 1

v
N , 2

2
~

u

u
N

u

Q
, and 762 

we consider alternative choices of the hyperparameters 
u
N  and 

u
Q . Clearly, these technical 763 

inefficiency densities are quite different in terms of what they imply about prior efficiency. It 764 

should also be mentioned that choosing 
v u

 in the parameterization is not only empirically 765 

plausible but also a relatively hard case for estimation and inference since the "signal to noise 766 

ratio" is equal to one. For the regression parameters we assume 
1

3
~ (0,  ( ) )N g X X  where 767 

100g . This is Zellner's g-prior distribution (Zellner, 1986). We have also experimented with 768 

the prior 
3

~ (0,  )
k

N g I  but qualitatively the results in terms of marginal likelihood were not 769 

significantly different.  770 

We will consider a Monte Carlo experiment with 100 data sets. For each data set the model is 771 

analyzed using the Gibbs sampler with 5500 iterations, the first 500 of which are discarded to 772 

mitigate start up effects. Standard convergence diagnostics (Geweke, 1992) indicate that 773 

convergence is obtained quite early when we start the Gibbs sampler from least squares 774 

quantities (with 
v u

s  where s  is the residual standard deviation). From the 5000 draws 775 

that are left, we take every other tenth to approximate the marginal likelihood. Regarding the 776 

sample size we consider both cross-sectional and panel data and our choices are dictated by what 777 

is reasonable in terms of data sets actually used in practice.  778 

Several methods are used to approximate the marginal likelihood and three things seem to be 779 

worth mentioning. If we take Chib's approximation as the closest to the right answer, then (a) log 780 

                                                           
10

 For a general discussion of Bayes factors see Kass and Raftery (1995). 
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marginal likelihood resulting from Laplace approximation using the Bartlett adjustment is by far 781 

the closest to the Chib approximation, (b) the approximation is much better in panel data rather 782 

than in cross-sectional data. Finally, (c) if the objective is, as usual, to compute Bayes factors 783 

then it does not really matter which method is used since for most methods differences of log 784 

marginal likelihoods relative to the Chib approximation are more or less constant across different 785 

configurations of the sample size.  786 

Given the relative ease of computing Laplace approximations it seems that this method coupled 787 

with a Bartlett adjustment provides a close approximation to the value obtained by the more 788 

accurate method due to Chib. Chib's method is relatively cumbersome in implementation since it 789 

involves repeated Gibbs sampling fixing in sequentially every element of the parameter vector to 790 

its value taken at the point of approximation (typically the posterior mean). All other methods 791 

can be implemented more or less in an automatic way since they only require coding the 792 

likelihood function and the prior distribution. Of course the results reported here cannot be taken 793 

as comprehensive but they can be taken as indicative of how different approximations to the 794 

marginal likelihood behave in a set up that is empirically plausible and relevant. Moreover, the 795 

results reported here are relevant in the sense that the stochastic frontier model is highly non-796 

normal by construction. To our knowledge this is the only Monte Carlo evaluation of alternative 797 

marginal likelihood estimators in stochastic frontier models.  798 

799 
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APPENDIX B: Multiple Threshold Extension 800 

 801 

We can extend the model in Section 6 as follows: 802 

1

11
( ) ,

R

it r r it r it it itr
y I q x v u                          (B.1) 803 

where 
0 1

,
R

 and R  is the number of regimes. We assume 
1 2

...
R

. 804 

We assume 
it it
q z  where 

it
z  is an 1m  vector of thresholding variables. Conditionally on 805 

1
,...,

R
 the model is a standard Bayesian stochastic frontier and we can follow the 806 

techniques laid out in Section 4. This is because we can write (B.1) in the form: 807 

,
it it it it
y w v u                                        (B.2) 808 

where 
1
,...,

R
 and 809 

1 1 2 1
( ) , ( ) ,..., ( ) .

it it it it it R it R it
w I q x I q x I q x  810 

The conditional posterior distributions of the elements of vector  are as follows.  811 

For 
1
 we have: 812 

 2
1

2
1

1 ( 1) 1, :2
| , , , , , exp ,

itv
it it iti t q

p y X Z u y u x   813 

 2
1 2

2
1

2 ( 2) 2, :2
| , , , , , exp ,...

itv
it it iti t q

p y X Z u y u x      (B.3) 814 

 2

2
1

( ) 1, :2
| , , , , , exp ,

it Rv
R R it it R iti t q

p y X Z u y u x   815 

where the notation 
( )r

 denotes all elements of  with the exception of the r th element,  816 

subject to the restrictions  817 

1 2
...

R
.                                                  (B.4) 818 

Draws from these conditional posterior distributions can be obtained using a Metropolis-819 

Hastings algorithm as in Section 6.  820 

It might be best to draw all elements of  simultaneously as the restrictions in (B.4) can be 821 

incorporated in a straightforward way. 822 

Conditionally on the s, the conditional posterior distribution of  is: 823 
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 2

2
1

1
1, 12

| , , , , , exp .
v

R

it it r it r it ri t r
p y X Z u y u x I z     (B.5) 824 

Although the distribution does not belong to a standard family, we can use again the Metropolis-825 

Hastings algorithm to provide random draws. For example, in the random walk Metropolis-826 

Hastings algorithm, a candidate is drawn: ( 1)

*
~ ,sN V  where ( 1)s  is the previous draw 827 

and V hI  for some constant 0h  which is determined so that approximately ¼ of all 828 

candidates are accepted. The acceptance rule is  829 

*( )

* ( 1)

| , , , , ,
,  with probability min 1,  ,

| , , , , ,
s

s

p y X Z u

p y X Z u
                   (B.6) 830 

else ( ) ( 1)s s . 831 

 832 

833 
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Table 1.  Geweke’s Convergence Diagnostic (Single Threshold) 834 

 Model 1 Model 2 Model 3 Model 4 

CD, Parameters 0.471 – 3.541 0.212 – 1.344 0.415 – 1.212 0.200 – 1.071 

CD, Latent var. 0.303 – 2.919 0.313 – 1.510 0.210 – 0.917 0.810 – 1.444 

RNE 0.114 (0.035) 0.310 (0.431) 0.265 (0.414) 0.317 (0.215) 

NSE 0.015 (0.021) 0.0011 (0.0016) 0.0022 (0.0039) 0.0015 (0.0022) 

     

Notes: CD is Geweke’s (1992) convergence diagnostic (absolute value of the t-statistic for testing the difference of 835 

means in the first 50% and last 20% of the draws. RNE is relative numerical efficiency and NSE is the numerical 836 

standard error).  For RNE and NSE reported are statistics for the structural parameters. In parentheses reported are 837 

statistics for the latent variables. All reported statistics are medians across structural parameters and latent variables. 838 

All statistics are also medians across the threshold variables age and education. 839 

 840 

 841 

 842 

        843 

844 
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 845 

Table 2. Posterior statistics for Model 4 846 

 847 

 Threshold variable 

 age of capital education trend 

constant -0.069 (0.015) 

 2.535 (0.134) 

-0.102 (0.015) 

 2.438 (0.071) 

 

-0.068 (0.015) 

 2.392 (0.071) 

      

labor 0.274 (0.007) 

0.253 (0.013) 

 

0.200 (0.008) 

0.346 (0.009) 

 

0.256 (0.009)    

0.274 (0.007) 

      

capital 0.712 (0.006) 

0.707 (0.011) 

 

0.731 (0.006) 

0.675 (0.007) 

 

0.716 (0.007)      

0.714 (0.006) 

      

trend 0.012 (0.0006) 

-0.001 (0.0007) 

 

0.006 (0.0008) 

0.001 (0.0005) 

 

0.012 (0.003)      

-0.002 (0.0007) 

      

  2.375 (0.022) 

 

1.663 (0.028) 

 

8.895 (0.667) 

     

v
  0.169 (0.003) 

 

0.162 (0.003) 

 

0.169 (0.003) 

      

u
  0.057 (0.015) 

 

0.054 (0.014) 

 

0.060 (0.017) 

      

FSE 

 

0.956 (0.007) 

 

0.958 (0.006) 

 

0.954 (0.008) 

      

LML 

 

-567.70 

 

-531.80 

 

-591.30 

 
 848 
Notes: Numbers in parentheses are posterior standard deviations. For each cell, the first row gives the Bayesian 849 

results for the first regime and the second row corresponds to the second regime. FSE is firm specific efficiency 850 

(with s.d. in parentheses) and LML is the log marginal likelihood. The coefficients of regional dummies were 851 

restricted to be common in the two regimes. The coefficients of regional dummies are not reported. The LML value 852 

of a simple half-normal stochastic production frontier was 512.46. Detailed estimates for this model are not reported. 853 

854 
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 855 

 856 

 857 

 858 

 859 

Table 3. Posterior statistics for Model 3 860 

 861 

 Threshold variable 

 age of capital education trend 

constant 0.015 (0.019) 

3.034 (0.095) 

0.024 (0.031) 

-0.045 (0.017) 

-0.113 (0.031) 

-0.051 (0.018) 

labor 0.246 (0.009) 

0.377 (0.010) 

0.222 (0.010) 

0.294 (0.009) 

0.253 (0.012) 

0.280 (0.008) 

capital 0.736 (0.008) 

0.636 (0.008) 

0.707 (0.009) 

0.732 (0.009) 

0.730 (0.011) 

0.703 (0.007) 

trend -0.002 (0.0008) 

0.002 (0.0004) 

0.0061 (0.001) 

0.001 (0.0004) 

0.011 (0.0025) 

-0.002 (0.0007) 

  2.177 (0.007) 1.723 (0.002) 9.790 (0.705) 

v
  0.165 (0.006) 

0.085 (0.006) 

0.213 (0.006) 

0.086 (0.004) 

0.169 (0.006) 

0.163 (0.004) 

u
  0.146 (0.017) 

0.217 (0.01) 

0.082 (0.021) 

0.112 (0.009) 

0.082 (0.019) 

0.078 (0.016) 

FSE 0.875 (0.072) 0.925 (0.033) 0.939 (0.013) 

LML -431.33 -412.57 -422.70 
 862 
Notes: Numbers in parentheses are posterior standard deviations. In each cell, the first row gives results for the first 863 

regime and the second row corresponds to the second regime. FSE is firm specific efficiency (with s.d. in 864 

parentheses) and LML is the log marginal likelihood. The coefficients of regional dummies are not reported. 865 

 866 

 867 

868 
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Table 4. Posterior statistics for Models 1 and 2 869 

 870 

 Model 2 Model 1 

constant 2.180 (0.008) 

3.071 (0.006) 

1.457 (0.060) 

2.753 (0.028) 

labor 0.318 (0.001) 

0.252 (0.001) 

0.176 (0.006) 

0.346 (0.003) 

capital 0.710 (0.0009) 

0.689 (0.006) 

0.806 (0.005) 

0.669 (0.001) 

trend -0.001 (4x10
-5

) 

0.012 (0.0001) 

-0.0006 (3x10
-4

) 

0.0016 (3x10
-4

) 

v
  0.003 (7x10

-5
) 

0.003 (6x10
-5

) 

0.002 (3.8x10
-5

) 

0.005 (0.0002) 

u
  0.312 (0.005) 

-- 

0.385 (0.006) 

0.396 (0.008) 

Regime switching determinants 

constant -1.447 (0.389) 1.258 (0.678) 

 education 0.289 (0.05) -0.161 (0.095) 

 age capital 0.247 (0.081) 0.088 (0.132) 

trend 0.015 (0.003) -0.109 (0.008) 

   

FSE 0.797 (0.136) 0.758 (0.154) 

LML -551.66 -543.10 
 871 
Notes: Numbers in parentheses are posterior standard deviations. In each cell, the first row gives results for the first 872 

regime and the second row corresponds to the second regime. FSE is firm specific efficiency (with s.d. in 873 

parentheses) and LML is the log marginal likelihood. The coefficients of regional dummies are not reported. 874 

 875 

 876 

 877 

  878 

  879 

880 
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Figure 1: Posterior Distributions Labor and Capital Elasticities, Technical Change and 881 

Threshold Parameter from Model 3 - Education 882 

 883 

 884 

 885 
886 
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Figure 2: Distribution of FSE from Model 3 - Education 887 
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