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Abstract

To understand the illiquidity of the over-the-counter market when dealers and

traders are in long-term relationships, I develop a framework to study the endoge-

nous liquidity distortions resulting from the profit-maximizing, screening behavior of

dealers. The dealer offers the trading mechanism contingent on the aggregate history

of his customers summarized by the asset allocation. The equilibrium distortion is type

dependent: trade with small surplus breaks down; trade with intermediate surplus may

be delayed; trade with large surplus is carried out with a large bid/ask spread but with-

out delay. Because of dealers’ limited commitment, the distortions become more severe

when the valuation shock is frequent, the valuation dispersion is large or the matching

friction to form new relationships is large. Calibrating the model and running a horse

race between matching efficiency, trading speed and relationship stability, I found that

the liquidity disruption in the market during the recent financial crisis is more consis-

tent with declining matching efficiency of forming trading relationships. The optimal

mechanism can be implemented by random quote posting.
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1 Introduction1

Many financial over-the-counter (OTC) markets are illiquid, with large bid-ask spreads and

long delay in trade. For example, a typical municipal bond is traded in the OTC market

once every 25 days with an average bid-ask spread of more than 50 basis point[16], whereas

an equity is typically traded more than once every second with bid-ask spreads an order

of magnitude smaller[32]. Standard theories of the OTC market such as Duffie, Garleanu

and Pedersen (2005)[9], Lagos and Rocheteau (2010)[25] and Hugonnier, Lester and Weill

(2014)[22] show that liquidity distortions can arise from the search friction to locate trading

counterparties. However, financial institutions typically maintain long-term relationships

with each other.2 The friction to locate trading counterparties may not be so large as to

explain all the distortions. In this paper, I show that even when broker-dealers maintain

long-term relationships with traders, additional liquidity distortions may arise if they do not

observe traders’ private valuations. In this environment, dealers screen traders by controlling

the speed of trade and the transaction price and keep track of the endogenous asset allocation

across his customers. Although dealers provide immediacy to traders, the monopsony power

of the dealer in the OTC market leads to imperfect allocation of liquidity.

In the model, traders search and match with dealers. Similar to equilibrium search

models of the labor market[33], the match is long-term but subject to breakup shocks and

forming new matches takes time. Each dealer is matched with a continuum of traders.

By posting menus of contracts specifying trading probabilities and transaction prices for
1I am indebted to Douglas Gale, Boyan Jovanovic, Ricardo Lagos and Thomas Sargent for their encour-

agement and comments. The paper has also benefited from discussion with Gaetano Antinolfi, Saki Bigio,

Anton Braun, Kenneth Burdett, Jonathan Chiu, Benjamin Lester, Guido Menzio, William Roberds, Guil-

laume Rocheteau, Cecilia Siritto, Klaus-Peter Hellwig, Ariel Zetlin-Jones, Pierre-Olivier Weill, and Randall

Wright. I also thank the seminar participants at the 2012 Midwest Macroeconomics Conference, the 2012

Scociety of Economic Dynamic Annual Meeting, the 2012 North American Summer Meeting of the Econo-

metric Society, the 2012 Chicago Federal Workshop on Money, Banking, Payments, and Finance, and the

Search and Matching Workshop at UPenn.
2See, for example, Li and Schürhoff (2014)[29] and Afonso Kovner and Schoar (2014)[1].

2



indivisible assets, dealers screen traders with heterogeneous gain from trade. In equilibrium,

traders with large gain from trade value most immediacy. So, they are willing to pay a

high premium relative to the market price to trade faster. Traders with intermediate gain

from trade sacrifice trading speed for a lower spread. To induce traders with large gain to

accept the high premium, dealers strategically exclude traders with small gain by charging

a fixed spread on top of a variable spread increasing in the trading probability. Therefore,

trade breaks down for those with small gains from trade. I show that these three types of

distortions could coexist in equilibrium.

A theoretical contribution of the paper is to formalize and solve the dynamic programing

problem of the dealer, in which the asset allocation to customers is a high-dimensional state

variable and the contract menus are the control variable. The asset allocation is slow moving

because of the strategic delay of the dealer and the physical limit on the trading frequency

between the dealer and his customers. This induces the dynamic interaction between the

trading mechanism and the asset allocation, especially for traders with intermediate gain

from trade. Traders with large gains from trade are willing to pay a premium to trade

immediately. But trading faster with them also means that less of those traders remain

waiting. With less traders with large gain remaining, dealers have an incentive to trade faster

with traders with intermediate gain. Meanwhile, the dealer also has limited commitment

to contract menus he chooses: when he chooses date-t contract menus, he takes as given

traders’ reservation value, even though it depends on contract menus offered by the dealer in

the future. A better deal in the future increases the reservation value, which in turn squeezes

the dealer’s current profit margin. The limited commitment induces dynamic competition

within a long-term relationship, in the spirit of the Coase conjecture, that a dealer competes

with his future self when trading with investors and this drives his monopsony rent to zero.

In this rich dynamic environment, however, we will show the Coase conjecture only holds

partially. Frictions in the dynamic environment, such as the persistence of the trading

relationship, matching frictions to form long-term relationships, and trading speed limit, all

affect market liquidity. As a result, qualitatively, for traders with intermediate gain from
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trade, trade may not break down but instead may be delayed. For traders with small gain,

trade still breaks down as in a static screening problem.

The endogenous liquidity distortion also depends on the stability of trader-dealer rela-

tionships and the matching friction in relationship formation. In benchmark models of the

OTC market such as Duffie, Garleanu and Pedersen (2005)[9] and Lagos and Rocheteau

(2009)[25], liquidity distortion arises because of search frictions to locate trading counter-

parties. I show that when it is hard to form new matches, dealers may also be more likely to

delay trade. Therefore, the strategic delay of the dealer could amplify the matching friction.

On the other hand, the stability of the trader-dealer relationship, measured by the breakup

rate of the relationship, may or may not induce more delay by the dealer, depending on

the matching friction. When I calibrate the model to the corporate bonds market and run

a horse race between relationship stability, matching efficiency and trading speed limit, a

friction similar to those in benchmark models, I found that increasing the matching friction

is more consistent with stylized facts from the recent financial crisis, during which dealers

charge higher markups to their clients without increasing liquidity provision.3

The theory also links the opacity of the OTC market to market liquidity, transaction

costs and asset prices. Opacity leads to heterogeneous valuation over an asset. I show that

more dispersed valuations lead to more delay in trade and larger spread for all traders.

The optimal trading mechanism can be implemented by lotteries over transaction prices.

So, the assumption that the dealer offers the contract menus is not restrictive, even when

the dealer can only use outright sales contract. My theory gives an alternative explanation

for the price dispersion in opaque markets described in Green (2007)[15].

Literature Review Since assets are durable and dealers have limited commitment to the

trading mechanism they post. This paper is closely related to the literature on the Coase

conjecture (see, for example, Gul, Sonnenschein and Wilson (1986)[19]). Recent develop-

ments in this literature include Fuchs and Skrzypacz (2010)[12] and Garrett (2013)[13]. My
3See Di Maggio, Kermani and Song (2016)[8].
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model allows changing valuations and arrival of new buyers over time, as well as the fric-

tions in forming and maintaining long-term relationships, none of which are trivial additions

to the baseline setup. The literature studies the optimal trading mechanism contingent on

the individual history. By summarizing by the asset allocation the aggregate history of the

dealer’ customers, which includes trading activities and other events in the past, the trading

mechanism in the paper becomes more tractable and captures the effect of not only trading

speed limit but also other frictions on the liquidity distortion in the market.

My paper is also related to the literation on strategic delay induced by asymmetric

information. Guerrieri, Shimer and Wright (2010)[18] and Chang (2011)[6] combine directed

search friction and asymmetric information. In these papers, delay in trade serves as a

signaling device. One common issue with the signaling equilibrium is that it is sensitive

to perturbation. For an environment with nearly complete information, the equilibrium

allocation is the same as an environment with severe adverse selection as long as the support

of the distribution remains the same. In this model, delay in trade serves as a screening

device. Dealers take into account the effect of the type distribution on their profit when

they optimize the menu of contracts they offer. A perturbation to the distribution will

not affect qualitatively the equilibrium allocation. In this sense, the equilibrium allocation

is more robust in this model. Chiu and Koeppl (2011)[7], Camargo and Lester (2011)[5],

Guerrieri and Shimer (2011)[17] and Chang (2011)[6] study the effect of lemons problem

on liquidity. These papers take the sales contract as given, while here I allow contracts

consisting of two ingredients, the trading probability and the transaction price for sales.

Another related literature is about asymmetric information in the decentralized dynamic

market. Lauermann and Wolinsky (2011)[27], Wolinsky (1990)[34] and Blouin and Serrano

(2001)[3] study information aggregation in the lemon market and its social welfare as the

friction vanishes. Golosov, Lorenzoni, and Tsyvinski (2009)[14] and Camargo and Lester

(2011)[5] are concerned with the trading dynamics. Horner and Vieille (2009)[21] studies

the interaction of strategies of sequentially arriving short-lived buyers in a dynamic lemon

market. Inderst (2005)[23] studies limiting property of a matching market with adverse
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selection. Hendel and Lizzeri (1999)[20] studies the durable goods market with lemons. These

papers study the implications of asymmetric information about the quality of the goods or

assets being traded, while this paper studies the implications of asymmetric information

about private valuations. Most of these papers focus on the limiting results as frictions

are asymptotically zero. My focus is to characterize the equilibrium with frictions to study

the resulting liquidity misallocation. In Duffie, Malamud and Manso (2014)[10], the authors

characterize analytically the dynamics of information aggregation in segmented markets. I do

not allow information propagation in the model. So valuations across traders do not interact.

While my focus is on the liquidity distortion due to the interaction between asymmetric

information and other frictions and shocks in the economy, it would be interesting to further

study the interaction between these two channels: information aggregation and the liquidity

distortion that arises from the dealer’s screening strategies.

The rest of the paper is organized as follows. In Section 2, I lay out the model. In Section

3, I characterize the equilibrium. In Sections 4 and 5, I focus on distinct implications of the

model on market liquidity and the quoting strategy of the dealer.

2 Model

Environment, Endowment and Preferences The economy is set in continuous time

and lasts forever. There is a continuum of long-lived traders and dealers. The measures of

both groups of agents are normalized to one. Traders are endowed with one type of asset

and deep pockets of numeraire goods. An asset bears a unit flow of dividend goods. The

total asset supply is A = 0.5. The asset is homogeneous in quality. I assume that traders

can hold either zero or one unit of the asset.

Traders’ valuation over the dividend good depends on their preference type x, which is her

private information.4 A trader with preference type x enjoys flow utility x from holding one
4The asset holding can also be thought of as unobservable. Since holding more than one unit of asset

or selling more than the trader’s holding does not generate any profit, it is better off for traders to reveal

truthfully their asset holding.
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unit of the asset. Over time, a trader may experience a preference shock, which arrives with

Poisson rate δ. After the shock, she draws randomly a new preference type from a continuous

distribution G(·) on a compact interval [xL, xH ] ⊆ R+. Assume that the distribution is

symmetric. Let xM = xL+xH
2

. Symmetric distribution means G(x) = 1 − G(2xM − x) for

x ∈ [xL, xH ]. Both the arrival time of a preference shock and the realization of the shock are

idiosyncratic. Dealers do not value dividend goods. All agents are risk neutral and derive

one util from consuming a numeraire good. Traders and dealers share a common discount

rate, r ∈ R+.

The Structure of the OTC Market Agents trade assets for numeraire goods through

an over-the-counter market. The OTC market has two tiers as in Lagos and Rocheteau

(2009)[25]. Only dealers can trade in the first tier of the market, which we call the inter-

dealer market. The inter-dealer market is competitive, where dealers buy and sell any amount

of assets at the market price without delay. Denote the market clearing price at t to be Pt.

The second tier is a bilateral market between dealers and traders. Dealers and traders match

randomly. A trader can be matched with only one dealer. But the dealer is not constrained

in his capacity to host customers. An unmatched trader meets a dealer with Poisson rate

α. The relationship between a matched trader and her dealer breaks up at Poisson rate γ.

Therefore, the trader-dealer relationship is long-term. This market structure can be thought

as the stable core-periphery structure observed in OTC markets.5

Trade between a dealer and his customers is bilateral and takes place repeatedly in each

dealer-customer relationship at Poisson rate q. The arrival rate represents the speed limit

at which the dealer can process a trade, which includes the time to bargain and deliver the

asset. Also, the dealer may be busy handling trades from his other customers, so each trader

has to wait for her turn. Only when the trader finds the occasion that the dealer is not busy,

he gets to negotiate the terms of the bilateral trade. This is also part of the physical delay

represented by the Poisson rate.
5See, for example, Li and Schürhoff (2013)[29].
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On each trading occasion, the dealer offers two feasible menus of contracts, a menu of

bid contracts for traders who want to sell and a menu of ask contracts for traders who want

to buy. The trader chooses one contract from the menus.

Trading Mechanism Posted by Dealers Each contract in menu i has two components,

the probability of trade, denoted by qimt/q ∈ [0, 1], and the transaction price, denoted by

pimt ∈ R+, where i ∈ {a, b} indicates whether it is an asking contract or a biding contract

and m ∈ X ≡ [xL, xH ] indicates the reported preference type of the corresponding customer.

A contract menu i ∈ {a, b}, denoted by Mit = {(qimt, pimt)}∀m∈X, is feasible if (1) given the

menu, it is incentive compatible (IC) for traders to report truthfully their preference types;

(2) it is individual rational (IR) for a trader of type x to accept ex ante a contract with

index x.

The trading mechanism offered by the dealer is contingent on the aggregate history for

the group of customers matched with him, summarized by the asset allocation to his trader

customers. The summary statistics for the group of traders is analog to the posterior belief

about the preference type of a trader as the summary statistics for the individual history,

if the mechanism were contingent on the individual history. If the dealer trades faster with

traders of a certain type before t, there will be less trading request from traders of that type

at t. The summary statistics also includes other historical information, such as the arrival

of new traders, the breakup of existing relationships and the arrival of preference shocks.

If the dealer has perfect information about the history of a customer, the contract menu

should be further contingent on the history. In the model, I focus on the aggregate history

for the following reasons. (1) While dealers can observe the history of a trading account, a

customer can hide his history by opening several accounts with the same dealer at negligible

cost. She can also hide the timing at which she experiences a preference shock. These hidden

actions prevent the dealer from observing the history of his customers. (2) Trading mecha-

nisms contingent on the history of each customer, which includes not only the trading history

but also the history of preference changes, the date of starting the long-term relationship
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and the prior of her preference type, may require too much sophistication, especially because

a dealer hosts a continuum of customers.

The contract menus can be viewed as a direct mechanism, which can have alternative

implementations where traders do not have to report explicitly their types. One implemen-

tation is to use price lotteries on each trading occasion, which fits well the institutional detail

of brokers or market makers intermediating trade in the OTC market. I will show in Section

5 that by posting quotes randomly according to optimally chosen distributions, dealers can

still the direct trading mechanism.

3 Equilibrium Definition and Existence

3.1 Equilibrium Definition

In this section, I will first present the problems of the trader and the dealer, followed by

other equilibrium conditions. The equilibrium definition follows in the end. I will focus on

the symmetric equilibrium.

Traders’ Problem Denote the maximum attainable utility of a trader of preference type

x with a units of asset and matched with a dealer at t to be Maxt, where a ∈ {0, 1}. At any

moment, the trader may face several contingencies: she may receive a trading opportunity

from the dealer, a preference shock or a breakup shock.

When the trader receives a trading opportunity, she picks a contract from the menu

offered by the dealer. Denote the reservation value of a trader matched with a dealer by

dxt ≡ M1xt −M0xt. For a trader with an asset, she chooses a contract from bid contract

9



menu, Mbt.6 The feasibility of the contract menu requires that for trader of type 1x,

x ∈ arg max
m∈[xL,xH ]

qbmt
q

(pbmt − dxt) , (1)

0 ≤ qbxt
q

(pbxt − dxt) , (2)

where equation (1) is the incentive compatibility (IC) constraint for the trader, equation (2)

is the ex ante individual rationality (IR) constraint. The expected value for trader of type

1x to pick contract (qbxt, pbxt) at t is qbxt
q

(M0xt + pbxt) +
(

1− qbxt
q

)
M1xt.

If she receives a preference shock, she draws her new preference type from distribution

G(x). So her expected utility in this case is
∫
M1x̃tdG(x̃).

If she face an exogenous breakup shock, her expected utility is the maximum attainable

utility of a trader of type 1x not matched with a dealer, which is denoted U1xτ . Although a

trader has the option to break up at any moment with the dealer matched with her, she never

has the incentive to do so because any feasible contract menu offered by a dealer satisfies

her participation constraint and therefore makes her weakly better off than breaking up

with him. We will see that in a symmetric equilibrium the set of feasible contract menus is

nonempty.

Given the maximum attainable utility on these contingencies, we can apply Bellman’s

principle of optimality and write M1xt as

M1xt = Et
{∫ τ

t

e−r(s−t)xds+ e−r(τ−t)
[
I{τ=τδ}

∫
M1x̃τdG(x̃) (3)

+ I{τ=τγ}U1xτ

+ I{τ=τq}

(
qbxτ
q

(M0xτ + pbxτ ) +

(
1− qbxτ

q

)
M1xτ

)]}
where τδ is an exponential random variable with parameter δ that represents the arrival of

preference shock, τγ is an exponential random variable with parameter γ that represents

the arrival of breakup shock, τq is an exponential random variable with parameter q that

represents the arrival of a trading opportunity and τ ≡ min{τδ, τγ, τq}.
6Because the trader can only hold zero or one unit of asset, she gains nothing from misreporting her asset

holding.
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The utility of type 1x trader can be simplified using trader’s reservation value as

M1xt = Et
{∫ τ

t

e−r(s−t)xds+ e−r(τ−t)
[
M1xτ (4)

+ I{τ=τδ}

∫
(M1x̃τ −M1xτ ) dG(x̃)

+ I{τ=τγ} (U1xτ −M1xτ )

+ I{τ=τq}
qbxτ
q

(pbxτ − dxτ )
]}

Similarly, feasibility of the contract menu, Mat, requires that for trader of type 0x,

x ∈ arg max
m∈[xL,xH ]

qamt
q

(dxt − pamt) , (5)

0 ≤ qaxt
q

(dxt − paxt) , (6)

where equation (5) is the incentive compatibility (IC) constraint for the trader, equation (6)

is the ex ante individual rationality (IR) constraint. And the maximum attainable utility of

a trader who does not own an asset and is matched with a dealer satisfies

M0xt = Et
{
e−r(τ−t)

[
M0xτ + I{τ=τδ}

∫
(M0x̃τ −M0xτ ) dG(x̃) (7)

+ I{τ=τγ} (U0xτ −M0xτ )

+ I{τ=τq}
qaxτ
q

(dxτ − paxτ )
]}

,

where τ ≡ min{τδ, τγ, τq}. Subtracting (7) from (4) shows that the reservation value satisfies

the following equation

dxt = Et
{∫ τ

t

e−r(s−t)xds+ e−r(τ−t)
[
dxτ (8)

+ I{τ=τδ}

∫
(dx̃τ − dxτ ) dG(x̃)

+ I{τ=τγ} (wxτ − dxτ )

+ I{τ=τq}
1

q
(qaxτpaxτ + qbxτpbxτ − (qaxτ + qbxτ ) dxτ )

]}
,
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where wxt ≡ U1xt−U0xt denotes the reservation value of a trader not matched with a dealer,

Uaxt denotes the utility of a trader who owns a unit of the asset and is not matched with a

dealer.

U1xt = Et
{∫ τ

t

e−r(s−t)xds+ e−r(τ−t)
[
I{τ=τδ}

∫
U1x̃τdG(x̃) + I{τ=τα}M

∗
1xτ

]}
, (9)

where τδ is an exponential random variable with parameter δ that represents the arrival of

preference shock, τα is an exponential random variable with parameter α that represents the

arrival of a dealer, M∗
1xτ denotes the equilibrium expected utility from being matched with a

dealer, and τ ≡ min{τδ, τα}. For the rest of the paper, I use the “∗” superscript to represent

equilibrium values that an agent takes as given and does not immediately control, wherever

it clarifies presentation.

Likewise, the utility of a trader who owns an asset and is not matched with a dealer,

denoted U0xt, satisfies

U0xt = Et
{
e−r(τ−t)

[
I{τ=τδ}

∫
U0x̃τdG(x̃) + I{τ=τα}M

∗
0xτ

]}
. (10)

where τ ≡ min{τδ, τα}.

In a symmetric equilibrium where dealers employ the same strategy at any moment,

M∗
1xτ = M1xτ , M∗

0xτ = M0xτ , on the equilibrium path. Subtracting (10) from (9), we derive

an equation for the reservation value of a trader not matched with a dealer.

wxt = Et
{∫ τ

t

e−r(s−t)xds+ e−r(τ−t)
[
I{τ=τδ}

∫
wx̃τdG(x̃) + I{τ=τα}dxτ

]}
. (11)

To restrict attention to solutions to the above problem relevant to our economic analysis,

we further require that the utility of traders and their reservation value solved by equations

are uniformly bounded.7 This implies the utility functions and reservation value satisfy
7If a trader of type x holds on to her asset forever and she never experiences preference shocks, her life

time utility would be x/r. A trader cannot receive a lower payoff than x/r through trading and receiving

upward preference shocks if her current preference type is equal to xL and she cannot receive a higher payoff

than x/r through trading and receiving downward preference shocks if her current preference type is equal

to xH . Therefore, we would expect xH/r ≥ M1xt, U1xt ≥ xL/r. As long as the asset pays nonnegative

dividend, we would also expect that xH/r ≥M0xtU0xt ≥ 0.
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transversality conditions,

lim
t→∞

e−rtMaxt = lim
t→∞

e−rtUaxt = lim
t→∞

e−rtdxt = lim
t→∞

e−rtwxt = 0,∀(a, x) ∈ {0, 1} × X. (12)

To further characterize the payoff functions, it is necessary to study some properties of

contract menus offered by the dealer.

A feasible contract menu satisfies the following properties.

Lemma 1. Given any nonnegative reservation value function dxt, a feasible contract menu

at time t corresponding to the reservation value function satisfies the following properties:

For any two reservation value dxt, dyt such that dxt > dyt. The corresponding contracts

picked by type x and y has the following properties:

1. qaxt ≥ qayt, qbxt ≤ qbyt;

2. qaxtpaxt ≥ qaytpayt, qbxtpbxt ≤ qbytpbyt;

3. qaxt(dxt − paxt) ≥ qayt(dyt − payt), qbxt(dxt − pbxt) ≥ qbyt(dyt − pbyt).

4. If qaxtqbxt = 0, for all x, there exists a cutoff κt such that is qaxt = 0 if x < κt and

qbxt = 0 if x > κt.

With Lemma 1, we can prove the following properties of traders’ payoff functions and

reservation value functions.

Lemma 2. Assume qaxtqbxt = 0 for all x. Then, under boundedness conditions (12), given

symmetric and feasible contract menus, there exist unique uniformly bounded functions d :

[xL, xH ]×R+ → R and w : [xL, xH ]×R+ → R that satisfy (8) and (11). They are absolutely

continuous in (x, t) ∈ [xL, xH ]× R+ and strictly increasing in x ∈ [xL, xH ] with a uniformly

bounded derivative with respect to type. Given dxt and wxt, there exist unique functions M1xt,

M0xt, U1xt and U0xt that are uniformly bounded and satisfy (4), (7), (9), (10).

I impose that qaxtqbxt = 0 for all x because as we will see in the dealer’s problem, it is a

constraint the dealer faces. It means that the dealer does not engage in round-trip trading,

to buy and sell simultaneously with traders of the same preference type.
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My method for solving for values and establishing their properties is borrowed extensively

from Hugonnier, Lester and Weill (2014) [22]. In Hugonnier, Lester and Weill (2014) [22],

division of trade surplus and trading frequency between two types are exogenous because

of symmetric information. Here, asymmetric information between the dealer and the trader

makes the division of trade surplus and trading frequencies endogenous. My proof handled

additional technicalities induced by these features.

Laws of Motion Denote the population density functions of traders matched with a dealer

to be nmaxt and the density functions of those not matched to be nuaxt, where a ∈ {0, 1}. In a

symmetric equilibrium, the laws of motion of these density functions are the following

ṅm1xt = αnu1xt − δnm1xt + δg(x)Nm
1t − γnm1xt − qbxtnm1xt + qaxtn

m
0xt, (13)

ṅu1xt = −αnu1xt − δnu1xt + δg(x)Nu
1t + γnm1xt, (14)

ṅm0xt = αnu0xt − δnm0xt + δg(x)Nm
0t − γnm0xt + qbxtn

m
1xt − qaxtnm0xt, (15)

ṅu0xt = −αnu0xt − δnu0xt + δg(x)Nu
0t + γnm0xt, (16)

where Nk
At ≡

∫
nkAxtdx denotes the total measure of traders with A unit of the asset and

matching status k ∈ {m,u}. Apart from the inflows and outflows induced by exogenous

events such as matching or breaking up with a dealer, and receiving a preference shock,

the trading frequencies picked by dealers, qbxt and qaxt, also affect the asset allocation for

traders matched with a dealer. The delay in trade specified in dealers’ contract menus

also imposes an externality on the asset allocation to unmatched traders. This affects the

strategic interaction across dealers because dealers take the inflow from unmatched traders

as given.8

Dealers’ Problem A dealer’s maximum attainable payoff depends on the expected profit

from each contract and the distribution of contract choices by his customers. Dealer’s prob-
8Notice also that the law of motion of nm1xt +nm0xt does not depend on dealers’ trading strategy. This will

be explained in more detail in the dealer’s problem.
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lem at period t is the following:

Dt,t ≡ max

{Mas,Mbs}s≥t
{nm1·s}s>t

∫ ∞
t

e−r(s−t)[qaxs(paxs − Ps)nm0xs + qbxs(Ps − pbxs)nm1xs]dxds, (17)

subject to, for all x ∈ [xL, xH ] and s ≥ t,

ṅm1xs = αnu∗1xs − δnm1xs + δg(x)Nm
1s − γnm1xs − qbxsnm1xs + qaxs(n

m
xs − nm1xs), (18)

ṅmxs = αnu∗xs − δnmxs + δg(x)Nm
s − γnmxs, (19)

qaxsqbxs = 0, (20)

Mas,Mbs are feasible.

In the objective function of the profit maximizing dealer, what differentiates dynamic screen-

ing from static screening is that the choice of the screening contract menu affects the law of

motion of the state variable, nm1xt. The density function, nm1xt, summarizes the trading history

between the dealer and his customer-traders. Its law of motion is characterized by (18). If

he sells assets to traders of type x at a higher frequency, more assets will be allocated to

type x traders. If the dealer buys assets at a higher frequency, less assets will be allocated

to them. The asset allocation in turn affects the equilibrium demand and supply of assets

from traders and therefore the dealer’s incentive to screen traders. The density function

also contains other historical information, such as the arrival of new traders, the breakup of

existing relationships and the arrival of preference shocks. nu∗Axt, for A ∈ {0, 1}, denotes the

equilibrium type distributions of traders with A unit of the asset and unmatched with the

dealer. When the dealer chooses his contract menus, he takes as given the type distributions

of inflows from the pool of unmatched traders, αnu∗Axs. On the equilibrium path of the sym-

metric equilibrium, nu∗0xt and nu∗1xt follow laws of motion (14) and (16). Nm
At =

∫
nmAxtdx, for

A ∈ {0, 1}. I implicitly impose in the dealer’s problem that he does not willingly breakup

with the traders matched with him, even when he considers his deviation strategies. This

is because he does not face capacity constraints in terms of hosting customers. So, the op-

portunity cost of retaining a customer is zero. Then, his payoff from retaining a customer
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always weakly dominates that from breaking up with her. Since the dealer does not break

up with his customers, the population density of his customers unconditional on asset allo-

cation, nmxt ≡ nm1xt + nm0xt, follows an exogenous law of motion, (19), which depends only on

the inflow of customers, exogenous breakups and preference shocks. nu∗xt ≡ nu∗1xt + nu∗0xt, and

Nm
t ≡

∫
nmxtdx. Because asset quality is homogeneous, round-trip trading with traders of

the same preference type cannot be at the same time profitable for the dealer and individual

rational for those traders. I will conjecture and verify that constraint (20) is not binding in

equilibrium.

Denote κt ∈ [xL, xH ] to be the cutoff type so that d∗κtt = Pt. κt exists because otherwise,

either demand or supply in the interdealer market will be zero, so that the interdealer market

cannot clear. There exists a unique κt corresponding to the reservation value function dxt

because dxt is strictly increasing in x, according to Lemma 2.

Lemma 3. Taking as given the cutoff type κt, a sufficient and necessary condition for the

contract menus to be incentive compatible is that trading frequencies for buyers, qaxt, are

increasing in the preference type and trading frequencies for sellers, qbxt, are decreasing in the

preference type, and prices in the equilibrium contract menu follow the following equations,

qbxtpbxt = qbxtd
∗
xt +

∫ κt

x

qbstd
∗′
stds, (21)

qaxtpaxt = qaxtd
∗
xt −

∫ x

κt

qastd
∗′
stds. (22)

Lemma 3 means that the feasibility constraints on date-t contract menus can be replaced

by monotonicity constraints on qbxt and qaxt and equations (21) and (22). Substituting

equations (21) and (22) to the dealer’s objective function, we have

Dt,t = max

{qaxs, qbxs}s≥t,x∈[xL,xH ]

{nm1xs}s>t,x∈[xL,xH ]

∫ ∞
t

Ds,tds (23)
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where

Ds,t = e−r(s−t)
∫ [

(qaxsd
∗
xs −

∫ x

κs

qautd
∗′
usdu− qaxsP ∗s )(nmxs − nm1xs) (24)

+(qbxsP
∗
s − qbxsd∗xs −

∫ κs

x

qbusd
∗′
usdu)nm1xs

]
dx

subject to,

(18) and (19),

qbxs is decreasing in x, (25)

qaxs is increasing in x. (26)

Because the market price, reservation values and trading frequencies are all totally bounded,

the following transversality condition holds, lims→∞Ds,t = 0. So, we can apply the maximum

principle to solve for the dealer’s problem. Because the dealer takes as given investor’s

reservation value, the objective function is linear in trading frequencies. It is clear that the

dealer’s problem can be reduced to picking trading frequencies only, with density functions

that are implicit functions of these trading frequencies. Because for any convex combinations

of two sequences of {qaxs, qbxs}s≥t that satisfy constraints (18), (19), (25) and (26) also satisfy

these constraints, the choice set for the control variables, trading frequencies, is then convex.

Given this property, we verify in Section A.4 of the Appendix that necessary conditions

provided by the maximum principle are also sufficient for optimality. The sufficiency proof

is derived from Liberzon (2012)[30].

To gain more intuition about the dealer’s incentive, I present below the law of motion

of the co-state variable, λxs,t, for the state variable, nm1xs, of the optimal control problem

ignoring monotonicity constraints and boundary constraints that 0 ≤ qaxs, qbxs ≤ q9. λxs,t
9These constraints are included in the complete characterization of the dealer’s problem in Section A.4

of the Appendix.
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represents the dealer’s present value of a customer of type 1x at date-s.

−λ̇xs,t = e−r(s−t)
[
qbxs(Ps − d∗xs)−

∫ xH

x

qbusd
∗′
usdu

]
(27)

− e−r(s−t)
[
qaxs(d

∗
xs − Ps)−

∫ x

xL

qausd
∗′
usdu

]
− γλxs,t − δλxs,t + δ

∫
λzs,tdG(z)

− (qbxs + qaxs)λxs,t.

The left-hand side of the equation represents intuitively the flow payoff from having a cus-

tomer of preference type 1x minus the capital gain from changes in the value of the cus-

tomer.10 The first component on the right hand side is the dealer’s payoff from offering the

contract menu to sellers in a static setting, discounted by e−r(s−t). qbxs(Ps − d∗xs) is the flow

surplus from trade generated by contract (qbxs, pbxs).
∫ xH
x

qbusd
∗′
usdu is the information rent

enjoyed by a seller of preference type x. Having one more type 1x trade means having one

less type 0x trade, since the total population density of customers of preference type x is

given at nmxs = nm1xs+n
m
0xs. The second component on the right hand side is the loss from that

in a static setting. The third component, −γλxs,t, is the loss from relationship breakup. The

fourth component, −δλxs,t + δ
∫
λzs,tdG(z), is the loss and gain when the trader experiences

a preference shock. The dealer loses a customer of preference type 1x but gains a type 1z

customer, with z following distribution G(z). The last component, −(qbxs + qaxs)λxs,t, is

the expected opportunity cost of trading with the customer at trading frequency qbxs + qaxs,

rather than trading with her later.

The dealer has limited commitment to contract menus he chooses, in that when he

chooses date-t contract menus, he takes as given traders’ reservation value, d∗xt, even though

it depends on contract menus offered by the dealer in the future. A better deal in the future

increases the reservation value, which in turn squeezes the current profit margin of the dealer.

The limited commitment induces dynamic competition within a long-term relationship, in

the spirit of the Coase conjecture. In this rich dynamic environment, however, we will show
10 λ̇xs = −rλxs in the steady state.
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the Coase conjecture only holds partially. Frictions in the dynamic environment, such as the

persistence of the trading relationship, γ, matching frictions in the market, α, and trading

speed limit, q, also affect market liquidity.

Market Clearing Condition The flow demand and supply of the asset in the inter-dealer

market at any moment is equal to the bid and ask transaction flows respectively. So, the

market clearing condition is ∫
qaxtn

m
0xtdx =

∫
qbxtn

m
1xtdx. (28)

Definition 1. Given the initial distribution of traders, a symmetric equilibrium is value func-

tions, {MAxt, UAxt, Dt,t(·)}A∈{0,1}, laws of motion for population distribution {nmAxt, nuAxt}A∈{0,1},

contract menus, Mat and Mbt for all t ∈ R+, and market prices {Pt}∀t∈R+
of the inter-dealer

market such that for all A ∈ {0, 1}, x ∈ [xL, xH ], τ ≥ t,

1. given the value functions of unmatched traders UAxτ , the value functions of matched

traders MAxτ solve traders’ problem;

2. given the value functions of matched traders, the value functions of unmatched traders

solve equations (9) and (10);

3. given nuAxτ and UAxτ , the contract menus Maτ ,Mbτ and distribution nmAxτ solve dealers’

problem at date-t;

4. given the equilibrium contract menus, {nmAxτ , nuAxτ} satisfy the laws of motion specified

in equations (15), (16), (13) and (14);

5. the inter-dealer market clears at τ , with the market clearing condition specified in

equation (28).

3.2 Characterization of the Stationary Equilibrium

I will focus on the characterization of the stationary equilibrium. In a stationary equilibrium,

ṅjaxt = 0, ∀i ∈ {0, 1}, j ∈ {m,u}, Ṁ1xt = Ṁ0xt = U̇1xt = U̇0xt = Ḋt,t = 0,∀x, t and the
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equilibrium contract menus are not time varying. So I omit the time index in the notation

from now on.

Conjecture 1. In the symmetric stationary equilibrium, κ = xM , P = dκ, qax = qb,2κ−x for

all x, qax = 0 for all x < κ, qbx = 0 for all x > κ.

Because the preference distribution is symmetric and the total asset supply is one half,

it is natural to conjecture that in equilibrium κ = xM , P = dκ and qax = qb,2κ−x. In

addition, Conjecture 1 imposes that qax = 0 for all x < κ, qbx = 0 for all x > κ, which

means that a dealer finds it suboptimal to trade with those she would not trade with under

complete information.11 Conjecture 1 is a sufficient condition for satisfying constraint (20).

It separates the screening problem into two subproblems, one for the bid contract menu, the

other for the ask contract menu. It will be verified in the proof of Theorem 1.

To present the solution to the optimal control problem, we focus on ask contracts. We

start by looking at the marginal gain for a dealer from increasing trading frequency with a

trader of type 0x. Denote the marginal value if he ignores the monotonicity constraint that

qax is increasing in x, and the boundary constraints that 0 ≤ qax ≤ q to be v̂x.12,13

v̂x ≡
r

nm0x

∂Lt
∂qax

,∀x ≥ κ,

where Lt refers to the Lagrangian of the date-t problem of the dealer, ignoring monotonicity

constraints and constraints that 0 ≤ qax ≤ q.

Lt ≡
∫ ∞
t

{
Ds,t +

∫ xH

κ

λys,t

[
αnu1ys − (δ + γ)nm1ys + δg(y)

∫
nm1zsdz + qayn

m
0x − ṅm1ys

]
dy

}
ds.

11Following Property 4 of Lemma 1, increasing qax would only tighten incentive constraints of 1y type

investors with y > x. So, if the dealer chooses qax to be zero under complete information, she should do so

under asymmetric information. So, the conjecture is qax = 0 for all x with dx < P , and qbx = 0 for all x

with dx > P .
12Because we conjecture that qax = 0 for all x < κ, we focus on type x ≥ κ here.
13To single out the marginal effect on the profit from trading with a certain type of trader, for a function

Jt =
∫∞
t

∫
f(y, s)dyds, ∂Jt∂x ≡

∫∞
t

∫
δ(y − x) ∂∂yf(y, s)dyds, which involves multiplying the integrand for the

integral over y by a Dirac delta function, δ(y − x).

20



I first use v̂x to solve for optimal trading frequencies ignoring monotonicity constraints. Then,

if monotonicity constraints are violated, I apply a standard procedure called convexficiation

to solve for optimal trading frequencies respecting monotonicity constraints as well.

From the first order conditions of the optimal control problem in Section A.4 of the

Appendix,

v̂x =

∫ x
κ

(r + δ + γ + qau)d
′
udu

r + δ + γ + qax
−
∫ xH
x

nm0udu

nm0x
d′x,∀x ≥ κ, where (29)

d′x =
r + α + δ + γ

(r + α + δ) (r + γ + δ + qax)− αγ
, and

nm0x =
α

α + γ

α + δ + γ

α + δ + γ + α+δ
δ
qax

(1− A)g(x).

v̂· is a nonlinear function of trading frequency function qa·. Intuitively, the first component

in (29) represents the marginal value of increasing trading frequencies with trader of type x

under complete information. The second component represents the externality of increasing

the trading frequency on the dealer’s profit from trading with other traders. When the

dealer solves for date-t trading frequencies in the dynamic mechanism design problem, he

takes as given the distribution of traders’ preferences, traders’ value function and the costate

variable. This subproblem is equivalent to a static optimal mechanism design problem.

So, the procedure in Myerson(1981)[31], which studies optimal auction design in a static

environment, applies.

If v̂x is increasing in x for all increasing functions,

qa· ∈ K ≡ {qa· : [κ, xH ]→ [0, q], qax is increasing in x},

then trading frequency function qa· is a fixed point of correspondence ϕ : K ⇒ K defined as

ϕ(qa·) ≡ {q ∈ K : qx = 0, if v̂x (qa·) < 0,

qx ∈ [0, q], if v̂x (qa·) = 0,

qx = q, if v̂x (qa·) > 0} .

Then, if there exists a fixed point, it satisfies the monotonicity constraint and the boundary

constraints.
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But the monotonicity of v̂x is not guaranteed. In this case, construction of the correspon-

dence involves bunching, which can be solved using a standard procedure of “convexification”

following Myerson(1981)[31].

Definition 2. A function Cx : [xL, xH ]→ R is a convexification of function Ĉx : [xL, xH ]→ R

if for any x ∈ [κ, xH ],

Cx ≡ min{ωĈy + (1− ω)Ĉz : ωy + (1− ω)z = x,∀ω ∈ [0, 1], y, z ∈ [κ, xH ]}.

In Section A.4 of the Appendix, we show that if Cx is a convexification of Ĉx ≡
∫ x
xL
v̂ydy,

Cx is continuously differentiable. Let vx ≡ C ′x. vx is a continuous and increasing function

for all qa· ∈ K. The correspondence taking into consideration the monotonicity constraint is

ϕ(qa·) ≡ {q ∈ K : qx = 0, if vx (qa·) < 0, (30)

qx ∈ [0, q], if vx (qa·) = 0,

qax = q, if vx (qa·) > 0}

In Section A.5 of the Appendix, we show that there exists a fixed point of the correspondence.

Since the convexification procedure takes care of the monotonicity of trading frequencies and

solves for the constrained optimal trading frequencies, the fixed point in trading frequencies is

optimal and respects the monotonicity constraint. Other equilibrium objects can be derived

from the fixed-point trading frequencies. Hence, the following theorem holds.

Theorem 1. If the density function of the preference shock, g(x), is continuous, there exists

a stationary symmetric equilibrium, where κ = xM , and qax = qb,2xM−x for all x ∈ [xL, xH ].

While Theorem 1 proves the existence of a symmetric equilibrium, the equilibrium is not

necessarily unique and trading frequencies in equilibrium contract menus are not necessarily

continuous in the preference type. In sections A.7 and A.8 of the Appendix, I give an example

where there exist two equilibria, one in which trading frequency functions are continuous,

the other in which they are step functions. In the second type of equilibrium, the endogenous

type distribution induces a non-monotonic marginal value v̂x, resulting in bunching. For the
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rest of the paper, however, I will only analyze the equilibrium where trading frequencies are

continuous in the preference type. For numerical and analytical examples I use, such an

equilibrium exists.

4 Implications on Market Liquidity

In this section, I will first present qualitative implications of the model on market liquidity.

Then, I will show the effect of dispersion of valuation, frictions in forming and maintaining

long-term trader-dealer relationships on market liquidity.

4.1 Qualitative Implications

Proposition 1. There exists an equilibrium with threshold types xb, x̄b, κ, xa and x̄a, such

that xL < xb ≤ x̄b < κ < xa ≤ x̄a < xH .

(1) For sellers of type x ∈ [x̄b, κ] and buyers of type x ∈ [κ, xa], trade breaks down;

(2) for sellers of type x ∈ [xL, x
b] and buyers of type x ∈ [x̄a, xH ], trade is carried out

without delay; but the bid price for sellers of type x ∈ [xL, x
b] is the lowest in the market and

the ask price for buyers of typex ∈ [x̄a, xH ] is the highest;

(3) if there exists an equilibrium where qax and qbx are continuous functions in x, then

xb < x̄b and xa < x̄a, trade for sellers of type x ∈ (xb, x̄b) and buyers of type x ∈ (xa, x̄a) is

delayed but trade takes place at intermediate level of bid/ask spread.

The proposition is derived from Theorem 1. The proof is at the end of Section A.5 of

the Appendix. It is a unique feature of the model that there might coexist three regions

categorized by the surplus from trade. The literature on adverse selection with competitive

search friction, initiated by Guerrieri, Shimer and Wright (2010)[18], only shows the second

type of distortion, where all trade is delayed. Intuitively, this is because the reservation value

of the dealer when he offers the screening contract is strictly above zero. So, trade always

break down for those traders whose gain from trade even under complete information is too

small. As in a static screening problem where type distribution is not endogenous, trade
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Figure 1: Equilibrium contract menus.

either breaks down or is not delayed at all. These features of equilibrium contract menus are

illustrated in Figure 1. The bid or ask spreads, defined as |pix−P |
P

, i ∈ {b, a}, are presented

in basis points in Figure 1.

The parameter values used in the numerical example to generate the figure are calibrated

to target empirical findings from municipal bonds market. I set the annual discount rate

at 0.05 following the numerical example in Duffie, Garleanu and Pedersen (2005)[9] (DGP).

The parameter values for relationship stability, γ, and relationship formation, α, target the

municipal bond market. Li and Schuerhoff (2014)[29] study the network among financial

institutions. Dealers in my model have a different meaning from those in Li and Schuerhoff

(2014)[29]. They call all financial institutions dealers. I treat periphery dealers as traders

in my model and core dealers in their paper as dealers in my model. Li and Schuerhoff

(2014)[29] found that in the municipal bond market, the probability that two dealers who

traded last month also trade this month is on average 65%, which implies an annualized
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arrival rate of the breakup shock of γ = 0.35 × 12 = 4.2.14,15 They also found that if two

dealers did not trade in the previous month, there is on average an 85% chance that they

do not trade with each other in the current month. Since traders matched with a dealer do

not seek a second relationship, this number implies an annualized arrival rate of a trading

relationship of α = 3.15.16 I assume that it takes at least two days for a dealer and trader

to finish a transaction. So, q = 182, which is 7 times as large as the trading frequency used

in DGP. In DGP, the flow utility from dividend consumption of high preference type traders

is 10 times higher than that of low preference type traders. Following the specification,

I assume the preference is distributed uniformly on [.1, 1]. Since I do not model trading

frictions between dealers, I target the average turnover rate for trade between customers

and dealers, defined as the aggregate trading volume between customers and dealers divided

by the asset supply. Lester, Rocheteau and Weill (15)[28] offer an estimate of turnover for

municipal bonds, based on the volume of dealer-to-customer data (i.e. not including dealer-

to-dealer trades) of Green, Hollifield and Schueroff (07)[16], and aggregate bond holding

data in the Flow of Funds. This turnover number is around 56%. The arrival rate of the

preference shock is set at 1.525 to match the turnover rate number for trade between traders

and dealers. These calibrated parameter values are summarized in Table 1.

If traders have direct access to the interdealer market, it is easy to show that there is no

trading delay in equilibrium and the equilibrium allocation is efficient and is the same as in

an environment with complete information. The following Corollary summarizes the effect

of the endogenous liquidity distortion on the aggregate allocation.

Corollary 1. Compared to the equilibrium allocation in an environment where traders have
14We think of periphery dealers in the data as a collection of traders. Then, by the law of large numbers,

there will be trade between periphery dealers and core dealers whenever they are matched.
15The trading relationship in the overnight interbank lending market is more persistent. Afonso, Kovner

and Schoar (2014)[1] found that the monthly autocorrelation of volume share of lenders is about 91%.
16Only a fraction, α

α+γ , of traders are seeking trading relationships. Among these traders, the arrival rate

of a trading relationship is α. So, α is approximately solved by 0.15 × 12 = γ
α+γ × α, which implies that

α = 3.15.
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Preference Matching

shock arrival rate δ 1.525 meeting rate α 3.15

upper bound xH 1 breakup rate γ 4.2

lower bound xL .1 Market

discount rate r 0.05 asset supply A 0.5

distribution function G(x) x−xL
xH−xL

trading frequency q 182

Table 1: Parameter values used the numerical example.

direct access to the interdealer market, the equilibrium has the following qualitative properties:

bid-ask spread arises; delay in trade arises; asset allocation is worse; aggregate trading flow

is lower.

From Corollary 1, we can see that the equilibrium allocation of liquidity is not efficient.

Figure 2 illustrates the inefficiency. The efficient allocation is calculated by assuming that

all buyers and sellers trade at rate q = 182. The allocation in DGP is calculated by assum-

ing that all trade takes place at rate q = 26, the value used in the numerical example in

DGP.17 Quantitatively, the allocation in DGP is uniformly close to the efficient allocation for

traders of all types. In contrast, allocation efficiency is type dependent in this model. The

equilibrium allocation in this model is the same as the autarky allocation for traders with

small gain, whose trade breaks down. For traders with intermediate gain, trade is delayed.

The allocation for them is in between the efficient allocation and the autarky allocation. For

traders with large gain, the allocation is the same as the efficient allocation, which is better

than the DGP allocation. But quantitatively, the additional improvement appears small.

This numerical exercise shows that quantitatively, the model could predict more severe asset

misallocation. This is because the asset misallocation for traders with small or intermediate
17To facilitate the comparison, what I call DGP in the exercise only allows trade between the dealer and

those traders in long-term relationships with the dealer, just that conditional on being matched together,

they act as in DGP, trading at frequency q = 26.
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Figure 2: Equilibrium asset allocation.

gain could be a lot more severe than that in DGP.

4.2 Comparative Statics in the Numerical Example

In this section, I study the comparative statics in the calibrated numerical example. I

focus a subset of parameters to be studied in the next section, all related to the market

structure. The comparative statics act as a horse race among these parameters in explaining

the liquidity disruption in the OTC market during the recent financial crisis.

In Table 2, I first report measures of liquidity in the benchmark which uses calibrated

parameter values reported in Table 1. The measures of liquidity include the turnover rate, the

probability of trade, conditional on traders being matched with a dealer, receiving a trading

opportunity and having a positive gain from trade, the average, maximum and minimum

spread among all trades. While the probability of trade is not directly observable in the data,

it illustrates the response of dealers’ strategic delay to changes in the market structure.

In the benchmark, the annualized turnover rate is 56%, the probability of trade is 0.15,
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Benchmark Breakup Rate Matching Rate Trading Speed

+100% -50% -50%

Turnover Rate (%) 56 -7.9% -22.8% -4.8%

Probability of Trade .15 24.6% 0.2% 31.7%

Average Spread (bp) 20 12.0% 21.7% 36.9%

Maximum Spread (bp) 21 11.8% 21.7% 36.4%

Minimum Spread (bp) 12 17.0% 22.1% 44.6%

Welfare -1.74% -5.30% -0.54%

Table 2: Comparative Statics in the Numerical Example.

average spread is 20 basis points, the maximum spread is 21 basis points and the minimum

spread is 12 basis points. To derive clearer welfare implications, I also compute the welfare

measure, Wt, defined as the total flow utility investors, matched and unmatched.

Wt ≡
∫ ∞
t

e−r(s−t)(nm1xs + nu1xs)xdx.

Then, I study the relative changes in these liquidity measures when the fundamentals of the

model change. Fundamental changes I study include increasing breakup rate, decreasing in

matching rate and decrease in trading speed. The breakup rate represents stability of the

trader-dealer relationship. The matching rate represents frictions in relationship formation.

Trading speed represents trading frictions in DGP.18

The stability of trading relationship has a small impact on the efficiency of asset alloca-

tion. Although the breakup rate increases by 100%, the asset turnover rate only decreases

by 7.9%, indicating that asset misallocation does not increase dramatically. This is because

when expecting less stable relationships, dealers choose to screen traders by charging a higher

spread rather than delaying trade. The probability of trade increases by 24.6% percent, off-

setting the decrease in the turnover rate because of the higher breakup rate. The average

spread, meanwhile, increases on average by 12.0%. When dealers delay less, the spread they
18See footnote 17.
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charge becomes less dispersed. In this case, the minimum spread increases by 17.0%, 5.2%

more than the increase in the maximum spread. The decrease in turnover rate is reflected

in the decrease in the welfare measure, derive from their asset holding. The welfare measure

decreases by 1.74%.

Decreasing the matching rate has a stronger effect on welfare. With a 50% decrease in

matching rate, the turnover rate decreases by 22.8% and the welfare measure decreases by

5.30%. This is because as the matching rate decreases, dealers do not respond by increasing

the trading speed. The probability of trade increases only by .2%. Meanwhile, the aver-

age spread they charge is 21.7% higher. Intuitively, this is because the strategic interaction

between dealers becomes weaker when the matching rate is low, mitigating dynamic com-

petition between dealers. So, they charge a higher spread while still strategically delaying

trade.

Similar to the effect of relationship stability, dealers respond by reducing strategic delay

when the trading speed limit, q, decreases. When q decreases by 50%, the probability trade

increases by 31.7%. Dealers screen traders by charging higher spread instead of delaying

trade. The spread increases on average by 36.9%.

While decreasing matching rate and decreasing trading speed have similar effects on

equilibrium spread, they have very different effect on welfare. Asset turnover rate only

decreases by 4.8% and the welfare measure decreases by .54% when trading speed decreases

by 50%. Turnover rate drops by 4.8 times as much and the measure decreases by 5.3%

when matching rate decreases by 50%. This shows it is important to distinguish frictions in

relationship formation from limits on trading speed.

Empirically, Di Maggio, Kermani and Song (2016)[8] found that during the recent finan-

cial crisis, core dealers charge higher markups to their clients, without increasing liquidity

provision. This is more consistent with increasing the matching friction in my model.
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4.3 Comparative Statics in Analytical Examples

I study two analytical examples in this section, to analyze comparative statics in the numer-

ical exercise and derive further comparative statics. The solutions to the two examples are

in Section A.7 and A.9 of the Appendix.

Example 1. Permanent Relationship

If we assume that dealer-trader relationships are permanent, γ = 0, the model can be

solved in closed form. Assume also that the distribution satisfies the following property:

g(x)(x− xM)2 is increasing in x and g(x)
1−G(x)

is increasing in x when x ≥ xM .19

qax =
g(x)

g(x̄a)

(
x− xM
x̄a − xM

)2

(δ + q)− δ, ∀x ∈ [xa, x̄a], (31)

x̄a : 1 =
g(x̄a) (x̄a − xM)

1−G(x̄a)
, (32)

xa :

(
xa − xM
x̄a − xM

)2
g(xa)

g(x̄a)
=

δ

δ + q
, (33)

and qbx, x̄b , xb can be derived in the same fashion.

In this equilibrium, the qualitative properties in Proposition 1 and Corollary 1 hold. And

we can also solve for bid or ask spreads.20 Qualitatively, the spread is higher when there is

more delay. So, we focus on delay in comparative statics.

Example 2. Discrete Distribution

Assume that the preference type follows a discrete distribution on {xL, y, xM , z, xH} ,

with xL < y < xM < z < xH . Assume that Pr(x = xL) = Pr(x = xH) = π1, Pr(x = y) =

Pr(x = z) = π2. A = 1
2
. xM = 1

2
(xL + xH), xM − y = z − xM , and that agents are very

patient, r � δ.
19The characterization of bid contracts is symmetric and is omitted to economize the presentation.
20For example, if agents are patient in the sense that r � 1, pax − P = xa−xM

δ +∫ x
xa

[
g(x)(x−xM )2

g(s)(s−xM )2 − 1
]
ds,∀x ∈ [xa, x̄a].
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In this example, qaxH = qbxL = q, qaxM = qbxM = 0. Restricting our attention to

parameter values such that qaz = qby ∈ (0, q), we have

qaz =

[
φ

(α + δ)
(
1 + q

δ

)
+ γ

α + δ + γ
− 1

]
(δ + γ) . (34)

where φ = z−xM
xH−z

π2
π1
. The participation constraints of intermediate types are binding in

equilibrium. So, the spread for intermediate types does not depend on equilibrium delays and

is equal to the surplus from trade. The spread for type xL and xH is decreasing in the delay

facing intermediate types. This analytical example is particularly useful to more completely

characterize the general equilibrium effect of the frictions in forming and maintaining long-

term relationships.

4.3.1 Frictions Related to the Long-term Relationship

The general equilibrium effects of the frictions in forming and maintaining long-term rela-

tionships are summarized in Corollary 2 and Corollary 3. The two corollaries are derived

from equation (34).

Corollary 2. Under the conditions in Example 2, a higher matching friction to form new

relationships (lower α) corresponds to more equilibrium strategic delay in trade.

The intuition behind Corollary 2 is the following. With a high matching friction, it

takes a long time for an unmatched trader to find a dealer. Then, the equilibrium asset

allocation to unmatched traders is closer to the autarky allocation and is less affected by

dealers’ screening strategies, as is evident from the law of motion of traders, equation (13).

Therefore, an unmatched trader is more likely to have large gain from trade in this case.

This gives dealers more incentive to screen those traders by delaying trade with other traders

with smaller gain from trade. And the competition between dealers is less intense. In terms

of efficiency, Corollary 2 implies that the matching friction can be amplified by strategic

delay of dealers. This echoes the findings in the numerical example, where when matching

friction increases, dealers do not significantly reduce strategic delay, leading to a big decrease

in turnover rate and allocation efficiency.
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The following Corollary shows that findings in the numerical example about the stability

of trading relationship holds only when the matching friction is small.

Corollary 3. Under the conditions in Example 2, the effect of relationship breakup on equi-

librium strategic delay is ambiguous. If the matching friction is negligible (α � max(δ, γ)),

increasing the breakup rate decreases delay. If the matching friction is large (α � δ), in-

creasing the breakup rate increases delay.

The proof for the corollary is in Section A.10 of the Appendix. When the matching

friction is small, relationship breakup induces more dynamic competition among dealers.

But when the matching friction is large, the strategic interaction is muted. Meanwhile, a

higher breakup rate means that the profit of a dealer depends more on the inflow of traders

from the unmatched population, whose gain from trade is large because of the large matching

friction. This induces dealers to delay trade with traders with intermediate gain from trade

so as to screen traders with large gain from trade. Corollary 3 implies that the stability

of the long-term relationship with dealers is more valuable for traders in an economy with

fewer financial intermediaries, not only because of the exogenous frictions but also because

it reduces strategic delay by dealers. One could imagine that during financial crises, fewer

dealers participate in the market. Then, the matching friction increases.21 Corollary 3

implies that the stability of relationship is particularly valuable during those periods.

4.3.2 The Frequency of Preference Shocks

The effect of preference shocks on liquidity distortion is summarized in Corollary 4.

Corollary 4. When the trader-dealer relationship is permanent, under the conditions of

Example 1, equilibrium delay increases for all traders as the preference shock becomes more

frequent. In particular, the measure of traders for whom trade breaks down increases (x̄b

decreases and xa increases). Equilibrium delay in trade strictly increases for those traders

facing delay in trade (buyers with preference type x ∈ [xa, x̄a] and sellers with preference type

x ∈ [xb, x̄
b]).

21See Lagos and Zhang (2015)[26] for a formal model about the effect of dealer entry on market liquidity.
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The proof is in Section A.11 of the Appendix. According to the law of motion of traders

matched with dealers, equation (13), the asset allocation is closer to autarky allocation when

the preference shock is more frequent. So, there are more traders with large gain from trade,

this induces dealers to delay trade with traders with intermediate gain so as to screen traders

with large gain from trade. Corollary 4 shows that in turbulent times, liquidity distortion

could be higher because of strategic delay of the dealer.

Corollary 5. Under the conditions in Example 2, increasing the frequency of preference

shocks also induces more delay.

Corollary 5 shows that findings in Corollary 4 is robust to the general equilibrium effects

induced by the matching friction and relationship breakups. The proof in Section A.12 of

the Appendix.

4.3.3 The Dispersion of Private Valuation

The dispersion of the preference shock affects the size of bid/ask spreads and information

rent enjoyed by traders. This dispersion varies across assets, depending on such features as

the opacity of the market and the sophistication of the asset under study.

I use Example 1 to study the effect of valuation dispersion, assuming that the distribution

function satisfies the following functional form: g(x) = 1
C
|x− xM |ζ with ζ > −1 and C =

(xH−xL)ζ+1

2ζ(ζ+1)
. This class of distribution functions includes the uniform distribution as a special

case (ζ = 0). And a distribution function with a higher ζ has a thicker tail and higher

dispersion. Corollary 6 shows that dispersed private valuation induces more delay.

Corollary 6. Under the conditions in Example 2 and the conditions in Example 1 with

g(x) = 1
C
|x− xM |ζ (ζ > −1), increasing the dispersion of preference shocks increases trading

delay for traders of all preference types.

According to Corollary 6, then the dispersion increases, both the spread and delay in

trade increase for traders of all preference types. But because there are more traders with

large gain from trade in this case, the aggregate trading flow may not decrease.
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Duffie, Malamud and Manso (2014)[10] shows that the opacity about heterogeneity in the

asset quality also has important implications on trading activities in the market, and that

the effect of opacity on price dispersion is not just driven by heterogeneity in asset quality

but also by the dispersion in private valuation. Edwards, Harris and Piwowar (2007)[11]

studies empirically how the opacity of the OTC markets of corporate bonds affects the

transaction cost. They find that the transaction cost is linked to the opacity of the OTC

market. This implies that the private information about heterogeneous preferences could

also be an important source of distortion when the market structure is opaque.

5 Implementation by Random Bid-Ask Quotes

In this section, I show that in an environment where dealers are restricted to trading without

delay, the optimal contract menus can still be implemented. Imagine that a dealer hires a

continuum of employees, each holding a telephone line. Each trader is assigned an employee

to handle his trade. Employees are busy most of the time doing other things such as handling

trade for other customers. So, the trader needs to wait for her turn, which arrives with

Poisson rate q. When her turn comes, she gets a random draw from some distribution of

bid/ask quotes decided by the dealer. And the trade will be carried out without delay if the

trader accepts the quote. Otherwise, the trader waits for her next turn to draw a quote from

the distribution of bid/ask quotes specified by the dealer at that moment.

So far, it is sufficient to look at ex ante IR constraint for a contract menu to be fea-

sible, because the quoted price is deterministic. In this section, the trading mechanism is

implemented through price lotteries. So, it must also satisfy ex post IR constraints. That

is, for contract menus Mix = {(qix, p̃ix)}∀x∈X,∀i ∈ {a, b} to be feasible, not only should the

expected price Ep̃ix satisfy traders’ ex ante IR constraint,

Ep̃ax ≤ dx ≤ Ep̃bx,

but the realization of the price p̃ix should also satisfy traders’ ex post IR constraint,

p̃ax ≤ dx ≤ p̃bx. (35)
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When dealers quote randomly, the strategy of traders can be characterized by their reserva-

tion value, like in a random search model with price dispersion. Buyers will buy if and only

if the ask price is below their reservation value. Sellers will sell if and only if the bid price is

above their reservation value. The reservation value is a function of traders’ preference type.

For example, buyers with a high preference type have a high reservation value. Therefore,

they are more likely to accept an ask quote. Trade for those with large gain from trade is

less likely to be delayed but the transaction cost is higher for them. This intuition is in line

with the optimal contract menus designed by the dealer.

I show that if the dealer chooses optimally the distributions of bid and ask quotes, the

profit maximizing contract menus can be implemented. Denote the reservation value of

traders with asset holding a and preference type x to be Rax. Denote the distribution of ask

quotes to be Fa(·) and the distribution of bid quotes to be Fb(·).

Lemma 4. The equilibrium contract menus Mix = {(qix, p̃ix)}∀x∈X,∀i ∈ {a, b}, the price dis-

tributions Fa(·) and Fb(·) implementing the equilibrium contract menus satisfy the following

equations,

qax
q

= Fa(R0x),
qbx
q

= 1− Fb(R1x), (36)

qax
q
Ep̃ax =

∫ R0x

R0κ

RdFa(R),
qbx
q
Ep̃bx =

∫ R1κ

R1x

RdFb(R). (37)

p̃ax ∼ min

{
1,
Fa(p̃ax)

Fa(R0x)

}
, p̃bx ∼ max

{
0,
Fb(p̃ax)− Fb(R1x)

1− Fb(R1x)

}
(38)

Lemma 4 gives a necessary condition for the optimal contract menu to be feasible and

implementable by “random search”. But it is not sufficient because the reservation value

solved this way must satisfy the indifference condition: R0x = dx for buyers of type x and

R1x = dx for sellers of type x. The following lemma confirms these conditions.

Lemma 5. Given the quote distributions implied by the optimal contract menus, Rax is

indeed the reservation price for traders with asset holding a and preference type x. Rax = dx.

Lemma 4 and Lemma 5 together prove the following proposition.
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Proposition 2. The optimal mechanism can be implemented by dealers quoting randomly

from price distributions Fa(·) and Fb(·) following equations (36) and (37).

The price dispersion predicted by this implementation is greater than the price dispersion

predicted by the contract menus. This is because all traders whose trade does not break

down enjoy some information rent, pax < dx for all x ≥ xa, and pbx > dx for all x ≤ x̄b.

We also know that the support of the distribution of ask(bid) prices is [dxa , dx̄a ] ([dxb , dx̄b ]).

But the difference in the price implication between the direct trading mechanism and this

implementation is not quantitatively large.

The random pricing strategy of the dealer may also arise from competition among dealers.

This mechanism is proposed by Burdett and Judd (1983)[4] and applied to study price

dispersion in opaque financial markets by Green (2007)[15]. This implementation shows that

even if the dealer has monopsony power, the price dispersion may still emerge in equilibrium

as a result of dealers dynamically screening investors with heterogeneous valuations over

the asset. Therefore, the paper offers an alternative mechanism linking the opacity of the

secondary market to price dispersion.

6 Conclusion

I study in an OTC market the effect of unobservable private valuation on market liquidity

and asset allocation when dealers and traders are in long-term relationships. I solve the

optimal trading mechanism contingent on the aggregate history of the traders matched with

a dealer, summarized by the asset allocation. The dynamic screening behavior of the dealer

provides an additional mechanism to account for the liquidity distortion and price dispersion

in the market.
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A Appendix

A.1 Proof of Lemma 1.

Proof. I will present only the proof for ask contracts. The argument for bid contracts is symmetric.

By IC constraints,

qaxt(dxt − paxt) ≥ qayt(dxt − payt) (39)

qaxt(dyt − paxt) ≤ qayt(dyt − payt). (40)

Subtracting (40) from (39), together with the condition that dxt > dyt implies that qaxt ≥ qayt.

(40) implies that qaxtpaxt ≥ (qaxt − qayt)dyt + qaytpayt. Because qaxt ≥ qayt, this means that

qaxtpaxt ≥ qaytpayt. Using (39) and dxt > dyt, we can derive qaxt(dxt − paxt) ≥ qayt(dyt − payt).

Property 4 follows from property 1 and the no-round trip trading condition, qaxtqbxt = 0 for all

x.

A.2 Proof of Lemma 2

Lemma 6. Given feasible contract menus, any solutions to (8) and (11) that satisfy conditions

(12) are strictly increasing and Liptschitz continuous.

Proof. Using the property of the stopping time, the solution to (8) that satisfies the transversality

condition is a fixed point of the operator

Γxt(d) =

∫ ∞
t

e−(r+δ+γ)(τ−t)−
∫ τ
t (qaxs+qbxs)ds [x+ (δ + (qaxτ + qbxτ ) + γ) dxτ + ∆xτ (d)] dτ. (41)

where

∆xτ (d) ≡ δ
∫

(dx̃τ − dxτ ) dG(x̃) + qaxτpaxτ + qbxτpbxτ − (qaxτ + qbxτ ) dxτ + γ(wxτ − dxτ ).

Assume that dxt = Γxt(d) is a fixed point that satisfies (8) and (11). Since the right hand side

of (41) is absolutely continuous in time, dxt inherits this property, and it follows from Lebesgue’s

differentiation theorem that

ḋxt = −x−∆xt(d) + rdxt
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Using this equation together with the equation,
∫ T
t e−r(τ−t)dxτdτ = 1

r

(
dxt − dxT e−r(T−t)

)
+1
r

∫ T
t e−r(τ−t)ḋxτdτ ,

we get

dxt =

∫ T

t
e−r(τ−t)(x+ ∆xτ (d))dτ + e−r(T−t)dxT . (42)

=

∫ ∞
t

e−r(τ−t)(x+ ∆xτ (d))dτ. (43)

Since the right hand side of equation (42) is absolutely continuous in t, the fixed point dxt inherits

the property. Assume by contradiction that there exists x > y such that dxt ≤ dyt , for all t from

t0 to T , where T ≡ inf{τ : dxτ > dyτ , τ ≥ t0}, then

dxt − dyt =

∫ T

t
e−r(τ−t) {x− y + γ(wxτ − wyτ − (dxτ − dyτ )) + δ (dyτ − dxτ )

+ [(qaxτpaxτ + qbxτpbxτ − (qaxτ + qbxτ ) dxτ )

− (qayτpayτ + qbyτpbyτ − (qayτ + qbyτ ) dyτ )]} dτ + e−r(T−t) (dxT − dyT ) .

Next, we will show that dxt ≤ dyt for all t from t0 to T implies∫ T

t
e−r(τ−t)(wxτ − wyτ − (dxτ − dyτ ))dτ ≥ 0,∀t ∈ [t0, T ],

(qaxtpaxt + qbxtpbxt − (qaxt + qbxt) dxt)

− (qaytpayt + qbytpbyt − (qayt + qbyt) dyt) ≥ 0,∀t ∈ [t0, T ].

Because of the transversality condition, this equation holds regardless of whether T is finite or

infinite. Using the property of the stopping time, we can rewrite (11) as

wxt =

∫ H

t
e−(α+δ)(τ−t)

[
(α+ δ)x

∫ τ

t
e−r(s−t)ds+ e−r(τ−t)

(
αdxτ + δ

∫
wx̃τdG(x̃)

)]
dτ

+ e−(α+δ)(H−t)
[
x

∫ H

t
e−r(s−t)ds+ e−r(H−t)wxH

]
for any H > t. By transversality conditions, if T <∞,

wxT − wyT =

∫ ∞
T

e−(α+δ)(τ−T )

[
(α+ δ)(x− y)

∫ τ

T
e−r(s−T )ds+ e−r(τ−t)α (dxτ − dyτ )

]
dτ

≥ 0.
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The inequality follows from the definition of T . Then, for any t ∈ [t0, T ],

wxτ − wyτ =

∫ T

τ
e−(α+δ)(s−τ)

[
(α+ δ)(x− y)

∫ s

τ
e−r(v−τ)dv + e−r(s−τ)α (dxs − dys)

]
ds

+ e−(α+δ)(T−τ)

[
(x− y)

∫ T

τ
e−r(s−τ)ds+ e−r(T−τ) (wxT − wyT )

]
≥
∫ T

τ
e−(r+α+δ)(s−τ)α (dxs − dys) ds.

Therefore,∫ T

t
e−r(τ−t)(wxτ − wyτ − (dxτ − dyτ ))dτ

≥
∫ T

t
e−r(τ−t)

(∫ T

τ
e−(r+α+δ)(s−τ)α (dxs − dys) ds− (dxτ − dyτ )

)
dτ

=

∫ T

t
e−r(τ−t)

(
−1 +

∫ τ

t
e−(r+α+δ)(τ−v)αdv

)
(dxτ − dyτ )dτ

=

∫ T

t
e−r(τ−t)

(
−1 +

α

r + α+ δ
(1− e−(r+α+δ)(τ−t))

)
(dxτ − dyτ )dτ

≥ 0.

From Lemma 1,

qbxt (pbxt − dxt)− qbyt (pbyt − dyt) ≥ 0, (44)

qaxt (paxt − dxt)− qayt (payt − dyt) ≥ 0. (45)

Adding up (44) and (45) implies that

qaxtpaxt + qbxtpbxt − (qaxt + qbxt) dxt ≥ qaytpayt + qbytpbyt − (qayt + qbyt) dyt.

If T is finite, by continuity of dxt in t, dxT −dyT = 0. If T is infinite, by the transversality condition,

limT→∞ e
−r(T−t) (dxT − dyT ) = 0. Together, these imply that dxt − dyt > 0 for t ∈ [t0, T ), which

delivers the contradiction.

Following similar arguments, we can show that

wxt =

∫ ∞
t

e−(r+δ+α)(τ−t)
[
x+ δ

∫
wx̃τdG(x̃) + αdxτ

]
dτ (46)

is strictly increasing in x.
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Proof of Lemma 2 follows:

Proof. Denote the space of uniformly bounded, measurable functions from [xL, xH ]× [0,∞) to R+

equipped with supnorm to be D. Clearly, Γ maps D into itself. Given dxτ , we can rewrite equation

(11) as

wxt ≡ Πxt(d) =

∫ ∞
t

e−(r+δ+α)(τ−t)
[
x+ δ

∫
wx̃τdG(x̃) + αdxτ

]
dτ. (47)

Πx·(f)−Πx·(g) =

∫ ∞
t

e−(r+δ+α)(τ−t)α (fxτ − gxτ ) dτ

≤ α

r + δ + α
|f − g| < |f − g| ,

where |·| denotes the supnorm. So, Π is a contraction mapping of uniformly bounded measurable

functions from [0,∞] to R+ equipped with supnorm. From the contraction mapping theorem, there

is a unique solution of wxt corresponding to dxt.

Rewrite equation (8) as

Γxt(d) =

∫ ∞
t

e−(r+δ+γ+q)(τ−t)
[
x+ δ

∫
dx̃τdG(x̃)

+γΠxτ (d) + (q − qaxτ − qbxτ )dxτ + qaxτpaxτ + qbxτpbxτ ] dτ.

To show that Γ is a contraction mapping given the sequence of contract menus, denote the contract

type x trader chooses from the menu, given his reservation value f(x), to be
(
qfam(x)·, p

f
am(x)·, q

f
bm(x)·, p

f
bm(x)·

)
,

Γx·(f)− Γx·(g) =

∫ ∞
t

e−(r+γ+δ+q)τ

[
δ

∫
(fx̃τ − gx̃τ ) dG(x̃)

+ γ(Πxτ (f)−Πxτ (g))

−
(
qgam(x)τp

g
am(x)τ + qgbm(x)τp

g
bm(x)τ +

(
q −

(
qgam(x)τ + qgbm(x)τ

))
gxτ

)
+
(
qfam(x)τp

f
am(x)τ + qfbm(x)τp

f
bm(x)τ +

(
q −

(
qfam(x)τ + qfbm(x)τ

))
fxτ

)]
dτ.

Denote

Axτ = −
(
qgam(x)τp

g
am(x)τ + qgbm(x)τp

g
bm(x)τ +

(
q −

(
qgam(x)τ + qgbm(x)τ

))
gxτ

)
+
(
qfam(x)τp

f
am(x)τ + qfbm(x)τp

f
bm(x)τ +

(
q −

(
qfam(x)τ + qfbm(x)τ

))
fxτ

)
.
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According to Lemma 1, qfam(x)τp
f
am(x)τ + qfbm(x)τp

f
bm(x)τ −

(
qfam(x)τ + qfbm(x)τ

)
fxτ is decreasing in

fxt. So, for fxτ > gxτ , Axτ < q(fxτ − gxτ ). And

Axτ > −
(
qgam(x)τp

g
am(x)τ + qgbm(x)τp

g
bm(x)τ +

(
q −

(
qgam(x)τ + qgbm(x)τ

))
fxτ

)
+
(
qfam(x)τp

f
am(x)τ + qfbm(x)τp

f
bm(x)τ +

(
q −

(
qfam(x)τ + qfbm(x)τ

))
gxτ

)
.

Under the no-round-trip-trading constraint, that qaxτqbxτ = 0 for all x, if a trader with reservation

value gxτ chooses a bid contract,

qfam(x)τp
f
am(x)τ + qfbm(x)τp

f
bm(x)τ −

(
qfam(x)τ + qfbm(x)τ

)
gxτ

> qgam(x)τp
g
am(x)τ + qgbm(x)τp

g
bm(x)τ −

(
qgam(x)τ + qgbm(x)τ

)
gxτ .

Therefore, Axτ > −q(fxτ − gxτ ). If she chooses an ask contract, since fxτ > gxτ , a trader with

reservation value fxτ also chooses an ask contract,

qgam(x)τp
g
am(x)τ + qgbm(x)τp

g
bm(x)τ +

(
q −

(
qgam(x)τ + qgbm(x)τ

))
fxτ

> qfam(x)τp
f
am(x)τ + qfbm(x)τp

f
bm(x)τ +

(
q −

(
qfam(x)τ + qfbm(x)τ

))
fxτ .

Therefore, Axτ > −q(fxτ − gxτ ), and

|Axτ | < q |fxτ − gxτ | . (48)

Together, these imply

|Γ(f)− Γ(g)| ≤ γ + δ + q

r + γ + δ + q
|f − g| .

So, Γ is a contraction mapping. The uniqueness of d then follows from the contraction mapping

theorem.

For any dxτ in D, there exists a unique function
∫
wx·dG(x) and therefore a unique reservation

value function wxτ in D.

Given the monotonicity of dxt, for any x and y such that xH ≥ x > y ≥ xL, any solution to the

mapping, Γ(d), satisfies

dxt − dyt =

∫ ∞
t

e−(r+γ+δ+q)τ [x− y + γ(wxτ − wyτ ) (49)

− (qaxτpaxτ + qbxτpbxτ + (q − (qaxτ + qbxτ )) dxτ )

+ (qayτpaxτ + qbyτpbyτ + (q − (qayτ + qbyτ )) dyτ )] dτ

≤
∫ ∞
t

e−(r+γ+δ+q)τ [x− y + γ(wxτ − wyτ ) + q(dxτ − dyτ )] dτ.
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The inequality follows from Property 3 of Lemma 1, that qaxtpaxt + qbxtpbxt − (qaxt + qbxt) dxt is

decreasing in dxt.

wxt − wyt =

∫ ∞
t

e−(r+δ+α)(τ−t) [x+ α (dxτ − dyτ )] dτ. (50)

Let inft∈[0,∞) dxt − dyt = k(x− y). From (50),

wxt − wyt <
1 + αk

r + δ + α
(x− y).

From (49),

dxt − dyt ≤
1 + γ 1+αk

r+δ+α + qk

r + γ + δ + q
(x− y).

By definition of k,

k ≤
1 + γ 1+αk

r+δ+α + qk

r + γ + δ + q
.

Therefore, k is a finite number and is independent of x and y and dxt is Lipschitz continuous in x.

Since dxt is also absolutely continuous in t, following Hugonnier, Lester and Weill (2014) [22]

and the reference therein, dxt is absolutely continuous.

Given d and feasible contract menus, (M0xt,M1xt, U0xt, U1xt)
′ is a fixed point of the following

mapping,

Ξxt




M0

M1

U0

U1



 =



∫∞
t e−(r+δ+γ)(τ−t)−

∫ τ
t qaxsds

[
x+ δ

∫
M0x̃τdG(x̃) + γU0xτ + qaxτ (dxτ − paxτ )

]
dτ∫∞

t e−(r+δ+γ)(τ−t)−
∫ τ
t qbxsds

[
δ
∫
M1x̃τdG(x̃) + γU1xτ + qbxτ (pbxτ − dxτ )

]
dτ∫∞

t e−(r+δ+α)(τ−t) [x+ δ
∫
U0x̃τdG(x̃) + αM0xτ

]
dτ∫∞

t e−(r+δ+α)(τ−t) [δ ∫ U1x̃τdG(x̃) + αM1xτ

]
dτ


The solution to the set of equations is a fixed point of the following mapping

|Ξxt (f)− Ξxt (g)| ≤ min{ δ + γ

r + δ + γ
,

α+ δ

r + α+ δ
} |f − g| .

Therefore, Ξ is a contraction mapping, the solution to the problem is unique given any reservation

value functions d. M1xt−M0xt corresponding to d as a fixed point of Γ also satisfies the equation for

the reservation value function, dxt. Therefore the solution of M0xt and M1xt given the fixed point

of d is consistent with the reservation value function, dxt = M1xt−M0xt. It is then straightforward

to show that the solution of U1xt, U0xt satisfies U1xt − U0xt = wxt = Πxt(d).

42



A.3 Proof for Lemma 3

I only present the proof for the conditions for ask contracts here. The proof for the conditions for

bid contracts is symmetric and is thus omitted.

First, from Lemma 2, dxt is strictly increasing in x and is differentiable almost everywhere.

Necessity. The monotonicity of qaxt and qbxt follows from Lemma 1.

Since x ∈ arg maxm qamt(dxt− pamt) and from Lemma 2, dx is differentiable almost everywhere,

applying the Envelope Theorem where dxt is differentiable, we have qaxt(dxt − paxt) =
∫ x
κt
qastd

′
stds,

which means that qaxtpaxt = qaxtdxt −
∫ x
κt
qastd

′
stds.

Sufficiency. It is optimal for a trader of type x to choose the contract with index x. Comparing

her payoff from choosing contract x and contract m, we have,

qaxt(dxt − paxt)− qamt(dxt − pamt)

=

∫ x

κt

qastd
′
stds−

∫ m

κt

qastd
′
stds− qamt(dxt − dmt)

=

∫ x

m
(qast − qamt)d′stds ≥ 0, ∀m ∈ [xL, xH ].

The first equality uses the condition that qaxtpaxt = qaxtdxt −
∫ x
κt
qastd

′
stds. The inequality uses the

condition that qamt is weakly increasing in m. Q.E.D.

A.4 Dynamic Optimization of Dealers

Solutions satisfying the Maximum Principle. To solve for the dealer’s screening problem,

(23), we first write down the corresponding date-s present value Hamiltonian without the following

constraints: qixs ≥ 0, qixs ≤ q, for all x ∈ [0, q], i = a, b, and the monotonicity constraints for qixs.

The present value Hamiltonian is

Hs,t = Ds,t +

∫
λxs,tf(x, qa·s, qb·s, n

m
1·s, s)dx,∀s ≥ t,

where Ds follows (24), and

f(x, qa·, qb·, n
m
1·s, s) ≡ αnu1xs − δnm1xs + δg(x)

∫
nm1zsdz − γnm1xs − qbxnm1xs + qax(

α

α+ γ
g(x)− nm1xs).
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Define the derivative of Hs with respect to the value of function u·s : [xL, xH ]→ R+ at y to be

∂Hs,t
∂uys

≡
∫
δ(y − x)

∂

∂uys

[
e−r(s−t)(qaxsdxs −

∫ x

κs

qausd
′
usdu− qaxsPs)nm0xs (51)

+ e−r(s−t)(qbxsPs − qbxsdxs −
∫ κs

x
qbusd

′
usdu)nm1xs

+λxs,tf(x, qa·s, qb·s, n
m
1·s, s)] dx,

where δ(y − x) is a Dirac delta function, λxs is the co-state variable for nm1xs.

Because any convex combination of two sequences of {qaxs, qbxs}s≥t , that satisfy feasibility

constraints is also feasible, the choice set for the control variables, trading frequencies, is convex.

So, the optimization problem solving for qaxs and qbxs is well-defined on the infinite-dimensional

vector space. Then, using perturbation to qaxs and qbxs, we can show that equations (52) and (53)

hold. (54) follows from the maximum principle.

∂Hs,t
∂qaxs

= e−r(s−t)
[
(dxs − Ps)nm0xs − d′xs

∫ xH

x
nm0usdu

]
+ λxs,tn

m
0xs = 0, (52)

∂Hs,t
∂qbxs

= e−r(s−t)
[
(Ps − dxs)nm1xs − d′xs

∫ x

xL

nm1usdu

]
− λxs,tnm1xs = 0, (53)

∂Hs,t
∂nm1xs

= e−r(s−t)
(
qbxs(Ps − dxs)− qaxs(dxs − Ps) +

∫ x

xL

qausd
′
usdu−

∫ xH

x
qbusd

′
usdu

)
(54)

− λxs,t(δ + γ + qbxs + qaxs) + δ

∫
λzsg(z)dz = −λ̇xs,t.

λ̇xs,t refers to the derivative of λxs,t with respect to s. In the steady state,

λ̇xs,t = −rλxs,t.

So, using Conjecture 1, for x > κ,

λxs,t = e−r(s−t)
[∫ x

κ (qau − qax) d′udu

r + δ + γ + qax
+ δ

∫
λzsdG(z)

r + δ + γ + qax

]
. (55)

Similarly, for x < κ,

λxs,t = e−r(s−t)
[∫ κ

x (qbx − qbu) d′udu

r + δ + γ + qbx
+ δ

∫
λzsdG(z)

r + δ + γ + qbx

]
. (56)

Combining (55) and (56),

∫
λxs,tdG(x) = e−r(s−t)

∫ xH
κ

∫ x
κ (qau−qax)d′udu
r+δ+γ+qax

dG(x) +
∫ κ
xL

∫ κ
x (qbx−qbu)d′udu
r+δ+γ+qbx

dG(x)

1−
∫

δ
r+δ+γ+qbx+qax

dG(x)
.
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In the symmetric equilibrium, ∫
λxs,tdG(x) = 0.

Substitute (55) into (52), we have

v̂x = 0, where

v̂x =

∫ x
κ (r + δ + γ + qau)d′udu

r + δ + γ + qax
−
∫ xH
x nm0udu

nm0x
d′x.

We now show that Cx is continuously differentiable if g(x) is continuous and therefore vx is a

continuous and increasing function in x. This is because v̂x is continuous except at countable points

of x where qax increases discontinuously. But v̂x strictly decreases at those points because

∂v̂x
∂qax

= −
∫ x
κ (r + δ + γ + qas) d

′
sds

r + δ + γ + qax

−
∫ xH
x nm0sds

g(x)α(α+δ+γ)
α+γ (1−A)

r + α+ δ + γ

r + δ

α+δ
δ r + (α+ δ + γ) rα

δ(r+δ)(
r + δ + α+ γ + r+δ+α

r+δ qax

)2 < 0.

Therefore, v̂x is not convex at the neighborhood of those points. Specifically, denote any of those

points as z. There exists an open neighborhood around z, denoted, N(z), such that for any ω ∈ (0, 1)

zL, zH ∈ N(z), zL < zH , such that ωzL + (1 − ω)zH = z, ωĈzL + (1 − ω)ĈzH < Ĉz, which implies

that Cz < Ĉz. Then, there exists a continuously differentiable function C̃ such that Cx ≤ C̃x ≤ Ĉx

for any x. Following Kirchheim and Kristensen (2001)[24], the convex envelope of a continuously

differential function is continuously differentiable. Therefore, vx ≡ C ′x is a continuously increasing

function.

Sufficiency for optimality. The maximum principle only provides the necessary condition for

optimality. To verify that the conditions are sufficient, I adapt a method from Chapter 5.1.4

of Liberzon (2012)[30], which is about the sufficient condition for optimality of solutions to HJB

equations. The key is that the optimality condition for trading frequencies is sufficient for dealers’

subproblem, given any values of state and costate variables. Then, we can show that following

the path of distributions corresponding to an alternative path of trading frequencies would lower

dealer’s expected profit.

Denote the date-t present value of a dealer’s date-s flow profit to Ds,t(qa·s, qb·s, nm1·s), emphasizing

that the value is a function of control and state variables. Notice that for all distributions, nm1·s
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and the corresponding co-state variable λxs,t(nm1·s, s), satisfying the maximum principle, the optimal

trading frequencies, qa·s, qb·s, dominate any other feasible trading frequencies, q̃a·s, q̃b·s. That is,

Ds,t(qa·s, qb·s, nm1·s) +

∫
λxs,t(n

m
1·s)f(x, qa·s, qb·s, n

m
1·s, s)dx (57)

≥Ds,t(q̃a·s, q̃b·s, nm1·s) +

∫
λxs,t(n

m
1·s)f(x, q̃a·s, q̃b·s, n

m
1·s, s)dx.

Denote dealer’s date-t expected payoff from date s on following the solution satisfying the maximum

principle to be Ds,t(n
m
1·s), all s ≥ t. Denote dealer’s date-t expected payoff from date s on following

an alternative path of trading frequencies and the corresponding distributions, {q̃a·s, q̃b·s}s≥t and

{ñm1·s}s>t, given ñm1·t = nm1·t, to be D̃s,t(n
m
1·s).

Dealer’s expected payoff is solved by the following Lagrangian

Ds,t(n
m
1·s) =

∫ ∞
s

{
Dτ,t(qa·τ , qb·τ , nm1·τ ) +

∫
λxτ,t(n

m
1·τ ) [f(x, qa·τ , qb·τ , n

m
1·τ , τ)− ṅm1xτ ] dx

}
dτ

=

∫ ∞
s

{
Dτ,t(qa·τ , qb·τ , nm1·τ ) +

∫ [
λxτ,t(n

m
1·τ )f(x, qa·τ , qb·τ , n

m
1·τ , τ) + nm1xτ λ̇xτ,t

]
dx

}
dτ

+

∫
λxs,tn

m
1xsdx− lim

τ→∞

∫
λxτ,tn

m
1xτdx.

The second equality is derived using integration by parts. Since limt→∞ λxt,s = 0 and nm1xt is

bounded, limt→∞
∫
λxt,sn

m
1xtdx = 0.

∂Ds,t(n
m
1·s)

∂nm1xs
= λxs,t, (58)

∂Ds,t(n
m
1·s)

∂s
= −Ds,t(qa·s, qb·s, nm1·s)−

∫
λxs,tf(x, qa·s, qb·s, n

m
1·s, s)dx. (59)

From (54), the value function has the following property

Dτ,t(qa·τ , qb·τ , nm1·τ ) +

∫ [
λxτ,t(n

m
1·τ )f(x, qa·τ , qb·τ , n

m
1·τ , τ) + nm1xτ λ̇xτ,t

]
dx = 0.

So,

Ds,t(n
m
1·s) =

∫
λxs,tn

m
1xsdx. (60)

Using transversality conditions, limt→∞Dt(n
m
1·t) = limt→∞ D̃t(n

m
1·t) = 0.

Dt,t(n
m
1·t) = −

∫ ∞
t

dDs,t(n
m
1·s)

ds
ds, (61)

D̃t,t(n
m
1·t) = −

∫ ∞
t

dD̃s,t(ñ
m
1·s)

ds
ds. (62)
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dD̃s,t(ñ
m
1·s)

ds
=
∂D̃s,t(ñ

m
1·s)

∂s
+

∫
∂D̃s,t(ñ

m
1·s)

∂nm1xs
˙̃nm1xsdx

= −Ds,t(q̃a·s, q̃b·s, ñm1·s)−
∫
λxs,t(ñ

m
1·s)f(x, q̃a·s, q̃b·s, ñ

m
1·s, s)dx+

∫
λxs,t(ñ

m
1·s) ˙̃nm1xsdx

= −Ds,t(q̃a·s, q̃b·s, ñm1·s)−
∫
λxs,t(ñ

m
1·s)f(x, q̃a·s, q̃b·s, ñ

m
1·s, s)dx−

∫
λ̇xs,t(ñ

m
1·s)ñ

m
1xsdx

+

∫
d

ds
[λxs,t(ñ

m
1·s)ñ

m
1xs] dx

= −Ds,t(q̃a·s, q̃b·s, ñm1·s)−
∫
λxs,t(ñ

m
1·s)f(x, q̃a·s, q̃b·s, ñ

m
1·s, s)dx+

∫
∂Hs,t
∂nm1xs

ñm1xsdx

+

∫
d

ds
[λxs,t(ñ

m
1·s)ñ

m
1xs] dx

= −Ds,t(q̃a·s, q̃b·s, ñm1·s)−
∫
λxs,t(ñ

m
1·s)f(x, q̃a·s, q̃b·s, ñ

m
1·s, s)dx

+Ds,t(qa·s, qb·s, nm1·s) +

∫
λxs,t(n

m
1·s)f(x, qa·s, qb·s, n

m
1·s, s)dx

+

∫
d

ds
[λxs,t(ñ

m
1·s)ñ

m
1xs] dx.

The second equality follows from (58) and (58). The fourth equality uses the necessary condition

(54). Because of (57), from the last equality,

dD̃s,t(ñ
m
1·s)

ds
≥
∫

d

ds
[λxs,t(ñ

m
1·s)ñ

m
1xs] dx =

dDs,t(ñ
m
1·s)

ds
. (63)

The equality follows from (60). Together with (61) and (62), (63) implies D̃t,t(n
m
1·t) ≤ Dt,t(n

m
1·t).

Hence the sufficiency.

A.5 Proof of the Existence Theorem, Theorem 1

The proof consists of two parts. First, we will show that there exists an optimal stationary contract

menu taking the market price as given. Second, we will show there exists a price for the competitive

interdealer market that clears the market.

Denote the market price to be P . For any price P such that P = dκ for κ ∈ (xL, xH), we will give

the proof for the existence of a stationary ask contract menu. The proof for the bid contract menu

follows symmetrically. Specifically, we will show that there exists a (qa·, pa·) such that qax ∈ ϕx(qa·)

for all x ∈ [κ, xH ], and pax follows equation (22) without the time subscript.

I use Kakutani-Fan-Glicksberg Corollary (P583, Section 17.55 of Aliprantis and Border (2006)[2])

to prove this claim. The corollary states that for a nonempty compact convex subset of a locally
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convex Hausdorff space, X, and a correspondence, ϕ : X ⇒ X, that has closed graph and nonempty

convex values, there exists a nonempty and compact set of fixed points of ϕ.

The set of functions, K, in this context is the set of increasing functions in the space [κ, xH ][0,q],

K ≡ {qa· : [κ, xH ]→ [0, q], qax is increasing in x}. First, by Tychonoff Product Theorem (P52, 2.61

of Aliprantis and Border (2006)[2]), [κ, xH ][0,q] is a compact set in the product topology. Since K

is a closed and convex subset of the set, K is compact and convex in the product topology .

Clearly, the correspondence has nonempty convex values. What remains to show is that ϕ has

closed graph. In other words, for a sequence of {qna·}∞n=1 such that qna· ∈ K and limn→∞ q
n
a· ∈ K

in the product topology, we need to show that for any sequence {yn· }∞n=1such that yn· ∈ ϕ(qna·), the

limit exists in product topology and y· ≡ limn→∞ y
n
· ∈ K.

To show this, first notice that virtual value v̂n· that corresponds to qna· converges to the virtual

value v̂· that corresponds to qa·. From (29), v̂nx is a function of qnax and integrals of qnas on [κ, x] and

[x, xH ]. Since qna· converges pointwise to qa· and qna· is uniformly bounded, qna· also weakly converges

to qa·, which implies that the integrals of qnas on [κ, x] and [x, xH ] also converge to the integrals of

qax on [κ, x] and [x, xH ]. Therefore, v̂n· converges pointwise to v̂·. Using similar arguments, we can

show Ĝn· converges pointwise to Ĝ. Therefore, Gn· converges pointwise to G·.

Because vnx is continuous and weakly increasing in x, there exist closed intervals [an, bn], [a, b] ⊆

[κ, xH ], such that vnx = 0 if and only if x ∈ [an, bn] and vx = 0 if and only if x ∈ [a, b] ⊆

[κ, xH ]. Because vnx converges pointwise to vx, a ≤ limn→∞ a
n and limn→∞ b

n ≤ b. Therefore,

ϕ(limn→∞ q
n
a·) ⊆ ϕ(qa·). Because yn· ∈ ϕ(qna·) and y· ∈ ϕ(limn→∞ q

n
a·), y· ∈ ϕ(qa·).

So far we showed that taking κ as given there exists a fixed point. Because we assume that

A = 1
2 and the distribution function g(x) is symmetric, there exists an equilibrium trading frequency

function qbx = qa,2xM−x, which guarantees that the market clears at κ = xM .

From (29), v̂κ < 0 and v̂xH > 0. Because
∫ x
κ (r+ δ+γ+ qau)d′udu and

∫ xH
x nm0udu are continuous

in x, v̂x < 0 for x close to κ and v̂x > 0 for x close to xH . vx inherits the property. So, the fixed

point must satisfy the property that qax = 0 for x close to κ and qax = q for x close to xH . Likewise,

qbx = 0 for x close to κ and qbx = q for x close to xL.

Using property 1 of Lemma 1, qax = 0 for all x < κ. Likewise, qbx = 0 for all x > κ. This

confirms Conjecture 1 and completes the proof. Q.E.D.
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A.6 Proof of Corollary 1

From Theorem 1, we can show that x̄b < κ < xa. This means that dealers must earn positive profits.

As long as dealers earn positive profits, there must exists non-trivial bid-ask spread. No trade takes

place for traders with preference type x ∈
[
x̄b, xa

]
. So, there are delays due to endogenous trading

frictions and trading volume must decrease.

Under efficient allocation, there is no delay in trade for any trader. Denote κ∗ to be the threshold

type for the efficient allocation. If κ∗ ≥ κ, the flow of asset supply from sellers is smaller than the

trading flow under complete information, because there exists trading delay for some seller types.

Likewise, if κ∗ < κ, the flow of asset demand from buyers is smaller than the trading flow under

complete information. Therefore, the trading flow with asymmetric information must be lower than

that with efficient allocation. Q.E.D.

A.7 Analytical Example 1 (γ = 0)

I present the solution for ask contracts here. The solution for bid contracts follows the same

procedure. For x ∈ (xa, x̄a), qax ∈ (0, q). So, v̂x = 0, v̂x satisfying (29). Suppose the solution to qax

is strictly increasing in this region, a conjecture to be verified later, then, from (29), we have∫ x
κ (r + δ + qas) d

′
sds

(r + δ + qax) d′x
=

∫ xH
x ñm0sds

ñm0x
,∀x ∈ (xa, x̄a), (64)

where

d′x =
1

r + δ + qax
,

ñm0x = g(x)
δ

δ + qax
(1−A).

Let F (x) =
∫ xH
x

g(s)
δ+qas

ds. The ordinary differential equation (64) can be simplified to be

d

dx
lnF (x) = − 1

x− κ
,∀x ∈ (xa, x̄a),

F (x̄a) =
1−G(x̄a)

δ + q
.

The boundary condition at x = x̄a uses the fact that qax = q, for all x > x̄a. From the simplified

ODE, we can solve for qax. ∀x ∈ (xa, x̄a),

qax = g(x)
(x− κ)2

x̄a − κ
δ + q

1−G(x̄a)
− δ. (65)
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At x̄a, qax̄a = q. So, from equation (65), x̄a satisfies the following equation: 1 = g(x̄a)(x̄a−κ)
1−G(x̄a) . At xa,

qaxa = 0. From equation (65), xa satisfies the following equation: δ
δ+q =

(
xa−κ
x̄a−κ

)2
g(xa)
g(x̄a) . The spread

pax − P satisfies the following equation,

qax(pax − P ) =

∫ x

κ
(qax − qas)d

′
sds

=

∫ x

xa

g(x) (x− κ)2 − g(s)(s− κ)2

g(x̄a) (x̄a − κ)2

δ + q

r + g(s)
g(x̄a)

(
s−κ
x̄a−κ

)2
(δ + q)

ds+ qax
(xa − κ)

r + δ
,

which implies that

pax − P =
xa − κ
r + δ

+
1

qax

∫ x

xa

g(x) (x− κ)2 − g(s)(s− κ)2

g(x̄a) (x̄a − κ)2

δ + q

r + g(s)
g(x̄a)

(
s−κ
x̄a−κ

)2
(δ + q)

ds.

If r � 1,

pax − P =
xa − κ
δ

+
1

qax

∫ x

xa

[
g(x) (x− κ)2

g(s)(s− κ)2
− 1

]
ds.

A.8 Bunching equilibrium in Example 1

Assume G ∈ ∆[0, 1] and G(x) = x.

Suppose there exits xa ∈ (κ, 1) such that qax = 0 for x ∈ [κ, xa) and qax = q for x ∈ (xa, 1].

Then, for x < xa, d′x = 1
r+δ , n

m
0x = 1 − A. For x > xa, d′x = 1

r+δ+q , n
m
0x = δ

δ+q (1 − A). From

equation 29, for x < xa,

v̂x = (x− 1

2
)

1

r + δ
− 1

r + δ

(
xa − x+ (1− xa)

δ

δ + q

)
=

2

r + δ
x− 1

2(r + δ)
− 1

r + δ

δ + qxa
δ + q

=
1

r + δ

(
2x− δ + qxa

δ + q
− 1

2

)
and for x > xa,

v̂x =
x− xa
r + δ + q

+
r + δ

r + δ + q

xa − 1
2

r + δ
− 1

r + δ + q
(1− x)

=
1

r + δ + q

(
2x− 3

2

)
Because v̂x is strictly increasing on intervals [κ, xa) and (xa, xH ], Ĝ(x) =

∫ x
κ v̂xdx is convex on

[κ, xa) and (xa, xH ], but Ĝ(x) is not convex in the neighborhood of xa.
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Then, there must exist a, b, such that κ ≤ a < xa < b ≤ xH , and

v̂x = v, for x = a, b∫ b

a
v̂xdx = v(b− a)

Because ϕ(xa) = [0, q], it must be that v = 0. So, a, b, xa are solved jointly by the following

equations

v̂x = 0, for x = a, b (66)∫ b

a
v̂xdx = 0. (67)

v̂a = 0 iff a = 1
4 + 1

2
δ+qxa
δ+q . We can check that a < xa if and only if 3δ+q

2(2δ+q) ≤ xa. v̂b = 0 iff b = 3
4 .

And xa < 3
4 . We can check that 3δ+q

2(2δ+q) <
3
4 . From equation (67)

1

r + δ

[
xa −

(
1

4
+

1

2

δ + qxa
δ + q

)]2

=
1

r + δ + q

(
3

4
− xa

)2

.

xa =

[
1 +

√
r + δ

r + δ + q

2δ + q

2(δ + q)

]−1 [
3

4
+

√
r + δ

r + δ + q

(
1

4
+

1

2

δ

δ + q

)]
.

A.9 Analytical Example 2 (Discrete Distribution)

Assume that the preference type follows a discrete distribution on xL < y < xM < z < xH .

Pr(x = xL) = Pr(x = xH) = π1, Pr(x = y) = Pr(x = z) = π2. A = 1
2 . xM = 1

2(xL + xH),

xM − y = z − xM . Because the distribution is symmetric, I will focus on solving the ask contracts.

Because of symmetry, κ = xM = P . Dealers earn no profit selling assets to traders of type xM . So,

qaκt = 0. And there is no point to delay the trade with traders of type xH . So, qaxH t = q. Because

type z traders are the lowest type dealers are going to sell assets to, pazt = dzt. And since it is optimal

for dealers to make the IC constraint of type xH traders bind, q(dxHt − pxHt) = qazt(dxHt − dzt).

The first order condition of the problem at the steady state is

(dz − P )nm0z
r + δ + γ

r + δ + γ + qaz
− (dxH − dz)nm0xH − γ1az + γ0az = 0,

where nm0z = π2
α

α+γ
α+δ+γ

α+δ+γ+α+δ
δ
qaz

(1−A). Assume that r � δ.

qaz =

[
z − xM
xH − z

π2

π1

(α+ δ)
(
1 + q

δ

)
+ γ

α+ δ + γ
− 1

]
(δ + γ) .
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A.10 Proof of Corollary 3

The proof is derived from equation (34). When α� 1, qaz =
(
z−xM
xH−z

π2
π1
− 1
)

(δ + γ) . As in Example

2, I assume that qaz ∈ (0, q), which implies that z−xM
xH−z

π2
π1

> 1. Therefore, qaz is increasing in γ.

When α� δ, qaz =
(
z−xM
xH−z

π2
π1
− 1
)

(δ + γ) + z−xM
xH−z

π2
π1
q. If qaz ∈ (0, q), it must be that z−xM

xH−z
π2
π1
< 1.

Therefore, qaz is decreasing in γ. Q.E.D.

A.11 Proof for Corollary 4

For δ1, δ2 such that δ2 > δ1 > 0, denote the trading frequency and cutoffs of δj by qaxj , x̄aj and

xaj . From equation (32) and (33), x̄a1 = x̄a2 , xa1 < xa2. For all x ∈ (xa2, x̄
a
2), d

dx(qax2 − qax1) =

g(x)
g(x̄a)

(
x−xM
x̄a−xM

)2
(δ2 − δ1) > 0. Since qax2− qax1 < 0 at xa2 and qax2− qax1 = 0 at x = x̄a2, qax2 < qax1

for all x ∈ (xa2, x̄
a
2). Q.E.D.

A.12 Proof for Corollary 5

From equation (34), qaz = (φ − 1)(δ + γ) + q ϕ
1− αγ

(α+δ)(γ+δ)
. For qaz to be between 0 and q, φ < 1.

Therefore, qaz is decreasing in δ. Q.E.D.

A.13 Proof for Corollary 6

The Corollary holds for Example 2, according to equation (34). For Example 1, consider ζ1 and ζ2

such that ζ2 > ζ1 > 1. Denote the trading frequency and cutoffs corresponding to ζj by qaxj , x̄aj

and xaj .

According to equation (32), x̄a2 > x̄a1. According to equation (33), xa2 > xa1 because

xa2 − xM =

(
δ

δ + q

) 1
2+ζ2

(x̄a2 − xM ) >

(
δ

δ + q

) 1
2+ζ1

(x̄a1 − xM ) = xa1 − xM .

For any x ∈ [xa2, x̄
a
1], according to equation (31),

qax2 =

(
x− xM
x̄a − xM

)2+ζ2

(δ + q)− δ <
(
x− xM
x̄a − xM

)2+ζ1

(δ + q)− δ = qax1.

Q.E.D.
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A.14 Proof of Lemma 5

We focus without loss of generality on the ask contracts. By Lemma 4

Fa(R0x) = qax/q, fa(R0x)R′0x = q′ax/q,

and ∫ R0x

R0κ

RdFa(R) = paxqax/q,

q

∫ R0x

R0κ

RdFa(R) = (r + δ + qax + γ)

[
P +

∫ x

κ

1 + γe′s
r + δ + qas + γ

ds

]
− (x+ δEd+ γex) ,

qR0xfa(x)R′0x = q′ax

[
P +

∫ x

κ

1 + γe′s
r + δ + qas + γ

ds

]
.

Since R′0xf0(R0x) = q′ax/q, we have, R0x = P +
∫ x
κ

1+γe′s
r+δ+qas+γ

ds. Since d′x =
1+γ 1

r+α+δ

r+δ+qbx+qax+γ r+δ
r+α+δ

and P = dκ, P +
∫ x
κ

1+γe′s
r+δ+qas+γ

ds = dκ +
∫ x
κ d
′
sds = dx. Therefore, R0x = dx = M1x −M0x.Q.E.D.
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