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Abstract: Repeated communication in networks is often considered to impose large

information requirements on individuals, and for that reason, the literature has resorted

to use heuristics, such as DeGroot’s, to compute how individuals update beliefs. In

this paper we propose a new heuristic which we term the Bayesian Peer Influence (BPI)

heuristic. The BPI accords with Bayesian updating for all (conditionally) independent

information structures. More generally, the BPI can be used to analyze the effects of

correlation neglect on communication in networks. We analyze the evolution of beliefs

and show that the limit is a simple extension of the BPI and parameters of the network

structure. We also show that consensus in society might change dynamically, and that

beliefs might become polarized. These results contrast with those obtained in papers that

have used the DeGroot heuristic.

1 Introduction

Repeated communication in groups and more generally in networks is often considered

to impose large informational requirements on individuals. Individuals may be unaware

of the structure of the network, so that while they know who they communicate with,

they might not know their neighbors’neighbors. This implies that it may be very diffi cult

to trace the path that a piece of information takes in an environment with repeated

communication.

The network literature has typically taken one of two avenues. One avenue is the fully

rational approach whereby individuals are fully aware of the network and the equilibrium

and update using Bayes rule (see Acemoglu et al 2014). The second avenue is to assume

that individuals follow a particular heuristic when updating. A leading example is the

DeGroot heuristic, where individuals average their’s and others’beliefs, as in Golub and

Jackson (2010) and De Marzo et al (2003). These are two polar ways to model information

diffusion, one based on full rationality and the other based on an adhoc heuristic.
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Department of Economics, LSE, Houghton St. WC2A 2AE, UK; r.razin@lse.ac.uk. We thank Erik

Eyster, Francesco Nava, Tristan Gagnon-Bartsch, Matthew Rabin and Alireza Tahbaz-Salehi for helpful

discussions. This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 681579.
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In this paper we analyze information diffusion in networks by using a new heuristic

which is based on rational foundations for all information structures which are condi-

tionally independent. Specifically, we assume a simple model of communication in which

individuals sincerely transmit their beliefs to each other.2 Sobel (2014) and Levy and

Razin (2016) show that if individuals believe that their marginal information sources gen-

erate (conditionally) independent signals, then upon communication, Bayesian updating

yields a belief that is proportional to a simple multiplication of their posterior beliefs.

Thus, if p(ω) is a common prior about a state of the world ω ∈ Ω (finite), and qi(ω) is

the posterior belief of individual i that the state is ω following some signal realisation, the

resulting belief following communication of posteriors in a group of n such individuals is

1
p(ω)n−1

∏
i∈N

qi(ω)∑
v∈Ω

1
p(v)n−1

∏
i∈N

qi(v)
,

where the formula can be easily extended to non-common priors, as well as to more

general perceptions of correlation (Levy and Razin 2016). In this paper we adopt this for-

mula as an updating heuristic, which we term the Bayesian Peer Influence (BPI) heuristic.

We analyse information diffusion in networks using the BPI.3

There are several advantages to using the BPI. First, it is a heuristic which is rational for

all environments in which the information sources of individuals are truly (conditionally)

independent. A benefit of using the BPI in these environments is that it is “information

structure free”: Both the modeler and individuals in the network do not need to know

the exact information structures of others in order to compute the properties of beliefs in

the network. We therefore do not need to make any specific assumptions about informa-

tion structures. Second, in other, more complicated, environments, the BPI is simple to

compute. The BPI is an order-free heuristic, which -as we show- lends itself easily to the

computation of limit beliefs.

The BPI also allows us to isolate the implications of correlation neglect arising from

repeated communication from other types of incorrect information processing biases. Cor-

relation neglect has recently attracted attention in the literature and is a natural bias to

arise in network communication.4 As information flows in a network, individuals may be

2The assumption of sincerity is quite reasonable in the context of information diffusion in networks;

as is the case in most of the literature, for such environment it is common to assume that individuals are

not strategic (see the survey in Jackson 2011). The assumption that people communicate their beliefs is

motivated by the diffi culty to remember and communicate the exact details of information structures.
3The BPI is used for the case of binary states and particular information structures by Duffi e and

Manso (2010) and Eyster and Rabin (2010, 2014).
4Ortoleva and Snowberg (2015) analyze the effect of correlation neglect on the polarisation of beliefs.

De Marzo et al (2003) and Gagnon-Bartsch and Rabin (2015) study how it affects the diffusion of
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unaware that they are exposed to the same information they have been exposed to in the

past, and thus if they treat information as independent, correlation neglect is likely to

arise. When using the BPI to analyze repeated communication in a network, we are in

effect assuming that correlation neglect is the only departure from rationality.

Our main results are the following. First, we characterise the limit beliefs of repeated

communication in networks and show that they are easily computed. Similarly to Golub

and Jackson (2010) and De Marzo et al (2003) the limit beliefs depend both on the

initial information in the network and the structure of the network. Beliefs converge

to the mode of a belief that extends the BPI to account for the initial beliefs and the

eigenvector centrality of the individuals in the network. In particular, beliefs converge to

the mode of Πj∈N(qj0(ω))α
j
where qj0(ω) is the initial belief of individual j and αj is the

j′th element of the vector α that is parallel to the Perron—Frobenius eigenvector.

The result about the mode allows us to provide sharp predictions about the limit beliefs,

which qualitatively differ from those obtained under the DeGroot heuristic. Specifically, a

recent theoretical and experimental literature has focused on the question of whether po-

larised beliefs in society arise because of correlation neglect (see for example Glaeser and

Sunstein 2009, Schkade et al 2000, and Sobel 2014 for an alternative view). In our model

polarisation arises as beliefs become degenerate in the limit. Using the BPI we show how

polarisation depends both on the network configuration as well as on the nature of the

initial belief. Relatedly, the BPI also implies that consensus might change dynamically;

that is, even when all have the same beliefs -as long as these are not degenerate- indi-

viduals will continue to update from each other. These two results cannot arise within

the DeGroot framework where limit beliefs are always in the convex hull of initial group

beliefs and in which when consensus is reached there is no further updating. This im-

plies that the BPI can account for phenomena such as “Groupthink”whereby even group

homogeneity implies polarisation.

We show that with the BPI an individual’s influence on the group depends both on

his centrality but also on the quality of his information. In particular, the variance of

an individual’s belief is important. An individual holding beliefs with high variance has

little effect on others’beliefs. Again, this contrasts with the DeGroot heuristic under

which only the expectation of an individual’s belief (or some exogenous parameters) can

determine his influence. For example, a uniform belief will imply that an individual has

no influence on others in our model, no matter his centrality in the network. In contrast,

in the DeGroot model, such an individual will be influential as long as his expectation is

information in social networks. Glaeser and Sunstein (2009) and Levy and Razin (2015a, 2015b) explore

the implications for group decision making in political applications. Recent experimental evidence is in

Eyster and Weizsacker (2011), Kallir and Sonsino (2009) and Enke and Zimmermann (2013).
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different than others’and the higher is his centrality in the network.

Our paper relates to several strands of the literature. We contribute to the literature

on information diffusion in networks (Golub and Jackson 2010, 2012) by suggesting a new

heuristic, which, as in machine learning, is motivated by a “Naive-Bayes”approach. Our

analysis complements a recent paper by Molavi, Tahbaz-Salehi and Jadbabaie (2015).

Whereas we assume rationality up to correlation neglect, Molavi et al (2015) take an

axiomatic approach, focusing on imperfect recall. They characterize a family of heuristics

which embed the BPI as a special case. Although our focus is on communication, our

paper is also related to the social learning literature which studies how individuals learn

from others’actions (e.g., Bala and Goyal 1998). We show that society can converge to

be fully confident in one state of the world (the mode of the adjusted BPI), which is not

necessarily the true state of the world.5

Some recent experimental literature examines the predictions of the theory of infor-

mation diffusion in networks, mainly comparing the fully Bayesian updating with the

DeGroot heuristic. Choi et al (2012) find that the Bayesian model fits the data well

in three-player networks, although such networks are perceived to lack statistical power

to distinguish between the DeGroot and the fully Bayesian model. Grimm and Mengel

(2014) show that the DeGroot model is better than the Bayesian at predicting correct

guesses, while the Bayesian model is better at predicting whether consensus arises. They

conclude that agents are semi-Bayesian in the sense that they do take into consideration

the network structure when updating, albeit in a rudimentary way. Mueller-Frank and

Neri (2013) show that consensus is hard to achieve when agents are heterogenous, even

when the network is strongly connected.6 Our analysis also falls between the Bayesian

model and the naive one, and our results illustrate how consensus can be dynamic which is

an interesting avenue to explore in future experiments. Finally, Philippos et al (2017) con-

sider how individuals update when they consider different issues (our analysis focuses on a

unidimensional state of the world) and show how the type of unidimensional disagreement

that arises depends on the communication channels.

5See also Eyster and Rabin (2010) and Gagnon-Bartch and Rabin (2015). Other papers such as

Guarino and Jehiel (2013) show that society can still learn the truth, even in the presence of information

processing biases.
6Both Grimm and Mengel (2014) and Mueller-Frank and Neri (2013) suggest alternative updating

approaches, as we do here. We differ as our heuristic is always Bayesian in the first period, and departs

from rationality only because of correlation neglect.
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2 The Model

Information and initial conditions: There is a finite set N of individuals who have

a common uniform prior on the state ω ∈ Ω, where Ω is finite. The analysis can be

easily extended to non-uniform prior (as shown in the introduction) as well as to known

non-common priors. Each individual j ∈ N holds an initial posterior qj0(ω). We assume

that qj0(ω) > 0 for any ω ∈ Ω and any j, and that these initial posterior beliefs were

derived by the individuals observing signals coming from some (conditionally) independent

information sources. Let q0= (qj0(.))j∈N denote the vector of original beliefs.

The network and communication: The individuals inN are organized in a network.

Let T denote the matrix of links where Tij = 1 if there is a link between i and j and 0

otherwise. For simplicity we assume that the links are non-directed. Note also that Tii = 1.

At any period, individuals i, j communicate their beliefs to each other if Tij = 1. After

each period k ≥ 1, individual i updates her belief using the BPI heuristic (see below) to a

new posterior qik(ω). When communicating at period k + 1, individuals truthfully reveal

their beliefs, qik(ω).

The Bayesian Peer Influence (BPI) heuristic: Let qik= (qjk(.))j∈N |Tij=1 denote the

vector of beliefs observed by individual i at period k+1. If the individual thinks that these

beliefs have been derived from independent information sources, then Bayesian updating

implies that after observing qik, individual i updates to the belief:
7

qik+1(ω) =

∏
j∈N |Tij=1

qjk(ω)∑
v∈Ω

∏
j∈N |Tij=1

qjk(v)
.

Note that the BPI heuristic is order-free, information-structure free, and rational when-

ever all beliefs stem from conditionally independent information sources. While in the

first stage of communication information is truly independent across individuals, this will

not be the case in the second period as information in the network will become repeated.

We assume that individuals use the BPI at any stage. Thus, while belief updating is fully

rational in the first stage of communication, correlation neglect arises at later stages and

updating is then not fully Bayesian.

3 Limit beliefs

We now find conditions on the environment under which the limit beliefs exist and char-

acterise them. Formally, the primitives of the environment are the network structure and
7See Levy and Razin (2016) Proposition 1 and Sobel (2014) Proposition 5.
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the set of original beliefs, (T,q0). Note that at period k, the individual will have been

exposed to the posterior of j a number of times equal to all the possible paths in the

network from j to i that involve up to k steps. If individuals use the BPI, the order in

which information was heard does not matter. In matrix notation, the posterior after k

rounds can be written as,

qik+1(ω) =
Πi∈N(qi0(ω))T

k
ij∑

v∈Ω Πi∈N(qi0(v))T
k
ij

, (1)

where Tk = T×T× ...×T︸ ︷︷ ︸
k times

.

Therefore, to study the convergence of this process we need to study the convergence

of Tk. If T is irreducible and aperiodic, then it is primitive and we can use the Perron—

Frobenius Theorem about the convergence of primitive matrices.

In particular let α = (α1, ..., αn) ∈ Rn+ be the Perron-Frobenius eigenvector of T. The
following is an assumption about q0 and α.

Assumption 1 arg maxω∈Ω Πj∈N(qj0(ω))α
j
is unique.

Note that Assumption 1 will be satisfied generically when randomly choosing q0 and

T.

Before moving on to our main result, we illustrate with examples what happens when

Assumption 1 is violated.

Let Ω = {0, 1}. Consider a network with four agents N = {1, 2, 3, 4} where the agents
are on a circle and each agent is connected to her two neighbours, i.e.,

T′ =


1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1

.
This network is connected and aperiodic and its Perron-Frobenius eigenvector is (1, 1, 1, 1).

Example 1 (beliefs never change and remain at q0) : Let the initial beliefs be q0(1) =

(3
4
, 3

4
, 1

4
, 1

4
). Note that with these beliefs and network matrixT′, Πj∈N(qj0(1))α

j
= Πj∈N(qj0(0))α

j
=

(3
4
)2(1

4
)2 and so Assumption 1 is not satisfied. For this starting point, q0, updating ac-

cording to the BPI heuristic leads to a second period vector of posterior beliefs which is

the same as q0. To see this take agent 2 for example. At the end of period 1 his belief

will be
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q2
1(1) =

q1
0(1)q2

0(1)q3
0(1)

q1
0(1)q2

0(1)q3
0(1) + q1

0(0)q2
0(0)q3

0(0)
=

3
4

3
4

1
4

3
4

3
4

1
4

+ 1
4

1
4

3
4

=
3

4
= q2

0(1)

Similarly this will be the case for the others, as the neighbours’ information always

cancels out. So while each agent’s beliefs converges, these beliefs do not converge to the

same one.

Example 2 (beliefs alternate and never converge): Assume the same state space and
network as above but now consider the initial beliefs q0(1) = (3

4
, 1

4
, 3

4
, 1

4
). Note again

that with these beliefs and network matrix T′, Πj∈N(qj0(1))α
j

= Πj∈N(qj0(0))α
j

= (3
4
)2(1

4
)2

and so Assumption 1 is not satisfied. Note that for this starting point, q0, updating

according to the BPI heuristic leads to a second period vector of posterior beliefs which

is a permutation of q0. To see this take agent 2 for example. At the end of period 1 his

belief will be

q2
1(1) =

q1
0(1)q2

0(1)q3
0(1)

q1
0(1)q2

0(1)q3
0(1) + q1

0(0)q2
0(0)q3

0(0)
=

3
4

1
4

3
4

3
4

1
4

3
4

+ 1
4

3
4

1
4

=
3

4
>

1

4
= q2

0(1)

The opposite will happen for agent 3:

q3
1(1) =

q4
0(1)q3

0(1)q4
0(1)

q4
0(1)q3

0(1)q4
0(1) + q4

0(0)q3
0(0)q4

0(0)
=

1
4

3
4

1
4

1
4

3
4

1
4

+ 3
4

1
4

3
4

=
1

4
<

3

4
= q3

0(1)

Therefore, at each period beliefs permutate, with each agent acquiring the beliefs of his

(left) neighbour So in this case again beliefs do not converge.

We are now ready to state our main result.

Proposition 1 Assume that T is connected (irreducible) and aperiodic and that q0 and

T satisfy Assumption 1. Then there exists a vector α = (α1, ..., αn) ∈ Rn+ such that: (i)
the limit posterior beliefs of all players converge to a degenerate belief on the maximiser

of Πj∈N(qj0(ω))α
j
. (ii) the vector α is parallel to the Perron-Frobenius eigenvector of T.

To see the intuition of the result, consider the complete network. Note that after the

first period of communication, all would have the same beliefs, at q1(ω) ≡ Πi∈N qi0(ω)∑
ν∈Ω Πi∈N qi0(ν)

.
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After the second period, beliefs would be at q2(ω) ≡ (q1(ω))n∑
ν∈Ω(q1(ν))n

and more generally at

the k′th period, beliefs would be at qk(ω) ≡ (q1(ω))n
k−1∑

ν∈Ω(q1(ν))nk−1 . Thus, when k →∞, we would
have that for any two states ω and ω′,

qk(ω)

qk(ω′)
= [

q1(ω)

q1(ω′)
]n
k−1 →k→∞ ∞ if q1(ω) > q1(ω′) and otherwise to 0.

Therefore, the mode of the α-weighted BPI is important in determining the limit beliefs.

The following example illustrates the implications of Proposition 1.

Example 3: Let us consider the following simple example. Consider three players.
Player 1 is connected to both 2 and 3, while each of them is only connected to player 1 (a

“star”network). Thus, the T∗ matrix is (recall that every player is connected to herself

as well):

T∗ =

1 1 1

1 1 0

1 0 1

.

When communication is repeated infinitely, then beliefs in society converge to a distri-

bution that puts equal weights on a subset of the modes of q∗(ω) =
(q1

0(ω))
√

2•q2
0(ω)•q3

0(ω)∑
v∈Ω(q1

0(v))
√

2•q2
0(v)•q3

0(v)
.

This arises from calculating the eigenvector of T∗ which is (
√

2, 1, 1). Thus, the procedure

is simple, and the nature of the consensus depends on the matrix T∗. As mentioned above,

generically, q∗(ω) will have a unique mode. For example, for any (T,q0), any open set

of perturbations in q0 will result in a subset of these inducing a unique mode, while only

some specific perturbations will induce a set of modes.

4 Implications

We now use Proposition 1 to derive testable predictions about repeated communication in

networks. The predictions will also allow us to differentiate our model from the DeGroot

(1974) heuristic, according to which individuals average others’and their’s beliefs (see De

Marzo et al 2003 and Golub and Jackson 2010, 2012). Note that one crucial difference is

methodological. That is, the DeGroot heuristic does not generally correspond to Bayesian

updating.8 The BPI heuristic on the other hand coincides with Bayesian updating what-

ever the information structures are, as long as they are conditionally independent. Using

the BPI therefore allows us to understand what are the biases in information processing

8This is so only in a limited set of environments. One example is when each information structure is

a normal distribution.
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that we are modelling. In particular the BPI departs from Bayesian updating due to

individuals neglecting the correlation across their information sources (which arises with

repeated communication). This bias has been recently identified by experiments in finance

and political economy.9

We henceforth assume that the conditions of Proposition 1 are satisfied so that we can

discuss the implications of the limit beliefs and focus on the generically unique mode of

q∗(ω), denoted by ω∗.

4.1 Polarisation of beliefs and consensus dynamics

A recent literature, e.g., Glaeser and Sunstein (2009), attempts to explain the phenomena

of group polarisation.10 We can say that group polarisation arises whenever the limit

beliefs are not in the convex hull of q0. Note that when considering the DeGroot heuristic,

the limit consensus beliefs cannot become polarised as they must be contained in the

convex hull of individuals’beliefs due to the averaging procedure of DeGroot. On the

other hand, with the BPI, given that we start with beliefs that are full support, and beliefs

generically become degenerate on ω∗, the mode of q∗(ω), then we have polarisation.

The literature also discusses the relation between correlation neglect and polarisation

of beliefs in groups, as for example in Glaeser and Sunstein (2009) and Schkade et al

(2010). Sobel (2014) illustrates that correlation neglect is not a necessary condition for

polarisation as it could arise also with Bayesian rational decision makers. Similarly, as

the BPI corresponds with Bayesian updating for some environments, also in our model

polarisation can arise for rational individuals. Consider for example the fully connected

network and assume that there is only one round of communication. For a large enough

n, for many vectors of beliefs q0, beliefs will become degenerate. However, as we show

below, whether the polarised beliefs accord with the truth or not does depend on whether

correlation neglect arises or not. After one round of communication beliefs are always

rational with the BPI, whereas repeated communication will entail convergence to the

truth only in some environments.

The polarisation property of the BPI implies that small biases towards one state in the

initial set of beliefs can loom large, as the example below illustrates:

Example 4 (Small biases loom large): Suppose that a share 1− ε of the network has
uniform beliefs while a share ε has beliefs which put a weight 1

|Ω| + ν on some state ω∗

(and naturally a weight of 1
|Ω| −ν on some other state(s)). In this case, q

∗(ω) has a unique

9See Ortoleva and Snowberg (2015), Eyster and Weizsacker (2011), Kallir and Sonsino (2009) and

Enke and Zimmermann (2013).
10Experiments on group polarisation were initiated by Stoner (1968).
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mode on ω∗. Thus, even for a small ν and ε, as well as for a low network centrality of the

share ε of individuals with the biased beliefs, society converges to degenerate beliefs on

ω∗. Thus, correlation neglect implies that small biases towards one state will accentuate

in the long term.

Another simple observation is how consensus can be achieved but is not static. In the

DeGroot model, once a consensus is achieved, it will never change, as beliefs are combined

by averaging others. In contrast, with the BPI, correlation neglect implies that individuals

will keep on learning from others and substantially change their beliefs even when their

posterior beliefs are similar -as long as they are not degenerate. Therefore, with the BPI

heuristic consensus can change dynamically.

Example 5 (Changing Consensus): To illustrate, consider an example with binary
states, 1 or 0, and a complete network. The posterior belief of each individual is qi0 ∈ (0, 1)

which denotes the probability that the state is 1. If all individuals have the same beliefs,

qi = qj ≡ q, with the DeGroot heuristic these would remain unchanged. In contrast, with

the BPI, beliefs would become qn

qn+(1−q)n after the first period. While consensus in society

would remain, beliefs change and individuals would converge to have degenerate beliefs

on state 1 if qn

qn+(1−q)n >
1
2
and on state 0 if qn

qn+(1−q)n <
1
2
.

4.2 A Measure of Influence

How can we measure the influence of an individual? As the result in Proposition 1 shows,

what is important is the effect of individuals on the mode of q∗(.). The mode ω∗ satisfies

q∗(ω∗)

q∗(v)
=

Πj∈N(qj0(ω∗))α
j

Πj∈N(qj0(v))αj
> 1 for all v 6= ω∗,

and thus individual i′s effect on the mode depends on both his centrality in the network,

αi, as well as on the properties of his beliefs. We now explore these two ways of measuring

the influence of an individual.

Definition 2: Suppose the limit beliefs change from a degenerate belief on state ω∗ to

a degenerate belief on state ω̂∗. The new belief becomes closer to j′s beliefs compared with

the old belief if qj0(ω̂∗) > qj0(ω∗).

Proposition 2: Suppose that αj increases to α̂j. Then the new limit beliefs ω̂∗ either
does not change or if it does, it becomes closer to j′s beliefs.

Proof: Note that
q̂∗(ω)

q̂∗(v)
=
q∗(ω)

q∗(v)

qj0(ω)α̂
j−αj

qj0(v)α̂
j−αj

.
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As a result, q̂∗(ω)
q̂∗(v)

> (<) q
∗(ω)
q∗(v)

for all qj0(ω) > (<)qj0(v) implying that either the mode

remains the same or it changes to another mode ω̂∗ 6= ω∗ but in this case q̂∗(ω∗)
q̂∗(ω̂∗) <

q∗(ω∗)
q∗(ω̂∗)

implying qj0(ω∗) < qj0(ω̂∗) as desired.�

Remark: Analogous to network centrality, one can be more influential if he puts more
weight on his posterior as compared to his peers’. One way to model this with the BPI

is to assume that an overconfident individual i, at period k + 1, updates his beliefs to
qik(ω)ΥΠj|Tij=1,j 6=iq

j
k(ω)∑

ν∈Ω q
i
k(v)ΥΠj|Tij=1,j 6=iq

j
k(v)

, where Υ > 1. It is easy to see then that the consensus would shift

towards individuals i with Υ > 1 (as others incorporate the beliefs of individual i) and as

Υ grows large, i would become more and more influential. Overconfidence is therefore a

substitute to network centrality.

We now focus on how changes in initial beliefs qj0(.) affect the limit beliefs in the group.

Suppose one can order the set of states in some natural way. We say that ω is closer to

ω∗j than v if “travelling” along this order from v to ω∗j you pass through ω. Consider

then beliefs for individual j that are unimodal (single-peaked), and let ω∗j be the mode

of the beliefs of individual j.

Definition 3: An individual j′s beliefs q̂j0(.) become more confident in state ω∗j com-

pared to qj0(.) if

q̂j0(ω)

q̂j0(v)
>
qj0(ω)

qj0(v)
for any ω that is closer to ω∗j than v .

What happens to the mode of q̂∗(.) which follows individual j becoming more confident

in her own mode? Note that

q̂∗(ω)

q̂∗(v)
=
q∗(ω)

q∗(v)

qj0(v)

qj0(w)

q̂j0(ω)

q̂j0(v)
.

Thus for any ω that is closer to ω∗j than v, we have q̂∗(ω)
q̂∗(v)

> q∗(ω)
q∗(v)

, and specifically q̂∗(ω∗j)
q̂∗(v)

>
q∗(ω∗j)
q∗(v)

for all v 6= ω∗j. However, for all ω closer to ω∗j than ω∗, we have that q̂∗(ω)
q̂∗(ω∗) >

q∗(ω)
q∗(ω∗) .

Thus, it must be that either the new mode remains at ω∗, or that it moves to ω̂∗ that is

closer to ω∗j. So then again we have:

Proposition 3: Consider single peaked beliefs for individual j. If individual j’s be-
liefs become more confident in his mode then the limit beliefs become closer to j’s beliefs.

Moreover, for any full support vectors of beliefs ( q1
0 , q

2
0, , , q

n
0 ), there exists a K such that

if qj0(ω∗j)

qj0(v)
> K for all v 6= ω∗j, then ω∗ = ω∗j.

At the extreme, when individual j becomes almost fully confident in state ω∗j, and in

the limit of such sequences of beliefs we would have qj0(ω∗j)

qj0(v)
→∞ for all v 6= ω∗j, we would
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also have q∗(ω∗j)
q∗(v)

→ ∞. Thus, by continuity, an individual with a suffi ciently informative
original signal would induce society to converge to his beliefs.

4.3 Convergence to the truth in large networks

Do individuals reach the correct beliefs in the limit? In the first period of communication,

the BPI heuristic is consistent with rationality (when information is initially independent).

Thus, with the BPI, in a one—off interaction where each individual has independent in-

formation, information is aggregated in the sense that updating is rational. But in a

repeated interaction, as individuals neglect the correlation in their information, this is

not necessarily the case. Individuals’ learning might actually unravel, as illustrated in

Example 5 above.11

Still, as in Golub and Jackson (2010), in large societies organized in suffi ciently balanced

networks, information would be fully aggregated in the limit. Suppose that the true state

is ω̄ and individuals receive independent (and informative) signals. Golub and Jackson

(2010) define a sequence of networks (Tn)∞n=1 to be “wise”if beliefs converge (in probabil-

ity) to be degenerate on ω̄. Let qi∞,n(ω) be the limit beliefs of individual i for a network Tn
as defined in (1), when k →∞.A network is wise then if plimn→∞maxi≤n |qi∞,n(ω̄)−1| = 0.

Proposition 4 Suppose that (Tn)∞n=1 is a sequence of irreducible and aperiodic matrices

such that αin →n→∞ αjn for all i, j. Then the network is wise.

To see the intuition, consider a complete network. Once society is large enough, then

already after the first round of communication, beliefs would be fairly concentrated around

ω̄, and repeated communication will only accentuate this as it leads the beliefs to the mode.

For more general networks, if q∗(ω) mimics the correct rational beliefs, which is the case

when αi →n→∞ αj for all i, j, then learning will arise. That is, correlation neglect that

arises from repeated communication is mitigated by the rational learning in the initial

stages.

5 Conclusion

In this paper we advocate the use of a “rational”heuristic to explore information diffusion

in repeated exchanges in networks. The BPI heuristic is rational in the sense that it follows

Bayesian updating for all information structures that satisfy conditional independence

across individuals. We have shown that the limit beliefs converge to the mode of a simple

extension of the BPI, which implies that beliefs become polarised in society, and that

11This is related to the “unlearning”result of Gagnon-Bartsch and Rabin (2015).
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consensus beliefs will still change. These results differ from those derived in previous

literature using the DeGroot heuristic.

One possible avenue for further research is to consider the co-evolution of information

transmission and the network itself. For example, as in the homophily literature (e.g.,

Golub and Jackson 2012), individuals may not communicate with those that have beliefs

which differ substantially from their own. Thus while this fosters polarisation, it also

makes belief in society more immune to those with strong beliefs. Individuals with strong

beliefs are more likely to be different from others, and may not be as influential as in our

model. This may affect the speed at which society polarises.

6 Appendix

Proof of Proposition 1: Note that the posterior of individual i at stage k + 1 is given

by
Πj(q

j
0(ω))T

k
ij∑

ω∈Ω Πj(q
j
0)T

k
ij

Where Tk = T×T× ...×T︸ ︷︷ ︸
k times

.

If T is strongly connected (irreducible) and aperiodic, then it is primitive and we can

use the Perron—Frobenius Theorem for primitive matrices. This theorem states:

1. There is a positive real number r > 1, which is an eigenvalue of T and any other

eigenvalue λ satisfies |λ| < r.

2. There exists a right eigenvector v of T with eigenvalue r such that all components

of v are positive (respectively, there exists a positive left eigenvector w).

3. limk→∞T
k/rk = P where P = vwT , where the left and right eigenvectors for T are

normalized so that wTv = 1. Moreover, the convergence is exponential.

Therefore we have that T
k

rk
converging to a matrix of rank 1. Let αT = wT .

We now show that this implies that all individuals’beliefs converge to a degenerate

distribution on a subset of the modes of Πj∈N(qj0(ω))α
j
. For simplicity assume that there

is only one mode of Πj∈N(qj0(ω))α
j
and denote it by ω∗.

Consider some linear order on Ω and for any stage k let Fk(ω) =
∑
ω′≤ω(Πj∈N (qj0(ω′))

Tkij

vir
k

)vir
k

∑
ν∈Ω(Πj∈N (qj0(ν))

Tk
ij

vir
k

)vir
k

be the cumulative probability function of individual i. vi is the relevant coordinate for i

in the eigenvector v.

Let Nk be the cardinality of the support of the beliefs at period k, which is bounded

by N1 = ∩jSupp(qj0(ω)) and is therefore finite for any k. If, as we assume, the beliefs are
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full support than the cardinality is just that of Ω.

Claim 1: Let ω < ω∗, then limk→∞ Fk(ω) = 0.

Proof: Let ω < ω∗ and let ε = |Πj∈N(qj0 (ω∗))α
j −maxω′≤ω Πj∈N(qj0 (ω′))α

j |. Also, let k̄

be such that for all k > k̄, |Πj∈N(qj0 (ω∗))
Tkij

vir
k −maxω′≤ω Πj∈N(qj0 (ω′))

Tkij

vir
k | > ε

2
.

Remember that Fk(ω) =
∑
ω′≤ω(Πj∈N ((qj0(ω′))

Tkij

vir
k

)vir
k

∑
υ∈Ω(Πj∈N ((qj0(υ))

Tk
ij

vir
k

)vir
k

=

∑
ω′≤ω(

Πj∈N ((q
j
0(ω′))

Tkij

vir
k

maxυ≤ω Πj∈N (q
j
0(υ))

Tk
ij

vir
k

)vir
k

∑
ω∈Ω((

Πj∈N ((q
j
0(ω))

Tk
ij

vir
k

maxυ≤ω Πj∈N (q
j
0(υ))

Tk
ij

vir
k

)vir
k

≤ N1

∑
ω∈Ω((

Πj∈N ((q
j
0(ω))

Tk
ij

vir
k

maxυ≤ω Πj∈N (q
j
0(υ))

Tk
ij

vir
k

)vir
k

, as in the nominator we have a sum of expressions which

are all less than 1 or 1.

Therefore,

Fk(ω) ≤ N1

∑
ω∈Ω((

Πj∈N ((q
j
0(ω))

Tk
ij

vir
k

maxυ≤ω Πj∈N (q
j
0(υ))

Tk
ij

vir
k

)vir
k

< N1

((1+ζ))vir
k →limk→∞ 0, for ζ = ε/2

maxυ≤ω Πj∈N (qj0(υ))

Tk
ij

vir
k

.�

Claim 2: Let ω > ω∗, then limk→∞ Fk(ω) = 1.

Proof: The proof follows the proof of Claim 1 by focusing on 1− F (ω).��

Proof of Proposition 4: Note that if we have a set of n independent posteriors, by
Proposition 1, Πj∈N (qj0(ω))∑

v∈Ω Πj∈N (qj0(v))
will converge to the true distribution with n → ∞. Recall

that the true parameter is ω̄, and thus this distribution will have Πj∈N (qj0(ω̄))∑
ω∈Ω Πj∈N (qj0(ω))

→ 1.

Note also that Πj∈N (qj0(ω))α
j∑

ω∈Ω Πj∈N (qj0(ω))α
j , when αj = c for all j, would replicate exactly the same

distribution for all n.

Note now that for any ε > 0, there exists n′, such that for all n > n′, |αin − α| < ε for

any i. Note that as the true state is ω̄, the belief Πj∈N (qj0(ω))α
j∑

ω∈Ω Πj∈N (qj0(ω))α
j will have one mode, on

ω̄.

We also know that for any n, there exist k′, such that for any k > k′, then limk→∞ F
n
k (ω)

is a degenerate distribution on the modes of Πj∈N (qj0(ω))α
j∑

ω∈Ω Πj∈N (qj0(ω))α
j .
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Therefore, there exists an n′, such that for any n > n′, limk→∞ F
n
k (ω) converges to a

degenerate distribution on the modes of Πj∈N (qj0(ω))α
j∑

ω∈Ω Πj∈N (qj0(ω))α
j . For this part we can essentially

repeat the proof in Proposition 2 with ω∗ = ω̄. That is, for any n > n′, there exists k > k′,

such that |Πj∈N(qj0 (ω̄))
Tkij

vir
k −maxω′≤ω Πj∈N(qj0 (ω′))

Tkij

vir
k | > ε

2
, and the rest follows.�
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