
 

 

Hongbo Duan, Jianlei Mo, Ying Fan, Shouyang Wang 

Achieving china’s energy and climate policy 
targets in 2030 under multiple uncertainties 
 
Article (Accepted version) 
(Refereed) 
 

 

Original citation: Duan, Hongbo and Mo, Jianlei and Fan, Ying and Wang, 

Shouyang (2017) Achieving China's energy and climate policy targets in 2030 under multiple 
uncertainties. Energy Economics, 70. pp. 45-60. ISSN 0140-9883 
DOI: 10.1016/j.eneco.2017.12.022 
 
 

  
Reuse of this item is permitted through licensing under the Creative Commons: 

 
© 2017 Elsevier 
CC-BY-NC-ND 
 

This version available at: http://eprints.lse.ac.uk/86841/ 
Available in LSE Research Online: March 2018 

 
LSE has developed LSE Research Online so that users may access research output of the School. 
Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or 
other copyright owners. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
 
 

https://www.sciencedirect.com/journal/energy-economics
http://dx.doi.org/10.1016/j.eneco.2017.12.022
https://www.elsevier.com/en-gb
http://eprints.lse.ac.uk/86841/


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 1 

Achieving China’s energy and climate policy targets in 2030 under 

multiple uncertainties 

Hongbo Duan
1
, Jianlei Mo

2,3*
, Ying Fan

4
, Shouyang Wang

1,5
 

1 
School of Economics and Management, University of Chinese Academy of Sciences, Beijing 

100190, China.  

2 
Center for Energy and Environmental Policy research, Institutes of Science and Development, 

Chinese Academy of Sciences, Beijing 100190, China. 

3 
Grantham Research Institute for Climate Change and the Environment, London School of 

Economics and Political Science, Houghton Street, London, U.K. WC2A 2AE. 

4 
School of Economics and Management, Beihang University, Beijing 100191, China. 

5 
Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, 

China. 

* 
Corresponding author. E-mail: mo_jianlei@126.com, mojianlei@casipm.ac.cn 

Abstract  

The stringency of China’s energy and climate targets in 2030 and the policy needed to realize 

these targets are full of controversy, mainly as a result of multiple future uncertainties. This study 

has developed a stochastic energy-economy-environment integrated model, to assess China’s 

energy and climate targets in 2030, with a particular focus on the carbon intensity reduction, 

carbon emission peaking, and non-fossil energy development. The probabilities of realizing the 

targets are obtained, and the nexus among different targets is explored. It’s argued that carbon 

emission management and policy-making should be implemented from the perspective of risk 

management, and policy makers can take corresponding policy measures based on the degree of 

confidence required under multiple future uncertainties. It is found that the probabilities of 

realizing carbon emission-peaking target and non-fossil energy target are low, with the 

business-as-usual efforts, and additional policies may still be needed. More specific, carbon 

pricing plays a major role in curbing and peaking carbon emissions, while the policy mix of 
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carbon pricing and non-fossil energy subsidies can peak the carbon emission with relatively low 

cost compared to the single carbon pricing policy. It is also found that the carbon intensity 

reduction target is most likely to be attained, followed by the carbon-peaking target, and then the 

non-fossil energy target, given the same policy efforts. This indicates that, China may not 

deliberately increase carbon emissions rapidly over the next decade to make the carbon emission 

peak as high as possible; otherwise, it may be difficult to achieve the non-fossil energy target. 

Key words: Integrated assessment model; Uncertainty; INDC target; China; Carbon emission 

peaking; Carbon pricing; Renewable energy subsidy 
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1 Introduction 

With the Paris Agreement in force, the focus of the global response to climate change shifts to 

the implementation and credibility of the Paris pledges. As the world’s largest greenhouse gas 

(GHG) emitter, China plays a critical and formidable role in reducing GHGs and in coping with 

global climate change. Especially against the background that the US administration has decided 

to withdraw from the Paris agreement, what China does next, and how, will have significant 

implications for the trend and direction of the global response to climate change. According to the 

U.S.-China Joint Announcement on Climate Change in 2014
1
, China is committed to peaking its 

carbon emissions in 2030, at which time the share of non-fossil energy in China will reach over 

20%; China’s Intended Nationally Determined Contributions (INDC) plan, which was submitted 

to the United Nations in 2015, reaffirms this commitment and proposed the 60-65% carbon 

intensity reduction target. Although plenty of work has been done to prove the rationality and 

feasibility of these targets for economic development and energy consumption, as well as for 

energy restructuring, there remain different opinions on the commitments at home and abroad. 

Some argue that these targets are pretty ambitious, and that China has to deal with very daunting 

challenges (He, 2013; Elzen etal. 2016), while others believe that the goals committed to may not 

be so difficult to reach, costing less than expected (CERS, 2016; Green and Stern, 2016 ). In 

addition, as China has no absolute target of carbon emission before 2030, some even suspect that 

China may deliberately increase its carbon emission over the next decade in order to make the 

2030 peak as high as possible (Malakoff, 2014). It is likely that the multiple uncertainties 

embedded in the process of carbon mitigation are largely responsible for this divergence of 

opinion. There remain around 15 years for China to deliver on its commitments, during which 

time a great many uncertainties involving economic growth, energy efficiency enhancement and 

low-carbon transition, etc., will commingle and significantly affect the feasibility, policy options 

and costs of fulfilling the goals, and make judgments about future carbon emission projections and 

energy transition trends complicated and difficult (Webster et al., 2002; Babonneau et al., 2012; 

Kriegler et al., 2014). 

Several studies have discussed the trends of energy consumption and CO2 emissions in China 

                                                        
1https://obamawhitehouse.archives.gov/the-press-office/2014/11/11/us-china-joint-announcement-climate-change. 
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(ERI, 2009; Wang and Watson, 2010; Zhou et al., 2013; BP, 2016). The summarized results reveal 

that, without any policy intervention, China’s carbon emissions will continue increasing until 

2050, with emission amounts ranging from 11.9 to 16.2 GtCO2; this amount may decrease and fall 

into the interval of 4.3-9.5 GtCO2 when certain decarbonization policies are carried out. Further, it 

would be difficult for China to peak its CO2 emissions before 2040 under the business-as-usual 

case; only via policy can China deliver on its carbon-peaking goal by or before 2030, depending 

on the stringency of policy implementations. Actually, across different studies the pricing interval 

of CO2 emissions to peak China’s carbon emissions on schedule appears to be wide, ranging from 

100 to 500 USD/tC, and the corresponding peak values differ even more significantly, from 6 to 

13 GtCO2. It is easy to observe that big divergences exist among the carbon emission projections 

from different research, which could be largely explained by the future uncertainties involving the 

economic growth, the energy intensity of the economy, and the carbon intensity of energy 

consumption (Kaya, 1990; Webster et al., 2002; Webster et al., 2008; Peters et al., 2013; 

Lewandowsky et al., 2014; Golub, 2014).  

Although some previous research works have explored China’s energy and carbon emission 

projections in the medium and long term future (ERI, 2009; Wang and Watson, 2010; Zhou et al., 

2013; He, 2013; BP, 2016; Elzen etal. 2016; Liu et al., 2017), there are few quantitative studies 

explicitly focusing on the multiple uncertainties affecting China’s energy consumption and carbon 

emission. In addition, there are three main targets in China’s INDC pledge, involving the carbon 

intensity reduction, carbon emission peaking and non-fossil energy share. Under multiple 

uncertainties, it may be difficult to determine the relationship among different targets and 

coordinate the three targets and the corresponding policy measures, which has been rarely 

explored. In this work, the key uncertainties affecting China’s future energy consumption and 

carbon emissions are identified, including the economic uncertainties and technological 

uncertainties, based on which a stochastic version of China energy-economy-environment (3E) 

system model were developed. Using this model, China’s energy and climate targets in 2030 

under multiple uncertainties were assessed, especially focusing on the impacts of relevant policies, 

i.e. carbon pricing and renewable energy subsidy, on the time distribution of carbon emission 

peaking, distribution of peaking levels and the non-fossil energy share. The probabilities of 
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realizing these targets under different policy scenarios are obtained, and specifically, the nexus 

among different policy targets are explored.  

2 Model and methods 

The proposed stochastic 3E-integrated model in this work is essentially based on the prior 3E 

system model, CE3METL, a Chinese version of the E3METL model
 
(Duan et al., 2013; Duan et 

al., 2014). Characterized by its core technology diffusion mechanism, i.e., multi-logistic curves 

instead of the conventional constant elasticity substitution (CES) method, the E3METL model 

consists of macro economy, energy technology and climate sub-modules, which is consistent with 

the typical frameworks of 3E-integrated models (Nordhaus, 2007). The E3METL and CE3METL 

models have been employed to conduct energy and climate-relevant research since they were built 

in 2013 (Duan et al., 2015; Duan et al., 2016). By incorporating multiple uncertainties and 

employing Monte Carlo simulation methods (Babonneau et al., 2012; Hu et al., 2012), we have 

extended the framework of the CE3METL model and developed a stochastic 3E-integrated model, 

the skeleton of which is depicted in Fig. 1; furthermore, we give the corresponding optimum 

algorithm of this large-scale system model, based on the GAMS software platform. For 

convenience of understanding the proposed stochastic model, we first briefly introduce the 

CE3METL model, from both model structure and running rationales, and then the randomization 

of the model. 

[INSERT Fig. 1 HERE] 

2.1 Description of the CE3METL model 

We assume that the central planner of CE3METL has perfect-foresight expectations, taking 

the maximum social utility (welfare) as its target. This social welfare is accumulated by the 

increase of intertemporal consumption per capita; the welfare-maximization goal is therefore 

governed by the dynamic consumption flows and the population evolution. Further, the 

intergenerational distribution of utility is contingent on the pure time preference rate and the 

marginal consumption elasticity, which determine the depreciation factor of utility accumulation 

as well (Duan et al., 2013; Duan et al., 2014). Specifically, given 𝐿𝑡 and 𝑐𝑡 the population as 

well as labor input and consumption per capita in 𝑡 respectively, and 𝜎𝑡 the discount factor, then 
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the utility objective can be expressed as follows, 

𝑈 = 𝑀𝑎𝑥 ∑ (𝐿𝑡𝑙𝑜𝑔(𝑐𝑡) ∏ (1 + 𝜎𝜏)−∆𝑡
𝑡

𝜏=0
)

𝑡𝜖𝑇
                                      (1) 

Aggregated production or gross output 𝑌 is produced with a single CES production function 

in capital (K)-labor (L) complex and energy (E), with capital and labor combined via 

Cobb-Douglas (CD) function, i.e.,  

𝑂𝑢𝑡𝑝𝑢𝑡𝑡 = (𝛼𝑡(𝐾𝑡
𝜂

𝐿𝑡
1−𝜂

)
𝜌

+ 𝛽𝑡𝐸𝑡
𝜌

)

1

𝜌
                                                       (2) 

where 𝛼𝑡 is the technological progress level for the capital-labor composite, and 𝛽𝑡 covers the 

technological progress level of the energy sector. 

Like other 3E-integrated models, we view the output as a single complex commodity that is 

allocated to investment, consumption, ex- and imports and payment for energy input and carbon 

reduction (Duan et al., 2013; Duan et al., 2016). As for inputs, population is assumed to grow 

exogenously over time, while the capital stock is determined by optimizing the dynamic 

consumption flows; furthermore, energy input is made up of two parts: conventional energy (fossil 

fuels) and non-fossil energy, of which the fossil fuels consist of coal, oil and natural gas, while 

non-fossil technologies involve biomass, hydropower, nuclear, wind power, solar power, tide and 

geothermal power. 

The economy-wide technological change and energy efficiency improvement depend on the 

exogenous autonomous energy efficiency improvement (AEEI). Closure conditions are 

indispensable to a regional 3E-integrated model, which could effectively avoid unreasonable 

economy fluctuation due to imperfect market closure (Kumbaroğlu et al., 2008). In the CE3METL 

model, we assume the ex- and imports dynamically follow the optimal trajectory of GDP growth, 

and this is achieved by introducing a lower bound and an upper bound, respectively, for the 

changes of ex- and imports. 

The CE3METL model features a multi-technology evolution mechanism and an endogenous 

technological improvement mechanism. As compared to the CES method, which is commonly 

used to describe technology replacement, we have introduced multi-logistic curves into the 

CE3METL model instead, which greatly enrich the technology details of 3E model frameworks. 

According to the multi-logistic technology mechanism, market share of the targeted technology is 
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contingent on changes in the relative cost (cost ratio of the target technology and the marker 

technology) and policy intervention effects. In specific terms, let 𝑃𝑖,𝑡 denote the ratio of the price 

of the marker technology (e.g. coal) to that of the new technology 𝑖, including the effects of 

carbon pricing and subsidies on prices. That is, 

                                                              𝑃𝑖,𝑡 =
𝐶𝑐𝑜𝑎𝑙,𝑡(1 + 𝑇𝑎𝑥𝑐𝑜𝑎𝑙,𝑡)

𝐶𝑖,𝑡(1 + 𝑆𝑢𝑏𝑖,𝑡)
                                                          (3) 

where 𝐶𝑐𝑜𝑎𝑙,𝑡 and 𝐶𝑖,𝑡 denote the unit costs of the marker technology and alternative technology 

𝑖; 𝑇𝑎𝑥𝑐𝑜𝑎𝑙,𝑡 and 𝑆𝑢𝑏𝑖,𝑡 present the rate of carbon price for the marker technology and subsidy 

for alternative 𝑖, respectively. 

We then get the relationship between technology share 𝑆𝑖,𝑡 and 𝑃𝑖,𝑡 by revising the classical 

logistic model; specifically, the rate of change in market share is expressed with respect to the 

change in relative prices rather than the change in time, which provides greater economic appeal 

to us. The term d𝑆𝑖,𝑡 d𝑃𝑖,𝑡⁄ is shown to indicate the effects of a per unit change in prices on the 

share of the new technology in use. Hence, we have 

d𝑆𝑖,𝑡

d𝑃𝑖,𝑡
= 𝑎𝑖𝑆𝑖,𝑡 (�̃�𝑖 (1 − ∑ 𝑆𝑗,𝑡

𝑗≠𝑖
) − 𝑆𝑖,𝑡)                                             (4) 

which captures the exponential growth of opportunities in the early phases of expansion and 

diminishing possibilities as market saturation levels are approached. In this way, the technical cost 

and incentive policy, which are considered to play an important role in affecting the technological 

development, are embedded in the technical diffusion process (see detail in Appendix A). 

The other technology characteristic, i.e., the endogenous technological improvement mechanism, 

mainly refers to the one-factor learning curve, i.e. learning-by-doing (LBD). Generally, define 

𝐶𝑘,𝑡  and 𝐾𝐷𝑘,𝑡  the unit cost for alternative technology 𝑖  and knowledge capital stock, 

respectively; we then get the relationship between cost evolution and the LBD process, 

                                                                   𝐶𝑘,𝑡 = 𝐶𝑘,0 (
𝐾𝐷𝑘,𝑡

𝐾𝐷𝑘,0
)

−𝑏𝑘

                                                              (5) 

in which 𝐶𝑘,0 and 𝐾𝐷𝑘,0 represent the initial technology cost and knowledge capital, and 𝑏𝑘 is 

the learning index (Appendix A for details). As production proceeds, the production experience (or 

knowledge) accumulates, which in turn promotes technological change and finally reduces 

technology costs. It is worth noting that a depreciation effect should be taken into account when 

accumulating knowledge capital intertemporally due to experience obsolescence; thus, the current 

knowledge stock is the sum of the vintage and the net knowledge stock in the previous period. The 
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learning rate is the core parameter describing the learning effect in the process of technology 

diffusion, which refers to the ratio of cost reduction when output (or cumulative installed capacity) 

doubles (Barreto and Kaassen, 2004). 

Unlike the global 3E system model, in which climate system dynamics such as the carbon 

cycle, the dynamics of radiative forcing flows, warming responses and climate damages are well 

described, we simplify the climate module of the regional CE3METL model. Specifically, the 

emphasis of climate modeling is placed on the estimation of anthropogenic CO2 emissions, and it 

amounts to the sum of the products of the carbon content of all types of carbon-based energy and 

the corresponding energy consumption. For more model details, please refer to the equations listed 

in Appendix A. 

2.2 Randomization of the model 

There are many uncertain factors influencing the future evolution of the 

energy-economy-environment (3E) system (Kaya, 1990; Webster et al., 2002; Webster et al., 2008; 

Peters et al., 2013; Lewandowsky et al., 2014; Golub, 2014). The economy is one of the major 

parts of the 3E system, directly influencing future energy consumption and carbon emissions; 

economic uncertainty is, therefore, an important aspect of climate-related research (Kriegler et al., 

2014). In most 3E models, economic growth is derived from the growth of production factors 

(labor, capital, energy) and from the technical progress associated with each factor. Among them, 

the most important factors are the growth of the labor force and the evolution of labor productivity, 

according to many existing relevant studies (Webster et al., 2002; Babonneau et al., 2012; 

Webster et al., 2008; Duan et al., 2014). The population growth of China has long been stabilizing 

due to family planning (World Bank, 2012), and this trend is not likely to change much despite the 

recent change to the one-child policy (Zeng, 2016; Wang et al., 2016). Considering this, we 

overlook the uncertainty in population growth, assuming it increases exogenously based on the 

World Bank’s recent projection, and the uncertainty involving the labor productivity growth (LPG) 

is taken into account in our study. Moreover, energy efficiency improvement plays a key role in 

lowering energy intensity and carbon emission (Grubb, 2002; Babonneau et al., 2012; Duan et al., 

2014), and future projections for China are full of uncertainty. So this uncertainty, represented by 

the autonomous energy efficiency improvement (AEEI), is taken into account following many 

relevant studies (Webster et al., 2002; Gerlagh et al., 2004; Webster et al., 2008; Babonneau et al., 
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2012). Besides the AEEI, the substitution between the energy and other input factors also has a 

significant effect on future energy consumption, as well as the flexibility of economic production, 

and the uncertainty of elasticity between energy and capital-labor combination is also considered 

(Webster et al., 2002; Babonneau et al., 2012). The future carbon intensity of energy consumption 

is closely related to the energy structure evolution, especially the development of non-fossil 

energy. The long-term diffusion of the non-fossil energy is affected mostly by the cost 

competiveness relative to the fossil fuels, which in turn closely relates to the learning rates and the 

potential of cost reduction in future. Generally, the learning rates vary over time as the stages of 

technology change; meanwhile, their variation ranges are fairly large, and differences in power 

plants’ geographic locations and scales will also lead to different learning rates (Rout et al., 2009). 

In our study, the learning rate uncertainties of seven non-fossil energy technologies, i.e. wind, 

solar, hydro, biomass, geothermal, tides, and nuclear, are incorporated.  

In this work, the uncertainties referred above are grouped into two categories, i.e. economic 

uncertainty and technological uncertainty, of which the former involves labor productivity growth 

(LPG), elasticity of substitution between the capital-labor complex and energy and AEEI, while 

the latter is essentially the uncertainty related to the technology learning effect. Different 

assumptions are made regarding the probability distributions and evolutionary trends of different 

uncertainty factors based on the relevant studies, and the sampling procedures are achieved by 

employing a large-scale Monte Carlo simulation method. Generally, cutting down the sample size 

is beneficial for simplifying the computation and optimization; on the other hand, a large sample 

is required to better fit the assumed distribution function. In order to cope with this contradiction, 

we use the Latin hypercube technique to generate 2000 set of values for the chosen uncertain 

parameters. For each set of parameters sampled, they are treated as the average of the parameters 

in the whole time herizon and held fixed throughout the whole simulation period as we run the 

model to get the optimal path. 

1) LPG, elasticity and AEEI uncertainty 

For LPG uncertainty, we first calibrate the LPG level under the deterministic BAU scenario, in 

which economic growth and energy demand fit future expert expectations well (see the detailed 

BAU results in the Appendix B); then, we assume a bounded normal distribution, normalized to a 

mean of 1.0 and a standard deviation of 0.3 and use the positive sampled value as a multiplicative 
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factor, following Babonneau et al.(2012) and Webster et al. (2008); finally, the product of the 

multiplicative factor in conjunction with the LPG in the deterministic case is employed to portray 

the LPG uncertainty. The frequency distribution and probability density of the multiplicative 

factor for LPG are shown in Fig. 2. 

Based on the characteristic of the production function of the CE3METL model, our emphasis 

is placed on the uncertainty analysis of substitution elasticity between the capital-labor 

combination and the energy input. Similar to Webster et al. (2008)
 
and Babonneau et al. (2012), 

we first calibrate this elasticity in the deterministic BAU scenario (see the detailed BAU results in 

the Appendix B); then, a normal distribution, being normalized to a mean of 1.0 and a standard 

deviation of 0.3, is assumed, and we regard the positive sampled value as a multiplicative factor. 

The uncertainty on this elasticity of substitution is now measured by the product of the 

multiplicative factor and the substitution elasticity calibrated in the deterministic BAU scenario 

(see Fig. 2). 

The energy efficiency improvement in the CE3METL model is given exogenously by the 

AEEI coefficient, which is consistent with other typical 3E-integrated models, such as DICE, 

DEMETER and GEMINI-E3 (Gerlagh and van der Zwaan, 2004; Babonneau et al., 2012). 

Generally, the AEEI covers the entire energy efficiency enhancement that is independent of 

economy-related and energy market factors, and it proves to greatly affect the trajectories of 

energy consumption and CO2 emissions (Duan et al., 2014). Similar to the uncertainty processing 

of LPG and substitution elasticity, the first step is to calibrate the AEEI level under the 

deterministic BAU scenario (see the detailed BAU results in the Appendix B); then, we assume a 

normal distribution, normalized to a mean of 1.0 and with a standard deviation equal to 0.3, which 

is also in line with the prior assumptions on LPG and elasticity of substitution. Finally, with the 

sampled value of the random variable as a multiplicative factor (Fig. 2), the AEEI uncertainty is 

then measured by the product of the multiplicative factor and the calibrated AEEI value. 

[INSERT Fig. 2 HERE] 

2) Energy technology learning uncertainty 

In recent years, the learning curve method has been frequently used to portray the evolutionary 
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trends of technology costs
 
(Weiss et al., 2010). Generally, the learning curves feature a simple 

form and convenient application; besides, it is a feasible option for us to incorporate the inherent 

learning effect of technology change, which contributes more to fitting the real cost trends. 

However, the learning curve method is highly dependent on data quality, while the data available 

for most of the alternative technologies are usually of lower quality in the present, which may 

increase errors when estimating the learning parameters and, to some extent, further reduce the 

reliability of this method (Alberth, 2008). Actually, the uncertainty on learning rates not only 

directly influences the technology cost trends and market diffusion, but negatively affects the 

entire technology development environment, which in turn interferes with the estimation of 

technology floor costs and policy-making for technology deployment (McDonald and 

Schrattenholzer, 2001; Rout et al., 2009). The above considerations indicate the great importance 

of incorporating the uncertainty of the learning effect into our model. 

There have been several works estimating and reviewing the learning rates of various 

alternative technologies. McDonald & Schrattenholzer (2001) estimate learning rates of both 

fossil and non-fossil technologies across regions, Di et al. (2012) discuss the learning effect of 

wind power in China, while Rout et al. (2009) review intervals of learning rates for biomass, wind, 

nuclear and solar PV etc., and Rubin et al. (2015) systematically report the one-factor and 

two-factor learning rates of electricity supply technologies. By combining these data sources, we 

obtain the interval boundaries of learning rates for all the considered alternatives, as given in 

Table 1. On this basis, we assume all the learning rates follow a uniform distribution (Rout et al. 

2009; Babonneau et al., 2012), and the ensemble of scenarios is generated via the Latin hypercube 

sampling method. 

[INSERT Table 1 HERE] 

To further check how the uncertain factors affect our results, we make a sensitivity analysis of the 

key indexes, e.g. GDP, energy consumption, carbon emission and renewable energy development, 

to the uncertain parameters, which can be found in the Appendix C.
2
 

                                                        
2 In the current work, the twelve parameters are combined together and assumed to be uncorrelated for simplicity. 

In fact, there may exist complex correlation between these parameters, positive or negative, which may affect the 

non-fossil energy development and carbon abatement path and the relevant policy making. This issue can be 

further explored in future work. 
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3 Policy scenario setting 

During the past few years, many command-and-control policy instruments have been adopted 

by the Chinese government to realize its energy saving targets, e.g. raising the entry threshold of 

energy efficiency in the energy-intensive sectors, developing large units and suppressing small 

ones, closing outdated capacity, compulsory purchase of energy-efficient products, etc. Although 

great achievements have been made in reducing energy intensity and greenhouse gas emissions, 

China has also paid a giant cost
 
(Lo, 2012). Given this experience, China is becoming more 

interested in market-based instruments for GHGs control. In addition, the Chinese government has 

been committed to further market-oriented reform since 2013, allowing the market to play a more 

important role in the allocation of resources. In this situation, market-based policy instruments 

have been increasingly employed in the practice of combating climate change, e.g., carbon pricing 

policy and subsidies for renewable energy (Zhang et al., 2013; Cui et al., 2014; Wu et al., 2016; 

Mo et al., 2016). In this circumstance, the carbon pricing is adopted as one of main policy 

instruments in our study. Besides, the alternative subsidy policy is also taken into account, as the 

feed-in tariff (FIT) policy, adopted during the 12
th
 Five-Year Plan (2011-2015), plays an 

important role in promoting China’s renewable energy development.  

Based on the discussion above, two sets of scenarios have been formulated: the 

business-as-usual (BAU) scenario, and the policy scenarios, including the single carbon pricing 

policy, the single subsidy policy for renewable energy, and the policy combination of carbon 

pricing and renewable energy subsidies. In the BAU scenario, the policy measures aimed at 

improving energy efficiency during 12
th
 Five-Year Plan (2011-2015) are incorporated through 

setting the exogenous initial AEEI, which means that energy intensity would continue decreasing 

in this scenario, but the potential of energy efficiency improvement may become limited over time 

with the opportunities being explored (Wang et al., 2014) by setting a positive decline rate of 

AEEI, given that China has made a great effort and progress on deployment of energy-saving 

technology during the past decade. For the policy scenarios, we set different levels of the carbon 

price and subsidy. Economic theory and previous study suggest that optimal carbon prices may 

increase over time, with the annual average growth rate approaching the discount rate (Duan et al., 

2013; Duan et al., 2014; Duan et al., 2016); hence the increasing carbon price is adopted in our 
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scenario setting, and the corresponding increasing rate is assumed to be 5%. The current average 

carbon price in China’s pilot carbon markets is about 30 USD/tC and it’s expected to increase, 

with the climate policy becoming more stringent in future; on this basis, the lower bound of the 

initial carbon price is set as 30 USD/tC, and the other two higher levels are assumed to be 60 

USD/tC and 90 USD/tC, respectively. In addition, the current subsidy rate for renewable energy 

(mainly in the form of FIT) in China mainly falls between 20% and 30% based on the 

development stage of different technologies, and it may decrease as the renewable energy costs 

become lower. Accordingly, the subsidy rate levels are set as 0, 20% and 30%, respectively.  

Thus, we can obtain 12 (3×4) simulation scenarios, including the BAU. The details of the 

policy scenarios are shown in Table 2. Our model starts running in 2010 and terminates in 2070, 

with 12 five-year periods; in the policy scenarios, carbon prices or subsidies or the policy mix of 

both, are introduced from 2015. In order to avoid the end of period effects, we report the 

simulation results from 2015 to 2050, as many relevant studies have done.  

[INSERT Table 2 HERE] 

4 Results 

We first calibrate our model in the BAU scenario, and the detailed results can be found in the 

Appendix B. The main results in the policy scenarios are presented as follow. 

4.1 Carbon emission peak 

As shown in Fig. 3, in the BAU scenario with carbon mitigation efforts made during the 12
th
 

Five-Year Plan (2011-2015), the probability for carbon emissions to peak before 2030 is low, only 

about 14.5%, and it does not reach 50% until 2040. This means that it seems unlikely for China to 

realize its carbon-peaking target in or before 2030 without making further efforts. With the carbon 

price and subsidy increasing, the distribution of the time for carbon emissions to peak moves to 

the left, and the peaking time becomes earlier. Specifically, with a subsidy of 30% being 

introduced, carbon emissions mainly peak between 2035 and 2040, and the probabilities are 26.5% 

and 28.7%, respectively; when moving to the single carbon tax of 90 USD/tC, the carbon 

emissions mainly peak in 2030, 2035 and 2040, with probabilities of 21.2%, 31.0% and 23.9%, 

respectively (Fig. 3 (a)). It follows that the carbon pricing policy has a more significant effect on 

carbon emissions than does the subsidy policy. Specifically, the probability of carbon emission 
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peaking before 2030 is 39.7% with a carbon price of 90USD/tC, while this probability is only 25.4% 

with the subsidy of 30% being implemented (Fig. 3 (c)). In addition, the results show that the 

single carbon pricing or subsidy policy cannot guarantee that carbon emissions will peak before 

2030 with a high probability, i.e. 50%, and some mix policies may therefore be indispensable. 

More specifically, with the policy mix of a carbon price of 30 USD/tC and 30% subsidy (T30S30), 

the probability to peak China’s carbon emission before 2030 can reach more than 40%, and with 

that of carbon price of 60 USD/tC and 30% subsidy, or that of 90 USD/tC and 20% subsidy, the 

probability can reach more than 50%, i.e. 54.8% and 54.1% respectively (Fig. 3 (c)). Under the 

policy mix scenarios, e.g. the T30S30 scenario and T60S20 scenario, some curves almost overlap 

with each other (Fig. 3 (b)), which means that different combination policies may have more or 

less the same effect on peaking carbon emissions. Under the most stringent policy scenario 

(T90S30), carbon emissions would peak before 2030 with a high probability of 66.2% (Fig. 3 (d)). 

In summary, carbon emission management and policy-making should be implemented from the 

perspective of risk management under multiple future uncertainties (Rogelj et al., 2013), and 

policy makers can take corresponding measures based on the degree of confidence required; if 

they hope to realize the target with a higher degree of confidence or a higher probability, a more 

stringent policy will be needed. 

[INSERT Fig. 3 HERE] 

Fig. 4 presents the distribution of carbon peak value. The carbon emission peak value falls 

between 2.11 GtC and 3.7 GtC in the BAU case with a probability of 95%, and the corresponding 

median is 2.75 GtC. With carbon pricing introduced and increasing, the distribution curve moves 

to the left, and the carbon emission peak value decreases. Pricing carbon at 30USD/tC, 60USD/tC 

and 90USD/tC decreases the median values of the carbon emission peak to 2.64 GtC, 2.53 GtC 

and 2.39 GtC, respectively (Fig. 4 (a)). In addition, the distribution of the carbon emission peak 

values would become more concentrated as the carbon pricing effort enhances, and the uncertainty 

of the carbon emission peak value would decrease (Fig. 4 (a) and (b)). With the subsidy policy 

being introduced and increasing, the distribution curves of emission peak value seem to move to 

the right. However, it should be noted that this result does not mean that the introduction of a 

subsidy policy would increase the total long-term carbon emissions, and this effect could be better 
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understood as a temporary phenomenon. A possible explanation is that the implementation of the 

subsidy policy may affect the global optimal path of the carbon emission abatement; on this basis, 

it may be optimal to delay carbon mitigation actions in the short term, while reducing more carbon 

emissions in the mid- and long-term future when the non-fossil energy costs are becoming lower 

as a result of the learning effect. This explanation can be verified by the results of the cumulative 

carbon emissions in different periods. As shown in Fig. 4 (c), the cumulative distribution curves of 

carbon emission with subsidy policy between 2015 and 2030 almost overlap with that in the BAU 

scenario, which implies that the effect of the alternative subsidy on cumulative carbon emissions 

is not significant in the short period; when turning to the longer period 2015-2050, the movements 

of the probability distribution curves become more significant (Fig. 4 (d)), which indicates a much 

more remarkable carbon-reducing effect of the subsidy policy. It follows that the effect of the 

subsidy on carbon mitigation often lags behind its initial introduction, which has also been 

observed by Grimaud et al. (2009). Generally, the learning effect and cost evolution of energy 

technologies are path-dependent, and time is still needed for the cost of the non-fossil energy to 

decrease to a point lower than that of fossil fuels, even after the subsidy policy is introduced, as a 

result of the inertial effect of the initial energy system (Kriegler et al., 2014). 

[INSERT Fig. 4 HERE] 

4.2 Non-fossil energy development 

Fig. 5 shows the energy consumption evolution and energy structure under different policy 

scenarios. As shown in the left panel of Fig. 5, the carbon pricing plays a dominant role in 

restraining the fossil energy consumption growth, and subsidy policy dominate in promoting the 

non-fossil energy development. In addition, it seems unlikely for China to realize the non-fossil 

energy deployment target in 2030 in the absence of additional carbon pricing or subsidy, as shown 

in the right panel of Fig. 5, and the contribution of the single subsidy policy or the single carbon 

pricing policy to achieving the 20% non-fossil energy target also seems to be limited. The policy 

mix has a more significant effect on energy transformation and decarbonization. To be specific, 

with the subsidy of 30% and the carbon price of 30 USD/tC being implemented, the probability 

reaches 26.3%. This means that the current carbon price level in China’s carbon trading pilots and 

the subsidy rate for alternative energy sources cannot ensure the achievement of the non-fossil 
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energy target with a high probability. When doubling the carbon price level, i.e. 60 USD/tC, 

combined with the 30% subsidy, the corresponding probability increases to 73.1%. Therefore, one 

single policy may be insufficient to realize the 20% non-fossil energy target, and a more stringent 

policy mix is necessary to restrain the fossil energy consumption growth and promote the 

deployment of non-fossil energy technologies. By comparing the probabilities of achieving the 

carbon peaking target (Fig. 3(d)) and non-fossil energy target (Fig. 5) across all the targeted policy 

scenarios, it can be inferred that the policy effect on the carbon emission peaking is more 

remarkable than that on the non-fossil energy development, and China’s carbon-peaking goal 

seems to be more likely to be realized with the same policy efforts. 

[INSERT Fig. 5 HERE] 

4.3 Carbon intensity evolution 

Besides the carbon-peaking and non-fossil energy targets, the carbon intensity reduction goal, 

i.e., reducing carbon intensity by 60~65% in 2030 relative to the 2005 level, is another important 

aspect of the INDC. The simulation results of carbon intensity evolution across different policy 

scenarios are shown in Fig. 6. In the BAU scenario, the median of carbon intensity would decrease 

by 63.4% in 2030, relative to that in 2005 (Fig. 6 (a)). This means that the lower limit of the target 

in 2030 could be realized without additional efforts; however, to realize the upper limit of the 

target, more policy efforts are still needed. With the 20% renewable subsidy being introduced, the 

median of carbon intensity in 2030 does not change significantly relative to that in the BAU 

scenario, and it decreases by 64.5% (Fig. 6 (a)); while in the scenario of 30% subsidy, the upper 

limit of China’s carbon intensity goal in 2030 could be achieved, with the decline rate reaching 

65.3% (Fig. 6 (a)). The carbon-pricing policy has a more significant effect on the carbon intensity 

reduction. For example, the median of carbon intensity decreases by 66.7% in 2030 when a 30 

USD/tC of initial carbon tax is introduced (Fig. 6 (a)); moving to the policy mix scenarios, the 

distribution curves of the carbon intensity would move to the right more significantly, indicating a 

much more remarkable decrease in carbon intensity (Fig. 6 (b)). Overall, the lower bound of 

China’s carbon intensity target in 2030 can be realized with high probability, i.e. more than 50%, 

even without any additional policy; the achievement of the upper bound requires more policy 

efforts (Fig. 6 (c) and Fig. 6 (d)). More specifically, with the implementation of some single 
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policies, such as 30 USD/tC carbon tax or 30% alternative subsidy, China can realize the 65% 

target with a probability of more than 50% (Fig. 6 (d)). By contrasting the probabilities to reach 

the carbon-peaking and non-fossil energy deployment goals under the same policy scenarios, we 

may conclude that the carbon intensity target seems easier to achieve. 

[INSERT Fig. 6 HERE] 

4.4 Carbon abatement cost 

The economic cost of reaching China’s energy and climate targets is of great concern to policy 

makers; we therefore calculated the probability distribution across various GDP losses, and the 

probability distribution of the cumulative net present value of the GDP during the period of 

2015-2030, as portrayed in Fig. 7. With the subsidy policy being introduced, the probability 

distribution curves of cumulative GDP change slightly, which indicates that the subsidy policy has 

little effect on economic output
3
; while in the presence of increasing carbon pricing, the 

probability distribution curves move significantly to the left relative to the BAU curve. More 

specifically, the median values of the cumulative GDP in the period of 2015–2030 under the three 

considered carbon pricing policy scenarios are 137.7, 135.9, and 134.3 trillion USD, respectively, 

and compared to the cumulative GDP under the BAU scenario, i.e. 139.8 trillion USD, the GDP 

losses reach 1.5%, 2.7% and 3.9%, respectively. Thus, the single carbon pricing policy, especially 

the high carbon price, has a significant negative effect on economic output, and to peak China’s 

carbon emissions in 2030 with a probability of 50%, the cumulative GDP loss would approach 4% 

(relative to the BAU case). However, if the combined policy of carbon price and renewable 

subsidy were implemented instead, the corresponding GDP loss would decrease significantly. 

Specifically, the total GDP under the mixed policy scenarios of T30S30, T60S30, and T90S30 are 

138.54, 136.77, and 135.3 trillion USD, and the relative GDP losses decline to 0.90%, 2.12% and 

3.2%, respectively. Through the above cost analysis and the probability distribution results given 

                                                        
3 There seems to be a tiny increase of the total GDP from 2015 to 2030 under the subsidy policy. However, it 

should not be understood that the subsidy policy can surely promote the economic growth, and the tiny GDP 

increase may be just a short-period temporary phenomenon. There are several possible reasons for this result. First, 

with the subsidy policy being implemented, the overall cost of the energy input would decrease, which may 

increase the GDP. Second and more important, with the subsidy policy being introduced, the energy cost in distant 

future may become much lower as a result of more significant learning effect, and part of the carbon abatement 

may be delayed to the future, which may increase the GDP in short period, e.g. from 2015 to 2030. In addition, the 

discount rate used may also have effect on the total GDP. Overall, whether the renewable subsidy policy could 

increase the total GDP in longer period is determined by many factors, e.g. the potential of learning effect and the 

cost reduction of the renewable energy, the time horizon we concerned, the discount rate used, etc., which should 

be further explored in furure work. 
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in Fig. 1, we find that the introduction of a mixed policy can avoid excessive dependence on 

carbon pricing, which is largely in agreement with the finding of Acemoglu et al. (2012). As a 

result, the carbon-peaking goal can be realized with higher probability in the presence of a mixed 

policy, and the corresponding policy cost (GDP loss) can be reduced by up to 3%, compared to the 

pure carbon pricing policies. Further, to achieve the carbon-peaking target with more or less the 

same probability, the mixed policy costs may also be remarkably different. For instance, the 

probabilities of achieving the carbon-peaking target are 54.8% and 54.0% respectively for the 

policy mix scenarios of T60S30 and T90S20, while the GDP loss under the former scenario is 

2.1%, versus 3.6% under the latter. Thus, from the perspective of cost-control, the combination of 

the policy instruments should be sufficiently optimized in practice to realize the carbon-peaking 

target. 

[INSERT Fig. 7 HERE] 

In addition to the total economic cost discussed above, how the annual GDP loss will change 

over time is also of concern to us. It’s found that the annual GDP loss under the policy scenarios 

will first increase slightly before 2035 and then decrease rapidly. For example, under the mixed 

policies of T30S30 and T60S30, the GDP loss curves from 2015 to 2050 are hump-shaped, as 

portrayed in Fig. 5 (c) and Fig. 5 (d). In addition, the total GDP losses during the period of 

2015-2050 for T30S30 and T60S30 are 0.87% and 2.01% respectively. This implies that the 

economic cost of attaining the carbon-peaking goal will become lower in the mid- and long-term 

future, owing to the decreasing cost of the non-fossil energy resulting from the leaning effect and 

the gradual transformation from carbon-based fuels to low carbon energies.  

5 Conclusion and discussion 

The projections on China’s future energy consumption and carbon emission are full of 

uncertainty, due to the uncertainties of economic growth, energy efficiency improvement and 

non-fossil energy development. As a consequence, carbon emission control and policy making 

should be implemented from the perspective of risk management, and the policy measures should 

be taken in terms of the required degree of confidence that a policy target can be realized.  

Our simulation results show that without taking any further policy measures, the probability of 

China's emissions peaking before 2030 is low, and it does not reach 50% until 2040. To achieve 
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the carbon-peaking target with a high probability, additional policy efforts, e.g. carbon pricing and 

renewable energy subsidy are necessary. Our conclusion is in accordance with the recent study of 

Elzen et al. (2016), which made a systematic assessment of the impact of current and enhanced 

policies on China’s future GHG emissions through two different methods, i.e. bottom-up model 

framework and FAIR/TIMER model respectively. In the current policy scenario, the policy that 

has been adopted during the 12th Five-Year Plan (2011-2015) continues, and in the enhanced 

policy scenario, higher building efficiency standards, increase of the share of renewables, and 

further fuel efficiency improvement in the transport sector are implemented. Their simulation 

results reveal that the current policy is likely not sufficient for achieving a peak in CO2 emissions 

by or before 2030, and the enhanced policy is necessary to fulfill this task. In addition, they also 

stress that the carbon emission projections are closely related to the future economic growth 

projections. Unlike our study and Elzen et al. (2016), Green and Stern (2016) conclude that 

China’s CO2 emissions will probably grow much more slowly than before, and are likely to peak 

even at some point before 2025. However, it should be noted that the conclusion drawn by Green 

and Stern (2016) is based on a relatively conservative estimate of future economic growth, and 

optimistic estimates on both energy efficiency improvement and energy structure adjustment. 

Specifically, the economic growth rate is set as 6.5% per year during the period 2014-2020, which 

may be the lower bound of the economic growth rate needed to assure that China can achieve its 

target of building a comprehensive well-off society during the 13th Five-Year Plan (2016-2020). 

As for the energy efficiency enhancement, the energy intensity decrease rate is set to be 4% during 

2014-2030, which is higher than the average decrease rate (3.8%) during the past two decades 

(1990-2015). However, the potential for a further decline in energy-intensity may become limited 

over time given that China has made a great effort and progress on deployment of energy-saving 

technology during the past decade (Wang et al., 2014; Liu et al., 2017); and the extent to which 

energy efficiency can be further improved largely depends on an economic restructuring away 

from the energy-intensive industry in future (World Bank, 2015), which is full of uncertainty 

currently. Moving to the carbon intensity of energy consumption, the annual decline rate is set as 

1% during 2014-2020, and further increases to 1.5% during 2020-2030 in Green and Stern’s study, 

while actually it was only 0.5% during the past decade (2005-2015). In effect, whether significant 

decrease of carbon intensity could be achieved greatly relies on future renewable energy 
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development (Liu et al., 2017), and the road ahead is full of challenges. For example, the 

restriction of the connection to the grid still heavily blocks the sustainable capacity expansion of 

the renewable energy, and China will restrict rapid capacity expansion in the regions where the 

curtailment of wind and solar power are serious, e.g. northwest regions of China, during the 13th 

Five-Year Plan (2016-2020). 

The carbon pricing policy plays a key role in China realizing its carbon-peaking target by 2030. 

However, the economic cost caused by the single high carbon price is also significant. The 

introduction of the policy mix, i.e., combining carbon pricing with a renewables subsidy, 

effectively lowers the dependence on the high carbon price, and significantly reduces the 

associated GDP loss for reaching the carbon-peaking target.
 
Specifically, a carbon price of 30-60 

USD/tC accompanied by a 30% non-fossil energy subsidy may ensure the achievement of the 

carbon-peaking target before 2030 with a high probability, and the median of the corresponding 

GDP loss falls between 0.91%-2.12% during the period of 2015-2030, which further decreases in 

the longer period, e.g. to 0.87%-2.01% during the period of 2015-2050. Our cost estimates are 

more or less the same with the results from WITCH and MERGE and higher than that from 

GCAM and DNE21+ (Aldy et al., 2016). Thus, from the perspective of cost-effectiveness, it’s 

recommended that a policy mix of carbon pricing and renewable subsidy policy is more 

acceptable and feasible in practice to realize China’s carbon-peaking goal before 2030. 

Additionally, different policy mixes may yield a similar policy effect, while differing largely in 

economic costs, and effective policy optimization is therefore very important to achieving China’s 

energy and climate targets at low cost in reality. 

It is found that the carbon intensity goal for 2030 committed to by China is most likely to be 

achieved, followed by the carbon-peaking target and then the non-fossil energy development goal, 

given the same policy strength. This result indicates that it seems not likely that China will 

deliberately increase emissions rapidly over the next decade to make the 2030 peak as high as 

possible, despite China having no definite target of carbon peak level, since otherwise it may be 

difficult to achieve the non-fossil energy target. In addition, this result may also have an important 

implication for the coordination between different policy targets and the future carbon price 

evolution of China's national carbon market (Mo et al., 2016). Specifically, as the non-fossil 
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energy target is more difficult to achieve than the carbon mitigation target, more policy effort 

would be needed to realize the non-fossil energy target. In this situation, renewable development 

may contribute more to the carbon emission mitigation than in the single-carbon-mitigation target 

situation, and the demand for the carbon allowance from the power sector would be lower, which 

may lead to a lower carbon price and undermine the effectiveness of the future national carbon 

market (Fan and Mo, 2015). The policy implication is that if the carbon intensity target is chosen 

as the basis for determining the carbon emission cap of the national carbon trading system in 

future, this target should be set higher than that in the current INDC, to avoid a possible carbon 

price collapse. 

It should be pointed out that the carbon abatement progress under the Paris is iterative, and 

there will be successive rounds of NDCs to increase effort and ambition to meet the global target. 

For China, once it succeeds in peaking carbon emissions, those emissions must begin to decrease, 

or stay at a certain level for some time and then decrease. Our model framework can be employed 

to design China’s long term carbon abatement targets in view of the global decarbonization target. 

In specific, after the carbon emission peaks at around 2030, different remaining carbon emission 

budgets until 2050 or 2100 can be incorporated into the model as new emission constraint. By 

running the model under different constraints of carbon emission budgets, the optimal path of 

economic growth and carbon emission can be obtained, and subsequently the optimal carbon 

abatement targets at different time. Alternately, given certain policies, e.g., carbon pricing, subsidy 

or policy mix, the distribution of the future carbon emission path and the corresponding 

cumulative carbon emission until some time (2050 or 2100) can be obtained from the modelling 

results. By comparing the cumulative carbon emission on each simulated path with the given 

carbon budget (target), the probability of realizing the target can be obtained. With different target 

setting, we can get the corresponding probability. Based on this mapping from the target to 

probability, the policy makers can select the target according to the probability required. 

Our model framework can also be further extended in several ways. First, in our current model, 

the feature of the sequential decision was not incorporated. In reality, the decision-making under 

uncertainty may be sequential, which means that the decision makers can learn with new 

information of the economy and technology arriving, and adapt the policy to the new information 
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accordingly. Our model can be extended to adapt to this more complex situation in the following 

way. On the one hand, the future uncertainties about the economy and technology can be depicted 

using dynamic stochastic process, and the evolution of the uncertain factors can be observed by 

the decision makers. On the other hand, the behavior of the decision makers should be flexible, 

and they can re-optimize the future path in the remaining time herizon and update their decision 

based on the new information. Second, in the current model framework, we just consider 

one-factor learning curve, i.e. learning-by-doing, and in future work, the two-factor learning curve, 

which includes both learning-by-doing and learning-by-searching can be incorporated into our 

model. In this situation the endogeneity effect may emerge, that is, the learning parameter 

distribution may be affected by the R&D subsidy for certain technologies, which should be 

carefully dealt with. At last, neither carbon capture and storage (CCS) nor negative emission 

technologies (e.g. BECCS) are considered in the current model, although they are projected to 

play important roles in mitigating carbon emissions for China (Mo et al., 2015), particularly in the 

mid- to long-term future, and it should be a promising area for exploration in future works. 

 

Acknowledgments 

We thank Prof. Samuel Fankhauser, Prof. John Birge and Dr. Luca Taschini, as well as the 

anonymous reviewers, for their valuable comments and advices. The funding from the National 

Natural Science Foundation of China, Nos. 71774153, 71503242, 71403263 and 71210005 and 

State Scholarship Fund from the China Scholarship Council (CSC) (201604910047) are 

acknowledged. 

 

References 

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D., 2012. The environment and directed technical change. 

American Economic Review, 102(1), 131-166. 

Alberth, S., 2008. Forecasting technology costs via the experience curve-myth or magic? Technological 

Forecasting & Social Change 75, 952-983. 

Aldy, J., Pizer, W., Tavoni, M., Reis, L. A., Akimoto, K., Blanford, G., Carraro, C., Clarke, L. E., Edmonds, J., 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 23 

Iyer, G. C., McJeon, H. C., Richels, R., Rose, S.,  Sano, F., 2016. Economic tools to promote transparency and 

comparability in the Paris agreement. Nature Climate Change 6(11), 1000-1004. 

Babonneau, F., Haurie, A., Loulou, R., & Vielle, M., 2012. Combining stochastic optimization and monte carlo 

simulation to deal with uncertainties in climate policy assessment. Environmental Modeling & Assessment 17(1), 

51-76.  

Barreto, L., Klaassen, G., 2004. Emission trading and the role of learning-by-doing spillovers in the "bottom-up" 

energy-system ERIS model. International Journal of Energy Technology & Policy 2, 70-95. 

BP, 2016. Statistical Review of World Energy. 

CERS, 2016. China Energy Outlook 2030. China Energy Research Society, Beijing (in Chinese). 

Cui, L. B., Fan, Y., Zhu, L., Bi, Q. H., 2014. How will the emissions trading scheme save cost for achieving 

china’s 2020 carbon intensity reduction target? Applied Energy 136(12), 1043-1052. 

Di, Y., Cui, X. M., Liu, X. O., 2012. The impact of technology innovations on cost of China’s wind-power 

industry. The Journal of Quantitative & Technical Economics.3, 140-150 (in Chinese). 

Duan, H. B., Fan, Y., Zhu. L., 2013. What’s the most cost-effective policy of CO2 targeted reduction: An 

application of aggregated economic technological model with CCS? Applied Energy 112, 866-875.  

Duan, H. B., Zhang, G. P., Zhu, L., Fan, Y., Wang, S. Y., 2016. How will diffusion of PV solar contribute to 

china׳s emissions-peaking and climate responses?. Renewable & Sustainable Energy Reviews 53, 1076-1085. 

Duan, H. B., Zhu, L., Fan, Y., 2014. Optimal carbon taxes in carbon-constrained china: a logistic-induced energy 

economic hybrid model. Energy 69(5), 345-356. 

Duan, H. B., Zhu, L., Fan, Y., 2015. Modelling the evolutionary paths of multiple carbon-free energy technologies 

with policy incentives. Environmental Modeling & Assessment 20(1), 55-69.  

Elzen, M. D., Fekete, H., Höhne, N., Admiraal, A., Forsell, N., Hof, A. F., Olivier, J. G. J., Roelfsema, M., van 

Soest, H., 2016. Greenhouse gas emissions from current and enhanced policies of china until 2030: can emissions 

peak before 2030? Energy Policy 89, 224-236. 

Energy Research Institute (ERI), 2009. China’s low carbon development roadmap by 2050: Energy demand and 

carbon emission scenario analysis. (in Chinese) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 24 

Fan, Y., Mo, J. L., 2015. Key Issues for Top-level Design of China Carbon Emission Trading Scheme (ETS) and 

Policy Recommendations. Bulletin of Chinese Academy of Sciences 30(4): 492-501. 

Gerlagh, R., Zwaan, B. V. D., 2004. A sensitivity analysis of timing and costs of greenhouse gas emission 

reductions. Climatic Change 65(1), 39-71.  

Golub, A., Narita, D., Schmidt, M. G. W., 2014. Uncertainty in integrated assessment models of climate change: 

alternative analytical approaches. Environmental Modeling & Assessment 19(2), 99-109. 

Green, F., Stern, N., 2017. China’s changing economy: Implications for its carbon dioxide emissions. Climate 

Policy 17(4), 423-442. 

Grimaud, A., Lafforgue, G., Magné, B., 2011. Climate change mitigation options and directed technical change: a 

decentralized equilibrium analysis. Resource & Energy Economics 33(4), 938-962. 

Grubb, M., Köhler, J., Anderson, D., 2002. Induced technical change in energy and environmental modeling: 

analytic approaches and policy implications. Annual Review of Energy and the Environment 27(1), 271-308. 

Gürkan Kumbaroğlu, Karali, N., Arıkan, Y., 2008. CO2, GDP and RET: an aggregate economic equilibrium 

analysis for turkey. Energy Policy 36(7), 2694-2708. 

He, J. K., 2013. Analysis of CO2 emissions peak: China’s objective and strategy. China Population, Resource and 

Environment.23, 1-9 (in Chinese). 

Hu, Z., Cao, J., Hong, L. J., 2012..Robust simulation of global warming policies using the DICE model. 

Management Science 58, 2190-2206. 

IEA, 2010. Energy technology perspectives. OECD/IEA, Paris. 

IPCC, 2006. Guidelines for national greenhouse gas inventories. Japan: Institute for Global Environmental 

Strategies. http://www.ippc-nggip.iges.or.jp. 

Kaya, Y., 1990. Impact of Carbon Dioxide emission control on GNP growth: Interpretation of proposed scenarios. 

In Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris. 

Kriegler, E., Weyant, J. P., Blanford, G. J., Krey, V., Clarke, L., Edmonds, J., Rose, S. K., Fawcett, A., Luderer, 

G., Riahi, K., Richels, R., Rose, S. K., Tavoni, M., van Vuuren D. P., 2014. The role of technology for achieving 

climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 25 

Climatic Change 123(3), 353-367. 

Lewandowsky, S., Risbey, J. S., Smithson, M., & Newell, B. R. (2014). Scientific uncertainty and climate change: 

Part II. Uncertainty and mitigation. Climatic Change 124(1), 39-52.  

Liu, Q., Gu, A., Teng, Fei, Song, R., Chen, Y., 2017. Peaking China’s CO2 Emissions: Trends to 2030 and 

Mitigation Potential. Energies 10, 1-22. 

Lo, A. Y. 2012. Carbon emissions trading in China. Nature Climate Change 2, 765-766. 

Malakoff, D. 2014. China's peak carbon pledge raises pointed questions. Science 346(6212), 903. 

Mcdonald, A., Schrattenholzer, L., 2001. Learning rates for energy technologies. Energy Policy 29(4), 255-261. 

Mo, J. L., Agnolucci, P., Jiang, M. R., Fan, Y., 2016. The impact of Chinese carbon emission trading scheme (ets) 

on low carbon energy (lce) investment. Energy Policy 89, 271-283.  

Mo, J. L., Schleich, J., Zhu, L., Fan, Y., 2015. Delaying the introduction of emissions trading systems – 

implications for power plant investment and operation from a multi-stage decision model. Energy Economics 

52(1), 255-264. 

Nordhaus, W., 2007. The challenge of global warming: Economic models and environmental policy. New Haven, 

Connectivut, USA.  

Nordhaus, W., Sztorc, P., 2013. DICE 2013R: Introduction and User’s Manual, second edition. 

Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Quéré, C. L., Marland, G., Raupach, M. R., 

Wilson, C., 2013. The challenge to keep global warming below 2 °c. Nature Climate Change 3(1), 4-6. 

Rogelj, J., Mccollum, D. L., Reisinger, A., Meinshausen, M., Riahi, K., 2013. Probabilistic cost estimates for 

climate change mitigation. Nature 493, 79-83.  

Rout, U. K., Blesl, M., Fahl, U., Remme, U., Voß, A., 2009. Uncertainty in the learning rates of energy 

technologies: an experiment in a global multi-regional energy system model. Energy Policy 37(11), 4927-4942. 

Rubin, E. S., Azevedo, I. M. L., Jaramillo, P., Yeh, S., 2015. A review of learning rates for electricity supply 

technologies. Energy Policy 86, 198-218. 

Tsinghua University (THU), 2014. China and New Climate Econmics Report, Beijing. 

United Nations Development Program (UNDP), 2009. China human development report, 2009/10: China and a 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 26 

sustainable future: towards a low carbon economy and society. 

Wang, C., Lin, J., Cai, W., Liao, H., 2014. China’s carbon mitigation strategies: enough? Energy Policy 73, 47-56. 

Wang, F., Zhao, L., Zhao, Z., 2016. China’s Family Planning Policies and Their Labor Market Consequences. IZA 

Discussion Paper No. 9746. 

Wang, T., Watson, J., 2010. Scenario analysis of china’s emissions pathways in the 21st century for low carbon 

transition. Energy Policy 38(7), 3537-3546. 

Webster, B. M., Mayer, M., Reilly, J. M., Harnisch, J., Mc, H. R. S., Wang, C., 2002. Uncertainty in emissions 

projections for climate models. Atmospheric Environment 36(22), 3659-3670. 

Webster, B. M., Paltsev, S., Parsons, J., Reilly, J. M., Jacoby, H., 2008. Uncertainty in Greenhouse Gas Emissions 

and Costs of Atmospheric Stabilization. MIT Joint Program on the Science and Policy of Global Change (Report 

No. 165). 

Weiss, M., Junginger, M., Patel, M. K., Blok, K., 2009. A review of experience curve analyses for energy demand 

technologies. Technological Forecasting & Social Change 77(3), 411-428. 

World Bank, 2012. World Bank Development Indicator Database. 

World Bank, 2015. Global economic prospects: The global economy in transition. Washington, DC. 

Wu J., Fan Y., Xia Y., 2016. The Economic effects of different quota allocations on carbon emissions trading of 

China. The Energy Journal 37, 129-151. 

Zhang, D., Rausch, S., Karplus, V. J., Zhang, X., 2013. Quantifying regional economic impacts of CO2, intensity 

targets in china. Energy Economics 40(2), 687-701. 

Zeng, Y., Hesketh, T., 2016. The effects of China’s universal two-child policy. Lancet 388, 1930–1938. 

Zhou, N., Fridley, D., Khanna, N. Z., Ke, J., Mcneil, M., & Levine, M., 2013. China's energy and emissions 

outlook to 2050: perspectives from bottom-up energy end-use model. Energy Policy 53, 51-62. 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 27 

Appendixes 

Appendix A. The key parameters, variables and formulas of CE3METL model 

A.1 Main equations 

The objective of CE3METL is to maximize the welfare, given 𝜎𝑡 the discount factor, i.e., 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑎𝑥 ∑ (𝐿𝑡𝑙𝑜𝑔(𝑐𝑡) ∏ (1 + 𝜎𝜏)−∆𝑡𝑡
𝜏=0 )𝑡                                 (Eq.A1)  

𝜎𝑡 = 𝜎0𝑒−𝑑𝜎𝑡                                                            (Eq.A2)  

𝑐𝑡 = 𝐶𝑡 𝐿𝑡⁄                                                               (Eq.A3) 

Production proceeds by means of a single CES production function. Specifically, with inputs 

capital 𝐾𝑡, labor 𝐿𝑡 and energy 𝐸𝑡, we have 

𝑂𝑢𝑡𝑝𝑢𝑡𝑡 = [𝛼𝑡(𝐾𝑡
𝜂

𝐿𝑡
1−𝜂

)
𝜌

+ 𝛽𝑡𝐸𝑡
𝜌

]
1 𝜌⁄

                                        (Eq.A4) 

To calculate the parameter 𝛼𝑡 and 𝛽𝑡, we first give the reference values of 𝑂𝑢𝑡𝑝𝑢𝑡𝑡, 𝐾𝑡 and 𝐸𝑡 

for the given initial values 𝑂𝑢𝑡𝑝𝑢𝑡0, 𝐾0 and 𝐸0, that is 

{

𝑂𝑢𝑡𝑝𝑢𝑡𝑡
𝑅𝐸𝐹 = 𝑂𝑢𝑡𝑝𝑢𝑡0 𝐿𝑃𝐺𝑡𝐿𝑡 𝐿0⁄

𝐾𝑡
𝑅𝐸𝐹 = 𝐾0 𝐿𝑃𝐺𝑡𝐿𝑡 𝐿0⁄                       

𝐸𝑡
𝑅𝐸𝐹 = 𝐸0 𝐴𝐸𝐸𝐼𝑡𝐿𝑡 𝐿0⁄                      

                                          (Eq.A5) 

𝐿𝑃𝐺𝑡 follows exponential pattern by giving initial labor productivity growth 𝐿𝑃𝐺0 and its 

decrease rate per period (five-year) 𝑑𝑒𝑟𝑎𝑡𝑙; 𝐴𝐸𝐸𝐼𝑡 is determined by initial energy efficiency 

enhancement 𝐴𝐸𝐸𝐼0 and decline rate per period 𝑑𝑒𝑟𝑎𝑡e, that is 

𝐿𝑃𝐺𝑡 = (𝐿𝑃𝐺0 𝑑𝑒𝑟𝑎𝑡𝑙⁄ )(1 − 𝑒−𝑑𝑒𝑟𝑎𝑡𝑙𝑡)                                        (Eq.A6) 

𝐴𝐸𝐸𝐼𝑡 = 𝐴𝐸𝐸𝐼0(1 − 𝑑𝑒𝑟𝑎𝑡𝑒𝑡)                                               (Eq.A7) 

Through first-order optimality condition of Eq.A4, and marginal productivity of energy 𝑀𝑃𝐸0, 

we could get 

{
𝛼𝑡 = ((𝑂𝑢𝑡𝑝𝑢𝑡𝑡

𝑅𝐸𝐹)𝜌 − 𝛽𝑡(𝐸𝑡
𝑅𝐸𝐹)𝜌) (𝐾𝑡

𝑅𝐸𝐹)𝜂𝜌⁄ (𝐿𝑡)(1−𝜂)𝜌

𝛽𝑡 = 𝑀𝑃𝐸0 (𝑂𝑢𝑡𝑝𝑢𝑡𝑡
𝑅𝐸𝐹)𝜌−1 (𝐸𝑡

𝑅𝐸𝐹)𝜌−1⁄                                
                        (Eq.A8) 

The capital stock 𝐾𝑡 equals the sum of depreciated previous capital stock and current investment,  

𝐾𝑡 = (1 − 𝛿1)𝐾𝑡−1 + 𝐼𝑡                                                     (Eq.A9) 

GDP that consists of investment, consumption, ex- and imports, is the current output net of energy 

costs and carbon abatement costs, i.e., 

𝐺𝐷𝑃𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡𝑡 − 𝐸𝐶𝑡 − 𝐴𝐶𝑡 (Eq.A10) 

𝐶𝑡 = 𝐺𝐷𝑃𝑡 − 𝐼𝑡 − 𝑋𝑡 + 𝑀𝑡 (Eq.A11) 

𝐸𝐶𝑡 + 𝐴𝐶𝑡 = 𝐸𝑡(𝑃𝐹𝑡 + 𝑃𝑁𝐹𝑡) (Eq.A12) 

To close up the regional 3E-integrated model, we assume the ex- and imports dynamically follow 

the optimal trajectory of GDP growth, and this is achieved by introducing a lower bound and an 

upper bound, respectively, for the changes of ex- and imports, 

𝑋𝑡 ≥ 𝜃𝑥𝐺𝐷𝑃𝑡 (Eq.A13) 
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𝑀𝑡 ≤ 𝜃𝑚𝐺𝐷𝑃𝑡 (Eq.A14) 

The core technological evolution mechanism, i.e., the revised multi-logistic curves, is coupled to 

the 3E-integrated model framework. In specific, the dynamic competitive relationship between 

conventional energy technologies and non-fossil alternatives is determined by the relative price 

𝑃𝑖,𝑡 and policy intervention of carbon prices and subsidies, i.e.,  

𝑑𝑆𝑖,𝑡

𝑑𝑃𝑖,𝑡
= 𝑎𝑖𝑆𝑖,𝑡(�̃�𝑖(1 − ∑ 𝑆𝑗,𝑡𝑗≠𝑖 ) − 𝑆𝑖,𝑡)                                        (Eq.A15) 

𝑃𝑖,𝑡 = 𝐶𝑐𝑜𝑎𝑙,𝑡 (1 + 𝑡𝑎𝑥𝑐𝑜𝑎𝑙,𝑡) 𝐶𝑖,𝑡(1 + 𝑠𝑢𝑏𝑖,𝑡)⁄                                   (Eq.A16) 

𝑡𝑎𝑥𝑖,𝑡 = {
𝑡𝑎𝑥𝑐𝑜𝑎𝑙

𝜉𝑖
𝐶𝑖,𝑡

, 𝑖 ≠ 𝑘

0,                 𝑖 = 𝑘  
                                                (Eq.A17)  

Non-fossil energy technology advancement is endogenized by so-called learning-by-doing process, 

i.e., the unit costs 𝐶𝑘,𝑡  will decrease with the cumulative production experience 𝐾𝐷𝑘,𝑡 

accumulating, that is, 

𝐶𝑘,𝑡 = 𝐶𝑘,0 (
𝐾𝐷𝑘,𝑡

𝐾𝐷𝑘,0
)

−𝑏𝑘

                                                     (Eq.A18) 

1 − 𝑙𝑟𝑘 = 2−𝑏𝑘                                                           (Eq.A19) 

and knowledge capital 𝐾𝐷𝑘,𝑡 is measured in terms of current production and previous knowledge 

stock adjusted by depreciation rate 𝛿2, 

𝐾𝐷𝑘,𝑡 = (1 − 𝛿2)𝐾𝐷𝑘,𝑡−1 + 𝑆𝑘,𝑡𝐸𝑡                                           (Eq.A20) 

The composited prices for fossil and non-fossil energy are the sums of fossil and non-fossil energy 

costs, respectively, weighted by the corresponding technological shares and policy intervention, 

𝑃𝐹𝑡 = ∑ 𝐶𝑓,𝑡𝑆𝑓,𝑡(1 + 𝑡𝑎𝑥𝑓,𝑡)𝑓                                                (Eq.A21) 

𝑃𝑁𝐹𝑡 = ∑ 𝐶𝑘,𝑡𝑆𝑘,𝑡(1 − 𝑠𝑢𝑏𝑘,𝑡)𝑘                                              (Eq.A22) 

Total carbon emissions equals to the sum of industrial CO2 emissions and exogenous natural 

emissions (mainly refer to the emissions associated with the change of land use), 

𝐸𝑚𝑖𝑠𝑡 = ∑ (𝜉𝑓𝑆𝑓𝐸𝑓,𝑡)𝑓 + 𝐸𝑚𝑖𝑠0                                             (Eq.A23) 

and the carbon emission stock is accumulated by the annual CO2 emissions and the past emission 

stock adjusted by the sinking rate, i.e., 

𝐶𝑢𝑚𝐸𝑡 = (1 − 𝑠𝑟)𝐶𝑢𝑚𝐸𝑡−1 + 𝐸𝑚𝑖𝑠𝑡                                         (Eq.A24) 

 

A.2 Indices 

𝑡 time period 

𝑖, 𝑗 technology type except for coal 

𝑘 non-fossil energy technologies 

𝑓 fossil fuels 

A.3 Variables 

𝐶𝑡 consumption of goods and services 
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𝐾𝑡 capital stock 

𝐸𝑡 energy input 

𝑂𝑢𝑡𝑝𝑢𝑡𝑡
𝑅𝐸𝐹 reference output 

𝐾𝑡
𝑅𝐸𝐹 reference capital input 

𝐸𝑡
𝑅𝐸𝐹 reference energy input 

𝐼𝑡 investment flow 

𝐿𝑡 population as well as labor input 

𝑐𝑡 per capita consumption 

𝐺𝐷𝑃𝑡 gross domestic production 

𝑋𝑡 export 

𝑀𝑡 import 

𝐸𝐶𝑡 energy costs 

𝐴𝐶𝑡 abatement cost 

𝑃𝐹𝑡 composited price of fossil energy 

𝑃𝑁𝐹𝑡 
composited price of non-fossil energy 

𝑆𝑖,𝑡 market share of technology 𝑖  

�̃�𝑖 the maximal possible potential of technology 𝑖 

𝑃𝑖,𝑡 the relative prices of coal and alternative  

𝐶𝑐𝑜𝑎𝑙,𝑡 unit cost of coal 

𝐶𝑖,𝑡 unit cost of the other types of energy except coal 

𝑡𝑎𝑥𝑐𝑜𝑎𝑙,𝑡 carbon price level imposed on coal 

𝑡𝑎𝑥𝑖,𝑡 carbon price level imposed on the other fossil fuels 

𝑠𝑢𝑏𝑖,𝑡 subsidy level for alternatives
 

𝐾𝐷𝑖,𝑡  knowledge stock of learning-by-doing 

𝐸𝑚𝑖𝑠𝑡 carbon emissions 

𝐶𝑢𝑚𝐸𝑡 cumulative carbon emissions 

A.4 Parameters 

𝜎 pure rate of social time preference (per year) 

𝑑𝜎 annual declining rate of 𝜎 

𝜂 capital value share 

𝜌 elasticity of substitution 

𝛼𝑡, 𝛽𝑡  technological progress parameters which include 𝐿𝑃𝐺 and 𝐴𝐸𝐸𝐼 

𝛿1, 𝛿2  rates of depreciation for conventional capital and knowledge capital 

𝜃𝑥, 𝜃𝑚  bounds of export and import 

𝑎𝑖     substitution capability parameter of alternatives to coal 

𝑏𝑘     learning index for learning curve 

i
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𝑙𝑟𝑘  learning rate 

𝑠𝑟     sink rate of carbon in nature 

𝜉𝑓     carbon contents of fossil fuels (carbon emission factors) 

𝑀𝑃𝐸0  marginal productivity of energy 

𝐿𝑃𝐺0  initial labor productivity growth 

𝐴𝐸𝐸𝐼0 initial autonomous energy efficiency improvement 

𝑑𝑒𝑟𝑎𝑡𝑙 per period decrease rate of 𝐿𝑃𝐺0 

𝑑𝑒𝑟𝑎𝑡𝑒 per period decrease rate of 𝐴𝐸𝐸𝐼0 

 [INSERT Table A1 HERE] 

A.5 Variable initial values 

𝑂𝑢𝑡𝑝𝑢𝑡0 initial output in the base year 

𝐾0 initial capital stock 

𝐸0      initial energy input 

𝐸𝑚𝑖𝑠0   exogenous initial carbon emissions from land use change 

 

Appendix B. The Results in the BAU scenario 

In this section, the simulation results in the BAU scenario were presented, based on which we 

calibrated the model by making some comparisons with other relevant studies. 

B.1 GDP growth 

Energy consumption and CO2 emissions are closely related to future economic growth; gross 

domestic product (GDP) and its growth rates are shown in Fig. B1. There is still great potential for 

future economic growth in China. For the median result, the GDP increases from 5.97 trillion 

USD in 2010 to 21.98 trillion USD in 2030, i.e., 3.68 times that of 2010, and it further reaches 

48.6 trillion USD in 2050, i.e., 8.1 times that of 2010. Although economic growth will continue, 

the GDP growth rate is likely to decrease over time, from 7.0% during the period of 2010–2020 to 

4.7% during the period of 2030–2040, and further to 3.3% for the period of 2040–2050. 

[INSERT Fig. B1 HERE] 

Given the future uncertainties, we make a statistical analysis of the simulation results of 

economic growth in particular, and we get 60%, 80%, 90% and 100% confidence intervals for the 

GDP growth paths, as shown in Fig. B1. The uncertainty of the GDP amount is still significant, 
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and it will further increase over time. More specifically, for the 60% confidence level, the GDP 

amount falls between 19.07 and 25.49 trillion USD in 2030, versus 38.27 and 62.07 trillion USD 

in 2050; and for the 90% confidence level, the GDP amount falls into the interval of 16.67 and 

29.24 trillion USD in 2030, while in 2050 it ranges from 30.40 to 77.85 trillion USD. This 

situation changes when moving to the GDP growth rate, i.e., the uncertainty would decrease over 

time. For example, for the 60% confidence level, the GDP growth rate ranges from 6.50% to 8.09% 

in the period of 2010-2020, and the range would decrease to the interval of 2.97% and 3.82% for 

the period of 2040-2050.  

We also summarize the results of economic growth in other related studies, as shown in Fig. 

B2. Our results for GDP growth rates are lower than those of the ERI (2009), more or less the 

same as the moderate scenario of Tsinghua University (THU-M) (THU, 2014) and LBNL (Zhou, 

2013), and a bit higher than those of the IEA (2010) and the UNDP (2009). 

[INSERT Fig. B2 HERE] 

B.2 Energy consumption 

Future carbon emissions are determined by the total energy consumption and the change in 

carbon intensity. As a result, controlling energy consumption by enhancing energy conservation 

and improving energy efficiency is still China’s current priority strategy to combat climate change. 

In the BAU scenario, the median of the energy consumption would continue growing until 2050, 

as shown in Fig. B3. Specifically, the energy consumption in 2010 is 3.25 Gtce, and it will 

increase to 5.72 Gtce in 2030, i.e., 1.76 times that of 2010, and will further reach 6.98 Gtce in 

2050. This result is more or less the same as the results of the BAU scenario of the IEA (2010), 

reference scenario of the UNDP (2009) and the energy-saving scenario of the ERI (2009). 

Although energy consumption would continue increasing in the mid- to long-term future, the 

energy consumption growth rate would decrease, from 3.2% in the period of 2010-2020 to 0.53% 

in the period of 2040-2050, and then the total energy consumption would become stable.  

[INSERT Fig. B3 HERE] 

Also, we note that the uncertainty of the energy consumption is significant. For the 60% 

confidence level, energy consumption ranges from 4.63 to 7.09 Gtce in 2030, versus 4.72 to 10.23 
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Gtce in 2050. However, the uncertainty of the energy consumption growth rates would decrease 

over time. For the 60% confidence level, the confidence interval would decrease from (2.09%, 

4.37%) in the period of 2010-2020 to (1.47%, 3.59%) in the period of 2020-2030, and further to (−

0.31%, 1.31%) in the period of 2040- 2050.  

Besides the total energy consumption amount, the change of energy structure also has a 

fundamental effect on the future carbon emission. Fig. B4 (a) and Fig. B4 (b) show the evolution 

of the energy structure under the BAU scenario. Coal is still China's top energy source currently 

and may continue dominating the whole energy consumption market until 2050, although its share 

seems to have temporarily peaked in 2015. The consumption of less carbon-intensive fossil energy, 

i.e. oil and gas, will also increase, and especially the share of gas. Currently, non-fossil energy 

only accounts for about 11% of the total energy consumption; however, the diffusion of non-fossil 

energy is significant both in terms of the amount and the share, mainly as a result of the learning 

effect. To be specific, the cost of non-fossil energy will decrease with cumulative energy 

consumption increasing, and the cost disadvantages with the fossil energy diminish in future 

gradually, as shown in Fig. B4 (c). Hydropower is the most important non-fossil energy, and it will 

continue increasing in our simulation. In addition, nuclear, wind and biomass will contribute much 

of the non-fossil energy increase in future. 

[INSERT Fig. B4 HERE] 

B.3 Carbon emissions and intensity 

Fig. B5 (a and b) shows the carbon emission evolution. The median result shows that the 

carbon emissions in China in 2010 were 2.1 GtC, and they increase continuously until 2040. In 

2030, the carbon emissions are 3.55 GtC, which is 1.67 times that in 2010, and they further 

increase to 3.91 GtC in 2040, when they peak. From 2040 to 2045, carbon emissions relatively 

stabilize at the peak level in 2040, and after that they gradually decrease. Similarly, the increase 

rate of carbon emissions during the period of 2010–2020 is 2.97%, and it decreases gradually to 0 

and turns negative during the period of 2040–2050. The median results under the BAU scenario 

are similar to those in the energy-saving scenario of the ERI (2009), where carbon emissions peak 

in 2040, but the peak value of the ERI (2009), i.e., 3.55 GtC, is a little lower than our results. In 

addition, our estimation of CO2 emissions is more conservative compared with the results of the 
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baseline scenario of the IEA (2010) and the reference scenario of the UNDP (2009), in which CO2 

emissions would not peak before 2050 and reach 4.36 GtC in 2050. Future CO2 emissions are also 

full of uncertainty, and the uncertainty would further increase over time. In 2030, for the 60% 

confidence level, carbon emissions fall between 2.87 and 4.40 GtC, versus 2.32 and 5.35 GtC for 

the 90% confidence level. In 2040, the confidence interval for the 60% confidence level is (2.8, 

5.29) GtC, and further expands to (2.13, 7.04) GtC for the 90% confidence level. In contrast, the 

uncertainty of the growth rate decreases over time, and for the 60% confidence level, the 

confidence interval of the growth rate from 2010 to 2020 is (1.83%, 4.13%), and it reduces to (−

1.21%, 0.42%) during the period of 2040–2050. 

The simulation results show that there is still great potential for China to reduce its carbon 

intensity, as shown in Fig. B5 (c and d). For the median results in the BAU scenario, the carbon 

intensity decreases from 0.36 tC/thousand USD in 2010 to 0.24 tC/thousand USD in 2020, i.e., a 

33.3% reduction, and further decrease to 0.16 tC/thousand USD in 2030, i.e., a 51.4% reduction. 

Besides, the carbon intensity in 2020 and 2030 decrease by 46.0% and 63.4%, respectively 

(relative to that in 2005), given that the carbon intensity reduction is about 19% during the 11
th
 

Five-Year Plan (2005–2010). In addition, the decrease rate is full of uncertainty according to the 

results for carbon intensity distribution shown in Fig. B5 (c and d); despite that, the distribution 

curves moves downward and the carbon intensity decreases over time. 

[INSERT Fig. B5 HERE] 

 

Appendix C. Sensitivity analysis of the key indexes to the uncertain parameters 

In this section, we make a sensitivity analysis of the key uncertain parameters, involving 

exogenous energy efficiency improvement (AEEI), labor productivity growth (LPG), and 

elasticity of substitution between capital-labor complex and energy (EOS). By using different 

percentile values of the uncertain parameters, i.e., 5%, 40%, 60% and 95%, and holding the other 

parameters at the BAU level, we test how the variation of the key parameters would affect the 

relevant results, including cumulative GDP, carbon emissions, and energy consumption during 

2015 to 2050 (Fig. C1).  
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As for the considered parameters, labor productivity growth (LPG) is the most important 

factor that affects cumulative GDP, followed by energy efficiency enhancement (AEEI) and 

elasticity of substitution between capital-labor and energy (EOS). For example, the changes in 

cumulative GDP from 2015 to 2050 are −19.09% and 20.10% for the percentile values of 5 and 95 

for LPG, respectively. The energy consumption results are also sensitive to changes to the LPG 

and AEEI parameters. For the 5 and 95 percentile values of the LPG, the variations are −20.04% 

and 20.99%, and for the AEEI, the variations are 37.61% and −28.11% respectively. Moving to 

the cumulative CO2 emission, the results are more sensitive to the energy efficiency improvement 

than the other two parameters. More specifically, the cumulative CO2 emissions changes are 35.94% 

and −27.10%, respectively, given the 5 and 95 percentile values for AEEI; when moving to the 

EOS, the corresponding variation ranges decrease to 15.10% and −10.69% (Fig. C1). In addition, 

the comparison of the results for the 5 and 95 percentile values referred to above also indicates 

that the effects of the positive and negative parameter deviations relative to the BAU on the main 

outcome are asymmetric in some cases. 

[INSERT Fig. C1 HERE] 

To further explore the impact of the learning parameters on the non-fossil energy deployment, 

we also obtain the results across different learning percentile values chosen according to the 

uncertainty distribution reported in Table 1. As shown in Fig. C2, different energy technologies 

encounter different effects of learning uncertainty. To be specific, the current low-market-share 

technologies, such as wind, PV solar, tide, geothermal and biomass, may be more sensitive to the 

uncertainty of learning effect, but this situation changes when turning to the better-developed 

technologies, e.g., nuclear and hydropower. For example, under the 5 percentile case, the 

consumption of wind and PV solar increases by 44.3% and 24.3% respectively, while the variation 

for hydropower and nuclear are just 0.39% and 4.10% correspondingly; even under the 40 

percentile case, the change of wind energy consumption is still as high as 8.61%, while the 

corresponding value for hydro-power further lowers to 0.085% (Fig.C2). 

[INSERT Fig.C2 HERE] 
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Table 1 Uncertainty information for learning parameters (𝑏𝑘). 

 GEO PVSOL WIND TIDE BIO NUC HYD 

MIN 0.82 0.72 0.81 0.73 0.89 0.91 0.95 

MAX 0.92 0.85 0.96 0.86 0.95 0.97 0.99 

Sources: McDonald & Schrattenholzer (2001), Rout et al.(2009), Di et al.(2012), Rubin et al. (2015). 
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Table 2 Policy scenario design details. 

 

Initial carbon price level (USD/tC) 
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Table A1. The value of key parameters in our model 

Parameter Value Notes 

Capital value share 0.31 Gerlagh and van der Zwaan (2004), Nordhaus 

(2007) Elasticity between capital-labor and energy 0.40 

Depreciation rate 5.0% Duan et al. (2013), Aldy et al. (2016) 

Initial time preference ratio 0.03 Gerlagh and van der Zwaan (2004), 

Kumbaroglu et al. (2009) Decrease rate of preference ratio per annum 0.30% 

Upper bound of export share in GDP 40% Calibrated according to the historical data 

from 2000 to 2012 (Duan et al., 2014) Upper bound of import share in GDP 30% 

Discount rate for knowledge capital 5.0% Duan et al. (2013), Aldy et al. (2016) 

Initial labor productivity growth (LPG) 6.1% 
Gerlagh and van der Zwaan (2004), 

Kumbaroglu et al. (2009), Duan et al. (2013), 

Nordhaus and Sztorc (2013)  

Decline rate of LPG 0.30% 

Basic initial energy efficiency improvement 0.76% 

Decline rate of AEEI 0.20% 

Marginal productivity of energy  0.34 Calibrated in this work 

Carbon contents for coal (tC/tce) 0.756 
IPCC Greenhouse Gas (GHG) Emission 

Inventory (IPCC, 2006) 
Carbon contents for oil (tC/tce) 0.586 

Carbon contents for natural gas (tC/tce) 0.448 

Natural sink rate of carbon emissions 0.006 IPCC (2006), Nordhaus (2007) 

Note: The other key parameters, such as learning indexes for all the alternative technologies, are the main concerns 

of uncertainty analysis, we therefore do not list them here again. 
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Highlights 

 China’s energy and climate targets in 2030 under multiple uncertainties are 

assessed using a stochastic energy-economy-environment integrated model. 

 The probabilities to realize the targets are obtained, and the nexus among 

different targets is explored. 

 Carbon emission management and policy-making should be implemented from 

the perspective of risk management. 

 Carbon pricing plays a major role in curbing and peaking China’s carbon 

emissions. 

 The carbon intensity reduction target is most likely to be attained, followed by the 

carbon-peaking target, and then the non-fossil energy target. 
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