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Abstract

Many models in Economics assume a utility function belonging to the HARA family. This

paper shows that HARA utility is more fundamental to economic analysis. The HARA func-

tional form is the unique form which satisfies basic economic principles in an optimization

context. Using HARA is therefore not just a matter of convenience or tractability but rather

emerges from economic reasoning, i.e., it is inherent in the economic optimization problem.

The paper applies Lie symmetries to the optimality equation of Merton’s (1969, 1971) widely-

used intertemporal model of the consumer-investor in order to show the inherent nature of the

HARA utility function. Lie symmetries derive the conditions whereby the optimal solution re-

mains invariant under scale transformations of wealth. The latter arise as the result of growth

over time or due to the effects of policy. The symmetries place restrictions on the model, with

the key one being the use of HARA utility. We show that this scale invariance of agents’ wealth

implies linear optimal solutions to consumption and portfolio allocation and linear risk toler-

ance (and vice versa).

The results have broad implications, as the model studied is a fundamental one in Macro-

economics and Finance. The paper demonstrates the use of Lie symmetries as a powerful tool

to deal with economic optimization problems.
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The Fundamental Nature of HARA Utility1

1 Introduction

Many models in Economics, and in particular in Macroeconomics and Finance, assume a CRRA

utility function or some other form belonging to the HARA family. This assumption has proved

useful for the tractability of the analysis and has squared well with empirical work. This paper

shows that HARA utility is more fundamental to economic analysis. The idea is that the HARA

functional form is the unique form which satisfies basic economic principles related to optimiza-

tion. Hence, using HARA is not just a matter of convenience or tractability, but rather emerges

from economic reasoning.

More specifically, the analysis establishes an interdependence between the functional form

of agents’ preferences and the requirement that the optimal solution to a consumption and portfo-

lio choice problem remain invariant under multiplicative wealth transformations. This invariance

requirement is fundamental to economic analysis, and the exploration undertaken in this paper

shows that it defines what type of utility functions may be used. Relying on such invariance un-

derpins empirical undertakings that aim at estimating stable structural relationships, as advocated

by Lucas (1976).

The paper demonstrates this idea by applying Lie symmetries to the optimality equation

of Merton’s (1969, 1971) widely-used intertemporal model of the consumer-investor. As is usu-

ally the case, Merton (1969,1971) assumed HARA utility in order to derive the solution. We show

the HARA functional form of utility emerges as a basic restriction, rather than just assumed. This

means that the HARA form has an economic rationale. We also show that scale invariance of

agents’ wealth implies linear optimal solutions to the control variables (consumption and portfo-

lio allocation) and, vice versa, linear optimal rules imply scale invariance. In fact, scale invariance

1We thank Miles Kimball for useful comments. Any errors are our own. We dedicate this paper to the memory of Bill Segal.
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determines the relevant linear parameters of optimal behavior. The HARA form itself implies lin-

ear risk tolerance. We discuss the connections between linear scale transformations, linear optimal

solutions and linear risk tolerance.

It needs to be stressed at the outset that the idea is not just to re-derive a well-known set of

results. Rather, the aim is to show that the HARA form is inherent to the economic optimization

problem, one which is a fundamental one, appearing in many Macro and Finance contexts. Hence,

the analysis does not aim to provide another solution method to a problem that had been solved,

but rather to show what restrictions on preferences are embodied in economic reasoning about

this fundamental economic problem.

What, then, is this underlying economic rationale? In order to see that we need to briefly

elaborate on two concepts.

First, a symmetry is an invariance under transformation. This concept is usually known

for the case of the invariance of functions, the homothetic utility or production functions being

the most well known special cases. In this paper we use Lie symmetries, which are symmetries of

differential equations. We derive the symmetries of the optimality equation of the Merton model,

which leave the solution of this differential equation invariant.2

Second, the HARA family of utility functions is a rich one, with absolute or relative risk

aversion increasing, decreasing, or constant. It encompasses the special cases of DARA and CARA

functions, of the quadratic function, and of the widely-used CRRA functions.3

Using these concepts, the underlying rationale of the analysis is the following. Optimal

consumption and portfolio choice is subject to variations in scale. Thus, agents have resources of

different scale, such as different levels of wealth or income. This could be the result of growth over

2Other economic implications of Lie symmetries have been discussed and analyzed by a number of authors, and pri-

marily in the pioneering contributions of Sato (1981) and Sato and Ramachandran (1990, 2014). See also the references

therein.
3See, for example, the discussion in Merton (1971, p.389).
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time or the effects of policy, such as taxation. The model features a differential equation, which

expresses the relevant optimality condition (the Bellman equation). The latter incorporates the

assumption that agents face log-normal asset prices. The solution of this equation defines optimal

behavior. Lie symmetries derive the conditions whereby this optimal solution remains invariant

under the cited scale transformations of wealth. Doing so, the symmetries impose restrictions

on the model, with the key restriction being the use of HARA utility. Note that this is based

on an ‘if and only if’ property: the optimal solution will remain invariant under multiplicative

transformations of the agent’s wealth if and only if HARA utility is used. Hence, if one requires

optimal behavior to satisfy certain restrictions – the scale invariance here – then the analysis shows

that restrictions need to be placed on the form of the utility function, taking the specific form of

HARA utility. This is not to claim that agents necessarily need to have HARA utility as their

form of preference; what it does say is that economic modelling of optimization, which obeys

certain economically-relevant invariance requirements, implies these restrictions. This result has

broad implications, as the Merton (1969,1971) model is a fundamental one in Macroeconomics

and Finance. For example, the Ramsey model and the stochastic growth model, which underlies

business cycle modelling, can be thought of as variants of this model in the present context. Hence

the paper provides the theoretical basis for the use of HARA, and the special case of CRRA, in

these fields.

The paper proceeds as follows: in Section 2, we briefly introduce the mathematical concept

of Lie symmetries of differential equations. In Section 3 we discuss the Merton (1969, 1971) model

of consumer-investor choice under uncertainty. In Section 4 we present the application of Lie

symmetries to this model. We derive the main results with respect to HARA utility and discuss

them. Section 5 concludes, pointing to further possible uses of this analysis.
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2 Lie Symmetries

We briefly present the mathematical concept of Lie symmetries of differential equations,4 stressing

the intuition. For an extensive formal discussion, including applications, see Olver (1993). For an

introduction to economic applications see Sato (1981) and Sato and Ramachandran (1990). The

aim of the section is to explain the mathematics underlying the analysis below, but the latter may

be understood also without the exposition of this section.

2.1 General Concepts of Symmetries and Basic Intuition

To give some general intuition to the concept of symmetries consider first a symmetry of a geo-

metric object. This is a transformation of the space in which it is embedded, which leaves the

object invariant. The symmetries of an equilateral triangle, for example, are the rotations in angles

π/3, 2π/3, 2π and the three reflections with respect to the bisectors. The symmetries of a circle

centered in the origin are all the possible rotations (angles 0 � α � 2π) and all the reflections with

respect to axes passing through the origin. In each case the symmetries form a group with respect

to composition. In the first case this is a discrete (finite) group of six elements (it is actually iso-

morphic to the group of permutations of three letters) and in the second case this is a continuous

group which contains the circle itself as a subgroup. Now consider reversing the order: first, fix

the set of symmetries and then see which geometric object ‘obeys’ this set. In the example of the

triangle, if we fix the set of symmetries to be the rotation of angle π/3 and the reflections around

the y-axis (and indeed all the possible combinations of these symmetries, hence the group gen-

erated by the two symmetries), we obtain that the only geometric object preserved by these two

symmetries is an equilateral triangle. This establishes a dual way to ‘see’ a triangle, i.e., through

its symmetries. The same could be done with the circle, the only difference being that the set of

symmetries preserving the circle consists of all possible rotations (with angles 0 � α � 2π) and all

4Named after the Norwegian mathematician Sophus Lie, whose work dates back to the late 19th century.
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possible reflections with respect to axes passing through the origin. This difference, however, is a

significant one as it introduces continuity: the group of symmetries being a continuous group, we

are now permitted to use concepts of continuous mathematics in order to understand the interplay

between the geometric object and the set of symmetries preserving it.

A similar continuous approach may be used to analyze a system of differential equations,

which is what is to be done in this paper. We can view a system of partial differential equations as

a description of a geometric object which is the space of solutions of the system. The symmetries of

the differential equations are thus the transformations which leave the space of solutions invariant.

Determining the group of symmetries of the space of solutions may give valuable insights with

respect to the solution itself. For example, for the p.d.e ∂u(x,t)
∂t = ∂2u(x,t)

∂x2 , the heat equation in

Physics, the group of symmetries of the equation not only gives insight to the problem in question

but actually provides a way to get to the solution itself.

The power of this theory lies in the notion of infinitesimal invariance: one can replace

complicated, possibly highly non-linear conditions for invariance of a system by equivalent linear

conditions of infinitesimal invariance. Infinitesimal symmetries are elements of the tangent space

to symmetries of the system. To employ familiar concepts, it is analogous to the use of derivatives

of a function at a point to approximate the function in the neighborhood of this point. Likewise the

infinitesimal symmetries are “derivatives” of the actual symmetries. The way to go back from the

former to the latter is through an exponentiation procedure. To use familiar terminology again,

the latter is analogous to the use of a Taylor series.

A crucial point is that if one is looking for smooth symmetries and the equations in ques-

tion satisfy some non-degeneracy conditions (as is the case analyzed in this paper) then all the

smooth symmetries of the equation system are derived through the infinitesimal symmetries. We

stress this point as the symmetries derived below express diverse aspects of the consumer-investor

optimization problem. The afore-cited property assures us of extracting all the possible symme-

tries.
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2.2 Invariance of Differential Equations

The Lie symmetries of differential equations are the transformations which leave the space of

solutions invariant. We begin by explaining the concept of invariance of differential equations,

culminating by the derivation of the prolongation equation, which is key in deriving the Lie sym-

metries of a differential equations system. In making the exposition here we are attempting to

balance two considerations: the need to explain the mathematical derivation used below and the

constraint that an overload of mathematical concepts may be burdensome to the reader.

Consider the differential equation:

L(t, x, y, p) = 0 (1)

where x = x(t), y = y(x), p = dy
dx and t is time.

The transformation:

x0 = φ(x, y, t)

y0 = ψ(x, y, t)

implies the transformation of the derivative p = dy
dx to:

p0 =
dy0

dx0
=

∂ψ
∂x dx+ ∂ψ

∂y dy
∂φ
∂x dx+ ∂φ

∂y dy
=

∂ψ
∂x +

∂ψ
∂y p

∂φ
∂x +

∂φ
∂y p

(2)

The differential equation (1) will be invariant under the transformation x ! x0 and y ! y0

(i.e., one integral curve is mapped to another) if and only if it is invariant under:
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x0 = φ(x, y, t)

y0 = ψ(x, y, t)

p0 = χ(x, y, p, t) (3)

The condition for transformation (3) to leave the differential equation (1) invariant is:

H0L � ξ
∂L
∂x
+ η

∂L
∂y
+ η0

∂L
∂p
= 0 (4)

where:

H = (
∂φ

∂t
)0

∂

∂x
+ (

∂ψ

∂t
)0

∂

∂y

= ξ
∂

∂x
+ η

∂

∂y

ξ � (
∂φ

∂t
)0 η � (∂ψ

∂t
)0

η0 � ∂η

∂x
+ (

∂η

∂y
� ∂ξ

∂x
)p� ∂ξ

∂y
p2

and the subscript 0 denotes the derivative at t = 0; the notation ∂
∂x is used for a directional deriv-

ative i.e., the derivative of the function in the direction of the relevant coordinate axis, assuming

space is coordinated. For this and other technical concepts, see Chapter 1 in Sato and Ramachan-

dran (1990).

Below we use an equation like (4) to derive the symmetries of the optimality condition of

the Merton (1969,1971) model. To see the intuition underlying equation (4) consider the invari-

ance of a function (a generalization of homotheticity) rather than that of a differential equation: a

function f (x, y) is invariant under a transformation x ! x0 and y ! y0 if f (x, y) = f (x0, y0). Using

a Taylor series and infinitesimal transformations we can write:
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f (x0, y0) = f (x, y) = f (x, y)� sH f +
s2

2
H2 f + ....

It is evident that the necessary and sufficient condition for invariance in this case is:

H f = 0 (5)

Equation (4) is the analog of equation (5) for the case of a differential equation. It is called

the prolongation equation and it is linear in ξ and η.5Finding the solution to it gives the infinitesimal

symmetries from which the symmetries of the differential equation itself may be deduced.

As noted above, the power of this theory lies in the notion of infinitesimal invariance:

one can replace complicated, possibly highly non-linear conditions for invariance of a system by

equivalent linear conditions of infinitesimal invariance. This is analogous to the use of derivatives

of a function at a point to approximate the function in the neighborhood of this point. Likewise,

the infinitesimal symmetries are “derivatives” of the actual symmetries and the way to go back

from the former to the latter is through an exponentiation procedure.

The Lie symmetries are derived by calculating their infinitesimal generators, which are

vector fields on the manifold composed of all the invariance transformations. Finding these gen-

erators is relatively easy, as it is more of an algebraic calculation, while finding the invariance

transformations directly amounts more to an analytic calculation. After finding the infinitesimal

generators, we “exponentiate” them to get the actual invariant transformations.

A general infinitesimal generator is of the form:

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
(6)

5The full prolongation formula is given in Olver (1993) in Theorem 2.36 on page 110.
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We determine all the possible functions ξ, τ, φ through the prolongation equation, which

puts together all the possible constraints on the functions ξ, τ, φ.

The above procedure is the one we undertake below for the Hamilton-Jacobi-Bellman op-

timality equation of the Merton (1969, 1971) model, to which we turn now.

3 Merton’s Model of Optimal Consumption and Portfolio Selection

In this section we briefly present the main ingredients of the consumer/investor optimization

problem under uncertainty as initially formulated and solved by Merton (1969, 1971)6. We choose

this model as it is a fundamental model of consumer/investor choice and is akin to other prevalent

models, such as the Ramsey model or the stochastic growth model. A key point, which merits

emphasis, is that in what follows we do not just show that this model can be solved in a different

way. Rather, we shall use Lie symmetries to solve it and show in what sense HARA utility is

fundamental to the economic optimization problem and “comes out” of the analysis.

The essential problem is that of an individual who chooses an optimal path of consumption

and portfolio allocation. The agent begins with an initial endowment and during his/her lifetime

consumes and invests in a portfolio of assets (risky and riskless). The goal is to maximize the

expected utility of consumption over the planning horizon and a “bequest” function defined in

terms of terminal wealth.

Formally the problem may be formulated in continuous time, using Merton’s notation, as

follows: denote consumption by C, financial wealth by W, time by t (running from 0 to T), utility

by U, and the bequest by B. There are two assets used for investment,7 one of which is riskless,

yielding an instantaneous rate of return r. The other asset is risky, its price P generated by an Ito

6For a discussion of developments since the initial exposition of these papers see Merton (1990, chapter 6) and Duffie

(2003).
7The problem can be solved with n risky assets and one riskless asset. As in Merton (1971) and for the sake of

expositional simplicity, we restrict attention to two assets. Our results apply to the more general case as well.
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process as follows:

dP
P
= α(P, t)dt+ σ(P, t)dz (7)

where α is the instantaneous conditional expected percentage change in price per unit time and σ2

is the instantaneous conditional variance per unit time.

The consumer seeks to determine optimal consumption and portfolio shares according to

the following:

max
(C,w)

E0

�Z T

0
U[C(t), t]dt+ B[W(T), T]

�
(8)

subject to

dW = w(α� r)Wdt+ (rW � C)dt+ wWσdz (9)

W(0) = W0 (10)

where w is the portfolio share invested in the risky asset. All that needs to be assumed about

preferences is that U is a strictly concave function in C and that B is concave in W.

Merton (1969, 1971) applied stochastic dynamic programming to solve the above prob-

lem. In what follows we repeat the main equations; see Sections 4-6 of Merton (1971) for a full

derivation.

Define:

(i) An “indirect” utility function:
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J(W, P, t) � max
(C,w)

Et

�Z T

t
U(C, s)ds+ B[W(T), T]

�
(11)

where Et is the conditional expectation operator, conditional on W(t) = W and P(t) = P.

(ii) The inverse marginal utility function:

G � [∂U/∂C]�1 � UC
�1(C) (12)

The following notation will be used for partial derivatives: UC � ∂U/∂C, JW � ∂J/∂W, JWW �

∂2 J/∂W2, and Jt � ∂J/∂t.

A sufficient condition for a unique interior maximum is that JWW < 0 i.e., that J be strictly

concave in W.

Merton assumes “geometric Brownian motion” holds for the risky asset price, so α and

σ are constants and prices are distributed log-normal. In this case J is independent of P, i.e.,

J = J(W, t).

Time preference is introduced by incorporating a subjective discount rate ρ into the utility

function:

U(C, t) = exp(�ρt) eU(C, t) (13)

The optimal conditions are given by:

exp(�ρt) eUC(C�, t) = JW (14)

(α� r)W JW + JWWw�W2σ2 = 0 (15)
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where C�, w� are the optimal values.

Combining these conditions results in the so-called Hamilton-Jacobi-Bellman (HJB) equa-

tion, which is a partial differential equation for J, one obtains:

U(G, t) + Jt + JW (rW � G)� J2
W

JWW

(α� r)2

2σ2 = 0 (16)

subject to the boundary condition J(W, T) = B(W, T). Merton (1971) solved the equation by re-

stricting preferences, assuming that the utility function for the individual is a member of the Hy-

perbolic Absolute Risk Aversion (HARA) family of utility functions. The optimal C� and w� are

then solved for as functions of JW and JWW , the riskless rate r, wealth W, and the parameters of

the model (α and σ2 of the price equation and the HARA parameters).

4 The Symmetries of the Consumer-Investor Optimality Equation and

Their Economic Interpretation

We now derive the symmetries of the HJB equation (16). Two issues should be emphasized: (i) the

symmetries are derived with no assumption on the functional form of the utility function except

its concavity in C, a necessary condition for maximization; (ii) the optimal solution depends

on the derivatives of the indirect utility function J, which, in turn, depends on wealth W and

time t. The idea is to derive transformations of t and W that would leave the optimality equation

invariant. These transformations do not require imposing any restrictions on the end points, i.e.,

transversality conditions, of the type usually needed to obtain a unique solution to optimal control

problems.8

In economic terms, this means that if wealth varies, say because of taxation or because

of intertemporal growth, the optimal solution remains invariant. The underlying interest in the

8The symmetries, however, do not restrict the optimal solution to be unique.
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invariance of the optimality equations is that we would like to have invariance of the structure of

the solution across different levels of wealth.

In what follows we present the derivation of the symmetries (4.1) and their economic in-

terpretation (4.2).

4.1 Derivation of the Symmetries

4.1.1 The Infinitesimal Generators of the Symmetries

In order to calculate the symmetries of the HJB equation (16), which is a p.d.e., we first calculate the

infinitesimal generators of the symmetries, and then exponentiate these infinitesimal generators to

get the symmetries themselves. An infinitesimal generator ν of the HJB equation has the following

form, as in equation (6) above:

ν = ξ(W, t, J)
∂

∂W
+ τ(W, t, J)

∂

∂t
+ φ(W, t, J)

∂

∂J
(17)

Here ξ, τ, φ are functions of the variables W, t, J. The function J, as well as its partial deriv-

atives, become variables in this method of derivation of the symmetries. In order to determine

explicitly the functions ξ, τ, φ we prolongate the infinitesimal generator ν according to the pro-

longation formula of Olver (1993, page 110) and the equations thereby obtained provide the set

of constraints satisfied by the functions ξ, τ, φ (see details in Olver (1993, pages 110-114), whose

notation we use throughout).

The prolongation equation applied to ν yields:

h
rξ JW � ρτe�ρtU(G(eρt JW)) + (rW � G(eρt JW))φ

W + φt
i

J2
WW

+2AφW JW JWW � AφWW J2
W

= 0
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where φW , φt, φWW are given by:

φW = φW + (φJ � ξW)JW � τW Jt � ξ J J2
W � τJ JW Jt

φt = φt � ξt JW + (φJ � τt)Jt � ξ J JW Jt � τJ J2
t

φWW = φWW + (2φW J � ξWW)JW � τWW Jt + (φJ J � 2ξW J)J2
W

�2τW J JW Jt � ξ J J J3
W � τJ J J2

W Jt + (φJ � 2ξW)JWW

�2τW JWt � 3ξ J JW JWW � τJ Jt JWW � 2τJ JW JWt

Plugging these expressions in the prolongation formula applied to the HJB equation (16)

yields:
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rξ JW � ρτe�ρtU(G(eρt JW)) (18)

+(rW � G(eρt JW))(φW + (φJ � ξW)JW � τW Jt � ξ J J2
W � τJ JW Jt)

+(φt � ξt JW + (φJ � τt)Jt � ξ J JW Jt � τJ J2
t )J

2
WW

+2A(φW + (φJ � ξW)JW � τW Jt � ξ J J2
W � τJ JW Jt)JW JWW

�A

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

φWW

+(2φW J � ξWW)JW

�τWW Jt

+(φJ J � 2ξW J)J2
W

�2τW J JW Jt

�ξ J J J3
W

�τJ J J2
W Jt

+(φJ � 2ξW)JWW

�2τW JWt

�3ξ J JW JWW

�τJ Jt JWW

�2τJ JW JWt

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

J2
W

= 0

Note that the variables JW , JWW , JWt, Jt are algebraically independent. This implies that the

coefficients of the different monomials in those variables are equal to zero. We therefore proceed

as follows.

(i) We first look at the different monomials in the above equation in which JWW does not

appear. Equating the coefficients of these monomials to 0 implies that:

17



τJ = τW = 0 (19)

ξ J J = 0

φWW = 0

φJ J � 2ξ JW = 0

2φW J � ξWW = 0

(ii) Next we look at monomials in which JWW appears in degree one. This gives (noting that

r 6= α implies that A 6= 0) the following equation (in which we gathered only those monomials

with their coefficients):

2(φW + (φJ � ξW)JW � ξ J J2
W)JW JWW + 3ξ J J3

W JWW � (φJ � 2ξW)JWW J2
W = 0

From this we deduce that

φW = 0 (20)

ξ J = 0

φJ = 0

(iii) Now we look at the monomials containing J2
WW which give the following equation:

rξ JW � ρτe�ρtU(G(eρt JW))� (rW � G(eρt JW))ξW JW + φt � ξt JW � τt Jt = 0 (21)

From which we deduce that

φt = 0 (22)

τt = 0

18



From all the constraints above on the functions ξ, τ, φ we gather so far that τ = Constant

and φ = Constant and we are left with the following equation for the ξ function:

eρt(rξ � ξt � rWξW)JW + ξW G(eρt JW)eρt JW � ρτU(G(eρt JW)) = 0 (23)

From this we deduce that ξW = 0 unless the following functional equation is satisfied

G(eρt JW)eρt JW � γU(G(eρt JW)) = 0 (24)

in which γ is a constant scalar. The last statement is of great importance in the current context, as

will be shown below.

We end up with the following constraints for the infinitesimal generators:

φt = 0 (25)

ρτ = φ (26)

ξW = 0 (27)

The last equation holds true unless equation (24) is satisfied.

4.1.2 The Symmetries

The constraints, which we have derived, on the functions ξ, τ, φ and their derivatives completely

determine the infinitesimal symmetries, which are given by:

Symmetry 1 φt = 0
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If J(W, t) is a solution to the HJB equation, then so is J(W, t) + k for any k 2 R.

Symmetry 2 ρτ = φ

If J(W, t) is a solution of the HJB equation, so is e�ρτ J(W, t+ τ) for any τ 2 R.

Symmetry 3 ξW = 0

If J(W, t) is a solution of the HJB equation, so is J(W + kert, t) for any k 2 R.

For a general specification of the utility function, the HJB equation of the model admits

only the above three symmetries. However, from the constraints above we also get that in case

that the utility function satisfies the functional equation (24), and only in that case, there is an extra

symmetry for the equation.

We now consider the implications of equation (24). For this we need first the following.

Lemma 1 The functional equation

G(x)x� γU(G(x)) = 0 (28)

where G = (U0)�1 , is satisfied by a utility function U iff U is of the HARA form.

Proof. Upon plugging in the equation a utility U(x) of the HARA form we see the functional

equation above is satisfied. Going the other way, after differentiating the equation with respect to

x, we get the ordinary differential equation:

G0x+ G� ε(xG0) = 0

The solutions of this equation form the HARA class of utility functions. Then we take the inverse

function to get U0 and after integration we get that U is of the HARA form.
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When the functional equation (24) holds true and Lemma 1 is relevant, the exponentiation

of the infinitesimal generators yields a fourth symmetry as follows.

Symmetry 4

If J(W, t) is a solution, then so is ekγ J(e�kfW + (1�γ)η
βr g � η (1�γ)

βr , t) for any k 2 R.

In words, this fourth symmetry says that if J(W, t) is a solution then a linear function of J

is also a solution. Calculation of the solutions to the functional equation in Lemma 1 shows that

only utility functions of the HARA class satisfy it. The HARA function is expressed as follows:

eU(C) = 1� γ

γ

�
βC

1� γ
+ η

�γ

(29)

The special case of the CRRA function Cγ

γ has β = 1, η = 0. The cases of logarithmic utility (ln C)

and exponential utility (�e�βC) are limit cases.

4.2 Economic Interpretation

There are four symmetries all together. The first three formulate “classical” principles of utility

theory; the fourth places restrictions on the utility function, and it is the main point of interest

here.

Symmetry 1

If J(W, t) is a solution to the HJB equation, then so is J(W, t) + k for any k 2 R.

This symmetry represents a formulation of the idea that utility is ordinal and not cardinal.

Symmetry 2

If J(W, t) is a solution of the HJB equation, so is e�ρτ J(W, t+ τ) for any τ 2 R.

This symmetry expresses the property that displacement in calendar time does not change

the optimal solution.
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Symmetry 3

If J(W, t) is a solution for the HJB equation, then so is J(W + kert, t) for any k 2 R.

This symmetry expresses a property with respect to W that is similar to the property of

Symmetry 2 with respect to t : if the solution is optimal for W then it is also optimal for an additive

re-scaling of W; the term ert keeps the additive k constant in present value terms.

As noted, for a general specification of the utility function, the HJB equation of the model

admits only the above three symmetries.

Symmetry 4

If J(W, t) is a solution, then so is ekγ J(e�kfW + (1�γ)η
βr g � η (1�γ)

βr , t) for any k 2 R.

As noted, this holds only if equation (24) is satisfied.

This fourth symmetry is the key point of this paper. It has the following major implications:

(i) Because k is completely arbitrary any multiplicative transformations of W, i.e., e�kW, ap-

ply. Such transformations are the most natural ones to consider when thinking of wealth growth

or policy effects.9Thus, this symmetry states the following: the optimum, expressed by the J func-

tion, i.e., maximum expected life-time utility, will remain invariant under multiplicative transfor-

mations of wealth W if and only if HARA utility is used. Hence the HARA form is determined by

the symmetry. Note well that HARA utility is implied by this symmetry, not assumed a-priori.

This does not imply, though, that there is a unique such J but it does express a property of any J

which solves the HJB equation.10

9For a recent empirical discussion of wealth changes and their effects on portfolio allocations with special reference

to implications for risk aversion, and therefore for the functional form of the utility function, see Brunnermeier and

Nagel (2008).
10If, together with the multiplicative transformation, there is also an additive transformation of W, expressed by the

term e�k
�
(1�γ)η

βr

�
� η

(1�γ)
βr , then it is further restricted by the parameters of the HARA utility function, and features

the same arbitrary constant used for the multiplicative transformation.
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The idea, then, is that there is an interdependence between the functional form of prefer-

ences (the form of the utility function) and the requirement that the optimal solution will remain

invariant under multiplicative wealth transformations. This interdependence takes specific form

in Symmetry 4.

The i f f property means that if we demand scaling invariance of wealth then the utility

function has to be HARA and if the utility function is HARA then we have wealth scaling in-

variance. This kind of invariance underpins empirical undertakings that aim at estimating stable

structural relationships, as forcefully advocated by Lucas (1976).

(ii) In Merton (1971, p. 391) the following theorem is presented and proved:

THEOREM III. Given the model specified...C� = aW + b and w�W = gW + h where a, b, g,

and h are, at most, functions of time if and only if U(C, t) � HARA(C).

The result we obtain above can also be stated as follows:

Theorem 2 Given the model specified in this section, then symmetry 4 (the scaling symmetry) is satisfied

if and only if U(C, t) � HARA(C).

Combining the last theorem with Merton’s theorem above, we get:

Corollary 3 Given the model specified in this section, then C� = aW + b and w�W = gW + h where

a, b, g,and h are, at most, functions of time, if and only if symmetry 4 (the scaling symmetry) is satisfied.

Note that in the above corollary no reference is made to any specific form of the utility

function. The proof of this corollary does not necessitate a specific solution to the HJB equation

in the model and in any case it is impossible to give a precise solution when the utility function is

not specified.

This means that wealth scale invariance implies linear optimal solutions to the control

variables (C�, w�) and linear optimal rules imply scale invariance. Scale invariance determines the

relevant linear parameters of optimal behavior.
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Note that this is not simply a re-statement of Mertons’s (1969, 1971) results. The latter

papers have assumed HARA utility and then solved the HJB equation.11Here symmetry 4 shows

that utility has to be HARA, so that the consumer-investor problem be invariant for economic

plausibility. This is established even without solving the HJB equation.

(iii) If we know that we can compare the outcome of two different consumers as a linear

function of the ratio of their wealth stocks, then necessarily the utility function of the agents is of

the HARA form. This can also be stated as follows: if the outcome of two different consumers

cannot be compared as a linear function of the ratio of their wealth, then their utility function is

not HARA. We can state this even without solving the model explicitly, as it emerges from the

analysis of the symmetries, i.e., the invariance properties of the HJB equation. This result stems

from the formulation of symmetry 4 whereby if J is a solution then a linear function of J is a

solution and from the ‘if and only if’ property discussed above.

4.3 Linear Connections: Implications for Risk Aversion

A utility function U(C) is said to be HARA iff it has a risk tolerance T(C)which is a linear function

of its argument. That is:

T(C) =
1

A(C)
=

C
1� γ

+
η

β
(30)

where absolute risk aversion A(C) is given by:

A(C) = �U00(C)
U0(C)

Thus, there are three linear formulations here which are inter-connected:

a. Scale invariance is established through linear transformations of wealth; see the trans-

formation e�kfW + (1�γ)η
βr g � η (1�γ)

βr in Symmetry 4 above and the ensuing discussion.

11See, for example, pp. 388-391 in Merton (1971).
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b. Optimal consumption C� and portfolio shares w� are linear functions of wealth; see

Corollary 3 above.

c. Risk aversion is such that its reciprocal, risk tolerance, is linear in consumption, as in

equation (30).

Symmetry 4 establishes the equivalence between these three linear formulations, all with

an i f f property: scaling invariance – as in point a – generates HARA, which yields optimal be-

havior, as in point b, and which risk aversion is defined in point c.12

Note that the functional equation (28), which holds true iff there is scale invariance, is the

same as the functional equation which has to be satisfied by the utility function in order for it to

feature linear risk tolerance (equation (30)). This fundamental functional equation is implicit in

the model itself and the way to uncover it is through the calculation of the Lie symmetries.

One can then interpret the results above also as follows: a requirement of risk tolerance

to be linear in consumption as an “economic fundamental” means that utility has to be HARA,

and through the equivalence implied by Symmetry 4, that the indirect utility function be scale

invariant.13

5 Conclusions

The analysis has derived the set of all the transformations that leave the optimal solution invariant

in the consumer-investor problem analyzed by Merton (1969, 1971). In particular, we have derived

HARA utility as an inherent feature, a restriction that applies when invariance of the optimal

solution is to obtain under multiplicative transformations of wealth. Doing so, we showed that

12For good expositions of the relationships between the functional form of the utility function, attitudes towards risk

and intertemporal substitution, and optimal consumption choice, see Weil (1989, 1990).

13For discussions of the role of HARA utility in the two-fund separation paradigm, and the linear connections

embodied there, see the seminal contribution of Cass and Stiglitz (1970).
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wealth scale invariance implies linear optimal solutions and linear risk tolerance. Showing HARA

to be an essential, inherent feature of optimization was not previously demonstrated.

While undertaking this analysis, the paper has demonstrated the use of Lie symmetries

as a powerful tool to deal with economic optimization problems. Such invariance restrictions are

fundamental to economic analysis. The analysis demonstrates how economic conclusions flow

from economic assumptions, as opposed to arbitrary functional form assumptions. Lie symme-

tries techniques are a key tool for finding the set of functional forms implied by a given economic

requirement.

There are likely to be many other optimization problems that would yield restrictions of

the type explored here. Consider two examples: first, the problem, examined by Lucas and Stokey

(1984) and subsequent literature, of modelling optimal paths in an economy with heterogenous

agents and growth, is likely to be amenable to such analysis. A much more recent treatment of this

kind of problem has been undertaken in the context of DSGE models and the relationship between

representative agent models and heterogeneous agent economies. Symmetries can provide condi-

tions for aggregator functions and restrictions on the utility functions. Second, for problems with

non-constant rates of time preference, such as the one analyzed by Barro (1999), symmetries can

provide restrictions on the time preference function. Hence, rather than assume certain properties

of such functions, these could be derived using the tools presented above.

Lie symmetries may also be used to characterize solutions when these cannot be repre-

sented in closed-form. However, as far as we can see, there is no general principle here which

could be formulated. These issues need to be tackled on a case by case basis. In some the symme-

tries will yield trivial structural characterizations, while in others they could generate significant

insights.
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